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Deep Unfolding Hybrid Beamforming Designs for
THz Massive MIMO Systems
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Abstract—Hybrid beamforming (HBF) is a key enabler for
wideband terahertz (THz) massive multiple-input multiple-
output (mMIMO) communications systems. A core challenge with
designing HBF systems stems from the fact their application
often involves a non-convex, highly complex optimization of large
dimensions. In this article, we propose HBF schemes that leverage
data to enable efficient designs for both the fully-connected
HBF (FC-HBF) and dynamic sub-connected HBF (SC-HBF)
architectures. We develop a deep unfolding framework based on
factorizing the optimal fully digital beamformer into analog and
digital terms and formulating two corresponding equivalent least
squares (LS) problems. Then, the digital beamformer is obtained
via a closed-form LS solution, while the analog beamformer
is obtained via ManNet, a lightweight sparsely-connected deep
neural network based on unfolding projected gradient descent.
Incorporating ManNet into the developed deep unfolding frame-
work leads to the ManNet-based FC-HBF scheme. We show that
the proposed ManNet can also be applied to SC-HBF designs
after determining the connections between the radio frequency
chain and antennas. We further develop a simplified version
of ManNet, referred to as subManNet, that directly produces
the sparse analog precoder for SC-HBF architectures. Both
networks are trained with an unsupervised procedure. Numerical
results verify that the proposed ManNet/subManNet-based HBF
approaches outperform the conventional model-based and deep
unfolded counterparts with very low complexity and a fast run
time. For example, in a simulation with 128 transmit antennas,
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ManNet attains a slightly higher spectral efficiency than the
Riemannian manifold scheme, but over 600 times faster and with
a complexity reduction of more than by a factor of six (6).

Index Terms—THz communications, hybrid beamforming,
massive MIMO, deep learning, Al, deep unfolding.

I. INTRODUCTION

UTURE sixth-generation (6G) wireless networks are ex-
pected to realize Tbps single-user data rates to support
emerging ultra-high-speed applications, such as mobile holo-
grams, immersive virtual reality, and digital twins [1]. To re-
alize such rapid growth in data traffic and applications, wide-
band terahertz (THz) massive multiple-input multiple-output
(mMIMO) systems have emerged as key enablers for achieving
substantial improvements in the system spectral and energy
efficiency (SE/EE) [2]. In THz mMIMO transceivers, hybrid
beamforming (HBF) can provide a cost- and energy-efficient
solution that yields significant multiplexing gains with a limited
number of power-hungry radio frequency (RF) chains [3], [4].
As HBF delegates some of the beamforming operations to
the analog domain, its design largely depends on the considered
hardware and its associated constraints [5]. A candidate HBF
implementation realizes the analog beamforming via tunable
complex gains and phase shifters [6], which can be efficiently
designed using quantized vector modulators [7]. While these
architectures are highly flexible, they are expected to be very
costly when implemented at high frequencies. Another candi-
date HBF architecture is based on metasurface antennas [8],
whose implementation for mMIMO at high frequencies is still
an area of active research. Consequently, the most common
mMIMO HBF architecture considered to date realizes analog
beamforming using adjustable phase shifters [9]. However, op-
timizing a phase-shifter-based HBF is challenging due to the
need for optimization approaches that impose constant modulus
constraints on the analog beamforming coefficients and the
strong coupling between the analog and digital beamformers.
Thus, efficient HBF methods overcoming these challenges have
attracted much interest in the literature, with proposed ap-
proaches ranging from conventional model-based optimizations
to purely data-driven deep learning (DL).

A. Related Works

HBF designs and optimization usually require cumber-
some algorithms such as Riemannian manifold minimization
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(MO-AlItMin) [10] and alternating optimization (AO) [11]. In
MO-AltMin, the alternating analog and digital beamformer
designs form a nested loop procedure, wherein the former is
solved by Riemannian manifold optimization, and the latter
is obtained via a least squares (LS) problem. With N; an-
tennas and Nrp RF chains, AO solves for each of N Ngrp
analog beamforming coefficients in an alternating manner until
convergence. Although MO-AltMin and AO offer satisfactory
performance, both require nested loops with high complexity
and slow convergence, especially for large mMIMO systems.
A low-complexity alternative for HBF designs is the orthog-
onal matching pursuit (OMP) approach [12]. It requires only
Ngr iterations to select Nrp analog precoding vectors from
a codebook consisting of array response vectors. However,
the performance of OMP is usually significantly inferior to
the optimum.

While MO-AltMin works for both narrowband and wideband
scenarios, the original AO and OMP approaches only apply to
narrowband systems. Lee et al. [13] further optimized OMP
for orthogonal frequency-division multiplexing (OFDM)-based
MIMO systems. In [14], a variant of AO was proposed for
wideband MIMO-OFDM systems. They showed that an analog
combiner designed only for the center frequency and opti-
mal frequency-dependent digital combiners can achieve near-
optimal performance as long as the bandwidth is narrow or
the array’s dimensions are small enough so that the array re-
sponse remains approximately frequency-non-selective. When
the array response becomes frequency-selective or suffers from
the so-called beam squint effect [14] encountered in wide-
band THz systems, it can be mitigated by employing true-
time-delay (TTD) lines in the analog beamforming architecture
[4], [15], [16]. However, the deployment of TTDs requires
additional hardware complexity and power consumption. Yuan
et al. [17] proposed a wideband HBF scheme with two digital
beamformers, in which an additional digital beamformer is
introduced to compensate for the performance loss caused by
the constant-amplitude hardware constraints and channel non-
uniformity across the subcarriers. Li et al. [18] considered an
HBF architecture with dynamic antenna subarrays and low-
resolution phase shifters and address the HBF design with
classical block coordinate descent. In [19], Sohrabi et al. pro-
posed efficient designs for both fully and sub-connected HBF
structures to maximize the overall SE of large-scale wideband
mmWave systems.

Recently, the application of DL to wireless communications
problems has attracted significant attention [20], [21], [22],
[23], with one of the considered problems being HBF design
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35].
Two typical DL techniques are often applied: purely data-driven
DL and hybrid model-based DL [36]. The former relies mainly
on the learning capability of deep neural networks (DNNs)
[24], [25], [26], convolutional neural networks (CNNs) [27],
[28], [29], [301, [37], [38], [39], [40], or deep reinforcement
learning [41], [42] to generate HBF beamformers. For example,
[40] designed a mMIMO HBF with a group-of-subarrays struc-
ture in the low-THz band via both model-based AO and data-
driven CNNs. It was shown that while the former can achieve
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better performance, the latter operates approximately 500 times
faster than the model-based AO. Yet, such a purely data-
driven DL approach has major limitations due to its resource
constraints, high complexity, and black-box nature [21], [43],
[44], [45], [46].

Model-based DL encompasses a family of hybrid methodolo-
gies for combining domain knowledge with data to realize effi-
cient inference mappings [47]. A leading hybrid methodology
is deep unfolding, which leverages DL techniques to improve
model-based iterative optimizers in terms of convergence, ro-
bustness, and performance [48]. In the context of HBF design,
Balevi et al. [31] used deep generative unfolding models to
obtain near-optimal hybrid beamformers with reduced feedback
and complexity. Luo et al. [49] and Shi et al. [34] proposed deep
unfolding HBF solutions based on unfolding AO and iterative
gradient descent, respectively.

Most of the aforementioned works focused on HBF design in
conventional narrowband systems. In wideband MIMO-OFDM
systems, the analog beamformer is typically frequency flat,
i.e., a common analog beamforming matrix must serve the
entire frequency band. This imposes extra difficulties on the
HBF design, and the approaches proposed for narrowband sys-
tems are not readily applicable. There are limited deep unfold-
ing HBF designs for wideband MIMO-OFDM systems. The
works [32], [33] proposed a low-complexity HBF design by
unfolding the projected gradient ascent (PGA) optimization
with a fixed number of iterations and learning the hyperpa-
rameters of the iterative optimizer from the data. Chen et al.
[35] proposed a DNN architecture that unfolds the weighted
minimum mean square error (WMMSE) manifold optimization
using fully-connected DNNs to learn the step size in each
iteration, leading to faster convergence and improved perfor-
mance. Kang et al. [50] introduced a deep unfolding hybrid
beamforming design induced by a stochastic successive convex
approximation algorithm. These existing unfolding models are
generally complicated because they aimed at directly solving
the original challenging designs, i.e., the SE maximization
[32], [33], [50] and WMMSE minimization [35]. In contrast,
we herein propose a simplified unfolding design motivated
by factorizing the optimal fully digital beamformer [10], as
discussed next.

B. Contributions

In this article, we propose efficient deep unfolding
approaches for the designs of both fully-connected HBF
(FC-HBF) and dynamic sub-connected HBF (SC-HBF) archi-
tectures. The proposed deep unfolding frameworks are based
on unrolling iterations of the MO-AltMin algorithm of [10],
and they are thus referred to as ManNet-based HBF. The main
idea is to first transform the challenging SE maximization
problem into an approximate matrix factorization problem,
in which both the analog and digital precoders admit LS
formulations. In each iteration, the analog beamformers are
produced by a DNN, while the digital beamformers are
obtained via closed-form LS solutions. Furthermore, the
employed DNN has a low-complexity sparsely-connected
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structure based on unfolding the projected gradient descent
(PGD) algorithm. In this sense, the proposed ManNet-based
HBF designs are a two-step deep unfolding procedure that
can avoid the computational load required for computing
the gradients and highly parameterized DNNs as in [32],
[33], [35], [50].

We summarize our main contributions as follows:

e We propose an unfolding framework for the design of FC-
HBEF architectures based on unfolding MO-AltMin. Unlike
most existing DL-aided FC-HBF designs, the unfolding
framework is developed by investigating the matrix factor-
ization problem for HBF design rather than the original SE
maximization. Thereby the complicated log-det objective
function is transformed into a simpler norm-squared form
in which the digital and (vectorized) analog precoders are
alternately solved via LS. This significantly simplifies the
design and reduces the overall complexity of the unfolding
model compared to unfolding the PGA method [32], [33]
or replacing an optimizer with a DNN [50].

e We develop a lightweight DNN architecture called Man-
Net to estimate the analog beamformer. Based on unfold-
ing the simple structure of the LS objective, ManNet is a
sparsely connected DNN with an explainable architecture
and low-complexity operations. Specifically, it can output
reliable analog precoding coefficients with only a few
layers, each requiring only element-wise multiplications
between the input and weight vectors. We also propose
an efficient unsupervised training procedure for ManNet.
The training strategy offers fast convergence with limited
training data and no training labels.

o We then focus on dynamic SC-HBF design. The trained
ManNet can be readily applied here. Specifically, we pro-
pose a low-complexity scheme to establish the dynamic
connections between the RF chains and antennas, and the
sparse analog precoding matrix is obtained by matching
the channel gains with the output of ManNet. To further
reduce the complexity of the SC-HBF design, we develop
a simplified version of ManNet, referred to as subManNet,
to directly output the sparse analog precoder for SC-HBF.
The proposed schemes can also be applied to the fixed SC-
HBEF architecture.

e We present simulation results demonstrating that the
ManNet-based FC-HBF approach attains better perfor-
mance in much less time and with much lower com-
putational complexity than the conventional MO-AltMin
[10], AO [11], and even the deep unfolded PGA [32],
[33] approaches. In particular, the proposed ManNet
and subManNet-aided SC-HBF algorithms achieve per-
formance similar to that of FC-HBF, and much better
than semidefinite relaxation-based alternating minimiza-
tion (SDR-AItMin) [10].

C. Paper Organization and Notation

The rest of the article is organized as follows. Section II
presents the signal and channel models, and the considered
design problems. Sections III and IV detail the proposed
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FC-HBF and SC-HBF designs, respectively. Numerical results
are given in Section V, while Section VI concludes the article.

Throughout the article, numbers, vectors, and matrices are
denoted by lower-case, boldface lower-case, and boldface
upper-case letters, respectively, while [A];; represents the
(i,7)-th entry of matrix A. We denote by (-)" and ()" the
transpose and the conjugate transpose of a matrix or vector,
respectively, and AT is the pseudo-inverse of a matrix A.
The matrix diag{ay,...,an} is block diagonal with diagonal
columns ay, ..., ay. Furthermore, |-| denotes either the abso-
lute value of a scalar or the cardinality of a set, ||-|| » denotes
the Frobenius norm of a matrix, and © represents the Hadamard
product. (C)N (i, 02) denotes a (complex) normal distribution
with mean p and variance o2, while U[a, b] denotes a uniform
distribution over given range [a, ).

II. SIGNAL MODEL AND PROBLEM FORMULATION
A. Signal Model

We consider the downlink of a point-to-point wideband
mMIMO-OFDM system, where the base station (BS) and the
mobile station (MS) are equipped with N; and N, anten-
nas, respectively. Let s[k] € Cs*1 denote the N,-dimensional
transmit vector from the BS to the MS on the k-th subcar-
rier, with E {s[k]s[k|"} =1In., k=1,2,..., K, where K is
the number of subcarriers. The BS employs a frequency-flat
analog precoder Frp € CNt*XNrr and a frequency-dependent
digital baseband precoder Fpp[k] € CNVre*Ns where Nyp is
the number of RF chains at the BS, Ny < Ngrr < Vi, and the
normalized transmit power constraint at the BS is given as
||FRFFBB[I<]||% = N, Vk. To focus on the design of hybrid
precoders, we assume that IV, is relatively small so that a fully
digital combiner V[k] € CN:+*¥s is employed at the MS for
the k-th subcarrier. The post-processed signal at the MS is
expressed as

vk] = VoVI[k]"H[k]FrrFgplk|s[k] + V[E]"n[k], (1)

where p denotes the average received power, n[k| ~CN
(0,021, ) is additive white Gaussian noise (AWGN) at the MS,
and H[k] is the channel matrix at the k-th subcarrier.

We adopt the extended Saleh-Valenzuela channel model and

express H[k] as [10]

P
H[k} = 5 Z apei‘]%”—pfkar(g;v ;a fk)at (6;;7 d);,, fk)H (2)

p=1
In(2),¢= \/% and fr, = f. + w where BW and
fe represent the system bandwidth and center frequency; P is
the number of propagation paths; «,, and 7, are the complex
gain and time-of-arrival (ToA) of the p-th path; ¢},(6};) and
@3, (03) represent the azimuth (elevation) angles of departure
(AoDs) and arrivals (AOAs) of the p-th path; a; € CNex1 and
a, € CV**! denote the transmit and receive array response
vectors, respectively. We assume that the BS is equipped with
a UPA of size N! x N, where N and N, are the num-
bers of antennas in the horizontal and vertical dimensions, and
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NENY = N;. We assume half-wavelength antenna spacing at
the BS, and thus, at(%, (j)Z, fr) is given as [10]

1 I T £ o €y t
(et ;tm fk) _ |:17 e e]ﬂf—i(zh sin(¢,,) sin(0),)+iy cos(é’p))7

A

o ’ejw%((Ngun sin(gl) sin(ﬁ;))Jr(Nt"fl)cos(();)):|T7
3)

where 4y € [0, N') and 4, € [0, NY) denote the antenna in-
dices on the horizontal and vertical dimensions, respec-
tively. The array response vector a. (0}, ¢, fx) at the MS is
modeled similarly.

B. FC-HBF and SC-HBF Architectures

We consider both FC-HBF and SC-HBF phase-shifter-based
architectures. In the former, each RF chain is connected to all
N, antennas, requiring a total of Ngrr Ny phase shifters. In this
case, the analog precoder is constrained as

Frr € Asan = {Frr : [Fre)mn = ellmn m, n}, @

where (,,, , represents the effect of the phase shifter between
the n-th RF chain and the m-th antenna.

In the SC-HBF architecture, each RF chain only connects
to a subset of M £ J\ZI\QF antennas to reduce the hardware
complexity and power consumption (assuming that NLR':F is an
integer for simplicity). Such an analog network requires only
Ny phase shifters in total, which is a factor of Ny lower than
FC-HBF. We assume a dynamic sub-connected architecture in
which RF chains are connected to non-overlapping subsets of
antennas. In this case, the sub-connected analog precoder is
constrained as

Frr € Awp 2 {FRF  [Frplmn € {0,670}

Ny Ngrr
> Frelmnl =M. Y [Frplmal =1, Ymon}, )
m=1 n=1

i.e., the (m,n)-th entry of Frg can be either a non-zero (unit-
modulus) coefficient, when the n-th RF chain is connected to
the m-th antenna, or zero otherwise. Furthermore, in each row
and column of Fry, there are only a single and M nonzero
elements, respectively. Note that the conventional fixed SC-
HBF architecture is a special case of the dynamic one, i.e.,
when the n-th RF chain is connected to M adjacent antennas in-
dexed from (n — 1)M + 1 to nM. In this case, we have Frp =
blkdiag {f'l, b e }, where £, = [fin, .- fara]’s
as considered in [10].

Compared to the fixed SC-HBF architecture, the dynamic ap-
proach additionally requires /Vy switches in the analog precod-
ing network to dynamically configure the connections between
the RF chains and the antennas. However, the switches do not
significantly impact the total power consumption of the system.
The power consumption of a typical switch is 6 times less than
that of a phase shifter and 40 times less than a digital-to-analog
converter (DAC) [9], [51]. Furthermore, low-power, low-cost,
and high-speed tunable switches can be used [9], [52], [53] in
dynamic SC-HBF structures.
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C. Problem Formulation
Based on (1), the average per-subcarrier achievable SE for

Gaussian symbols is given by [10], [12]

K
_ 1 P 1
R=— ;lodeet (INS 52 vV (k)" H[k]FrrFpplk)

x FBB[k]“F”RFH[k]“V[k]), (6)

where V[k]T = (V[k]*V[k]) "' V[k]". We aim at designing the
precoders and combiners {Fgrp, Fpplk], V[k]} to maximize
R, which is challenging due to the strong coupling among the
variables. However, given {Frr, Fpp[k]}, the optimal solution
for V[k] is the matrix whose columns are the Ny principal
left singular vectors of H[k|FrpFpp[k] [54]. Therefore, we
focus on the design of the hybrid precoders {Frp, Fpg[k]} in
the sequel.

The SE maximizing hybrid precoding design can be approx-
imately achieved via the following optimization [10], [12]:

K
Z [Fopt[k] — FreFaplk]| -  (7a)

minimize
Frr,{Fep[k|} i, 1
subject to Frp € A, (7b)
|FreFpg(k]|% = Ns, Vk, (7c)

where Fp[k] € CVe* s is the unconstrained optimal digital
precoder for the k-th subcarrier, given as

Fopi k] = S[K] (A[K])?, (8)
S has as its columns the Ny principal right singular vectors
of H[k], and A is a diagonal matrix whose N, diagonal el-
ements are the water-filling power fractions allocated to the
corresponding Ny data streams such that trace (A) = Ng. In
(7b), the feasible set A of the analog precoder can be either
Agan or Agyp, defined in (4) and (5), respectively, depending on
the HBF architecture. This constraint enforces the unit modulus
of the analog precoding coefficients and the configuration of
the sub-connected analog network. The per-subcarrier transmit
power is constrained in (7c¢).

Problem (7) is a non-convex matrix factorization problem,
and joint optimization of Fry and {Fpp[k]} , is compli-
cated due to constraint (7b). MO-AltMin [10] and OMP [12]
are two conventional model-based algorithms for tackling (7).
As discussed earlier, MO-AltMin is highly complex and con-
verges slowly when the system dimensions are large. In con-
trast, OMP maintains low complexity, but it has unsatisfactory
performance. We overcome these deficiencies by proposing an
efficient deep unfolding approach next.

III. PROPOSED FC-HBF DESIGN

We first focus on the design of FC-HBF, i.e., the design in
(7) with Frg € Agq. To this end, we propose a deep unfolding
approach referred to as ManNet-based FC-HBF. Its main idea
is to unfold the MO-AltMin algorithm, estimating the solution
to Frp using ManNet, an unfolding DNN designed based on
PGD optimization.
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A. Proposed ManNet-Based FC-HBF Approach

1) Main Idea: In the proposed approach, we apply the
iterative alternating minimization method of [10]. Specifically,
in each iteration, we first optimize Fry with Fpp[k] given and
constraint (7c) omitted. Then we design Fpp[k]| to meet the
constraint given the optimized Frp. Thus, we first consider the
following problem:

K
mlglmlze ; |Fopt [k] — FRFFBB[k]H,QF N CEY
subject to Frr € Agun, (9b)

where the quadratic form of the objective function is introduced
without affecting the solution. Let us denote

5( A (FRF) c (CNt,NRFX17 (10)
[k]é ( 0pt[ ])ECNtNSle (11)
Blk] £ (Fpplk])" ® Iy, € CNNxNelme 0 (19)
Then, the objective function in (9) can be re-expressed as
K K .
> [ Fopik] = FreFs[k]l5- = > _[Iz[k] - BIKx|*. (13)
k=1 k=1
Furthermore, by denoting
2 [R(x) 2N Nre 1
x& _j(x)} € B2Vl (14)
'%(i[k])} AN N, x1
k& ’ € RNt Nexd 15
Z[ ] j(z[k]) (15)
B[k] £ Df(]?[k]) _J(}B[k]) € REVN-X2NNwe (1)
_J(B[k]) m(B[k])

with 93(-) and J(-) representing the real and imaginary parts of
a complex vector/matrix, respectively, we can write

K K
> I Fopilk] — FreFuglk]|5 = _ |lz[k] — B[k]x|*.
k=1 k=1

(17)

Define the transformation

V:Frp —xand V! :x — Fgp (18)

which transforms the complex-valued matrix Fry into the real-
valued vector x and vice versa, respectively. With the newly
introduced variables, the optimal solution to problem (9) admits
the LS form

argmin Z |lz[%] [k]x||? .

x: V= (x)EAsn 7

(19)

x* =

Based on (19), a deep unfolding DNN of L layers is designed
to mimic the PGD algorithm to approximate x*. Specifically,
let x; be the output of the /-th layer of the DNN. From (19),
Xy can be produced as [55]

B[k]xﬁ)
X=Xp—1

K
. (X_ 5,2 Zim et =
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o S

k=1

K
=T <Xz—1 — 8¢z + ¢ ZB[kﬁ]Xz-1> )

k=1

k] + 0,B[k]" [k]XzO)

(20)

where 0, denotes a step size, Ty(-) represents a nonlinear
projection operator, and in the last equality we denote z =
Zi{:l B[k]"z[k] and B[k] = B[k]"B[k], Vk. The relationship
in (20) motivates a DNN model to learn x* wherein the out-
put of a given layer (i.e., Xy in the ¢-th layer) results from a
nonlinear projection applied to the output of the previous layer
(i.e., x¢_1 in the (¢ — 1)-th layer) and other given information,
including z and {B[k]} which is short for {B[k]}/ . The
nonlinear projection is performed with trainable parameters,
i.e., the weights of the DNN. Applied over multiple layers, the
DNN can be structured and trained such that its final output, i.e.,
x,, will be a good estimate of x*. In the following, we develop
such an efficient DNN architecture referred to as ManNet.
2) ManNet Architecture: Denote
K
B[/{]Xg_l S RQNtNSXl,

k=1

w12 -7+ (21)

and rewrite (20) as

xp=To (Xe—1 + dpug_1). (22)

We propose ManNet as a network of L layers defined by (22)
with the objective of learning x*. It takes x,_1 and u,_; as the
input of the /-th layer, and outputs x, as the sum of the outputs
of two other sub-networks based on the two input vectors Xy
and uy_; in (22). Importantly, the ¢-th element of x, only
depends on the i-th elements of xy_1 and uy_;. Thus, only the
nodes (or neurons) at the same vertical level between the layers
are connected making ManNet a sparsely connected DNN. As
a result, the weights in the /-th layer of ManNet can be rep-
resented by vectors wy 1 € R2NeNre X1 gpd Wy € R2NeNex1
associated with the two sub-networks with inputs x,_; and
uy_1, respectively. Due to the sparse connections in Man-
Net, these weights are applied to perform the transformation
in (20) as:

Xg=Wp1OXp1+Wgo2OUup_1.

A detailed network architecture for each layer of ManNet is
shown in Fig. 1(b), wherein the superscript (¢) represents the
iteration number. We will further detail the overall operation of
the proposed ManNet-based HBF design in Section III-B.

We employ the activation function

et — e

et +e "
to guarantee that the amplitudes of the elements of x, sat-
isfy |z;| <1,i=1,...,2N;Nrp. As a result, its correspond-
ing complex-valued matrix representation, denoted as Fgl); =
V=1(x;), has elements satisfying |[F\y]

tanh(z) = (23)

As this does not immediately ensure Fg)F € Aga as constrained
in (9b), the final output of the DNN (xr) is normalized to
produce a solution Frr = V~1(xz) satisfying (9b).
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(a) Deep unfolding framework

..... F [O)

ar (Fep[k]}D (0 < Iner)

i-th iteration of ManNet/subManNet-HBF

Initial Flg%), __|Construct x®,z®

{Fgp[k]}®

Reconstruct F(l)
and compute
{Fpg[k]}®

Frr | solve |(Fsalkl}

(i = Ined) (Pge)

{BIk1}®

@
Xp21

10)

(b) £-th layer of ManNet
Fig. 1.

3) Training ManNet: In Algorithm 1, we summarize the
ManNet training process using a training data set D. To initial-
ize the training, the weight vectors are first randomly generated
from the distribution A/(0,0.01), and an initial learning rate
is set. Then, ManNet is trained over £ epochs, each using
B batches {H®}B_ | where H®) = {{H[k]}1,..., {H[Kk]}s},
and S denotes the training batch size. For the b-th batch, we
randomly generate F;F ,and {Fpp[k]} (9 is obtained via the
LS solution

Fep[k]®) = (FU) I [k, Vh,bd,  (24)
where F,¢ [k](®) includes the optimal fully digital precoders for
the channels at the k-th subcarrier in H (), determined based
on (8), and X (%) denotes the data X in the b-th batch of
the ¢-th training iteration. From step 6, the iterative process
of optimizing the ManNet weights is performed. Specifically,
in the i-th iteration, for given F7") and {Fpp[k]}®), the
real-valued x(®%), {z[k]®®"}, and {B[k](**)} are constructed
based on (10)—(16) in step 7, allowing computation of z(®) and
{B[k]®"} in steps 8 and 9, respectively. Steps 10—16 update
fcéb’l) and the loss value, which is then used in an optimizer
to update the weights in step 18. It is seen that the training for
each data batch is an iterative process over TUm@in jterations. After
each iteration, Fgg ) and {Fgp[k]} ® are updated and utilized
for the next set of training iterations until ZU" iterations are
completed. This iterative approach is efficient in reducing the
amount of training data and accelerating the convergence, as we
empirically show in Section V.

The loss value for the b-th training batch is computed based
on the following loss function

Ilr ain

net

£ ({wil wilti ) = >,

(c) €-th layer of subManNet

Illustration of (a) the proposed deep unfolding framework for FC-HBF and SC-HBF, and the ¢-th layer of (b) ManNet and (c) subManNet.

Algorithm 1 Unsupervised Training in ManNet

Input: Training set D of channels.

Output: Network parameters {Wei, Wealt .
1: Initialize weights {wé1 1),w(1 1>}£ ; and learning rate.
2: fore=1—¢& do
3:  Randomly divide D into B batches {H(¥}2_,
4. forb=1— B do
5 Obtain ng>t, randomly initialize FSI}O), and compute

{FBB[ 19} based on (24).

6: fori=1—Z\5"do
7: Obtain x*?, {z[k]®?}, and {B[k]*?} from Fopt,
Fi ", and {Fgp[k]®"~} based on (10)~(16).
8: Compute 2 =3 (BIK] ") z[k] 0.
9: Compute B[] £ (B[k]"")TB[k]*, Vk.
10: £®) = 0,xy"" =o0.
11: for (=1— L do
12: ugb_;) —(b i) +Z B[k](bz (b, z)
13: 5{(()1),1) ngll) o) X(b 1) (b i) o u(b 1)
14: (b D= = tanh(x, (- Z))
15: Accumulate the average loss value of the
batch over ManNet’s layers: L% =0 4
i i) (bi
log(6) s iyl (k] ™) — Bk Vx|,
16: end f(b D _
17: LEwei? win ) =0,
18: Obtain {w(b 1) WE,ZH'U} with an optimizer.
19: Update Fg’F’) =V~ 1(xéb‘i)) and compute Fgp k]9
based on (24).
20: end for
21:  end for
22: end for

Z[l‘dlll Zl!dln >
23: Return {wy,1, Wy} = {w et et }

K
: (Z |10 — Bl x (0
k=1

)

(26)
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Algorithm 2 ManNet-based FC-HBF
Input: H, F,,¢, ManNet’s trained parameters
{{we, weotio }-

Output: FRF, {FBB[k]}

1: Initialize Fg)% and compute {Fpp[k](®)} based on (27).

2: for i =1,...,Zy do

3 Obtain x®, {z[k]®}, and {B[k]} from Fiy" and

{Fp[k]“1} based on (10)—(16). Set x{ = 0.

4. Compute 2V = >"r  (B[k]™) 2 [k]™.

5. Compute B[k]) = (B[k])) B[] “‘Wk.

6: for/=1— L do ,

7: Construct the input: ué L= Z | BlK] (i)xéi)l -z,

8: Apply weights: x( D= =wg1 © Xéjl + w2 © uéi,)l-

9: Apply the activation function: XE” = tanh(fczl)).

10:  end for ] ]

11:  Reconstruct the complex RF precoding matrix Fg)F from X(L”,
ie, FUL = v 1(x™).

12:  Compute {Fpp[k]”} based on (27).

13: end for

14: Set Frr = Fi2) and obtain {Fggp[k]} based on (29).

is the total weighted loss of all L layers of the ManNet trained in
the i-th iteration. We note that in (26), z[k] ) — B[k] (> x ("""
is computed in a batch-wise fashion, i.e., it returns a column
vector stacking S vectors of size (2N; Ns x 1) associated with
S samples in the b-th data batch. Therefore, £ in (25) is the
total loss accumulated over all the training samples in the b-th
batch and all the iterations of ManNet.

It is observed from Algorithm | and (26) that ManNet is
trained with an unsupervised training approach. Specifically, it
is trained to optimize the parameter set {wy 1, wz,g}le such
that £ ({we,1, we2}f ;) is minimized, which also directly
minimizes the objective function in (19) at the network output
x¢ = X1,. We note that the {F,( [k]} are not the training labels.
They are used to construct the input to ManNet as seen in (11),
(15), and Fig. 1. Otherwise, if supervised training were used,
it would require the implementation of a conventional high-
complexity HBF scheme to obtain the training label consisting
of a feasible analog precoder Frr. This would dramatically
increase the training complexity. Furthermore, because optimal
solutions to Frp are unavailable, employing sub-optimal solu-
tions as labels for supervised training may limit the performance
of ManNet.

B. Overall ManNet-Based FC-HBF Algorithm

Once the offline training process is completed, ManNet with
the trained weight vectors is readily applied to online FC-HBF
design. We refer to this approach as ManNet-based FC-HBF,
and it is summarized in Algorithm 2. Specifically, we gener-
ate the initial analog precoder and compute the digital one in
step 1. From step 2, the unfolding HBF design is performed
over T iterations. In steps 3-5, x, {z[k]}, and {BJ[k]} are
obtained to compute z and {B[k]} in steps 4 and 5, respectively.
After that, ManNet iteratively executes steps 6—10 to construct
the outputs of its layers. Note that only element-wise multipli-
cations between the weight and input vectors are required, as
seen in step 8 and Fig. 1. The final output of ManNet, i.e., X,
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is reconstructed as the feasible solution to Fry in step 11, and
the Fpp[k| are updated via LS in step 12, i.e.,

Feplk]® = (FUL)Foplk], Vk,i. 27)

The solutions for Fry and Fpp[k] are then utilized for the next
iteration until 7, iterations are completed. Finally, with Frp
obtained, the optimal digital precoder directly maximizing the
SE in (6) can be solved by the problem

(Ppp) : maximize Rpp ({Fpglk]}) (28a)
{Fss[k]}
subject to trace (QFpg|k]Fpilk]") = Ns, Vk,
(28b)
where

Rpp ({FBB[ 1}

K Zlog2 det <IN +

ﬁ:HFRF, and Q :F”RFFRF. This problem has a well-
known water-filling solution:

Fpplk]

HFBB[k}FBB[k]“fI“> ;

—Q :UT, (29)
where the columns of U are taken from the N principal right
singular vectors of I:IQ*%, and T is a diagonal matrix whose
elements are defined by the power allocated to the Ny data
streams [11]. In Algorithm 2, the final solution to {Fpp[k|}
is obtained based on (29) in the last iteration, as shown in step
14. We illustrate the entire proposed deep unfolding framework
of the ManNet-based FC-HBF design in Fig. 1(a).

We note that the operation of ManNet is independent of the
s1gna1 to-noise ratios (SNRs) because it aims at minimizing
Zk 1 |Fopt[k] — FreFaalk ]||]_. in (9), where Fop[k] only
depends on the channel matrix. The SNRs only affect {Fpp[k]}
when solving (28). Furthermore, the modular architecture of
our unfolded network allows the numbers of iterations in the
training and online application phases of ManNet, i.e., Zn
and Z,¢; in Algorithms 1| and 2, respectively, to be different. In
particular, we have noted that during training, where the goal is
to set the weights of ManNet, reliable learning can be achieved
with just a few iterations, e.g., Zi" = 3, which are also enough
for fast convergence. During inference, when the goal is to set
the hybrid precoders, the value of Z,; can be chosen to balance
the performance-complexity tradeoff: while the performance of
ManNet-based FC-HBF improves with Z,, its computational
complexity increases linearly with Z,, as will be shown next.

C. Complexity Analysis

We herein analyze the computational complexity of the pro-
posed ManNet-based FC-HBF approach in Algorithm 2. It
is observed from (12) and (16) that B[k] is a sparse ma-
trix, in which only 2Nrr and 2Ng (out of 2N Npp and
2N Ny) elements in each row and column, respectively, are
nonzero real-valued numbers. Thus, the complexity for com-
puting z and {B[k]} in steps 4 and 5 is only O(K N;Ngr)
and O(K N3pNs), respectively. Furthermore, B[k| has only
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2Ngrr nonzero elements in each row and column, and hence
step 7 requires a complexity of O(Ny + 2K N;Ngr). The
weighting in step 8 performs only element-wise vector mul-
tiplication/addition, which has a complexity of 3O(N;Ngr).
In step 12, obtaining {Fpp[k]} with (27) has a complexity of
O(N;K N&y), while the complexity of (29) is 20(N; K NgF).
As a result, the total complexity of Algorithm 2 can be
approximated as

CManNel—FC = (Inet - 1) O(NtKNFQ{F) + O(NtKNRF) + Inet
x O(2K NN, + L(3N,Ngr + 2K Ngp Ny)).
(30)

Compared to MO-AltMin [10], AO [11], [43], OMP [12],
and the unfolded PGA approach [32], [33], the proposed
ManNet-based FC-HBF algorithm has low complexity. These
approaches require complexities of

Cvo-aivtin-Fe = ZpoO (N K Nip + Ty (3N Nrr
+ 2K (N§p + Nrr)Ns)),
Caorc = 20(N K Ngr) + ZaoO(2NZ Nig),
Comprc = O(N K Njp + 2N, PN, + AN, Nip
+ 4Ny Nrr Ns),
Cupca-rc = ZupaO(K Ni(Ny + 1) Nrr),

respectively, where Tﬁo, Ioes Zao, and Zypga denote the
number of inner and outer iterations for MO-AltMin and the
numbers of iterations for AO and unfolded PGA, respectively.
The number of iterations for the analog precoding designs
in these approaches is If,}‘éIiMno and Ny NgrrZao respectively,
while that of the proposed ManNet-based design is only Ze( L.
In general, both Z,,, and L are of the same order as Ny, and
thus, ZneeL < Ny NgrrZ a0 and Zne L < T TO% . For exam-
ple, in a simulation with Ny = 128, N, = Nyr = Ng = 2, and
K =128, we found that Z,,.c = 10 and L = 3 are sufficient for
ManNet-based FC-HBF to achieve satisfactory performance,
whereas AO and MO-AltMin require up to Ny NgrrZao = 250
and QM Tin =500 iterations to converge, respectively (this
will be further discussed in Section V, Fig. 4). On the other
hand, while unfolded PGA converges relatively fast thanks to
the well-trained step sizes, its high complexity comes from
the computation of high-dimensional gradients. Therefore, the
proposed algorithm performs much faster than MO-AltMin and
AO, and its computational complexity is considerably lower
than MO-AltMin, AO, and unfolded PGA, and comparable to
that of OMP.

IV. PROPOSED SC-HBF DESIGNS

Next, we present the deep unfolding based dynamic SC-HBF
design. As the fixed SC-HBF architecture is a special case of
the dynamic one, below we present the general solution to the
latter. We first consider the following problem:

K
inimize 3 [Fopi[k] — FreFog[k]|2 31
Foon . (F s (1]} =1 [Fopt[k] — FreFea[k]l|%,  (3la)

subject to Frr € Agup. (31b)
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Compared to the FC-HBF design in (9), problem (31) inherits
the nonconvexity due to the unit-modulus constraint of the
nonzero analog precoding coefficients. Furthermore, unlike the
cases of FC-HBF and fixed SC-HBF, the connections between
the RF chains and antennas are also design variables in this
problem. The joint optimization of the RF chain-antenna con-
nections, Frp, and Fpg|k] is challenging. Herein we propose
efficient algorithms to solve (31) with the main idea being to
decouple the design variables.

A. ManNet-Based Heuristic FC-HBF Design

Let C € NV Nrr denote the mapping matrix defining the
connections between the Nrrp RF chains and NN, antennas
such that

[Clonn = {1’ i Frelon 20 g0 G
’ 0, otherwise

Ny

> [Climn =M, V¥n, (33)
m=1
Nrr

> [Clmm =1, ¥m. (34)
n=1

With the introduction of variable C, the dynamic SC-HBF
optimization can be rewritten as

S [Bunli] - (€ Fue sl

minimize
(35a)
subject to Frp € A, (35b)
(32) — (34). (35¢)

Note that in this problem, the sub-connected structure con-
straint on the analog precoder, i.e., (31b), has been relaxed, as
seen in (35b). This efficiently decouples the designs of the RF
chain/antenna connections and the analog precoder. Because
C is a matrix of binary entries, its optimal solution could be
found by exhaustive search over all possibilities, but with a
prohibitive complexity (exponential in Ny Ngr). To avoid this,
we investigate the achievable SE of the analog precoders given
as Rrp = + 2521 Rgr. 1, where

p
02Ny

n

RRrr x = log, det (INr + H[k](c O] FRF)

% (Co FRF)”H[k]”). (36)
It is observed that for a given H[k], to achieve the highest
SNR, C should be designed to match the nonzero entries in
Fgrr with the “best” coefficients of H[k], i.e., those with the
largest absolute values. Based on this observation, we propose
Algorithm 3 to determine C for any H[k]. Furthermore, because
of the relaxation in (35b), ManNet can be used to produce
Frr € Ag. Then, for each H[k], with k € KC {1,2,...,K},
C is determined using Algorithm 3, and the Fp[k] are found
using (29). The final solutions for Frp and {Fpp[k|} are
those that provide the best performance, i.e., the largest SE.
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Algorithm 3 Dynamic RF chain - antenna Mapping

Algorithm 5 subManNet-based SC-HBF

Input: HIK].
Output: C satisfying (32)—(34).
1: Set H[k] to the matrix containing Nrr rows of H[k] with largest
norm values. Obtain H such that [H]; ; = ‘[I:I[k]]” ,
2: Set C with [Cly,n = 1,Vm, n.
3: for m=1— M do
4. for n=1— Ngr do
5: Set mgo to the index of the smallest element in the n-th
column of H.

6 Set [Clmg,n =0.

7: Set all elements in the mo-th row of H to zeros.
8 end for

9: end for

Algorithm 4 Heuristic ManNet-based SC-HBF

Input: H, F,,¢, and the trained ManNet.
Output: FRF, {FBB[k‘]} 5
Apply Algorithm 2 to obtain Frr € Agu.

end for
Return Frr and {Fpg[k|} that provide the largest SE.

1:

2: for k€ K do_ ~

3: Obtain C™ for H[k] using Algorithm 3.
4 Obtain i) = C® ¢ Frp.

5. Solve {Fgg[k]}* using (29).

6:

7:

This heuristic ManNet-based SC-HBF approach is summarized
in Algorithm 4.

We note that although the proposed ManNet-based SC-HBF
approach can avoid an exhaustive search for C for each chan-
nel H[k], it still requires |K| iterations to obtain Fch) and
{Fgp[k]}®), (k € K). We will show later that such an iterative
process yields very satisfactory performance for SC-HBF, at the
expense of increased complexity and run time.

B. Low-Complexity subManNet-Based SC-HBF

Here we propose a computationally efficient SC-HBF design
to avoid the iterative procedure as well as the extra complexity
to produce FRF € Apa, as done in Algorithm 4. This can be
achieved if a good channel is chosen in advance to design C,
and if the employed DNN only generates the nonzero coeffi-
cients of Frp € Ag,p. These assumptions motivate a subcarrier
selection scheme and the design of subManNet, a simplified
version of ManNet proposed below.

1) Subcarrier Selection: First, we observe from (36) that
the transmissions via different subcarriers have different con-
tributions to the total achievable SE. Specifically, let Rrp j~
be the maximum SE of all the sub-carriers, i.e., Rrp i+ =
max{Rrg 1, ..., Rre i }. Then, Rgp i+ has the most significant
contribution to Rgp. On the other hand, for any given Frr €
Agupb, the Fpp[k] can be optimally found using the closed-
form solution in (29). These observations motivate us to de-
sign C to maximize Rrr - = log, det(Iy, + - H[F*[(C©
Frr)(C © Frp)"H[k*]"). Here, because of the unit-modulus
constraints on the non-zero elements of Frp, subcarrier k* is
chosen such that the channel H[k*] has the largest Frobenius
norm among all the channels. Thus, C is determined based on
H|[%*] using Algorithm 3.

Input: H, F,p¢, and the trained subManNet.

Olltpllt FRF,{FBBU@']}
: Apply Algorlthm 3 for channel H[k*] with k* = argmax,
{||H[ 1%, ..., [H[K]|5%} to obtain RF chain - antenna map-
ping matrix C. .

2: Apply Algorithm 2 with tanh(fcgl)) and uy_; replaced by
ot,c(x) and Ue—1 in (40) and (41), respectively, to obtain
Frr € Asup and {FBB[k}}

2) subManNet-Based SC-HBF: Once C is determined, let

=V(C+;jC) e RV,

(37)
where V is defined in (18). Using transformations simi-
lar to those in (10)—(17), we can rewrite the objective of
problem (31) as

Z ||Fopt

— FreFuslk]| 7

2
- Z | Bonclk) = (€ © Fre) Pkl
K
=Y llzlk] = BlK(c ©x)|” (38)
k=1
Problem (31) is then transformed to
x* = argmm Z ||z[%] [k](c ©x)]|? 39)

x:V- )eAmlb k=1

This motivates us to specialize ManNet for SC-HBF design.
Specifically, we propose subManNet to learn and output x*
in (39). In subManNet, the activation function is set to

01.c(x) = ¢ ® tanh(x), (40)
where uy_; is modified as
U1 =cOug 1. 41

As a result, the n-th nodes in both the sub-networks associated
with input vectors xy—; and u;—; do not require any com-
putations if ¢, = 0. In other words, subManNet produces the
output based on the predetermined RF chain/antenna connec-
tions specified in C. The offline training and online application
of subManNet can be performed similarly to ManNet, except
for the aforementioned modifications. We omit the detailed
training process here but summarize the proposed subManNet-
based SC-HBF design in Algorithm 5. Its first step is to design
the mapping matrix C for the best channel H[k*], and the
remaining process is similar to Algorithm 2, except for the pre-
processing of uy_1. We outline the structure of subManNet in
Fig. 1(c). Similar to ManNet, the operation of subManNet is
independent of the SNRs.

C. Complexity Analysis

In Algorithm 4, each iteration is performed with a complexity
of O(2N;N,Ngr). This is mainly to solve for {Fpg[k]}*)
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TABLE I
COMPUTATIONAL COMPLEXITY OF MANNET/SUBMANNET BASED FC-HBF/SC-HBF COMPARED WITH MO-ALTMIN, AO, OMP, SDR-ALTMIN, AND
UNFOLDED PGA

Structure Schemes Overall complexity ‘

ManNet Cvannerrc = (Toet — 1) O(N K NEg) + O(N K Nrp) + Lo O(2K NEp Ny + L(3N Nrr + 2K Nrp N))
FC-Hpp | MO-AIMin Cyo-anminre = TiioO (NeK Nig + Tiio BNe Nrr + 2K (Nip + Nrr)Ns))

AO Caorc = 20(N K Nrr) + TaoO(2NZ Niy)
OMP Comprc = O(N K Ny + 2N, PN, + 4N Nip + 4N, Nrr Ny)
Unfolded PGA Cupcarc = LupcaO (K Ny (Nt + 1) Nrr)

ManNet CManNet-Dyn-SC = CManNet-FC + |’€|O(2Nc N;Nrr)

SC-HBF subManNet CubManNet-Dyn-5¢ = (Znet — 1) O(Ny K Nap) + O(Ny K Ngr) + Lt O (2K Njp Ns + L(3N, + 2K Ny))
SDR-AltMin Cspr-anmin-Fix-sc = ZsorO(Nt K Ns + K N2 Ny)

in (29), while steps 3 and 4 require very few computations.
Thus, we approximate the total complexity of Algorithm 4 as

ChanNet-Dyn-sC = ChanNerrc + [IC|O(2N N, Ngr).  (42)

On the other hand, subManNet offers a complexity reduction
by a factor of Ngr compared to ManNet. This is consistent with
the fact that Ny times fewer phase shifters are needed in the
sub-connected architecture. Thus, the overall complexity of the
subManNet-based SC-HBF approach in Algorithm 5 is

CsubManNet-Dyn—SC = (Inet - 1) O(NtKNI%F) + O(NtKNRF)
+ Toet O(2K NE g Ny + L(3N; + 2K Ny)),
(43)

based on the complexity analysis of the ManNet-based FC-
HBF scheme in Section III-C. In particular, subManNet in-
herits the fast convergence and low complexity of ManNet,
i.e., it only requires small Z,.; and L to achieve good perfor-
mance. SDR-AltMin [10] requires complexities of O (K Ny N;)
and O(K N3 N3 ) to obtain the analog and digital precoders,
respectively, in each iteration. Thus, its total complexity is
Cspr-AMin-Fix-sc = ZspRO(N K Ny + K N2 N3 ), where Zspr
is the number of iterations for alternating updates of Fryr and
Fgplk]. Our simulations will show that the proposed design
also performs better and much faster than SDR-AltMin. The
complexities of the compared FC-HBF and SC-HBF schemes
are summarized in Table I.

V. SIMULATION RESULTS

In this section, we provide numerical results to demonstrate
the performance of the proposed deep unfolding solutions for
FC-HBF and SC-HBF designs. We first detail the simulation
setup and training, after which we discuss the results in terms
of SE and complexity.

A. Simulation Setup and Training of DNNs

We assume scenarios with Ny = {16, 32, 64,128}, K = 128,
and N, = Nyr = Ny = 2. The channel realizations are gener-
ated based on (2) with P =4, gb;, ¢y, ~U[0°,360°), 0;,, 0, ~
U[—-90°,90°], a ~ CN(0,1) [10], and 73, ~ U[0, Trax), where
Tmax = @Ts with T being the sampling period and () being

T T
—— ManNet, 77 = 3
«:@:subManNet, Zain = 3

ManNet, Ztain = 1
......... subManNet, Ztrain — 11

) “~net

0.9
‘Eﬁ 0.8
§ 0.7
P
06 subManNet
0.5 Sv-v..vccc D
04 \Manth
Py
P-6-0:9; D
0.3
1 5 10 15 20 25 30

Epoch number

Fig. 2. Normalized training loss of ManNet and subManNet with Ny = 64,
K =128, Ny = Ngrp = Ny =2, L =6, and Z\¥" = {1, 3}.

net

the cyclic prefix length, which is set to % similar to IEEE
802.11ad [56], [57]. The center frequency and bandwidth are set
to f. = 300 GHz and BW = 30 GHz, respectively. ManNet and
subManNet are implemented using Python with the PyTorch li-
brary and a Tesla V100-SXM2 processor. For the training phase,
a learning rate of 0.0001 is used with the Adam optimizer,
and we set |D| = 320. We fix the number of training epochs
to £ = 30 and the batch size to S = 32. The SNR is defined as
SNR = p/co?. The results are averaged over 100 iterations.
We first show the loss obtained during training ManNet and
subManNet with Ny =64 and N, = Ngr = Ny = 2 in Fig. 2.
Both networks are trained using Algorithm 1, but the latter
employs the modified activation function (40) and input vec-
tor (41), as discussed earlier in Section IV-B. We consider
Tumin — £1.3}, corresponding to the non-iterative and itera-
tive training approaches, respectively. For both the DNNs it
is seen that the loss decreases and essentially converges, but
at different speeds and to different values. Specifically, it is
clear that with ZU%" = 3, subManNet and ManNet converge
rapidly after 10 epochs. In contrast, when the non-iterative
training is applied, they converge more slowly, not reaching
their final values even after 30 epochs. Because the objec-

tive 3, [[Fopt[k] — FreFpplk]|% attained by FC-HBF is
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smaller than that of SC-HBEF, it is reasonable that the converged
loss of ManNet is smaller than that of subManNet. As the loss
function (25) also measures the objective in (9) and (31), the
convergence of the training loss reflects the ability of ManNet
and subManNet to solve problems (9) and (31), respectively. In
the subsequent simulations, we set Z'in = 3.

In Fig. 3, we show the SE performance of the ManNet-
based FC-HBF scheme (referred to as “ManNet-FC” in the
figures) for different numbers of ManNet layers L. We set
Tnet = {1,2,5,10}, Ny =128, K = 128, N, = Ny = Ny = 2,
and SNR = 20 dB. It is seen that the performance of this scheme
depends more on Z, than L. Specifically, while employing
a larger 7, leads to a significantly higher SE, increasing L
only yields a slight SE improvement. This is because both Frp
and {Fpp[k|} are updated over iterations ¢ = 1,2,..., Ty to
improve the HBF performance, while only the former is updated
over ManNet’s layers / = 1,2, ..., L, as shown in Algorithm 2.
This is attributed to the fact that using more layers is more
important for small Z,,.. Indeed, it is seen that the SE increases
faster with L when a smaller Z,, is used. For a sufficiently
large 7, increasing L only provides a marginal performance
gain but causes considerably higher computational complex-
ity and training time for ManNet. Therefore, in the following
simulations, we set L = 3, which is sufficient to ensure good
performance for both small and large Z,, as seen in Fig. 3.

B. Performance of Proposed Deep Unfolding HBF Schemes

Here, we investigate the performance of the proposed deep
unfolding FC-HBF and SC-HBF designs based on ManNet and
subManNet in their online applications, i.e., in Algorithms 2,
4, and 5. For ease of exposition, these schemes are referred to
as “ManNet-FC”, “ManNet-Dyn-SC”, “subManNet-Dyn-SC,”
respectively, in the following discussions. For comparisons with
ManNet-FC, we consider optimal fully digital beamforming
(DBF-FC), MO-AltMin-FC [10], OMP-FC [12], [13], and AO-
FC [14]. The ManNet-Dyn-SC and subManNet-Dyn-SC ap-
proaches are compared with SDR-AltMin-Fix-SC [10] and the
dynamic sub-array partitioning (DSP-Dyn-SC) method based
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on the channel covariance matrices [57]. Here, the suffixes
“Fix-SC” and “Dyn-SC” imply the fixed and dynamic SC-HBF
structures, while “FC” represent a FC-HBF design.

In Fig. 4, we compare the convergence of the consid-
ered methods with Ny =128, N, = Ngrp = Ny, =2, K =128,
SNR = {10, 20} dB, L = 3, and Z,¢, = 10. We note that the AO-
FC and MO-AIltMin-FC methods require nested loops, while
each iteration of the proposed deep unfolding HBF approaches
corresponds to L layers. Therefore, we show the SEs of AO-
FC and MO-AItMin-FC versus the total number of inner iter-
ations, while those of the deep unfolding methods are shown
for iterations {L,2L,3L,...}. OMP-FC and optimal DBF-FC
are not iterative, so their performance does not change with
the number of iterations. Among the iterative schemes, MO-
AltMin-FC converges the slowest. AO-FC converges faster than
MO-AItMin-FC, but neither has converged after 100 iterations.
In contrast, the performance of the proposed ManNet-FC and
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subManNet-Dyn-SC methods improves rapidly and reaches
satisfactory values after only tens of iterations. Particularly,
among the sub-optimal approaches, ManNet-FC achieves the
highest SE. This figure clearly shows the advantages of the
proposed algorithm in accelerating HBF transceiver design
and optimization.

In Figs. 5 and 6, we compare the SE performance at-
tained by the proposed deep unfolding approaches, including
ManNet-FC, ManNet-Dyn-SC, and subManNet-Dyn-SC in Al-
gorithms 2, 4, and 5, respectively, with that of the optimal DBF-
FC, MO-AItMin-FC, AO-FC, OMP-FC, SDR-AIltMin-Fix-SC,
SDP-Dyn-SC, and the unfolded PGA-FC approach with 5 iter-
ations [32]. In addition, we present the results for ManNet-Fix-
SC, in which C is fixed to C = blkdiag{1;,...,1s}, where
1, denotes a column vector of M ones. To verify the efficiency
of the subcarrier selection in Algorithm 3, we also show the
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performance of the ManNet-based SC-HBF approach for the
narrowband channel at the center frequency f. (referred to as
“narrow-ManNet-SC”).

In Fig. 5, we set Ny =128, Ny, = Ngrp = Ny =2, and K =
128. The convergence tolerance is set to 10~3 for the itera-
tive MO-AltMin, AO, and SDR-AltMin approaches, and Z,. =
{1, 10} is set for ManNet-based FC-HBF. Note that for Z,,; = 1,
Frr is obtained directly using ManNet without an iterative
update, and the Fpp[k| are solved for directly using (29). We
employ Z, = 10 for the SC-HBF designs unless otherwise
stated. For the heuristic ManNet-Dyn-SC approach in Algo-
rithm 4, we use K = {1,3,5,..., K — 1}. From Fig. 5, the
following observations are made:

e In Fig. 5(a), for FC-HBF, ManNet with Z,.; = 10 performs

better than MO-AltMin and AO, and much better than
five unfolded PGA iterations and OMP. At SNR = 10 dB,
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the proposed ManNet-FC algorithm with Z,, = 10
achieves 91.23% of the optimal performance, while
the performance of MO-AltMin-FC, AO-FC, unfolded
PGA-FC, and OMP-FC are only at 90.35%, 87.26%,
84.93% and 82.21% of the optimum, respectively.

e The heuristic ManNet-Dyn-SC design (i.e., Algorithm 4)
provides superior performance, as seen in Fig. 5(b).
The other deep unfolding SC-HBF schemes, namely,
subManNet-Dyn-SC and ManNet-Fix-SC, perform
slightly worse than the heuristic one, but they all
outperform their conventional counterparts, i.e., SDR-
AltMin-Fix-SC and DSP-Dyn-SC. At SNR = 10 dB, the
proposed deep unfolding SC-HBF algorithms achieve
89.18 — 93.31% SE of MO-AltMin-FC, while that
attained by SDR-AltMin-Fix-SC and DSP-Dyn-SC are
only 71.47% and 86.23%, respectively. Furthermore,
thanks to the dynamic RF chain - antenna mapping, the
SEs of the proposed ManNet/subManNet-based SC-HBF
and the DSP-Dyn-SC algorithms are only slightly lower
than that of narrow-ManNet-SC.

e SC-HBF designs based on ManNet perform better than
that with subManNet. This is reasonable since the fully-
connected analog precoder produced by ManNet is more
reliable than the sub-connected version, as observed from
Fig. 2. The ManNet-Dyn-SC algorithm performs just
slightly better than the fixed version. We note here that
larger gains can be attained with smaller N¢, as will be
shown next.

In Fig. 6, we plot the SE performance of the considered
approaches for Ny ={16,32,64,128}, N, = Ngrp = N; =2,
K =128, and SNR = 10 dB. Among the sub-optimal FC-HBF
schemes, the proposed ManNet-FC approach with Z, = 10
achieves the best performance, which is slightly better than
MO-AItMin-FC and far better than AO-FC and OMP-FC for all
considered Ny. Comparing the wideband SC-HBF algorithms,
the heuristic ManNet-Dyn-SC design has the best performance.
The subManNet-Dyn-SC algorithm performs very close to the
heuristic one for /V; < 64. Furthermore, it is seen that compared
to ManNet-Fix-SC, the gains achieved from the use of dynamic
sub-array configurations in ManNet/subManNet-Dyn-SC and
DSP-Dyn-SC are more significant for small and moderate ;.
This is reasonable because as Ny increases, all the sub-arrays
become large and the beamforming gain is guaranteed even
without the optimized connections between RF chains and
antennas. In particular, compared to narrow-ManNet-SC, all
the considered wideband SC-HBF designs exhibit performance
loss at large N; as a consequence of beam squint [4], [14].
However, the loss of the proposed ManNet and subManNet-
based approaches is less severe than those of their conventional
SDR-AItMin-Fix-SC and DSP-Dyn-SC counterparts.

C. Computational and Time Complexity Comparison

In Figs. 7-9, we compare the execution time and computa-
tional complexity of the considered algorithms with the same
simulation parameters as those for Fig. 6. The complexity is
determined by the total number of additions and multiplications
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performed by each algorithm. The proposed deep unfolding
schemes have low complexities thanks to ManNet and sub-
ManNet’s small numbers of iterations, layers, and the simple
operations in each layer. In particular, their complexity is just
as low as OMP-FC and SDR-AIltMin-Fix-SC, but they offer
much better performance, as discussed earlier in Section V-B.
Among the proposed deep unfolding algorithms, as expected,
subManNet-Dyn-SC has the lowest complexity, and the heuris-
tic ManNet-Dyn-SC approach requires the highest complexity
due to the iterations required for the search. Compared to these
algorithms, the complexities of MO-AltMin-FC and AO-FC are
much higher, and that of AO-FC increases exponentially with
Ng, whereas the complexities of the deep unfolding algorithms
are almost linear with N;. This agrees with the analysis in
Sections III-C and I'V-C.

In Fig. 8, we compare the performance—complexity tradeoff
of the considered schemes based on the results from Figs. 6
and 7. Specifically, we show their relative SE and complexity
in percentages with respect to those of the benchmark MO-
AltMin-FC (100%). It is observed that among the FC-HBF
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methods, ManNet-FC has the best performance-complexity
tradeoff with 100.78% SE and only 15.49% complexity of
the benchmark. In contrast, AO-FC has degraded SE and in-
creased complexity, while OMP-FC maintains low complexity
but offers poor SE performance. Among the compared SC-
HBF designs, the ManNet and subManNet-based schemes en-
sure low complexity (6% — 15%) and good SE performance
(90% — 93%), which is much higher than 74.5% of the SDR-
AltMin-Fix-SC counterpart.

We show the run time of the considered approaches in
Fig. 9, but we omit the results for SDR-AltMin-SC because they
are very large (up to 822 s for /Ny = 128), making it difficult to
see the difference among the other algorithms. SDR-AItMin-SC
employs CVX to solve for the Fpp[k] in each iteration, and it is
thus extremely slow. Among the other methods, MO-AltMin-
FC is the slowest and is much slower than AO-FC, OMP-
FC, and the proposed deep unfolding approaches, especially
for large N;. This is because of its slow convergence (see
Fig. 4) and nested iterations involving a line search. In contrast,
the proposed deep unfolding algorithms execute very rapidly.
With Ny = 128, while MO-AltMin-FC requires more than 6s
to execute, the time required by ManNet-FC, ManNet-Fix-SC,
and subManNet-Dyn-SC is only around 0.01s. As expected, the
heuristic ManNet-Dyn-SC approach outlined in Algorithm 4
requires a longer run time than the non-heuristic ManNet and
subManNet. Furthermore, despite the slow convergence, AO-
FC executes relatively fast because only arithmetic operations
and element-wise normalization are performed in each iteration.

Finally, we evaluate the training overhead of the pro-
posed unfolding models. We note that the computational
and time complexity required to train a DL model is pro-
portional to the number of trainable parameters, number of
epochs, and batch size. Therefore, in Table II we show
these quantities for ManNet/subManNet compared to those
of the CNN model in [58] with N; =128 and N, = Nrp =
Ng = 2. Note that the number of training parameters in the
proposed unfolding DNNs is independent of K. The Man-
Net and subManNet architectures both have the same num-
ber of parameters, 4LNyNrr. On the other hand, the CNN

ing, including their real and imaginary parts and magnitudes
[58]. Accordingly, 10.6 x 10° parameters need to be trained
in CNN-HBF, which is 3450 times higher than the proposed
ManNet/subManNet. Furthermore, the training batch size and
number of epochs used for training the latter are also consider-
ably smaller than the former. This clearly shows that the training
overhead of the proposed unfolding networks is insignificant
compared to conventional black-box DL models.

VI. CONCLUSION

The nonconvexity and high-dimensional variables have im-
posed significant challenges to HBF designs in the literature.
The available solutions usually require cumbersome iterative
procedures. We have overcome these difficulties by propos-
ing efficient deep unfolding frameworks for FC-HBF and SC-
HBF designs based on unfolding MO-AltMin and PGD. In
these schemes, the low-complexity ManNet and subManNet
approaches produce fully-connected and sub-connected analog
precoders with only several layers and sparse connections in
each, which explains their computational and time efficiency.
Our extensive simulation results demonstrate that compared to
the state-of-the-art HBF algorithms, the proposed deep unfold-
ing solutions for HBF designs have superior performance with
lightweight implementation, low complexity, and fast execu-
tion. For future studies, deep unfolding models for a joint HBF
design and channel estimation will be considered.
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