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Abstract—This paper focuses on the analysis and optimization
of a class of linear one-bit precoding schemes for a downlink
massive MIMO system under Rayleigh fading channels. The
considered class of linear one-bit precoding is fairly general,
including the well-known matched filter (MF) and zero-forcing
(ZF) precoding schemes as special cases. Our analysis is based
on an asymptotic framework where the numbers of transmit
antennas and users in the system grow to infinity with a fixed
ratio. We show that, under the asymptotic assumption, the symbol
error probability (SEP) of the considered linear one-bit precoding
schemes converges to that of a scalar “signal plus independent
Gaussian noise” model. This result enables us to provide accurate
predictions for the SEP of linear one-bit precoding. Additionally,
we also derive the optimal linear one-bit precoding scheme within
the considered class based on our analytical results. Simulation
results demonstrate the excellent accuracy of the SEP prediction
and the optimality of the derived precoder.

Index Terms—Asymptotic analysis, linear one-bit precoding,
massive MIMO, random matrix theory.

I. INTRODUCTION

One-bit precoding has emerged as a promising technique

for reducing the complexity and hardware costs of massive

multiple-input multiple-output (MIMO) systems. This innova-

tive approach involves using one-bit digital-to-analog convert-

ers (DACs) at the base station (BS), which greatly reduces the

cost and power consumption of the DACs. Additionally, the

constant envelope nature of one-bit signals also enables the use

of the most power-efficient power amplifiers (PAs), resulting

in significant energy savings for massive MIMO systems.

One-bit precoding schemes can be broadly classified into

two categories: linear and nonlinear one-bit precoding. In

the linear one-bit precoding scheme, the transmit signal is

obtained by simply quantizing the output of a linear precoder.

This type of precoding is favorable for its simplicity and low

computational complexity [1]–[7]. In contrast, nonlinear one-

bit precoding employs a nonlinear mapping from the data

symbol vector that we wish to recover at the receiver to the

one-bit signals transmitted at the BS, and is typically obtained

by solving a difficult optimization problem. Nonlinear one-

bit precoding can generally achieve better symbol error rate

(SER) performance than linear one-bit precoding. However,

its computational complexity is also much higher, making it

challenging to implement in practical systems [1], [8]–[10]. In

this paper, we focus on the analysis and optimization of the

more practical linear one-bit precoder.

The simplest linear one-bit precoder simply quantizes the

output of classical linear approaches such as matched filter

(MF) and zero-forcing (ZF) precoding [1]. In [2]–[5], the au-

thors took the one-bit quantization into account and designed

efficient algorithms to obtain linear one-bit precoders based

on different criteria, e.g., mean square error (MSE) or signal-

to-quantization-plus-interference-plus-noise ratio (SQINR). In

addition to precoding design, there has also been growing

research interest in the performance analysis of linear one-bit

precoding [1], [6], [7]. In particular, the authors in [7] gave

an asymptotic analysis for one-bit ZF precoding, deriving a

closed-form expression for SEP under the assumption that the

numbers of transmit antennas and users tend to infinity with

a fixed ratio. The analysis in [7] is based on the Bussgang

decomposition technique [11], which transforms the non-linear

quantization model into a linear one consisting of a signal

term and an uncorrelated distortion term. However, the distri-

bution of the uncorrelated distortion term is unknown, and the

analysis in [7] assumes, heuristically, that the distortion term

is independent of all other random variables in the system.

A rigorous justification for such a Bussgang-decomposition-

based result is still lacking.

In this paper, we focus on the analysis and optimization

of a wide class of linear one-bit precoders for a downlink

massive MIMO system. We derive closed-form SEP formulas

for general linear one-bit precoding, under the assumption that

the numbers of transmit antennas and users in the system

asymptotically grow to infinity with a fixed ratio. Based on

the analytical results, we also derive the optimal linear one-bit

precoder within the considered class. Unlike existing analyses

that are based on the Bussgang decomposition, we develop a

novel analytical framework that exploits a recursive character-

ization of Haar random matrices. Our analytical framework is

general and could potentially be useful for other applications.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a one-bit massive MIMO system in which an

N -antenna BS equipped with one-bit DACs simultaneously

serves K single-antenna users, where K < N . Assuming

perfect channel state information (CSI) at the BS and infinite

resolution analog-to-digital converters (ADCs) at the user side

as in [1]–[10], the received signal vector at the users, denoted
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by y ∈ C
K , can be modeled as

y = Hx+ n,

where x ∈ C
N is the transmit signal vector from the BS, H ∈

C
K×N is the channel matrix between the BS and the users,

and n is the additive noise. As one-bit DACs are employed,

the transmit signal vector must satisfy x ∈ {±
√
2
2 ±

√
2
2 j}N ,

where unit transmit power is assumed at each antenna. We

further assume that each element of H is independently and

identically distributed (i.i.d.) following CN (
0, 1

N

)
and each

element of n is i.i.d. following CN (0, σ2). The normalization

of H is introduced as in [12] to ensure that the received signal

power at the users does not scale with N .

In a linear one-bit precoder, the transmit vector is given by

x = q(Ps).

Here, s ∈ C
K is the desired symbol vector with i.i.d. elements

drawn from a QPSK constellation1, P ∈ C
N×K is a precoding

matrix, and q(·) models the one-bit quantizer which acts inde-

pendently on the real and imaginary components of its input

vector. In this paper, we consider a specific class of precoding

matrices. Specifically, let H = UDVH be the singular value

decomposition (SVD) of H, where U ∈ U(K), V ∈ U(N),
and D =

(
diag(d1, . . . , dK) 0K×(N−K)

) ∈ R
K×N ; U(K)

and U(N) denote the sets of unitary matrices in C
K and C

N ,

respectively. We focus on precoding matrices of the following

form:

P = Vf(D)TUH, (1)

where f(·) is a positive continuous function on R
++ that

acts independently on the nonzero singular values of H, i.e.,

f(D) =
(
diag(f(d1), . . . , f(dK)) 0K×(N−K)

)
. The reasons

for considering the special structure for P in (1) are twofold.

First, the structure in (1) is quite general and encompasses

several classical precoding matrices including the MF and

ZF precoders (by specifying f(d) = d and f(d) = d−1,

respectively) as special cases. Second, this special structure

exhibits favorable statistical properties, as will be shown in

Section III.

With the above linear one-bit precoding scheme, the system

model becomes

y = Hq(Ps) + n = UDVHq(Vf(D)TUHs) + n. (2)

At the user side, we assume as in [1]–[10] that symbol-wise

nearest-neighbor decoding is employed, i.e., each user k maps

its received signal yk to the nearest constellation point ŝk. In

the following, we first analyze the SEP performance of the K
users, defined as SEPk = P (ŝk �= sk) , for a given precoder

(i.e., given f ) in Section III and then optimize f(·) in terms

of the SEP performance in Section IV.

III. ASYMPTOTIC SEP ANALYSIS

In this section, we derive the SEP of the considered linear

one-bit precoder. Our analysis is based on an asymptotic

framework commonly used in the performance analysis of

massive MIMO systems (see, e.g., [12]). Specifically, we

1The results in this paper also hold for general constellation schemes. We
assume QPSK to simplify the presentation.

assume that both the number of transmit antennas and the

number of users tend to infinity with a fixed ratio, i.e.,

N,K → ∞, N
K = γ > 1. We show that, under such an

asymptotic assumption, the SEP of the considered linear one-

bit precoding scheme converges to that of a simple “signal plus

independent Gaussian noise” model. In the following, we will

first give our main result and related discussions in Section

III-A and then provide a proof sketch in Section III-B.

A. Main Result
Our main result on the SEP performance of model (2) is

summarized as follows.

Theorem 1. Consider the system in Section II. As N,K → ∞
with N

K = γ > 1, we have

lim
N,K→∞

SEPk = SEP, ∀ k ∈ [K],

where SEP is the SEP of the following asymptotic scalar
model:

ȳ = T s s+ T g g + n. (3)

In the above model (3), {s, g, n} are independent with s uni-
formly drawn from a QPSK constellation, g ∼ CN (0, 1), n ∼
CN (0, σ2); T s and T g are two constants given by

T s =

√
2γ

π E [f2(d)]
E[d f(d)],

T g =

√
2γ var[d f(d)]

π E[f2(d)]
+ 1− 2

π
,

(4)

where d =
√
λ and λ follows the Marchenko-Pastur distribu-

tion, whose probability density function is

pλ(x) =

√
(x− a)+(b− x)+

2πcx
with a = (1 − √

c)2, b = (1 +
√
c)2, c = 1

γ , and (x)+ =
max{x, 0}.

Theorem 1 shows that the SEP of model (2) can be

asymptotically characterized by the simple scalar model given

in (3). It is well-known that the SEP of (3) can be tightly

approximated as

SEP ≈ 2Q
(√

SNR
)
, (5)

where Q(x) = 1√
2π

∫∞
x

e−
1
2 t

2

dt and SNR is the signal-to-

noise-ratio (SNR) of (3), which is given by

SNR =
T

2

s

T
2

g + σ2
=

E
2[d f(d)]

var[d f(d)] +
1− 2

π+σ2

2
π γ

E[f2(d)]
. (6)

The above equations (5) and (6) clearly demonstrate the effect

of the function f(·) on the SEP performance. In particular,

by specifying f(·) as f(x) = x or f(x) = x−1, we can

respectively obtain the following asymptotic SNR formulas

for the one-bit MF and ZF precoders:

SNRMF =
2
πγ

1 + σ2
, SNRZF =

2
π (γ − 1)

1− 2
π + σ2

,

and the corresponding SEP formulas can be obtained by

substituting the above expressions into (5). We remark here

that an identical SEP formula for one-bit ZF precoding was
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derived in [7] using the Bussgang decomposition technique

(which involves a heuristic step to treat the distortion term as a

random variable independent of the others; see the discussions

in Section I). Our Theorem 1 provides the SEP formula

for a more general linear one-bit precoder using a rigorous

analytical technique as detailed in the next subsection.

B. Proof Outline
In this subsection, we outline the proof of Theorem 1. Our

proof consists of two main steps. First, we derive a statistically

equivalent model of (2) that is approximately in a signal-plus-

independent-Gaussian-noise form and is more amenable to

analysis; see Proposition 1 below. This step is non-asymptotic

and the main technique is the use of Householder dice (HD)

[13], a novel approach for recursively generating Haar random

matrices; see Lemma 2 and the discussions that follows.

Second, we give the asymptotic analysis, which shows that,

under the asymptotic assumption in Theorem 1, the statis-

tically equivalent model converges to a simple signal-plus-

independent-Gaussian-noise model. This statement will be

made precise in Proposition 2. Next we give more details on

these two main steps.

1) Statistically Equivalent Model: In this part, we derive a

statistically equivalent model for (2). We begin with a well-

known result in random matrix theory [14], which character-

izes the distributions of the random matrices appearing in (2).

Lemma 1. Let H = UDVH be the SVD of H, where the
entries of H are i.i.d. following CN (0, 1

N ). Then U,D,V
are independent, and U and V are Haar distributed random
matrices in U(K) and U(N), respectively, i.e.,

Q1U
d
= U

d
= UQ1, ∀ Q1 ∈ U(K),

Q2V
d
= V

d
= VQ2, ∀ Q2 ∈ U(N),

where d
= means equal in distribution.

The above lemma suggests that all random matrices/vectors

in model (2) are mutually independent, and U and V are Haar

distributed. To deal with these Haar random matrices, we apply

the HD technique proposed in [13]. Before going into details,

we first define a unitary reflector as in [13, Eq. 27]: for any

nonzero vector v ∈ C
m, define

R(v) = (−e−jθ)

⎛⎜⎝Im −
(

v
‖v‖ + ejθe1

)(
v

‖v‖ + ejθe1

)H

1 + r

⎞⎟⎠ ,

where v1

‖v‖ = rejθ with r ≥ 0 (when v1 = 0, we set θ = 0)

and e1 = [1, 0, . . . , 0]T. It is easy to check that R(v) is unitary

and satisfies

R(v)e1 =
v

‖v‖ , R(v)Hv = ‖v‖e1. (7)

In fact, R(v) is a rotation of the Householder transform of v.

We also define the generalized reflector

Rk(v) =

(
Ik−1 0
0 R(v[k : m])

)
, 1 ≤ k ≤ m,

where v[k : m] denotes the k-th to m-th elements of v.

Lemma 2 below gives a recursive characterization of the

Haar matrices and is the theoretical basis of the HD technique.

It is a direct generalization of [13, Lemma 1] from the real

space to the complex space.

Lemma 2. Let g ∼ CN (0, Im), Qm−1 ∼ Haar(m− 1), and
v ∈ C

n\{0}, all of which are independent. Then

Qm := R1(g)

(
1 0
0 Qm−1

)
R1(v)

H ∼ Haar(m),

Q̃m := R1(v)

(
1 0
0 Qm−1

)
R1(g)

H ∼ Haar(m),

where Haar(m) denotes the Haar distribution in U(m). More-
over, Qm and Q̃m are independent of v.

Now we are ready to apply the HD technique to our model

(2). The HD technique was originally proposed as an efficient

algorithm for performing an iterative process involving large

Haar matrices [13]. Here we use it as a powerful tool for

analysis. The main idea is to recursively generate the Haar

matrices U and V in (2), using Lemma 2, in such a way that

the resulting model is amenable to analysis.

To begin, we rewrite (2) as the following iterative form:

s1 = f(D)TUHs, s2 = q(Vs1),

s3 = DVHs2, y = Us3 + n.

We first construct a Haar matrix U(1) according to Lemma 2:

U(1) = R1(s)

(
1 0
0 QK−1

)
R1(g1)

H,

where g1 ∼ CN (0, IK) and QK−1 ∼ Haar(K − 1) are

independent and independent of s, D, and n. Then we have

s̃1 = f(D)T
(
U(1)

)H

s

= f(D)TR1(g1)

(
1 0
0 QH

K−1

)
R1(s)

Hs

= f(D)TR1(g1)R1(s)
Hs,

where the last equality holds since R1(s)
Hs is only non-zero

in its first element due to (7). At the second iteration, we

generate the Haar matrix V(1) according to Lemma 2 as

V(1) = R1(z1)

(
1 0
0 PN−1

)
R1(s̃1)

H,

where z1 ∼ CN (0, IN ) and PN−1 ∼ Haar(N − 1) are inde-

pendent and independent of all the existing random variables.

It follows that s̃2 = q(V(1)s̃1)=q(R1(z1)R1(s̃1)
Hs̃1). At

the third iteration, we define v1 = R1(z1)
Hs̃2 and further

construct PN−1 in V(1) as

PN−1 = R1(v1[2 : N ])

(
1 0
0 PN−2

)
R1(z2[2 : N ])H,

where z2 ∼ CN (0, IN ) and PN−2 ∼ Haar(N − 2) are inde-

pendent and independent of all the existing random variables.

Then we have

V(2) = R1(z1)R2(v1)

(
I2 0
0 PN−2

)
R2(z2)

HR1(s̃1)
H

and

s̃3 = D
(
V(2)

)H

s̃2 = DR1(s̃1)R2(z2)R2(v1)
Hv1.

Finally, let v2 = R1(g1)
Hs̃3 and construct QK−1 in U(1) as

QK−1 = R1(g2[2 : K])

(
1 0
0 QK−2

)
R1(v2[2 : K])H,
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where g2 ∼ CN (0, IK) and QK−2 ∼ Haar(K − 2) are inde-

pendent and independent of all the existing random variables.

Then we have

U(2) = R1(s)R2(g2)

(
I2 0
0 QK−2

)
R2(v2)

HR1(g1)
H

and

ỹ = U(2)s̃3 + n = R1(s)R2(g2)R2(v2)
Hv2 + n. (8)

So far, we have obtained a new model (8) using the HD

technique. Similar to [13], we can prove that (ỹ, s) in (8) and

(y, s) in (2) are statistically equivalent. Using the properties of

R(·) in (7), we further get the following statistically equivalent

model of (8), whose proof is omitted due to the limited space.

Proposition 1 (Statistically Equivalent Model). The distribu-
tion of (y, s) in (2) is the same as (ŷ, s) specified by the
following model:

ŷ = Ts s+ Tg g2 + n, (9)

where

Ts=
gH
1 {C1 Ds̃1+C2 DB(s̃1)z2[2 : N ]}

‖g1‖‖s‖ −Tg
(R(s)−1g2)[1]

‖s‖ ,

Tg=
‖B(g1)

H{C1Ds̃1 + C2DB(s̃1)z2[2 : N ]}‖
‖(R(s)−1g2)[2 : K]‖ ,

C1 =
zH1 q (z1)

‖s̃1‖‖z1‖ , C2 =

∥∥B(z1)
Hq (z1)

∥∥
‖z2[2 : N ]‖ , s̃1=

‖s‖
‖g1‖f(D)Tg1.

In the above expressions, g1,g2, z1, z2 are independent stan-
dard Gaussian random vectors, which are further independent
of {s,D,n}; B(·) represents the submatrix of R(·) with the
first column removed.

2) Asymptotic Analysis: Although the statistically equiva-

lent model in (9) seems to admit a simple structure, Ts, Tg and

s, g2 are correlated in a complicated fashion. This motivates

us to further consider the large system limit. In this part, we

show that under the asymptotic assumption where N,K → ∞
with N

K = γ > 1, both Ts and Tg converge to deterministic

quantities.
Our main asymptotic result is summarized as follows.

Proposition 2 (Asymptotic Analysis). Let
ȳ := T s s+ T g g2 + n, (10)

where T s and T g are given in (4). Then the following holds
as N,K → ∞ with N

K = γ > 1:

(ŷk, sk)
a.s.−−→ (ȳk, sk), ∀ k ∈ [K],

where (ŷk, sk) and (ȳk, sk) are the k-th rows of (ŷ, s) and
(ȳ, s) given in (9) and (10), respectively.

Proof Sketch: It suffices to prove that Ts
a.s.−−→ T s and Tg

a.s.−−→
T g. First, according to the law of large numbers, we have

‖gi‖2
K

a.s.−−→ 1,
‖zi‖2
N

a.s.−−→ 1, i = 1, 2,
zH1 q(z1)

N

a.s.−−→
√

2

π
.

By further noting that ‖s‖ =
√
K and using the relation

R(v) =
(

v
‖v‖ , B(v)

)
for all v �= 0, one can show that

the remaining terms in Ts and Tg to be analyzed all have the

following forms:

gH
1 f1(D)f2(D)Tg1

K
and

gH
1 f1(D)f2(D)Tg2

K
,

where f1(·) and f2(·) are some positive continuous functions.

From the law of large numbers and the Marchenko-Pastur law

[14], we can prove that

gH
1 f1(D)f2(D)Tg1

K

a.s.−−→ E[f1(d)f2(d)]

and
gH
1 f1(D)f2(D)Tg2

K

a.s.−−→ 0,

where d is defined as in Theorem 1. This completes the

proof.

Using Proposition 2 and noting that the SEP of (10) is the

same as that of the scalar asymptotic model (3) in Theorem 1,

we can finally show that SEPk → SEP, which gives Theorem

1. The proof of the SEP convergence is straightforward and is

omitted here.

IV. OPTIMAL LINEAR ONE-BIT PRECODING

As shown in Section III, the function f(·) involved in

defining P has a major impact on the system SEP perfor-

mance. In this section, we derive the optimal f(·) based on

the asymptotic analysis in Theorem 1. Specifically, our goal

is to find f(·) that minimizes SEP. It is simple to check that

minimizing SEP in (5) is equivalent to maximizing SNR in

(6). Hence, we only need to focus on the following SNR

maximization problem:

max
f :R++→R++

E
2[d f(d)]

var[d f(d)] +
1− 2

π+σ2

2
π γ

E[f2(d)]
. (11)

Somewhat surprisingly, the solution to the above infinite

dimensional functional optimization problem has a simple

structure, as shown in the following theorem.

Theorem 2. The optimal solution to problem (11) is a class
of functions of the following form:

f∗(x) =
√
αx

x2 + ρ∗
, where α > 0 and ρ∗ =

1− 2
π + σ2

2
πγ

.

Proof. Note that problem (11) can be written in an equivalent

form as

min
f :R++→R++

E
[(
d2 + ρ∗

)
f2(d)

]
E2[d f(d)]

. (12)

Using the Cauchy-Schwarz inequality E
2[XY ] ≤

E[X2]E[Y 2], we can upper bound E
2[d f(d)] as

E
2[d f(d)] ≤ E

[(
d2 + ρ∗

)
f2(d)

]
E

[
d2

d2 + ρ∗

]
, (13)

where equality holds when X = αY , i.e., f2(d) = αd2

(d2+ρ∗)2

for some α ∈ R. Then, plugging (13) into (12) gives a lower

bound on the objective function, i.e.,

E
[(
d2 + ρ∗

)
f2(d)

]
E2[d f(d)]

≥ 1

E

[
d2

d2+ρ∗

] ,
which can be achieved by a class of functions satisfying

f2(x) = αx2

(x2+ρ∗)2 . Since f > 0, we get f∗ in Theorem 2.

Substituting the optimal f∗ into (1), we get the optimal

precoding matrix:

Popt = HH(HHH + ρ∗I)−1, (14)
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Fig. 1: Asymptotic and simulated SERs.

where we have ignored the positive scaling factor α in f∗ as

it will be absorbed into the one-bit quantizer. Note that Popt

in (14) is exactly the regularized ZF (RZF) precoding matrix

[15], and the regularization parameter ρ∗ is determined by the

system parameters γ = N/K and σ2.

By specifying f = f∗ in (6), we can obtain the asymptotic

SNR for the above optimal one-bit precoder:

SNRopt =

√
u2 + 4ρ∗ + u

2ρ∗
− 1, u = ρ∗ + γ − 1.

Note that when γ is large,
√

u2 + 4ρ∗ ≈ u and hence

SNRopt ≈ u

ρ∗
− 1 = SNRZF, (15)

i.e., one-bit ZF precoding is nearly optimal when the antenna-

user ratio γ is large.

V. SIMULATION RESULTS

In this section, we provide some simulation results to verify

the analytical results obtained in the previous sections.

In Fig. 1, we validate the accuracy of the SEP prediction

given in (5). We consider the noiseless case and depict the SER

performance versus γ in Fig. 1(a), and fix γ = 6 and depict the

SER performance versus the SNR in Fig. 1(b). As shown in the

figure, the asymptotic result in (5) gives an accurate prediction

of the SEP performance even for a small system with K = 20.

Furthermore, for a large system of K = 100, the simulation

result is almost identical to the asymptotic result.

In Fig. 2, we demonstrate the optimality of the precoding

scheme given in (14) by comparing it with classical one-bit

MF and ZF precoding. It can be observed that the derived RZF

precoding approach exhibits the optimal SER performance for

both γ = 2 and γ = 8. In particular, the RZF precoder

demonstrates significant superiority when γ = 2, while its

performance is similar to ZF when γ = 8, which validates our

discussion in (15).
VI. CONCLUSION

This paper has investigated the performance of a wide

class of linear one-bit precoders for massive MIMO systems.

Through the asymptotic analysis, we have derived sharp SEP

formulas for the considered linear one-bit precoders. We

have also derived the optimal linear one-bit precoder, which

corresponds to RZF precoding whose regularization parameter

is determined by the ratio of transmit antennas to users and

the variance of the additive noise. Our analysis is based on a

novel and general analytical framework. An interesting future
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Fig. 2: SER performance versus SNR for different linear one-

bit precoding schemes with K = 20.

work is to extend our framework to analyze more complicated

scenarios, such as general quantized precoding.
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