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The familiar divergence and Kelvin–Stokes theorem
are generalized by a tensor-valued identity that relates
the volume integral of the gradient of a vector field
to the integral over the bounding surface of the
tensor product of the vector field with the exterior
normal. The importance of this long-established yet
relatively little-known result is discussed. In flat
two-dimensional space, it reduces to a relationship
between an integral over an area and that over
its bounding curve, combining the two-dimensional
divergence and Kelvin–Stokes theorems together with
two related theorems involving the strain, as is shown
through a decomposition using a suitable tensor basis.
A fluid dynamical application to oceanic observations
along the trajectory of a moving platform is given.
The potential extension of the generalized two-
dimensional identity to curved surfaces is considered
and is shown not to hold. Finally, the paper includes a
substantial background section on tensor analysis, and
presents results in both symbolic notation and index
notation in order to emphasize the correspondence
between these two notational systems.

1. Introduction
Nearly a century and a half ago, the mathematical
framework of vector analysis was laid out by Gibbs
[1] in a form that has changed little to this day. In
that treatise, in a list including well-known integral
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theorems such as the divergence theorem and Kelvin–Stokes theorem, Gibbs also presents a
theorem linking the volume integral in three-dimensional space of the gradient of a vector field to
an integral over the bounding surface, see eqn. (2) in §161 of [1]. That result, which we will refer
to as the gradient tensor theorem, is given by

∫∫∫

V
∇ ⊗ u dV =

∫∫

A
n ⊗ u dA, (1.1)

for a vector field u integrated over a volume V with bounding surface A, and with n being the
exterior normal vector to A. Here, the notation a ⊗ b denotes the tensor, or outer, product of
vector a with vector b, yielding a tensor, while the tensor-valued gradient of the vector field u
is denoted as ∇ ⊗ u and not ∇u for reasons to be discussed subsequently. This result involves
a 3 × 3 tensor on each side of the equality, thus comprising a set of nine individual identities,
with each component of u differentiated with respect to each of the three coordinates. It contains
within itself more familiar identities: its trace is the divergence theorem—obtained by replacing
the tensor product ‘⊗’ with the scalar product ‘·’—while its skew-symmetric part is a vector-
valued analogue of the Kelvin–Stokes theorem, together accounting for four of the nine terms.
The remaining identities involve what would be called the rates of strain if u is interpreted as a
velocity; these too are subject to integral theorems relating their volume integrals to integrals over
the boundary.

The two-dimensional version of the gradient tensor theorem is of particular importance in
fluid dynamics, where two-dimensional flows are a commonplace idealization. If the vector field
u lies entirely within a flat two-dimensional surface, (1.1) reduces to

∫∫

A
∇ ⊗ u dA =

∮

L
dn ⊗ u, (1.2)

which describes the connection between spatially integrated derivatives of the vector field u over
the area A and its value along the bounding curve L. Here, dn is the differential exterior normal,
related to the differential tangent vector dx to the boundary L via dn = −k × dx with k being the
unit normal vector to the surface, and the boundary integral is traversed in the right-hand sense.
For the case of a Cartesian coordinate system, with the two-dimensional vectors x and u having
components (x, y) and (u, v), respectively, one obtains

∫∫

A
δ dA =

∮

L
(−vdx + udy)

∫∫

A
ζ dA =

∮

L
(udx + vdy)

∫∫

A
ν dA =

∮

L
(vdx + udy)

∫∫

A
σ dA =

∮

L
(−udx + vdy)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(1.3)

where δ, ζ , ν and σ are the divergence, the component of vorticity normal to the surface, and the
normal strain rate and shear strain rate within the surface, respectively, which may be defined as

δ ≡ ∂u
∂x

+ ∂v

∂y
, ζ ≡ ∂v

∂x
− ∂u

∂y
, ν ≡ ∂u

∂x
− ∂v

∂y
, σ ≡ ∂v

∂x
+ ∂u

∂y
. (1.4)

Note that (1.3) are all manifestations of Green’s theorem,
∫∫

A(∂M/∂x − ∂L/∂y)dxdy =
∮
L(L dx +

M dy). Thus the two-dimensional gradient tensor theorem combines into one compact and
coordinate-independent identity the divergence theorem, the Kelvin–Stokes theorem and two
related identities involving the strain rates.

The three- and two-dimensional gradient tensor theorems, (1.1) and (1.2), make no reference
to a coordinate system, and are true regardless of which basis is used to represent vectors
and tensors. Nevertheless, it is instructive to write them out in component form for Cartesian
coordinates, in which case they will be shown to become respectively

∫∫∫

V

∂

∂xi uj dV =
∫∫

A
niuj dA,

∫∫

A

∂

∂xi uj dA =
∫

L
dni uj, (1.5a,b)
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with i and j each taking on the values (1, 2, 3) in the former equation and (1, 2) in the latter.
Here, xi is the ith Cartesian coordinate while ui denotes the ith component of the vector u. These
forms show the connection to the fundamental theorem of calculus more clearly. For a volume
consisting of a rectangular cuboid aligned such that its six faces are each normal to one of the
basis vectors, the ni terms in (1.5a) become unity or zero on each of the faces, and the equality
follows from the fundamental theorem of calculus. Informally, we can extend this identity to any
volume by considering it to be composed of a sum of such cuboids, or see §3.31 of [2] for an
approach involving projections onto coordinate planes. As we are working in three-dimensional
space, for (1.1), or on any flat two-dimensional surface embedded in three-dimensional space, for
(1.2), the Cartesian coordinates and the attendant orthogonal basis vectors are always available,
and therefore we could always choose to write (1.5a,b). And because we can represent the same
vector or tensor objects equivalently in different coordinate systems, we infer that the underlying
results must be independent of the choice of coordinate system, and this is what (1.1) and (1.2)
express.

The divergence and Kelvin–Stokes theorem are central to the study of fluid dynamics,
electrodynamics and other branches of physics. They are frequently used in the manipulations
of dynamical equations—giving rise to well-known results such as Kelvin’s circulation theorem,
Gauss’s Law and Faraday’s Law—and can also be usefully applied in observational or model
analysis in order to infer spatial averages from information along a boundary. But while these
integral theorems are common knowledge, this does not appear to be the case for the full gradient
tensor theorem. The related result

∫∫∫
V (∂/∂xi)ϕ dV =

∫∫
A niϕ dA, where ϕ may be a scalar or a

component of a vector or tensor, appears in numerous textbooks, see e.g. (3.12.2) of Panton [3],
(2.30) of Kundu et al. [4] and (3.31.2) of Aris [2]1, and this becomes the Cartesian componentwise
form of the gradient tensor theorem (1.5a) with the choice ϕ = uj. However, we have managed
to locate the gradient tensor theorem in the coordinate-independent tensor form (1.1) only in
several recent continuum mechanics textbooks ([5], eqn. (1.5.67); [6], eqn. (3.23); [7], eqn. (12.170)).
Similarly, we find the two strain theorems that augment the familiar divergence and Kelvin–
Stokes theorems in the two-dimensional gradient tensor theorem to be rarely discussed. These
factors suggest that the gradient tensor theorem and its implications could be more widely
appreciated than at present. Our hope is that by reviewing a generalized version of commonly
used integral identities, new opportunities may arise.

The purpose of this work is to reintroduce the gradient tensor theorem to the larger community
of physical scientists, to explain its importance and to present an application. In so doing, it is
necessary to also treat the tensor product, as an understanding of this operator is essential in order
for (1.1) and (1.2) to be meaningful. In fluid mechanics, for example, the tensor product does not
appear to be a part of the standard lexicon. This is unfortunate because the tensor-valued gradient
of a vector field arises frequently, and is implicit within the ubiquitous nonlinear advection term
(u · ∇)u. Often in textbooks the symbol ∇u, rather than being defined, is left to be interpreted in
the context of expressions such as (u · ∇)u (e.g. [8–11]). Yet without recognizing that the gradient
∇u is standing in for the tensor product derivative ∇ ⊗ u, we cannot remove the parentheses
from the advection term to write (u · ∇)u = u∇ ⊗ u. As will be seen subsequently, this identity is
in fact the defining property of the ‘⊗’ operator. Understanding the gradient as the tensor product
∇ ⊗ u therefore goes hand in hand with understanding the gradient tensor theorem. Moreover,
the appreciation of ∇u as being an implicit tensor product also resolves a transposition ambiguity
in the definition of the gradient tensor that exists in the literature, as pointed out recently in [12].

Several questions then arise regarding the interpretation and range of validity of the gradient
tensor theorem. It is natural to ask whether the two-dimensional gradient tensor theorem (1.2)
is also valid for curved surfaces embedded in three-dimensional space, such as the surfaces of
constant density encountered frequently in fluid mechanics. It will be shown that the answer is no,
it only holds for flat surfaces, although the divergence theorem and Kelvin–Stokes theorem do still
apply. Similarly, it is natural to ask how the gradient tensor theorem is related to the generalized

1The authors are grateful to an anonymous reviewer for bringing these equations to our attention.
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Stokes theorem of differential geometry—a result that embodies the essence of Stokes-like integral
theorems within a broad generalization of what is meant by a volume and a boundary. The
gradient tensor theorem is a result that holds specifically for three-dimensional Euclidean space or
a flat surface therein, while the generalized Stokes theorem is a statement about the integrability of
differential objects on curved manifolds. While the gradient tensor theorem is not a special case of
the generalized Stokes theorem, nevertheless, individual identities from the former can be said to
be manifestations of the latter. These theorems should be understood as different generalizations
of the classical Kelvin–Stokes theorem. The virtue of the gradient tensor theorem is its utility for
practical problems involving integration in three-dimensional space, whereas the power of the
generalized Stokes theorem lies in its abstraction.

A work presenting a result involving tensors must confront the reality that familiarity with
tensor analysis is not as widespread as it deserves to be, particularly in comparison with vector
analysis. Whereas vector analysis appears in introductory texts on physics, electrodynamics
and fluid mechanics, tensors are typically reserved for more advanced topics such as classical
mechanics and especially for general relativity. As a consequence, one is faced with a choice:
present the result tersely, thus limiting the readership to those already familiar with tensors,
or take the time to present the background material required by a larger audience. Here, we
take the latter approach. This is particularly suitable for this topic, because as will be seen,
the story of the gradient tensor theorem is one that is interwoven with the history of tensor
analysis.

The choice then arises of what notation system to use for tensor analysis. One option is to use
the index notation system, as is standard in general relativity [13] and advanced physics [14]. This
is the system formulated by Ricci-Curbastro and Levi-Civita [15,16] in their foundational work
on modern tensor analysis, streamlined by the summation convention introduced by Einstein
[17]. A second option is to use a symbolic system derived from that of Gibbs [1], which involves
the use of the familiar ∇ operator. Updated and modernized versions of this system, including
the incorporation of curvilinear coordinates, are found in recent continuum mechanics texts
such as [6,7,13,18]. The former system has the advantages of compactness and explicitness that
allow manipulations to be carried out with ease. The latter has the virtue of familiarity, as it
is essentially continuous with the ubiquitous notation for vector analysis while mirroring the
mechanics of linear algebra, as well as a perhaps more ready legibility. As both systems are in
common use, we present the main results in parallel using both notations. At the same time,
in order to ensure accessibility, the sections that rely on index notation, in particular §3d and
§4d, are marked with an asterisk; the remainder of the paper may be read without these two
sections.

This brings us to a secondary goal of the paper. In seeking to determine the implications and
possible extensions of the gradient tensor theorem, we have found a solid understanding of both
symbolic and index notation to be essential. The process of carrying out this work has emphasized
to us their distinct strengths and weaknesses, highlighted areas in which these two ultimately
equivalent notations appear surprisingly distant, and underscored the value of being conversant
in both. The background section could therefore be read on its own as a very compact introduction
to tensor analysis that treats symbolic and index notation even-handedly and that emphasizes
their deep congruency. It is our hope that this presentation will benefit others working in tensor
analysis, and also help to make this powerful tool more broadly accessible.

This paper builds on recent work by the first author [19], in which a version of the two-
dimensional gradient tensor theorem, (1.2), was derived in the framework of linear algebra, by
representing vectors as 2 × 1 arrays and tensors as 2 × 2 matrices. Here, we revisit the problem
within the context of the more abstract and general framework of tensor analysis, with an
appreciation of how the gradient tensor theorem fits into a hierarchy of related identities, and
with a perspective on the origin and potential usefulness of this result.

The structure of the paper is as follows. As motivation, an application to a real-world problem
in observational oceanography is presented first in §2. Preliminaries centring on vector and tensor
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analysis involving the tensor product of two vectors are then given in §3. A derivation of the two-
dimensional gradient tensor theorem starting with the divergence theorem is presented in §4,
followed by an analysis of its components. Key contributions are the identification of a tensor
basis that lets the two-dimensional gradient tensor theorem (1.2) be readily decomposed into
the four physically meaningful constituent identities given in (1.3), thus unlocking the practical
value of this result, and a demonstration that the two-dimensional gradient tensor theorem does
not apply to curved surfaces; these are presented in §4c,d, respectively. The paper concludes in §5
with a discussion.

2. An application
The gradient tensor theorem is likely to be of particular use in fluid mechanics, where the
vector field u being studied is generally the velocity and where the velocity gradient tensor
is an object of great interest. It is known that the spatial derivatives of the velocity field play
essential roles in controlling the local evolution of the flow [20–24], as numerical or laboratory
modelling diagnostics of local topology and dissipation [25–30], and as controlling terms within
energy balance equations [31–33]. Because of this importance, in the study of the ocean currents
considerable effort has been expended in the estimation of the velocity gradient terms from in situ
measurements [34–43]. In the analysis of the velocity gradient tensor from observations or within
numerical models, the ability to infer spatial averages from information along boundaries may
prove to be invaluable, for example, by providing ready access to aggregate statistics or possibly
by facilitating the formulation of integral evolution laws. This is particularly evident when one
considers the fact that key high-resolution observational platforms in oceanography, such as ship-
based surveys [37,38], the now widely used autonomous gliders [44–47], and the new Saildrone
[48] and SailBuoy [49] autonomous surface platforms, all inherently sample along a trajectory and
not over an area.

To illustrate the relevance to ocean observations, an application to a long-lived eddy in a
numerical simulation termed BetaEddyOne [50] is shown in figure 1, sampled in such a way
as to mimic a one-dimensional observational platform. Inspired by the study of [51], an initial
condition of a circular eddy is placed in quiescent ocean and integrated under 1.5 layer quasi-
geostrophic dynamics for one year. Eddy features such as this one are known to be important
players in the climate system [52–54] but are difficult to observe remotely due to their small size
relative to the resolution of satellite-based platforms. In situ measurements [44,46,47] are therefore
essential for understanding the details of these eddies.

Assuming that the observations are carried out sufficiently rapidly such that the eddy may
be regarded as frozen, the eddy core and a trailing filament are each observed along a track
composed of closed triangular cells. Such tracks can be drawn by a single moving platform,
without overwriting any lines, by beginning at an upper vertex and then moving southwest,
due east, northwest and due east in succession. While only two terms from the velocity gradient
tensor are known instantaneously along the instrument trajectory, average values of the entire
tensor are known within each triangular cell from the information along the boundary using the
two-dimensional gradient tensor theorem (1.2). The vorticity ζ , normal strain ν and shear strain
σ inferred in this way are seen to provide good approximations to the full local structure; note
that the divergence vanishes for the quasi-geostrophic dynamics employed in this simulation.
This demonstrates that accurate small-scale velocity gradient information can be obtained with
measurements from a single moving platform using the gradient tensor theorem, a fact that could
improve our ability to observe such structures.

Another view of this application is found in the line plot in figure 2. Along the instrument
trajectory, the velocity gradient terms ∂u/∂ x̃ and ∂v/∂ x̃ can be formed where x̃ is the position
coordinate along the track, but spatial derivatives in the direction perpendicular to the track are
not known. The two observable terms can be rotated to give ∂ũ/∂ x̃ and ∂ ṽ/∂ x̃, the along-track
derivatives of the velocity components parallel and perpendicular to the track, respectively. These
are shown in figure 2 and compared with the full gradient terms ζ , ν and σ along the tracks. This
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Figure 1. An illustrationof theuse of thegradient tensor theorem inobservational oceanography. The (a) vorticityζ , (b) normal
strain ν and (c) shear strain σ in a snapshot of a numerical simulation of a quasi-geostrophic eddy termed BetaEddyOne [50]
are shown, each normalized by the Coriolis frequency f ≡ 2Ω sinφ, whereΩ is the angular rotation rate of the Earth andφ

is the model’s central latitude. The eddy is sampled along the triangular tracks, as described in the text, and the colours of the
circular discs show the average values of the three quantities within each triangular cell as inferred from the information along
its boundary using (1.2). Note that the divergence vanishes for this quasi-geostrophic model. See the Data Accessibility section
at the end of the paper for details on model output availability.

illustrates that having the along-track information is insufficient to reconstruct ζ , ν and σ , as
each of these is a sum or difference of two terms, only one of which is known. In this particular
case, we can exploit the fact that the divergence vanishes to recover the normal strain ν̃ in the
reference frame aligned with the track direction from the along-track velocity ũ as ν̃ = 2(∂ũ/∂ x̃),
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Figure 2. Another view of the information presented in figure 1. Here, the instantaneous values of the (a) vorticity ζ ,
(b) normal strain ν and (c) shear strainσ along the sampling tracks are shown, as found from interpolating within the model.
These are not directly observable because spatial derivatives can only be computed in the along-track direction. For reference,
velocity gradient components locally parallel and perpendicular to the sampling tracks are shown in each panel, indicating the
information that can be recovered directly from taking along-track derivatives. Dots show the cell-averaged values, generally
providing a good match to the local structure, apart from in (b) where the normal strain ν exhibits small-scale oscillatory
behaviour.

but we cannot estimate the ∂ũ/∂ ỹ term that appears in both the vorticity and shear strain without
resorting to geometric assumptions exploiting the near-circular shape of the eddy. The triangle-
cell averages, however, give generally representative values of the instantaneous values of the
gradient terms, as well as recovering their areal averages.

For the particular case of the normal strain ν in figure 1b, values along the instrument track
oscillate between positive and negative, leading to cancellations within the triangular cells; the
cell averages in figure 2b, while accurate, are thus less representative of this rapidly varying
along-track structure. This illustrates the caveat that interpreting results from the gradient tensor
theorem is more straightforward when some degree of local smoothness may be assumed. More
generally, in the application of integral theorems, one must keep in mind that if the field one is
sampling has variability on the scale of the sampling, this could lead to cancellations such that
the integral value underestimates the local value.
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3. Background
In this section, we present necessary concepts and notation from vector and tensor analysis, in
particular, the tensor product and associated derivatives, limiting our consideration to ordinary
three-dimensional Euclidean space. As described in the Introduction, we will work with both
symbolic notation and index notation. The symbolic perspective will be presented first, initially
limited to Cartesian coordinates, in which we emphasize (i) the distinction between proper
vectors and tensors and the arrays of numbers used to represent them, as stressed by Koks [55];
and (ii) the parallel between tensors operations and those in linear algebra, as in the presentation
of Itskov [18]. This is followed by a treatment of more general curvilinear coordinates using both
index notation and symbolic notation. In our presentation, following Grinfeld [14], we exploit the
fact that we are working in ordinary three-dimensional space and consider length and angle to
be primary, inherently well-defined concepts, in terms of which abstract operations on vectors
can be constructed. To facilitate broad accessibility, concepts from differential geometry, found
integrated with tensor analysis in works such as [13,56], are intentionally avoided. As this section
is intended as background, those readers already familiar with this material are invited to turn
immediately to the results section.

(a) Vector and tensor notation
Recall that a vector, in physics, is an abstract entity having both a magnitude and direction that
is independent of any frame of reference or choice of coordinates, visualizable as an arrow in
space. Two vectors a and b can be multiplied to give a scalar via the dot or scalar product, defined
as a · b ≡ ||a||||b|| cos ϑ where ||a|| and ||b|| are the lengths of the two vectors and ϑ is the angle
between them. A second-order tensor M can be defined2 as a linear mapping that, given any
vector a, yields a new vector b, a correspondence that is written as b = Ma. By linear, we mean
that M(a + b) = Ma + Mb together with M(αa) = α(Ma) for any scalar α. Second-order tensors
will be referred to simply as tensors herein. Like vectors, tensors, as linear mappings of one vector
to another, are independent of our choices of frames of reference and coordinate systems.

To achieve concrete representations of vectors and tensors as arrays of numbers, we must
first choose some coordinate system within a particular frame of reference. Given a Cartesian
coordinate system S with coordinates xi and associated basis vectors ei for i = 1, 2, 3, we can
expand the vectors a and b as a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3, where vector
components are labelled by superscripts rather than subscripts for reasons to become apparent
shortly. These coefficients can be gathered into column vectors, while as shown subsequently the
tensor M can be expressed as a matrix, leading to

[a]S =

⎡

⎢⎣
a1

a2

a3

⎤

⎥⎦ , [b]S =

⎡

⎢⎣
b1

b2

b3

⎤

⎥⎦ , [M]S =

⎡

⎢⎣
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤

⎥⎦ . (3.1)

Here, the notation [·]S, following e.g. [55] and § 2.7 of [58], denotes a representation with respect
to coordinate system S. It is worth emphasizing that if we change coordinate systems, a, b and
M are unaffected while [a]S, [b]S and [M]S certainly do change. To distinguish quantities like a
from those like [a]S, both of which go by the name ‘vector’, we refer to quantities of the former
type as proper vectors or simply vectors, while those of the latter type are termed coordinate vectors.
The scalar product a · b and the tensor operation Ma then have representations

a · b = [a]T
S [b]S, [Ma]S = [M]S[a]S, (3.2)

with the superscript T denoting the transpose. The former follows from the assumed
orthonormality of the basis vectors in a Cartesian coordinate system, ei · ej = δij where δij is the

2This definition of a second-order tensor as a linear map from vectors to vectors is that used by both [18, §1.6] and [5, §1.3.1].
Other authors define a tensor as a multilinear map from a set of vectors to scalars, e.g. [13, § 1.6] and [56, § 33.1], or as an
object having certain transformation properties, e.g. [57, §2.4] and [14, §6.3].
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Kronecker delta function, and the latter from the stipulation that Ma is a linear mapping of vectors
to vectors.

The above presentation, which closely follows that of Itskov [18], has led to a notational system
which mirrors that of familiar linear algebra—vectors a and b and tensors M act as if they were
column vectors and matrices, respectively, despite being abstract entities independent of any
representation. To continue this development, we may also define the operation of M on vectors
to its left by demanding that

b · (Ma) = (bM) · a, (3.3)

and with this definition of left operation, we may dispense with the dots and parentheses and
write this product unambiguously as bMa. The transposed tensor, denoted MT, is similarly
defined such that

(Ma) · b =
(

MTb
)

· a. (3.4)

In other words, if one operates on a with a tensor M and then projects the result onto b, yielding
a scalar, MT is defined as the mapping that will give the same answer if one instead operates
first on b and then projects the result onto a. Note that the tensor transpose has been defined
abstractly as an operation without any explicit notion of changing shape. From this definition,
it follows that if M = AB, then MT = BTAT. The representation for the product bMa is then
bMa = [b]T

S [M]S[a]S while that of the transposed tensor is [MT]S = [M]T
S , so that these tensor

operations again behave just like the familiar linear algebra operations on their representations.
Unlike the linear algebra case, however, no meaning is ascribed to the transposition of proper
vectors; whereas [a]T

S indicates changing from a column vector to a row vector, aT is not defined.
At this point, we introduce a notational change. We adopt the Einstein summation convention

that a summation over an index is implied whenever the same index appears as a pair in both an
upper and lower position. This allows us to write the vector a compactly as a = aiei rather than
a =

∑3
i=1 aiei. Moreover, for notational convenience in Cartesian coordinates, we define ei ≡ ei for

the basis vectors, ai ≡ ai for vector components, and δij = δ
j
i = δi

j = δij for the Kronecker delta. We
can then write a scalar product a · b as

a · b = aiei · bjej = aibjδ
j
i = aibi, (3.5)

without explicit summations. The use of upper and lower indices with the Cartesian basis is
purely notational as ei and ei are momentarily simply different names for the same quantity, and
similarly for ai and ai. We emphasize that index position has nothing to do with transposition,
which is not defined for proper vectors; conversely, transposition of coordinate vectors does not
affect index position. This convention has the advantage of creating continuity with the index
notation used for curvilinear coordinates, wherein the distinction between upper and lower
indices takes on an important meaning.

(b) The tensor product
Central to understanding the gradient tensor theorem is the tensor product operation on vectors,
which we now review. Unlike the case of two scalars, which can be multiplied together in only one
way, there are multiple ways that two vectors a and b can be multiplied together. The notations

a · b, a × b, a ⊗ b (3.6)

denote the scalar (or inner or dot) product, the cross (or vector) product and the tensor (or outer
or direct) product, respectively yielding a scalar, a vector3 and a tensor. Again we emphasize

3The quantity formed from a cross product a × b is more precisely known as an axial vector or pseudovector, as distinguished
from a polar vector or true vector. When the universe is rotated, both polar and axial vectors will rotate in exactly the same
way; but if the universe is reflected, as in a mirror, then axial vectors will undergo an additional sign change. This difference
in behaviour can be seen as arising from the fact that the definition of a cross product involves a sign choice that is a matter
of convention, settled by the so-called right-hand rule; but in a mirror, right hands are transformed into left hands. Herein,
the term vector is used to refer to both polar and axial vectors.
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that we are working in three dimensions, where the cross product is defined; unlike the other
two operations, it does not immediately generalize to different dimensionalities. Of these three
operations, the last is perhaps the least familiar. The tensor product of two vectors a ⊗ b is defined
in terms of its action on a third vector c such that

(a ⊗ b)c = a(b · c), (3.7)

meaning that a ⊗ b maps c into a new vector that will be parallel to a with a coefficient given by
the projection of c onto b. Thus a ⊗ b is a linear mapping of one vector onto another vector, that
is, a tensor.

It follows from this definition of the tensor product that the array representation of a tensor
product in a Cartesian coordinate system S must be [a ⊗ b]S = [a]S[b]T

S , because then we have

[(a ⊗ b)c]S = [a ⊗ b]S[c]S = [a]S[b]T
S [c]S = [a(b · c)]S, (3.8)

as desired. This leads to the following comparison between the representations of scalar and
tensor products:

a · b = [a]T
S [b]S = aibi, [a ⊗ b]S = [a]S[b]T

S =

⎡

⎢⎣
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤

⎥⎦ . (3.9a,b)

Note that the former corresponds to a single number while the latter corresponds to a 3 × 3 matrix.
Thus following the rules of linear algebra, the difference between the array representations of
the scalar and tensor products is whether we transpose the first or the second array in forming
their product. The matrix on the right-hand side of (3.9b) is said in linear algebra to be the outer
product of the arrays [a]S and [b]S, and consequently the tensor product can be understood as an
abstraction of the outer product to proper vectors.

Tensor products of vectors are significant because they constitute a minimal type of tensor,
with the tensor products of basis vectors forming the building blocks of general tensors. In three
dimensions, we have

M = Mijei ⊗ ej, (3.10)

where the summation convention implies a sum over all values of both i and j. To see this, we
observe that if we form the quadratic products eiMej, the proposed form of M yields the matrix
given in (3.1) from orthogonality. Thus any tensor can be represented as a weighted sum of the
nine tensor products of the basis vectors with one another. This together with a = aiei leads to
[Ma]S = [M]S[a]S as stated earlier in (3.2).

Several other properties of tensor products will be needed. From the definition of left operation
in (3.3), it must be the case that the tensor product operates to its left as

c(a ⊗ b) = (c · a)b, (3.11)

since taking the scalar product with a fourth vector d then gives c(a ⊗ b) · d = c · (a ⊗ b)d =
(c · a)(b · d) for the left-hand side, matching what we would obtain for the right-hand side. From
the definition of the tensor transpose, (3.4), the transpose of a tensor product must be

(a ⊗ b)T = b ⊗ a, (3.12)

since [(a ⊗ b)c] · d and [(b ⊗ a)d] · c both reduce to the same value, namely (a · d)(b · c), as desired.
Furthermore, two successive tensor products collapse to the single tensor product,

(a ⊗ b)(c ⊗ d) = (b · c)(a ⊗ d), (3.13)

between the two outermost vectors a and d, scaled by (b · c). This collapse rule can be verified by
operating on another vector x to the right and then applying (3.7) to both sides.
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We will also make use of the tensor trace, which can be defined via its action on a tensor product
as

tr{a ⊗ b} = a · b. (3.14)

From this it follows, together with the collapse rule (3.13), that the trace of two successive tensor
products is

tr{(a ⊗ b)(c ⊗ d)} = (b · c)(a · d), (3.15)

which together with (3.11) in turn implies

tr{(a ⊗ b)M} = bMa, (3.16)

for the trace of a tensor product acting on a general tensor M, as shown in appendix A.
Finally, we will need some notation for the symmetric and skew-symmetric parts of a tensor.

A tensor M is said to be symmetric if M = MT and skew-symmetric if M = −MT, and its skew-
symmetric part is

skew{M} = 1
2

(
M − MT

)
, (3.17)

since then skew{M} = −skew{M}T as desired. The skew-symmetric part of a tensor product of
two vectors is closely related to their cross product. Following [55], define the skew tensor of a,
denoted a×, as the tensor that operates on another vector b to its right to yield the cross product
of a and b,

a×b = a × b. (3.18)

The tensor a× is necessarily skew-symmetric: we know that c · a × b = −b · a × c from the circular
shift invariance of the scalar triple product together with the anticommutivity of the cross
product, which implies that we must have ca×b = b(a×)Tc = −ba×c by the definition of the tensor
transpose. In the Cartesian coordinate system S, the representation matrix corresponding to the
tensor a× must be4

[a×]S =

⎡

⎢⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎥⎦ , (3.19)

in order to have a×b = a × b as desired. One then finds a correspondence between the skew-
symmetric part of a tensor product, and the skew tensor of a cross product,

skew{a ⊗ b} = −1
2

(a × b)×, (3.20)

as is seen by writing out the representation tensors of both sides in the Cartesian coordinate
system S, or by observing that the standard identity (a × b) × c = b(a · c) − a(b · c) implies
(a × b)× = b ⊗ a − a ⊗ b. Combining this with tr{a ⊗ b} = a · b from (3.14), we see that the tensor
product a ⊗ b of two vectors embeds within itself both their scalar product a · b, as its trace, and
their cross product a × b within its skew-symmetric part, with the remaining terms constituting
its traceless symmetric part. Thus a ⊗ b may be regarded as the most general way to multiply two
vectors, as pointed out by Gibbs [1, §114].

As an aside, we mention that a tensor consisting of a single tensor product a ⊗ b was called
a dyad by Gibbs [1], an archaic term that is nevertheless still occasionally encountered today
[7,59,60]. Gibb’s notation for a tensor product was the juxtaposition ab, but the notation a ⊗ b
today appears to be more standard; ab appears now primarily used for the geometric product
of geometric algebra [61], defined as ab = a · b + a ∧ b, where a ∧ b is the wedge product from
differential geometry.

4For readers familiar with differential geometry, we point out that the operator ‘×’ is related to the Hodge star operator in
three dimensions.
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(c) The gradient tensor
Turning now to spatial derivatives of a vector field, one encounters a point of potential ambiguity.
There are two different definitions in use for the tensor-valued gradient of a vector field, denoted
herein gradL{u} and gradR{u}, the matrix representations of which in a Cartesian coordinate
system S are given, respectively, by

[gradL{u}]S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x1
∂u2

∂x1
∂u3

∂x1

∂u1

∂x2
∂u2

∂x2
∂u3

∂x2

∂u1

∂x3
∂u2

∂x3
∂u3

∂x3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, [gradR{u}]S =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x1
∂u1

∂x2
∂u1

∂x3

∂u2

∂x1
∂u2

∂x2
∂u2

∂x3

∂u3

∂x1
∂u3

∂x2
∂u3

∂x3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.21a,b)

and that are seen to differ by a transpose, [gradL{u}]S = [gradR{u}]T
S . In the literature one finds

both the former ([62], (3.1); [6], (2.24)) and the latter ([5], (1.5.15); [18], (2.64–2.66); [60], (4.4.17);
[23], (2); [28], (1.1)) definitions. These conventions could be seen as arising from whether one
defines the gradient operator in terms of the directional derivative, as in e.g. (1.5.3) of [5] and
(4.4.4) of [60], via an operation on some other vector a to the left or to the right,

a gradL{u(x)} = d
ds

u(x + sa)|s=0, gradR{u(x)}a = d
ds

u(x + sa)|s=0, (3.22a,b)

a fact that suggests the terms left gradient and right gradient for gradL{u(x)} and gradR{u(x)},
respectively. These in turn imply differences in how one forms the Taylor series expansion,

u(x) ≈ u(xo) + (x − xo)gradL{u(x)}, u(x) ≈ u(xo) + gradR{u(x)}(x − xo), (3.23a,b)

as can be seen by considering the matrix representation of the two gradient tensors. This
ambiguity was recently examined by Wood et al. [12], who point out that the question is related to
an understanding of the tensor product together with the definition of the symbol ∇, as we shall
see shortly.

As with multiplications, there are three different types of first-order derivatives of a vector
field, each corresponding to one of the operators ‘·’, ‘×’ and ‘⊗’,

∇ · u, ∇ × u, ∇ ⊗ u, (3.24)

yielding again a scalar, a vector5 and a tensor, respectively. Here, the ∇ symbol is defined for a
Cartesian coordinate system as

∇ ≡ ei ∂

∂xi , (3.25)

where we used the boldface symbol ∇, rather than the more standard ∇, to emphasize its vector-
valued nature and to distinguish it from the covariant derivative encountered subsequently.
In the summation convention, an upper subscript in the denominator is regarded as a lower
subscript, and thus (3.25) is equivalent to ∇ ≡

∑3
i=1 ei(∂/∂xi), recalling that ei = ei in a Cartesian

coordinate system. This definition together with those of the scalar, cross and tensor products
unambiguously define the three types of derivatives in (3.24) as

∇ · u = ei · ∂u
∂xi , ∇ × u = ei × ∂u

∂xi , ∇ ⊗ u = ei ⊗ ∂u
∂xi . (3.26)

Note that there is no transposition ambiguity in these quantities provided one begins with the
definition of ∇ in (3.25). We then see that ∇ ⊗ u = gradL{u}, since the element in the ith row and
jth column of the matrix [∇ ⊗ u]S is found to be [ei]T

S [∇ ⊗ u]S[ej]S = ∂uj/∂xi, matching (3.21a). The

5More precisely, an axial vector or pseudovector.
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tensor product ∇ ⊗ u contains within itself the other two derivatives, as one finds

tr{∇ ⊗ u} = ∇ · u, skew {∇ ⊗ u} = −1
2

(∇ × u)×, (3.27)

which follow from tr{a ⊗ b} = a · b in (3.13) and skew{a ⊗ b} = −(1/2)(a × b)× in (3.20),
respectively. To see the first identity, note that tr{a ⊗ b} = a · b implies tr{∇ ⊗ u} = (∂/∂xi)
tr{ei ⊗ u} = (∂/∂xi)ei · u = (∂/∂xi)ui = ∇ · u. The derivation of the second identity beginning with
skew{a ⊗ b} = −(1/2)(a × b)× proceeds similarly.

Clearly, the first two operations in (3.26) are the divergence and the curl, and it therefore seems
quite natural to refer to the third as the gradient. By this reasoning, ∇ ⊗ u = gradL{u} would be
called the gradient of u, with gradR{u} identified as its transpose. However, in the literature, one
finds a diversity of opinion as to whether ∇ ⊗ u should be associated with the gradient of u.
Irgens ([60], (4.1.48)) defines the gradient as gradR{u}, but then equates ∇ ⊗ u as the transpose
of this leading again to ∇ ⊗ u = gradL{u}. Murakami ([7], (12.156)) impartially recognizes both
gradL{u} = ∇ ⊗ u and gradR{u} = u ⊗ ∇ to be the gradient of u, discriminated by whether ∇
operates to its right or to its left. Ogden ([5], (1.5.3)) defines the gradient as being the same
as ∇ ⊗ u, yet then defines the latter via the directional derivative in (3.22b); the result is to set
∇ ⊗ u = gradR{u(x)}, a choice that is inconsistent with the definition of ∇ in (3.25). We advocate
for identifying ∇ ⊗ u, and not its transpose, as the tensor-valued gradient of u, consistent with the
definition of the ∇ symbol in (3.25) and the natural definitions of divergence, curl and gradient in
(3.26).

The multiplicity of views surrounding the definition of the gradient may partly be ascribed to
notational conventions. Whereas for multiplications one traditionally writes ab for scalars and
a · b, a × b and a ⊗ b for vectors, for spatial derivatives one writes ∇ϕ for a scalar field but
∇ · u, ∇ × u and again ∇u for a vector field. As pointed out by Wood et al. [12], and emphasized
again here, ∇u must be understood as representing the tensor product, which was clearly Gibbs’
intent, see for example [1, p. 66]. In Gibbs’ own notation, what we refer to as the tensor product
a ⊗ b is represented simply as the juxtaposition ab, and thus ∇u means to Gibbs the tensor
product (or dyad, in his original terminology) between ∇ and u. It seems that in the intervening
years between 1884 and the present there have been two developments that have muddled the
interpretation of ∇u: first, the notion of a tensor product or dyad construction is frequently
omitted from elementary vector analysis, and second, when they are used, tensor products are
typically represented explicitly with the ‘⊗’ symbol and not as the juxtaposition ab. Yet the
change in notation for tensor products from ab to a ⊗ b has not led to a comparable change in
notation from ∇u to ∇ ⊗ u—possibly because the original meaning of ∇u as a tensor product was
somehow forgotten.

This discussion highlights the fact that ∇ ⊗ u and not ∇u is a more sensible modern notation
for the tensor-valued gradient of a vector field. As an example, consider the nonlinear term
(u · ∇)u that is ubiquitous in fluid mechanics, representing the advection of momentum by the
velocity field u itself. From (3.11) for the operation of a tensor product from the right, we have at
once (u · ∇)u = u(∇ ⊗ u), and thus we can express the advection term as the result of the velocity
gradient tensor ∇ ⊗ u operating on the velocity vector u to its left. This is not evident without
appreciating the fact that ∇ ⊗ u is a tensor product.

(d) Curvilinear coordinates∗

At this point, we expand our treatment to include more general curvilinear coordinates, still in
ordinary three-dimensional space, following the presentation in works such as [5,6,14,18,57]. With
xi continuing to represent Cartesian coordinates and with ei being the associated orthogonal basis,
we will let qi denote arbitrary curvilinear coordinates with basis vectors gi and reciprocal basis
vectors gi defined such that gi · gj = δ

j
i where δ

j
i is the Kronecker delta function. Furthermore

we assume that the coordinate system is right-handed such that the scalar-valued triple
product of the basis vectors is positive, (g1 × g2) · g3 > 0, and we introduce the volume element
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√g ≡ (g1 × g2) · g3. Note that in curvilinear coordinate systems the basis vectors and the reciprocal
basis vectors are in general both spatially varying.

It is worth taking a moment to clarify the nature of the reciprocal basis gi. Like the basis vectors
gi, the reciprocal basis vectors gi are proper vectors in the sense of physics, that is, quantities that
are characterized by a magnitude and direction which we can visualize as arrows in space, and
both are bases for the usual three-dimensional Euclidian vector space. In more general classes
of spaces for which no scalar product is defined, it may be more useful to consider instead
a set of vectors gi and their dual vectors gi

∗. These dual vectors represent linear mappings of
vectors to real numbers. While no longer being vectors in the sense of physics, these mappings
remain vectors in the mathematical sense of being elements of a vector space, in this case the dual
vector space to the space inhabited by the vectors. This is the orientation adopted in differential
geometry [13,56,63–67], an elegant and powerful framework for the study of abstract surfaces
and volumes that greatly generalizes our normal intuitive notions of these quantities, but which
requires considerable study to master. An enlightening discussion of the relationship between the
reciprocal basis and the dual basis may be found in §1.4 of Odgen [5], who ultimately concludes
that for three-dimensional space in which a scalar product is readily available, the use of the
reciprocal basis is perfectly sufficient.

In a general curvilinear coordinate system, one can write a vector equivalently in terms of the
basis or reciprocal basis as a = aigi = aigi. Here, the coefficients ai ≡ a · gi and ai ≡ a · gi are called
the contravariant and covariant components of a, respectively, owing to their transformation laws
under a change in the coordinate system. In this notation the scalar and cross products become
[18, (1.29) and (1.45)]

a · b = aibi = aibi, a × b = εijkaibjgk = εijkaibjgk, (3.28)

where εijk and εijk are the components of the Levi-Civita tensor, defined in terms of the Levi-
Civita symbol ϵijk = ϵijk—which is equal to +1, −1 or 0 for (i, j, k) being, respectively, an even, odd
or other permutation of (1, 2, 3)—as εijk = ϵijk

√g and εijk = ϵijk/
√g, respectively, see §2.8 of [13] or

§9 of [14]. Similarly, the tensor product is given by

a ⊗ b = aibjgi ⊗ gj = aibjgi ⊗ gj = aibjgi ⊗ gj = aibjgi ⊗ gj, (3.29)

and we note that any second-order tensor can be written equivalently as four sums of nine tensor
products as

M = Mijgi ⊗ gj = M·j
i gi ⊗ gj = Mi

·jgi ⊗ gj = Mijgi ⊗ gj, (3.30)

where the coefficients are defined as Mi
·j ≡ giMgj, etc., and where the dot, “·”, is a placeholder

that keeps track of the ordering of the indices. For the special case of an orthonormal basis, the
basis vectors and reciprocal basis vectors are identical. Thus in a Cartesian coordinate system, in
which the basis vectors are denoted ei, we have ei = ei, giving meaning to a statement that was
previously introduced merely as notation. Consequently, ai = ai, bi = bi and Mij = M·j

i = Mi
·j = Mij,

and the above expressions reduce to those given previously for a Cartesian coordinate system.
One distinguishing feature of the index notation in comparison with symbolic notation is that

there is no explicit notion of a transpose operation in the former, nor of left operation, as discussed
in §7.2 of Grinfeld [14]. Instead, in index notation determining the suitable representations
for the tensor and vector elements is accomplished by index raising and lowering operations,
using operations with the identity or metric tensor I = gijgi ⊗ gj = gi ⊗ gi = gi ⊗ gi = gijgi ⊗ gj if
required; here gij ≡ giIgj = gi · gj and gij ≡ giIgj = gi · gj. As the identity tensor is the tensor whose
action does nothing, we can use it to change representations without modifying the underlying
proper vector.

In tensor analysis it is commonplace to refer to ai and ai as contravariant and covariant vectors.
It is crucial to understand that this is a shorthand, as discussed, e.g. in Carroll [13] on p. 17 and
p. 22. Strictly speaking, ai and ai are the contravariant and covariant components representing the
same proper vector a, which can equivalently be represented either as a = aigi or a = aigi, using
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the basis or reciprocal basis, respectively. The proper vector does not change when we choose to
represent it in a different basis. Similarly, referring to Mij, Mij, and M·j

i and Mi
·j as contravariant,

covariant, and mixed tensors, respectively, is also a shorthand. These conventions reflect the fact
that the basis vectors can be unambiguously inferred from the positions of the indices on the
components; thus, since we know that Mi

·j must be associated with gi ⊗ gj, we can refer to Mi
·j

as the tensor and understand that the basis vectors are implied. This allows for a remarkable
compactness of notation, as we can then say, for example, that a new vector ci is defined as
ci ≡ Mi

·ja
j, understanding this to be a shorthand for c = cigi ≡ Ma = Mi

·jgi ⊗ gjakgk = Mi
·ja

jgi. More
generally, if the indices to be summed over are arranged in upper and lower pairs in accordance
with the summation convention, the basis vectors follow their components and can generally be
ignored—or rather, implied—in correctly formed operations. At the same time, this compactness
can blur the distinction between proper vectors or tensors and their components; if the basis
vectors are invisible, one must take care to ensure that they are not entirely forgotten. Herein,
basis vectors will always be written explicitly when the vector or tensor, and not its components,
are intended, unless otherwise stated.

In curvilinear coordinates a complication arises when taking spatial derivatives due to the
fact that the basis vectors themselves vary spatially. To accommodate this, with ∂i ≡ ∂/∂qi being a
shorthand for the partial derivative with respect to the ith coordinate, we write the derivatives of
a vector a as

∂i a = ∂

∂qi

(
ajgj

)
=

(
∂iaj

)
gj + aj∂i gj =

(
∂iaj + akΓ

j
·ik

)
gj, ∂i gj = Γ k

·ijgk, (3.31)

∂i a = ∂

∂qi

(
ajgj

)
= (∂iaj)gj + aj∂i gj =

(
∂iaj − akΓ

k
·ij

)
gj, ∂i g j = −Γ

j
·ikgk, (3.32)

when expressed in terms of the basis or the reciprocal basis, see (2.81–2.82) and (2.91–2.92) of
[18]; note that the j and k indices have been swapped at the final equality. The key step here is
expanding the derivatives of the basis vectors in terms of the basis vectors themselves, leading
to coefficients Γ k

·ij, called the Christoffel symbols of the second kind, that are symmetric in their
lower indices and that are given in ([18], (2.80–2.81))

Γ k
·ij = Γ k

·ij ≡ (∂j gi) · gk =
(
∂i gj

)
· gk = −

(
∂j gk

)
· gi = −

(
∂i gk

)
· gj, (3.33)

with the latter two equalities being obtained by differentiating the orthogonality relation gi · gj =
δi

j . The two equalities on the right-hand side of (3.31) and (3.32) follow from this definition. In
addition to its symmetry, another important property of the Christoffel symbol is its behaviour
under contraction. One finds

Γ i
·ji = Γ i

·ji = ∂j ln
√

g, (3.34)

where √g is again the volume element, given in three dimensions by √g ≡ (g1 × g2) · g3. This is
readily shown by using the permutation symmetry of the triple product together with the fact
that the basis vectors are related by √ggi = ϵijkgj × gk [18, (1.33)],6 where ϵijk is the Levi-Civita
symbol, to obtain ∂j

√g = √g(∂jgi) · gi, then comparing with the definition (3.33). This identity will
later be important for evaluating the divergence.

The covariant derivative with respect to the ith coordinate, denoted ∇i, is then defined as the
coefficient of the basis vector in the partial derivative expansions (3.31) and (3.32)

∂i a =
(
∇iaj

)
gj, ∇iaj ≡ ∂iaj + akΓ

j
·ik, (3.35)

∂i a =
(
∇iaj

)
gj, ∇iaj ≡ ∂iaj − akΓ

k
·ij, (3.36)

see (2.72) and (2.93) of [18]. Note that the notation ∇i for the covariant derivative, which is
conventional [13,14], does not mean the ith component of ∇, yet in a sense behaves as if it were; ∇i
will be found to appear in locations in which one would expect the ith component of ∇ if the latter

6It may be helpful to mention that g appearing in [18] corresponds to √g here.
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were an ordinary vector. In Cartesian coordinates, the basis vectors are constant, so the Christoffel
symbols vanish and ∇i reduces to simply the ith partial derivative ∂i. An important property of
the covariant derivative is that it vanishes when applied to the basis, reciprocal basis and metric
tensor; this result is known as Ricci’s theorem [18, (2.98)], and the property of vanishing under the
covariant derivative is called the metrinilic property, see the discussion in §8.6.7 of Grinfeld [14].
For the basis and reciprocal basis, we have

∇igj = ∂i gj + gkΓ
j
·ik = 0, ∇igj = ∂i gj − gkΓ

k
·ij = 0, (3.37)

as is found by taking the dot product of the left equation with gℓ, and of the right equation with
gℓ, followed by the use of the orthogonality condition together with the definition of Γ k

·ij in (3.33).
Although it does not frequently appear in the literature, a consistent definition of ∇ in

curvilinear coordinates is given in ([6], (2.23)7; [60], (12.5.20))

∇ ≡ gi ∂

∂qi , (3.38)

with the three types of derivatives in (3.24) then being given by, see e.g. §5.1.5 of [57] or §2.1.5
of [6],

∇ · u = gi · ∂i u, ∇ × u = gi × ∂i u, ∇ ⊗ u = gi ⊗ ∂i u. (3.39)

In terms of the covariant derivatives, these become

∇ · u = ∇iui, ∇ × u = (∇iuj)gi × gj, ∇ ⊗ u =
(
∇iuj

)
gi ⊗ gj, (3.40)

after substituting (3.35) into the first and third expressions and (3.36) into the second. The result
for the tensor product matches Dimitrienko [6], see (2.24) therein, and Irgens [60], see their
(12.5.35) together with (4.4.18), but differs by a transpose from (1.5.14) of Ogden [5] for the reasons
discussed in the previous section. These three equations all reduce to their familiar forms in the
Cartesian case, for which all covariant derivatives can be replaced with partials. The divergence
and curl may be rewritten as

∇ · u = 1
√g

∂i

(√
gui

)
, ∇ × u = εijk(∂iuj)gk, (3.41)

where the former, known as the Voss–Weyl formula [14, (9.60)], follows from the contraction
property of the Christoffel symbols given in (3.34), while for the latter we have again made use of
the cross product relation among basis vectors in three dimensions in the form gi × gj = εijkgk [18,
(1.44)] where εijk = ϵijk/

√g is the Levi-Civita tensor. In the expression for the curl, the covariant
derivative ∇iuj has been replaced with the partial derivative8 ∂iuj using the symmetry of the
Christoffel symbols together with the permutation properties of εijk. Thus both the divergence
and the curl can be expressed in arbitrary curvilinear coordinate systems in terms only of partial
derivatives, something that is not true for a general component of ∇ ⊗ u.

As an aside, we point out one reason we have chosen the notation ∇iuj for the covariant
derivative. As mentioned previously, in index notation when one writes Mij this is generally
understood to mean the entire tensor including the basis vectors, Mijgi ⊗ gj, and not simply

a single component. In particular, M·j
i is used as a shorthand for the tensor M·j

i gi ⊗ gj and not

M·j
i gj ⊗ gi because, although the latter does have the correct mix of contravariant and covariant

indices, by convention we write the basis vectors with indices in the order in which they appear in
the tensor coefficient; the dot before the j index in M·j

i plays the important role of a placeholder that

7Note however a typographic error in (2.23) of [6], which incorrectly includes a tensor product symbol ⊗ in the definition of
∇ itself.
8To see this, consider the case k = 3 for concreteness. Then εij3(∇iuj)g3 involves a summation over nine (i, j, 3) terms,
only two of which—(1, 2, 3) and (2, 1, 3)—are non-zero. Then from (3.36), we have εij3(∇iuj)g3 = 1√g (∇1u2 − ∇2u1)g3 =

1√g

(
∂1u2 − u3Γ

3
·12 − ∂2u1 + u3Γ

3
·21

)
g3 = 1√g (∂iuj − ∂iuj)g3 = εij3(∂iuj)g3, by the symmetry of the Christoffel symbol, and

similarly for k = 1 and k = 2. This verifies that εijk(∇iuj)gk = εijk(∂iuj)gk.
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specifies i as the first index and j as the second. The notations uj|i and uj
;i that one also sometimes

sees for the covariant derivative have their indices in the wrong order for correctly inferring the
ordering of the basis vectors as gi ⊗ gj, which itself is fixed by our choice of the tensor product
∇ ⊗ u as being set by the definition of ∇. That the basis vector corresponding to the derivative
appears in the first position in the tensor product comprising the tensor is one factor in favour of
a derivative symbol that appears before the quantity being differentiated.

As pointed out by e.g. Borisenko & Tarapov [57, (4.43)] and Murakami [7, (12.170)], the
divergence, curl and gradient tensor theorems can be expressed in the unified form

∇ ∗ (·) = lim
V−→0

1
V

∫∫

A
n ∗ (·) dA, (3.42)

where ∗ is one of ·, × or ⊗, and the operand (·) could be a scalar, vector or tensor field.
The four cases ∇ϕ, ∇ · u, ∇ × u and ∇ ⊗ u follow from taking the limits of the subsequently
presented three-dimensional gradient (4.5a,b), divergence (4.2a,b), curl (4.10a,b) and gradient
tensor (4.1a,b) theorems, respectively. Borisenko & Tarapov [57] propose this equation as a
coordinate-independent definition of ∇, from which the Cartesian representation ∇ = ei(∂/∂xi),
given earlier in (3.25) as a definition, would follow as a consequence. However, we prefer instead
to see ∇ ≡ gi(∂/∂qi) in (3.38) as the coordinate-independent definition of ∇, with (3.42) then being
a consequence.

4. Results
We now turn to the gradient tensor theorem itself, examining it in several different ways.
After presenting a proof based on the divergence theorem, we show that the gradient tensor
theorem contains both the divergence theorem as well as a three-dimensional generalization of
the Kelvin–Stokes theorem. Then, we decompose the two-dimensional gradient tensor with a set
of basis tensors, and show that the non-standard portions of this identity involve what would be
interpreted as straining terms for the case that our vector field corresponds to a velocity. Finally,
we ask whether the two-dimensional gradient tensor theorem also holds for curved surfaces, and
find that it does not.

(a) Derivation
As mentioned in the introduction, in Gibbs’ 1884 monograph [1] in which he lays out the tools of
modern vector analysis, the following identity appears (eqn. (2), p. 65, §161)

∫∫∫

V
∇ ⊗ u dV =

∫∫

A
n ⊗ u dA

∣∣∣∣

∫∫∫

V
∇iujgi ⊗ gj dV =

∫∫

A
niujgi ⊗ gj dA, (4.1a,b)

which we refer to as the gradient tensor theorem. This has been written in both symbolic and
index notation, with symbolic notation on the left and index notation on the right, separated
by a vertical line. This convention will be followed in most equations in this and the following
subsections, allowing readers to choose whichever version they prefer, with the index notation
versions employing a curvilinear coordinate system for generality, while the symbolic version
makes no reference to the coordinate system. Here, the index notation version of the gradient
tensor theorem follows from its symbolic version using the definitions of the tensor product and
the ∇ operator in curvilinear coordinates given in §3d.

As in Gibbs’ work, the gradient tensor theorem can be derived for a cuboidal volume aligned
with the coordinate axes by integrating each term using the fundamental theorem of calculus.
More generally, it can be proved very simply beginning with the usual three-dimensional
divergence theorem,

∫∫∫

V
∇ · u dV =

∫∫

A
n · u dA

∣∣∣∣

∫∫∫

V
∇iui dV =

∫∫

A
niui dA. (4.2a,b)
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Following §4.3.4 of Borisenko & Taparov [57], consider a vector field of the particular form

u(x) = cϕ(x)
∣∣∣∣ ui(x) = ci(x)ϕ(x), (4.3a,b)

where c = cigi is an arbitrarily chosen, spatially uniform vector9 and ϕ(x) is a scalar field. From
the definition of the divergence in (3.26), we have the chain rule for divergence, ∇ · (ϕu) = ϕ ∇ ·
u + u · ∇ϕ, which for a spatially uniform vector c simplifies to ∇ · (ϕc) = c · ∇ϕ. The divergence
theorem then yields

c ·
∫∫∫

V
∇ϕ dV = c ·

∫∫

A
nϕ dA

∣∣∣∣ cjgj ·
∫∫∫

V
(∂iϕ)gidV = cjgj ·

∫∫

A
niϕgidA, (4.4a,b)

which, since c can be any vector, implies an identity given as (4.30) in [57] and as (1) in § 161 of
Gibbs [1]

∫∫∫

V
∇ϕ dV =

∫∫

A
nϕ dA

∣∣∣∣

∫∫∫

V
(∂iϕ)gidV =

∫∫

A
niϕgidA. (4.5a,b)

This result, which we refer to as the gradient theorem for volume integrals, states that the integral
of the gradient of a scalar field ∇ϕ over a volume is equal to the integral of the normal
vector n, weighted by the value of the scalar field ϕ, over the bounding surface. Now, letting
both sides of (4.1a) operate to their right on jth Cartesian vector ej, and for clarity denoting
jth component of u specifically in a Cartesian coordinate system as ŭj ≡ u · ej, we note that
(∇ ⊗ u)ej = ∇ŭj and (n ⊗ u)ej = nŭj leading to

∫∫∫

V
∇ŭj dV =

∫∫

A
nŭj dA

∣∣∣∣

∫∫∫

V

(
∂iŭj

)
gi dV =

∫∫

A
niŭjgidA, (4.6a,b)

which is simply (4.5a,b) with ϕ replaced with ŭj. Note carefully the unusual construction in
the right column: the gradient operator and normal vector are still represented with a general
curvilinear basis, but the component of u involved is its jth Cartesian component. The gradient
tensor theorem is thus seen to be an aggregation of three versions of the gradient theorem for
volume integrals, one for each Cartesian component of u.

Equivalently, since in Euclidean space the Cartesian coordinate system is always available, we
can choose the Cartesian basis ei to represent our vectors and find

∫∫∫

V
∇ ⊗ u dV =

∫∫∫

V
ei ⊗ ∂

∂xi

(
ujej

)
dV = ei ⊗ ej

∫∫∫

V

∂

∂xi ujdV, (4.7)

for the left-hand side of the gradient tensor theorem. Here, the fact that the basis vectors are
spatially constant implies then ej can be pulled outside of the derivative and that the tensor
product ei ⊗ ej can then be pulled outside of the integral. The right-hand side is similarly found
to be ∫∫

A
n ⊗ u dA =

∫∫

A

(
niei

)
⊗

(
ujej

)
dA = ei ⊗ ej

∫∫

A
niujdA, (4.8)

but we see that the final integrals in (4.47) and (4.48) are the ith components of those in (4.6a,b),
showing again that the gradient tensor theorem is true by the gradient theorem for volume
integrals.

The use of the Cartesian basis is crucial here. Since the basis vectors gi and gi appearing in (4.1b)
are in general spatially varying, we cannot pull the tensor products gi ⊗ gj outside the integrals,
and similarly we also cannot isolate a component by taking the scalar product of both sides with
gk from the left and gℓ from the right. Indeed, we need not even have chosen the same curvilinear

9While c itself is spatially uniform, recall that its components in curvilinear coordinates may nevertheless be functions of
space.
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coordinates and basis vectors on the two sides. Thus if we attempt to omit the basis vectors from
(4.1b), we obtain ∫∫∫

V
∇iujdV ̸=

∫∫

A
niujdA, (4.9)

which involves integrals over tensor components and not proper tensors themselves; importantly,
the equality does not hold in general curvilinear coordinates. On the other hand, if we choose
the Cartesian basis ei for our representations, then in this case we can pull the tensor products
ei ⊗ ej outside the integrals as in (4.47) and (4.48), and in that case the equality in the above
expression is obtained; the same applies for (4.6b), which will become the same equality in a
Cartesian coordinate system. This situation, where Cartesian and curvilinear basis vectors must
be treated differently with respect to integration, illustrates the potential confusion arising from a
notation in which the basis vectors are implicit rather than explicitly specified.

(b) A hierarchy of integral theorems
The gradient tensor theorem contains within itself a number of important special cases. Taking
the trace of both sides of the gradient tensor theorem, we observe that since the trace is a linear
operator it can be brought inside the integrals, leading to the divergence theorem (4.2a,b). To show
this, we simply apply tr{∇ ⊗ u} = ∇ · u together with tr{a ⊗ b} = a · b, given earlier in (3.27) and
(3.14), respectively, to either the symbolic or index notation form of the gradient tensor theorem
in (4.1a,b).

A different reduced identity is contained within the skew-symmetric part of the gradient
tensor theorem, namely the vector-valued identity

∫∫∫

V
∇ × u dV =

∫∫

A
n × u dA

∣∣∣∣

∫∫∫

V
εijk(∂iuj)gk dV =

∫∫

A
εijk niujgk dA, (4.10a,b)

which can be seen as a three-dimensional analogue of the Kelvin–Stokes theorem. Whereas the
Kelvin–Stokes theorem links an area integral of one component of the curl to a line integral, here
we are connecting a volume integral of all three components of the curl to a surface integral. For a
cuboidal volume aligned with the Cartesian coordinate axes, we can visualize this result as being
built up from stacks of planes within which the Kelvin–Stokes theorem is applied, in turn, along
each of the three orthogonal directions.

The three-dimensional curl theorem is found from the gradient tensor theorem through a series
of linear operations: (i) take the skew-symmetric part of both sides, which may be brought inside
the integrals; (ii) use skew {∇ ⊗ u} = −(1/2)(∇ × u)× from (3.27) together with skew {a ⊗ b} =
−(1/2)(a × b)× from (3.20) to convert the skew-symmetric parts of the tensors on both sides to
skew tensors associated with a vector; and finally (iii) move the skew tensor operator ‘×’ outside
of the integrals and drop it from both sides to obtain (4.10a,b). These three steps can be applied to
either to the symbolic or index notation form of the gradient tensor theorem in (4.1a,b), leading to
(4.10a) and (4.10b) respectively. In the latter case, we begin with

∫∫∫

V
∇iujgi ⊗ gj dV =

∫∫

A
niujgi ⊗ gj dA, (4.11)

which employs the covariant representation for u, and then make use of the fact that gi × gj =
εijkgk at step (ii). That the two versions of (4.10a,b) match is verified by observing that ∇ × u =
εijk(∂iuj)gk from (3.40) together with n × u = εijkniujgk from (3.28).

The case of a two-dimensional vector field within a flat surface is particularly important, as it
arises frequently in fluid dynamics and other applications. For a vector field u lying within a flat
two-dimensional surface having unit normal vector k, we have a two-dimensional version of the
gradient tensor theorem

∫∫

A
∇ ⊗ u dA =

∮

L
dn ⊗ u

∣∣∣∣

∫∫

A
∇iujgi ⊗ gj dA =

∮

L
gi ⊗ gju

jdni, (4.12a,b)
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as well as the familiar two-dimensional divergence and Kelvin–Stokes theorems

∫∫

A
∇ · u dA =

∮

L
u · dn

∣∣∣∣

∫∫

A
∇iui dA =

∮

L
uidni

∫∫

A
k · ∇ × u dA =

∮

L
u · dx

∣∣∣∣

∫∫

V
εij3∂iuj dV =

∮

A
εij3niuj dA

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4.13a,b)

where for the index notation versions, we have chosen the curvilinear coordinate system such
that g3 = g3 = k. In the above integrals, dx is a differential vector tangent to the boundary L,
and the differential normal vector dn is defined as dn ≡ n dℓ with n being the exterior normal
to the boundary and dℓ a differential of arc length along it. With the boundary integrals being
traversed in the right-hand sense, dn and dx are related by dn = −k × dx. As is the case in three
dimensions, the trace of the two-dimensional gradient tensor theorem is the two-dimensional
divergence theorem, while its skew-symmetric part gives the two-dimensional Kelvin–Stokes
theorem. To see the latter, we take the negative of the skew-symmetric part of (4.12a,b) to obtain
(1/2)(∇ × u)× on the left and (1/2)(dn × u)× on the right. Dropping the ‘×’ operator leads to
an equality between vectors, and taking the normal component gives k · ∇ × u on the left and
k · dn × u = u · k × dn = u · dx on the right. All three of these two-dimensional theorems can be
derived from their three-dimensional versions by limiting the vector field of interest to a plane.

(c) The two-dimensional gradient tensor theorem for a flat surface
In this section, we examine the gradient tensor theorem in two dimensions. To do so, we first
define a convenient basis for decomposing two-dimensional tensors. Let our Cartesian coordinate
system S now be limited to the horizontal plane, and with a change in notation we will let x and
y be the horizontal coordinates, with associated basis vectors i and j, respectively, while k will
denote the normal vector to the plane. We write x = xi + yj for the position vector with respect to
the origin and u = ui + vj for a general horizontal vector u. We then define a set of tensors, termed
the IJKL tensors, as

I ≡ i ⊗ i + j ⊗ j J ≡ j ⊗ i − i ⊗ j

K ≡ i ⊗ i − j ⊗ j L ≡ j ⊗ i + i ⊗ j,
(4.14)

which are, respectively, the two-dimensional identity tensor I, the 90◦ counterclockwise rotation
tensor J, the reflection tensor K about the direction of i, and the reflection tensor L about direction
of i + j. These identifications can be understood by considering how the tensors operate on i and
j using the tensor product definition (3.7). For example, since Ii = i and Ij = j, the action of Ix
is to map x into itself. Similarly, we see that Ji = j and Jj = −i, and thus Jx accomplishes a 90◦

counterclockwise rotation of x. As an illustration, the top row of figure 3 shows the vector field
arising from each tensor operating on the position vector x. The grey contour, and subsequent
rows, will be referred to later.

It may be more intuitive to view the IJKL tensors in their matrix representations. In our
two-dimensional Cartesian coordinate system S with basis vectors i and j, these tensors are
represented as the matrices

[I]S =
[

1 0
0 1

]

, [J]S =
[

0 −1
1 0

]

, [K]S =
[

1 0
0 −1

]

, [L]S =
[

0 1
1 0

]

, (4.15)

in which form they were previously introduced in [19]. Again we see the identity matrix, ninety
degree counterclockwise rotation matrix, and two reflection matrices.

Some other properties of the IJKL basis tensors will be needed. From the transpose of a tensor
product, (3.12), it follows that JT = −J while the other three tensors equal their own transposes.
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u = Ix

Iu
JT
u

K
u

L
u

u = Jx u = Kx u = Lx

Figure 3. An illustrationof thegradient tensor theorem. Theupper rowshowsvectorfieldsu consistingofu= Ix = x,u = Jx,
u = Kx andu = Lx, respectively, wherex is the position vector with respect to the origin. The heavy grey curve in all plots is
the bounding curveL, encompassing a regionA over which wewish to integrate and shownwith its exterior normal vector in
orange. In subsequent rows, the original vector field is multiplied by JT , K and L respectively; the use of the grey colour for the
vectors indicates that this is amodified version of the originalfield. Thesemultiplications turn each of the four originalfields into
each of the other types. Along the diagonal, marked by the bold bounding boxes, the original vector field is transformed into a
purely divergent field. This illustrates how the gradient tensor theorem can be thought of as the divergence theorem applied to
versions of the original vector field modified by the transpose of each of the IJKL tensors.

Hence, J is skew-symmetric while the others are symmetric. The identity tensor I operates on any
tensor as IM = M, while the other three tensors operate on themselves as

KK = LL = I, JJ = −I, (4.16)

which implies that the inverse of J is JT = −J while the other three tensors are their own inverses.
The JKL tensors operate on each other as

JK = L KL = −J LJ = K

KJ = −L LK = J JL = −K,
(4.17)

where we note that the second row is simply the transpose of the first in view of the skew-
symmetry of J. These combine into the easily remembered triple product formulae

JKL = KLJ = LJK = I, JLK = LKJ = KJL = −I, (4.18)
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where the triple tensor product of J, K and L is the identity tensor when these occur in alphabetical
order or a cyclic permutation therefore, and the negative of the identity tensor otherwise. All of
the above identities are readily shown beginning with the definitions (4.14) by using the collapse
rule (3.13) for two successive tensor products, together with the fact that j · i = 0 by definition.

In addition, we have from (3.14) that tr{I} = 2 while the traces of the other three tensors vanish.
Any two-dimensional tensor M can be written in terms of the IJKL tensors in the form

M = 1
2
{tr{M}I + tr{MJ}JT + tr{MK}K + tr{ML}L}, (4.19)

where the tensor coefficients are expressed directly in terms of tensor traces of operations on M.
This equation is verified by letting M operate to the right on each of the IJKL basis tensors in turn,
applying the multiplication rules (4.16) and (4.17), and noting that only I has a non-zero trace.

Using the IJKL basis, we can now present a decomposition of the two-dimensional gradient
tensor theorem, (4.12a,b), that will illuminate its physical meaning. For concreteness, we take u
to represent a velocity field, and define the usual divergence δ, vorticity ζ , and normal and shear
strain rates ν and σ

δ ≡ ∂u
∂x

+ ∂v

∂y
, ζ ≡ ∂v

∂x
− ∂u

∂y
, ν ≡ ∂u

∂x
− ∂v

∂y
, σ ≡ ∂v

∂x
+ ∂u

∂y
, (1.4)

which are readily shown, via the definitions of the IJKL tensors, to have the alternate expressions
as

δ = ∇ · u, ζ = ∇ ·
(

JTu
)

, ν = ∇ · (Ku), σ = ∇ · (Lu). (4.20)

These can been seen as being the divergences of the vector field u and modified versions
thereof. We can then show that the two-dimensional gradient tensor theorem, (4.12a,b), can be
decomposed into a set of four identities, one for each of the IJKL tensors,

∫∫

A
∇ · u dA =

∮

L
u · dn

∣∣∣∣

∫∫

A
∇iui dA =

∮

L
uidni,

∫∫

A
∇ ·

(
JTu

)
dA =

∮

L

(
JTu

)
· dn

∣∣∣∣

∫∫

A
εij3∂jui dA =

∮

L
εij3ui dnj

∫∫

A
∇ · (Ku) dA =

∮

L
(Ku) · dn

∣∣∣∣

∫∫

A
∇i

(
Ki

·ju
j
)

dA =
∮

L
uiKi

·j dni

∫∫

A
∇ · (Lu) dA =

∮

L
(Lu) · dn

∣∣∣∣

∫∫

A
∇i

(
Li

·ju
j
)

dA =
∮

L
uiLi

·j dni

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.21)

which are the divergence theorem, the Kelvin–Stokes theorem and two related theorems
involving the strain rates. Thus, the two-dimensional gradient tensor theorem states that the
spatially integrated values of the divergence δ, vorticity ζ , normal strain ν and shear strain σ are
all recovered by a tensor product integral along the bounding curve. Note that the index notation
expressions are here valid for general curvilinear coordinates in the horizontal plane, with the K
and L components being specified by Ki

·j = giKgj and Li
·j = giLgj.

To derive this decomposition, we expand both sides of the two-dimensional gradient tensor
theorem, (4.12a,b), in terms of the IJKL basis. The gradient tensor ∇ ⊗ u itself can be expressed as

∇ ⊗ u = 1
2
{δI + ζ JT + νK + σL}, (4.22)

which may be more clear if we write out its matrix representation as

[∇ ⊗ u]S =

⎡

⎢⎢⎣

∂u
∂x

∂v

∂x
∂u
∂y

∂v

∂y

⎤

⎥⎥⎦ = 1
2

{

δ

[
1 0
0 1

]

+ ζ

[
0 1

−1 0

]

+ ν

[
1 0
0 −1

]

+ σ

[
0 1
1 0

]}

. (4.23)
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This is found by first substituting ∇ ⊗ u for M in (4.19), using the fact that, as shown in
appendix A,

tr{(∇ ⊗ u)M} = ∇ ·
(

MTu
)

, (4.24)

then operating on ∇ ⊗ u from the right by each of the IJKL tensors, and finally employing the
expressions for δ, ζ , ν and σ given in (4.20). If we define versions of the velocity gradient terms
that are spatially averaged over the domain A, with A representing its area, as

δ ≡ 1
A

∫∫

A
∇ · u dA ζ ≡ 1

A

∫∫

A
∇ ·

(
JTu

)
dA

ν ≡ 1
A

∫∫

A
∇ · (Ku)dA σ ≡ 1

A

∫∫

A
∇ · (Lu)dA

⎫
⎪⎪⎬

⎪⎪⎭
(4.25)

the two-dimensional gradient tensor theorem becomes

1
2

(
δI + ζ JT + ν K + σ L

)
= 1

A

∮

L
dn ⊗ u, (4.26)

but we observe that the tensor product on the right-hand side has the expansion

dn ⊗ u = 1
2

{
(u · dn)I +

[(
JTu

)
· dn

]
JT + [(Ku) · dn]K + [(Lu) · dn]L

}
, (4.27)

as is found by (4.19) together with tr{(a ⊗ b)M} = bMa, given previously in (3.16), followed by
the use of uMdn = u · (Mdn) =

(
MTu

)
· dn from the definition of the tensor transpose in (3.4).

Comparing the coefficients of the basis tensors between the left- and right-hand sides verifies
(4.21) as claimed. For the J component, writing

(
JTu

)
· dn = u · (Jdn) = u · dx shows that this is in

fact Kelvin–Stokes.
In fact, the expansion (4.21) gives us another way to prove the two-dimensional gradient tensor

theorem, by starting with the two-dimensional divergence theorem. Observe that the JT, K and L
components of the gradient tensor theorem in (4.21) are each simply the divergence theorems for
the modified flow fields JTu, Ku and Lu, respectively. Thus each of these components is nothing
but the divergence theorem acting on a modified velocity field, while the I component is the
divergence theorem itself; see figure 3 for an illustration.

As we have seen, the two-dimensional version of the gradient tensor theorem, (4.12a,b), has
the divergence theorem as its trace. However, it can be written in the alternate form

∫∫

A
J(∇ ⊗ u) dA =

∮

L
dx ⊗ u, (4.28)

recalling that dn = JTdx. This now resembles the Kelvin–Stokes theorem (4.13b) and has that
theorem as its trace, since from (3.13) we have tr{J(∇ ⊗ u)} = (J∇) · u = ∇ ·

(
JTu

)
= ζ . Since in many

fluid applications the vorticity is the most important term in the velocity gradient tensor, it may
be sensible to put that information along the trace, the most prominent part of the tensor. This
becomes

1
2

(
ζ I − δJT − σ K + ν L

)
= 1

A

∮

L
dx ⊗ u, (4.29)

and proceeding as above, we can write out the right-hand side terms to find

ζ = 1
A

∮

L
u · dx, δ = 1

A

∮

L
(Ju) · dx, σ = − 1

A

∮

L
(Ku) · dx, ν = 1

A

∮

L
(Lu) · dx, (4.30)

for the spatially averaged components of the gradient tensor expressed in terms of readily
evaluated integrals over the region boundary; note a minus sign only occurs in the equation for
σ . These contain equivalent information to (4.21) in a slightly different and perhaps more readily
computable arrangement. From the definitions of the IJKL tensors, we obtain (1.3) as given in the
Introduction.
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(d) Possible extension to a curved surface∗

In this section, we ask whether the two-dimensional gradient tensor theorem also applies on a
curved surface and not just on a flat surface. Before doing so, it is useful to pursue an alternate
route to proving the three-dimensional version. Beginning with the left-hand side of the gradient
tensor theorem in index notation, (4.1b), we write

∫∫∫

V

(
∇iuj

)
gi ⊗ gjdV =

∫∫∫

V
∇i

(
ujgi ⊗ gj

)
dV =

∫∫

A
niujgi ⊗ gjdA, (4.31)

where the first equality follows because the covariant derivative is defined such that it vanishes
for basis vectors—the metrinilic property, see (3.37)—while the second equality, in the box, is a
special case of ∫∫∫

V
∇ · TdV =

∫∫

A
n · TdA, (4.32)

where T is a tensor, referred to as the generalized divergence theorem in [60], see (12.6.7) therein.10

To see that the second equality in (4.31) is in fact the generalized divergence theorem, we note
that it can be written in symbolic notation as

∫∫∫

V
∇ · (I ⊗ u)dV =

∫∫

A
n · (I ⊗ u)dA, (4.33)

since we have for the left- and right-hand sides, respectively,

∇ · (I ⊗ u) =
(

gj∂j

)
·
[(

gi ⊗ gi
)

⊗ u
]
= gi ⊗ ∂i u =

(
∇iuj

)
gi ⊗ gj = ∇i

(
ujgi ⊗ gj

)
(4.34)

and
n · (I ⊗ u) = n ⊗ u = niujgi ⊗ gj, (4.35)

where in the first equation we have used the fact that ∂j(gi ⊗ gi) = Γ k
·jigk ⊗ gi − Γ i

·jkgi ⊗ gk = 0
due to (3.33). These two quantities are in agreement with the integrands in the boxed equality
in (4.31), as claimed. The generalized divergence theorem, in turn, is proven by choosing the
Cartesian basis to represent tensors. With T = Tjkℓ...ej ⊗ ek ⊗ eℓ . . . being a tensor of arbitrary rank,
we have

∇ · T = ∂

∂xi ei ·
(

Tjkℓ...ej ⊗ ek ⊗ eℓ . . .
)

=
(

∂

∂xi Tikℓ...
)

ek ⊗ eℓ . . . (4.36)

n · T = niei ·
(

Tjkℓ...ej ⊗ ek ⊗ eℓ . . .
)

= niTikℓ...ek ⊗ eℓ . . . (4.37)

and the basis vectors on both sides of the equality can be pulled outside the integral, leading to
∫∫∫

V

∂

∂xi Tikℓ...dV =
∫∫

A
niTikℓ...dA, (4.38)

which can be interpreted as a collection of ordinary divergence theorems for vectors given by
Tikℓ...ei, where the indices k, ℓ, etc. act as labels specifying the coefficients of different vectors.

Thus we have proven the gradient tensor theorem in two steps, first using the metrinilic
property and then the generalized divergence theorem. By representing tensors in the Cartesian
basis, which is always available in Euclidean space regardless of what basis we are using
otherwise, we have broken the generalized divergence theorem into components and shown that
it is true by the ordinary divergence theorem.

We now show that the two-dimensional gradient tensor theorem generalizes to two-
dimensional surfaces only if they are flat. Using Greek letters to denote surfaces indices, which
take on the values of 1 and 2, we can define coordinates sα on the surface so that in ambient
coordinates the surface is described by qi = qi (s1, s2). That is, we can consider ambient coordinates

10Note that the version of the generalized divergence theorem in [60] differs from ours by a transpose, due to the fact that
the divergence is defined therein, see (12.5.93), to act on the last component of the tensor rather than the first. This is another
example of the transposition ambiguity discussed previously.
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restricted to the surface to be functions of the surface coordinates. Just as the ambient basis may
be defined as gi ≡ (∂/∂qi)r where r = r(q1, q2, q3) is the position vector considered as a function of
the ambient coordinates, as in (5.2) of [14], we can define the surface basis as

sα ≡ ∂r
∂sα

= ∂qi

∂sα

∂r
∂qi = Zi

αgi, Zi
α ≡ ∂qi

∂sα
. (4.39)

Here Zi
α , a Jacobian matrix for the transformation to surface coordinates termed the shift tensor

by Grinfeld [14], induces surface vectors from ambient vectors and can be visualized as a type of
projection. See §10 therein for a detailed treatment of the shift tensor.

Crucially, the surface covariant derivative is not metrinilic with respect to the surface basis
vectors. Where the surface curves away from the plane spanned by the basis, the derivatives of
the basis vectors must be perpendicular to the surface; this is expressed in (11.16) of [14] as

∇αsβ = nBαβ , (4.40)

where n is the unit normal to the surface and Bαβ is called the extrinsic curvature tensor. The
eigenvalues of Bαβ are the principle curvatures of the surface, its trace is twice the mean curvature,
and its determinant is the Gaussian curvature [14, §12.4]. The curvature tensor is identically
zero—that is, the surface basis has vanishing covariant derivative—if and only if the embedded
surface is flat. In general, we have

∫∫

A

(
∇αuβ

)
sα ⊗ sβ dA ̸=

∫∫

A
∇α

(
uβsα ⊗ sβ

)
dA, (4.41)

which means that proof of the gradient tensor theorem given in (4.31) fails at its first step. In the
special case of a flat surface, however, we recover the gradient tensor theorem by the same logic
used in the ambient space: the equality is obtained in (4.41), leading to

∫∫

A

(
∇αuβ

)
sα ⊗ sβdA =

∫∫

A
∇α

(
uβsα ⊗ sβ

)
dA =

∫

L
sα ⊗ sβ uβdnα , (4.42)

with the boxed equality being true by the generalized divergence theorem. Despite the fact that
the gradient tensor theorem does not hold on curved surfaces, the Kelvin–Stokes theorem does, as
does a version of the divergence theorem [13, E 14]. This is a consequence of special properties of
the divergence and the curl and cannot be extended to general components of the gradient tensor.

5. Discussion
This paper has investigated in detail the gradient tensor theorem of Gibbs [1], an important result
that deserves to be more widely appreciated. At an abstract level, this result can be seen as simply
containing multiple cases of the fundamental theorem of calculus. Yet the representation of a
set of scalar-valued identities as a single tensor-valued identity is not just bookkeeping. Rather,
the gradient tensor theorem encodes an important understanding of the relationship between the
value of the gradient of a vector-valued quantity, such as the velocity, integrated over a region and
the information contained along the region’s boundary. Because the velocity gradient tensor is a
fundamental quantity in fluid mechanics, one would expect this result to find broad application to
this field in particular, as was illustrated with a sample application to observing the ocean surface
currents from a moving platform.

An innovation here is the use of a tensor basis that allows the two-dimensional gradient tensor
theorem to be readily applied to a region of arbitrary shape and decomposed into its constituent
identities. We see this decomposition of the gradient tensor theorem into familiar portions
associated with divergence, vorticity and two strain terms as being essential for connecting it
with physical intuition; yet while the decomposition of the velocity gradient into components
is standard material, the fact that integral theorems also apply to each of these components is
perhaps not. It is worth mentioning that while the two-dimensional gradient tensor theorem itself
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is frame invariant, its optional decomposition into components is not, because the tensor basis
depends on an initial choice of a direction within the plane. This non-frame-invariance simply
reflects the nature of the tensor and is not, in our view, a flaw. Indeed, our experience is that
non-frame-invariant quantities are often just what one needs, if there is some physical factor
in the system that leads to symmetry breaking. For quasi-two-dimensional flows on a rotating
planet, the eastward and northward directions are different and it may therefore be meaningful
to decompose the strain along these directions. As another example, the kinematic evolution of
an elliptical patch (as in the well-known Kida [68] vortex) depends crucially on the strain rates in
the frame of the ellipse, with the normal strain in that frame controlling the deformation rate and
the shear strain inducing rotation of the ellipse, see e.g. (42) of [19].

It is natural to ask how the gradient tensor theorem is related to another generalization of
the classical Kelvin–Stokes theorem, the generalized Stokes theorem of differential geometry. As
a powerful and modern framework for the calculus of potentially curved spaces in arbitrary
numbers of dimensions [63–67], differential geometry forms a foundational tool in general
relativity [13,56] that is increasingly being used in fluid dynamics as well [69–72]. For an
orientable manifold M with boundary ∂M, the generalized Stokes theorem states that the integral
of the differential form ω over the boundary ∂M is equal to the integral of the exterior derivative
dω over the whole of M ∫

M
dω =

∫

∂M
ω, (5.1)

see e.g. §5-5 of Spivak [67]. This form embodies the essence of Stokes-like integral theorems
within a broad generalization of what is meant by a volume and a boundary. To the three-
dimensional velocity field u in Euclidean space with Cartesian components (u, v, w), one may
naturally associate the 1-form ω1 ≡ udx + vdy + wdz as well as the 2-form ω2 ≡ wdy ∧ dz + vdz ∧
dx + udx ∧ dy. Spivak [67] §5–8 and §5–9 shows that choosing ω = ω1 leads to the Kelvin–Stokes
theorem while choosing ω = ω2 leads to the divergence theorem. The remaining terms in the
gradient tensor theorem are, however, not immediately recovered by the generalized Stokes
theorem. In order to incorporate them, we would need to introduce differential forms such
as the 1-forms vdx + udy + wdz and −udx + vdy + wdz corresponding, not to the vector field
itself, but rather to modified versions thereof; comparison with (1.3) shows that these would
recover the integral identities for normal strain ν and shear strain σ on a flat two-dimensional
surface. The generalized Stokes theorem is a statement about the integrability of antisymmetric
differential forms that applies on curved manifolds, whereas the gradient tensor theorem is a
statement about a tensor having no particular symmetry properties that applies only in flat (two-
or three-dimensional) space. Thus the gradient tensor should not be considered a special case
of the generalized Stokes theorem, and knowledge of the former certainly does not imply an
appreciation of the latter.

Finally, we note that in many applications, the two-dimensional surface of interest may be
curved. This is particularly relevant to oceanographic applications, as numerical ocean modelling
and analysis of ocean observations both frequently make use of non-planar, quasi-horizontal
surfaces. Ocean models use a variety of coordinate systems depending on the part of the ocean
being modelled: one might prefer vertical or z-coordinates, density or ρ-coordinates, or bottom-
following or σ -coordinates when modelling the mixed layer, the nearly adiabatic interior, or the
bottom boundary layer, respectively, see e.g. [73,74]. The choice of an alternate surface may be
also motivated by its special properties. For example, it is known that transport along surfaces
of constant density is orders of magnitude larger than transport across them [75], while ‘neutral
surfaces’ [76,77] and so-called P-surfaces [78], respectively, allow a water parcel to move laterally
without changing its density or without requiring any work. In attempting to apply the gradient
tensor theorem to a curved surface, we found that it does not apply due to the effect of curvature
terms. However, it is possible that explicitly accounting for those terms might result in a useful
generalization, or at least in boundable errors terms that would allow the theorem to be applied in
an approximate sense when curvature is small. More generally, the importance of curved surfaces
in oceanography and other fields highlights the need for analysis tools that can accommodate
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them, and we hope that the integral theorems for flat surfaces presented herein along with a
treatment of curvilinear coordinate systems can be a step in this direction.
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Appendix A
This appendix proves two equalities involving the trace, which for generality will be shown for
curvilinear coordinates using the machinery presented in §3d. First we consider tr{(a ⊗ b)M} =
bMa for a spatially constant tensor M, see (3.16). Expanding the left-hand side by writing M =
Mi

·jgi ⊗ gj leads to

tr {(a ⊗ b) M} = Mi
·jtr

{
(a ⊗ b)

(
gi ⊗ gj

)}
= Mi

·j(b · gi)
(

a · gj
)

= Mi
·jbiaj, (A 1)

where we have made use of (3.15) in the second equality. Similarly, the right-hand side is

bMa = b · (Ma) = b ·
[
Mi

·j

(
gi ⊗ gj

)
a
]
= Mi

·j
(
b · gi

) (
a · gj

)
= Mi

·jbiaj, (A 2)

and these two expressions are seen to be identical, as claimed. Next, we show a related equality for
derivatives, tr{(∇ ⊗ u)M} = ∇ ·

(
MTu

)
for a spatially constant M, as given in (4.24). The left-hand

side becomes

tr {(∇ ⊗ u) M} = tr
{[(

∇kuℓ
)

gk ⊗ gℓ

] (
M·j

i gi ⊗ gj

)}
= M·j

i

(
∇kui

) (
gk · gj

)
= M·j

i ∇jui, (A 3)

again using (3.15) together with the orthonormality condition gi · gj = δ
j
i . For the right-hand side,

we have

∇ ·
(

MTu
)

= gk · ∂k

(
MTu

)
= gkMT∂ku = gk

(
M·j

i gj ⊗ gi
)

∂ku = M·j
i gi · ∂j u = M·j

i ∇jui, (A 4)

using (3.12) for the transpose of a tensor product for the third equality and (3.35) for the final
equality. The preceding two expressions match, proving (4.24).
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