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Robust Symbol Level Precoding for Overlay
Cognitive Radio Networks

Lu Liu", Member, IEEE, Christos Masouros

Abstract— This paper focuses on designing robust symbol-level
precoding (SLP) in an overlay cognitive radio (CR) network,
where the primary and secondary networks transmit signals
concurrently. When the primary base station (PBS) shares data
and perfect channel state information (CSI) with the cognitive
base station (CBS), we derive an SLP approach that minimizes
the CR transmission power and satisfies symbol-wise Safety
Margin (SM) constraints of both primary users (PUs) and
cognitive users (CUs). The resulting optimization has a quadratic
objective and linear inequality (LI) constraints, which can be
solved by standard convex methods. For the case of imperfect
CSI from the PBS, we propose robust SLP schemes. First, with
a norm-bounded CSI error model to approximate the uncertain
channels, we adopt a max-min philosophy to conservatively
achieve robust SLP constraints. Second, we use the additive
quantization noise model (AQNM) to describe the quantized PBS
CSI and employ a stochastic constraint to formulate the problem.
Both robust approaches also result in a quadratic objective with
LI constraints. Simulation results show that, rather than simply
trying to eliminate the network’s cross-interference, the proposed
robust SLP schemes enable the primary and secondary networks
to aid each other in meeting their quality of service constraints.

Index Terms— Cognitive radio, symbol-level precoding,
constructive interference, robust precoding, quantization.

I. INTRODUCTION

S THE number of wireless devices and their applications

grow exponentially, the availability of unoccupied radio
spectrum is becoming increasingly scarce and occupied bands
are increasingly congested. Over the past two decades, cogni-
tive radio (CR) technology has been extensively studied as a
means to alleviate this problem through more efficient, flexible
and comprehensive use of the spectrum [1], [2], [3].

The fundamental challenge lies in balancing the interfer-
ence generated by the CR at the primary users (PUs) with
the quality of service (QoS) of the cognitive users (CUs).
To address this issue, both the inter-system and inter-user
interference need to be successfully managed. In the standard
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(non-cognitive) multiuser downlink scenario, beamforming or
precoding at the multi-antenna transmitter can be employed
to mitigate the multiuser interference (MUI) and compensate
for its adverse affect on the received signals [4]. Existing
precoding schemes can be classified as either block-level
precoding (BLP) or symbol-level precoding (SLP). In recent
decades, many approaches have been proposed to implement
block-level precoders that only depend on the current channel
state information (CSI), such as maximum ratio transmis-
sion (MRT), zero-forcing (ZF), regularized ZF and optimum
interference-constrained or power-constrained precoding [5],
[6], [7], [8], [9], [10]. These approaches all treat the MUI as a
detrimental effect that is to be suppressed as much as possible.

Unlike BLP, SLP techniques exploit information about the
symbols to be transmitted in addition to the CSI, which can
significantly improve performance at the expense of increased
complexity at the transmitter [11], [12], [13]. The additional
degrees of freedom (DoF) provided by the symbol-level infor-
mation make it possible to exploit the constructive component
of the MUI, converting it into constructive interference (CI)
that can move the received signals further from the decision
thresholds of the constellation points [14], [15], [16]. CI-based
SLP recasts the traditional viewpoint of interference as a
source of degradation to one where interference is a potential
resource that can be exploited.

Constructive interference regions (CIRs), which define the
degree to which the received symbols will be robust to
noise and unmodeled perturbations, are fundamental to SLP
designs. While early CI-based SLP approaches were intended
to increase the distance of the CIRs from the symbol decision
boundaries, they did not directly optimize the CIR. More
recent techniques have focused on designing the precoder to
directly optimize this distance [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], which has been referred to as the
safety margin (SM). Optimal Maximum Safety Margin (MSM)
precoders generally result in a non-linear mapping between the
symbols and the transmitted waveform, and can be shown to
minimize an upper bound on the symbol error rate (SER) [22].
This is contrasted with algorithms that minimize the mean
squared-error (MMSE) between the transmitted and received
symbols, which do not offer the same guarantee [16], [17].
MSM precoders are in general able to achieve a better QoS
for the same level of transmit power, or equivalently the same
QoS with less power consumption. There has been limited
work that studies CI-based SLP in CR systems. Although the
linear precoder proposed in [27] for an overlay CR network
is based on the use of CI with the MMSE criterion, the PU
performance is impaired compared to the primary-only case,
which violates the principle of CR design that we follow.
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The performance of both BLP and SLP are sensitive to
channel uncertainties due for example to channel estimation
errors, quantization noise or latency-related effects [28], [29],
[30]. To mitigate the impact of such errors, robust designs
are needed that properly model the errors and account for
their effect in the optimization of the precoders. Two general
approaches for doing so include assuming worst-case bounded
error models or exploiting known statistical properties of the
CSI error. The former case involves the use of deterministic
CSI error bounds that assume the error is confined to a
convex uncertainty region (typically an ellipsoid) surrounding
the true CSI [31]. In these approaches, robustness is achieved
by constraining the users’ QoS or other design objectives to be
satisfied for all channel realizations in the convex uncertainty
region, effectively minimizing the impact of the worst-case
channel within the given error bound [29], [32]. This max-min
philosophy can lead to a relatively conservative design depend-
ing on the tightness of a priori error bound. In the second case,
a particular distribution (e.g., Gaussian) is assumed for the
error, and Bayesian or other probabilistic approaches [31] are
employed to optimize the quality of service (QoS) or transmit
power under certain stochastic signal-to-interference-plus-
noise-ratio (SINR) or rate-outage probability constraints [33],
[34]. In this case, the probability-constraint formulation is
typically not deterministic and various techniques must be
used to obtain a tractable problem [35], [36]. In either of the
two cases described above, the penalty paid for increasing the
robustness to imperfect CSI is increased transmit power.

In overlay or cooperative CR systems, CSI errors beyond
those due to channel estimation are anticipated due to the
limited cooperation between the PBS and CBS. While robust
BLP designs for traditional MIMO or CR scenarios have
been widely investigated [32], [37], [38], [39], robust SLP
algorithms for general CR scenarios have not been considered.
Prior work on robust designs for SLP includes [17], which
derived a robust SLP algorithm suitable for imperfect CSI
with bounded CSI errors, but it is based on a multicast
formulation without fully taking advantage of CI. The work
described in [40] considered a linear channel distortion model
with bounded additive noise and Gaussian-distributed channel
uncertainties. They designed robust SLP schemes to minimize
transmission power subject to CI constraints as well as QoS
or SINR requirements. While not focused on CR applications,
this prior work demonstrates that robust SLP designs can be
formulated to improve and achieve a better balance between
QoS and power consumption.

In this paper, we propose robust CR SLP algorithms for
each of two different CSI error models that account for the
quantization error in the CSI shared by the PBS with the CBS.
In particular, we focus on overlay CR downlink channels [2],
[41] where the PBS shares with the CBS its CSI to the PUs
and CUs, as well as its data intended for the PUs. The shared
CSI is assumed to be quantized, which is known to often make
achieving the desired user QoS constraints infeasible without
introducing robustness into the problem formulation [42],
[43]. In addition, the imperfect CSI also means that the PBS
precoding is not precisely known at the CBS, and thus the
CBS has an imperfect estimate of the transmitted PBS signal,
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even if the PBS data symbols are perfectly known. This
makes finding a robust solution in the cognitive radio case
more complicated than in prior SLP-related work, where the
transmitted signals are assumed to be perfectly known. If left
unaddressed, the combination of these effects will almost
certainly cause the noise-free received symbols at both the PUs
and CUs to fall outside the desired CIR. To derive a robust
SLP formulation for CR systems, we formulate the problem
as one of minimizing the transmit power at the CBS while
simultaneously satisfying the SM constraints at both the PUs
and CUs to guarantee the worst-case user’s QoS.

We first derive a power-minimizing SLP approach for
overlay CR with SM constraints at both the PUs and CUs
assuming perfect CSI, leading to a quadratic optimization
problem with linear constraints that can be efficiently solved.
We then derive the SM at each user for two different imperfect
CSI models, including the effect of the imprecisely known
PBS transmit signal. We first consider the case where the
quantization error is norm-bounded as in [31], and we derive a
robust SLP algorithm based on maximizing the worst case SM.
This leads to a conservative design that trades transmit power
for increased protection of the PUs from the CR interference
due to the quantized CSI. Then we study a stochastic approach
based on the additive quantization noise model (AQNM) [44],
[45] that is sufficiently accurate to approximate the quanti-
zation error at low and medium signal-to-noise ratios and
has been widely used in the analysis of quantized MIMO
systems [46], [47], [48]. In this case, the SM of the PUs
and CUs are constrained to meet a preset threshold with a
certain probability. We then apply the Safe Approximation
I method in [40] to reformulate the intractable probabilistic
constraints as deterministic constraints and finally construct
an optimization problem to obtain the robust SLP solution.

The use of SLP for overlay CR has not been considered
previously in the literature. The work in [27] is the most related
prior effort, but it requires that the CBS directly transmits
the PBS data together with its own data, which is not as
energy efficient as our proposed approach. In addition, unlike
our proposed approaches, [27] does not consider the impact
of the PBS interference at the cognitive users, it does not
assume imprecise knowledge of the PBS waveform, it uses
a less effective SLP technique, and it does not take into
account the fact that the PBS CSI exploited at the CBS
may be imperfect due to quantization or other effects. Most
notably, our proposed SLP algorithms enable the PUs to
exploit constructive interference as well as the CUs, and thus
we can demonstrate that the presence of the cognitive network
can actually improve the PU network performance rather than
degrade it. This result is unique to the literature on CR, which
focuses on not impairing the PU QoS.

We conduct a number of simulations assuming the PBS
channel is quantized using the scalar Lloyd Max algorithm
that minimizes the average quantization noise power [49], [50].
These simulations demonstrate the flexibility of the proposed
robust SLP algorithms in trading transmit power for improved
performance when quantized CSI is present. They further
demonstrate the ability of the proposed methods to improve
the performance of both the primary and cognitive networks.
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TABLE I
DEFINITION FOR ALL ACRONYMS
Acronym Full Name
SLP Symbol Level Precoding
CR Cognitive Radio
PBS Primary Base Station
PU Primary User
CBS Cognitive Base Station
CU Cognitive User
CSI Channel State Information
SM Safety Margin
LI Linear Inequality
AQNM Additive Quantization Noise Model
QoS Quality of Service
MUI Multi-User Interference
BLP Block-Level Precoding
SLP Symbol-Level Precoding
MRT Maximum Ratio Transmission
ZF Zero-Forcing
DoF Degrees of Freedom
CI Constructive Interference
CIR Constructive Interference Region
MSM Maximum Safety Margin
SER Symbol Error Rate
MMSE Minimum Mean Squared-Error
SINR Signal-to-Interference-plus-Noise Ratio
AWGN Additive White Gaussian Noise
PALP Phase Alignment Linear Precoding
SR Symbol Region
PMSLP Power-Minimizing SLP
BLER Block Error Rate
EE Energy Efficiency

Furthermore, inspired by the results of [51], we study the
problem of allocating bits to the CSI of the PBS to the PUs
and CUs, and demonstrate that the bit allocation strategy in
our robust SLP algorithm is not as important as that in the non-
robust methods. Note that a subset of the results presented in
this paper were previously reported in [52].

Notation: Bold lower case and upper case letters indicate
vectors and matrices, and non-bold letters express scalars. The
N x N identity (zero) matrix is denoted by Ix (Onx ). The
N dimensional vector of ones (zeroes) is denoted by 1 (0 ).
A, denotes the (m,n)-th element in the matrix A and a,,
denotes the m-th element in the vector a. The operators (-)*,
()7L, ()T and ()" stand for the conjugation, the inverse, the
transpose and the Hermitian transpose operations, respectively.
C™>" represents the space of complex matrices of dimension
mxmn.E(-), |(-)| and |- || respectively represent the expectation
operator, absolute value and the Euclidean norm. CA (p1, o)
denotes the complex normal distribution with mean p and
variance o?. The functions tr{-} and diag{-} respectively
indicate the trace of a matrix and a vector composed of the
diagonal elements of a square matrix, while diag{a} denotes
a square diagonal matrix with the elements of vector a on the
main diagonal. R{-} and Z{-} denote the real and imaginary
parts of a complex number, respectively. For matrices and
vectors, > and < denote element-wise inequalities, and &
denotes the Kronecker product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink CR network with an M -antenna
CBS serving N, single-antenna CUs. The CR network is
granted access to share the primary system spectrum in which
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Fig. 1. Cognitive radio system model.

an M,,-antenna PBS is communicating with [V, single-antenna
PUs. The system model is depicted in Fig. 1. The direct
primary and cognitive channels are assumed to be respectively
denoted by the following flat-fading model:

T
H,, = [h]{n1 hgT)p,Np] € CNox My )
T
He. = [hiy - he ] e CNexMe, )
The corresponding interference channels are defined as
T
H,. = [h;ql hgng] € CNexM; 3)
T
H,, = [th)l th’Np] c CNpx M. )

from the PBS to CUs and the CBS to PUs, respectively.
We will leave further specification of the channel models until
later.

The vectors s,(t) = [sp,1(t), Sp2(t), -+, sp.n, (£)]T and
Sc(t) = [sc1(t),8c2(t), 8. (t)]T will be used to rep-
resent the symbols to be transmitted to the individual PUs
and CUs, respectively, at time . In this work we assume for
simplicity that all transmitted symbols are uncorrelated and
drawn from a D-PSK constellation with unit magnitude, i.e.,
stn(t) € {sls = exp(jn(2d +1)/D), d € {0,---,D — 1}}
where | € {p,c} denotes the primary or cognitive system,
and m denotes the user index in the corresponding system.
The sets K = {1,--- ,N,} and J = {1,--- , N.} enumerate
the PUs and CUs, respectively. The idea of CI precoding can
in principle be applied to any constellation design [25], e.g.,
QAM [22] otherwise, but is most easily formulated for the
case of PSK signals. The algorithm for other constellations
such as QAM is slightly more complicated since the definition
of safety margin becomes dependent on whether an inner,
edge, or corner constellation point is transmitted, but the basic
principle of the algorithm is the same.

At time slot ¢, the received signals at the PUs and CUs can
be respectively written as

yp(t) = Hppxp(t) + Hepxe () + np (), (5)
YC(t) = HCCXC(t) + Hpcxp(t) + nc(t)y (6)

where x,(t) € CM»*1 and x,.(t) € CM<*! are the transmitted
signals at the PBS and CBS after precoding and power loading,
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Fig. 2. Symbol region for conventional precoding.

and ny,(t) ~ CN'(0,07) and n.(t) ~ CN(0,02) are additive
white Gaussian noise (AWGN) vectors. In order to simplify

the notation, in what follows we drop the time index t.

A. Phase Alignment Linear Precoding (PALP)

Conventional precoding methods such as MMSE, ZF and
maximum-SINR beamforming are designed with the objective
of minimizing the inter-user interference so that the received
symbols lie as close as possible to the nominal constellation
points (or scaled versions thereof in the case of PSK). This is
effectively equivalent to ensuring that for each user m, the
noise-free received signal r,, = h,,x lies within a circle
centered at its corresponding constellation point s, [17],
as depicted in Fig. 2. The shaded area inside the circle is
referred to as the symbol region (SR), a down-scaled version
of the decision region for s,,.

The method described in [27] is based on the MMSE
criterion and the early Phase Alignment Linear Precoding
(PALP) technique for SLP [15]; it is the prior approach most
closely related to the algorithms we present in this paper
for cognitive radio scenarios. However, a modification to the
PALP approach in [27] is necessary for a fair comparison,
and to allow the algorithm to protect the PUs from the CR
interference. In particular, we tailor [27] (hereafter referred
to as CR-PALP) by allowing different instantaneous power
scaling factors at the PBS and CBS:

o= L fo= L
P\ race{Ws,sEWI}" 7€ \| trace{W s s Wi}

where P, and P, respectively denote the total transmit power
of the PBS and CBS, f, and f are the respective instantaneous
scaling factors, and W, and W . are the linear precoders for
the primary and cognitive systems, respectively. The general-
ized MSE criterion for CR-PALP is given by

e =E{|V,s + HW_ s — (A + BQ?)s|*}, (7)
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Fig. 3. Symbol region for CI-Based SLP.

where according to [27],

_ | Hp W5 On,xn., _ |Sp _ |Hep
Vpi |:Hchp ONCXNC ’ 5= Sc 7H7 Hcc ’

A = diag{[1,---,1,0,---,0]} is a diagonal matrix
whose first N, diagonal elements equal 1, B =
diag{[0,---,0,1,--- ,1]} is a diagonal matrix whose last N,
elements equal 1, and Q® = diag(s) - [HH"| - diag(s)” con-
tains the phase-corrected correlation elements. The precoding
matrix at the CBS derived from the MMSE criterion is given
by

W, =HYHH")" (A +BQ? -V,), (8)
and the received signals at the PUs and CUs are

YP:fpSp+np7 (9)
Ve = (fp— fo)HpeWys, + £.Qfs. +n..  (10)

The performance of the PUs in our CR scenario will not be
impaired using this modified CR-PALP approach, unlike using
the method of [27] directly.

B. SM-Constrained SLP

For PSK constellations, it is not necessary that r,, be close
to s,, in order to be decoded correctly, as long as it lies in
the correct decision region with a given level of certainty.
Thus, it is not necessary that all of the inter-user interference
be eliminated, since some interference components could add
constructively and push the received symbol further into the
decision region, making it more robust to noise and interfer-
ence external to the system. We can thus redefine the SR as,
for example, in Fig. 3, where the SR becomes a displaced
version of the circular sector of angular extent 27/ D centered
at the origin and corresponding to s,,. This displaced sector
has an infinite radius, and all points within it are at least a
certain distance §,, from the decision boundaries for s,,. This
region is referred to as a constructive interference region with
safety margin 9, [53]. The larger ¢,,, the more robust the
received signal will be to noise, interference, modeling errors,
or other impairments.
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Fig. 4. Symbol region and safety margin in a modified coordinate system.

In order to mathematically interpret the CIR and SM in
a unified way, we rotate the original coordinate system by
the negative phase of the desired constellation symbol, i.e.,
£s?,, to obtain the modified coordinate system in Fig. 4. After
rotation, s,, is placed at 1 on the real axis, and r,, is relocated
to
Zm = Sy Tm.- (11)
Then we can easily calculate the SM of the noise-free symbol
at user m as [53] and [22]
Om = R{zm }sin @ — |Z{z, }| cosb. (12)
Ideally, the SM should be large enough to sufficiently reduce
the probability that noise or other impairments will push
the noise-free signal outside the desired detection region; the
larger the SM, the smaller the SER. To design the precoder,
one can constrain the SM to be above a certain threshold to
ensure a given target SER. The fact that the CIR in Fig. 4
is much larger than the SR in Fig. 3 means that increased
flexibility is available to achieve the given performance objec-
tive. In this paper, we will consider the following type of SLP
optimization, which minimizes the transmit power to achieve
a certain desired SM:

(13)
(14)

min ||x||2
xX

subject t0 0, > 00, VM €M

where d,, ¢ is the desired minimum SM for user m and M =
{1,---, M} indexes the users.

III. POWER MINIMIZATION SLP IN CR

Before considering the robust SLP design, we first examine
the simpler case where the PBS shares its data and perfect
CSI with the CBS. The SM for each PU and CU is assumed
to be constrained to be &) ; for k € K and 4 ; for j € J,
corresponding for example to possibly different target SERs
for each PU and SU. Here we focus on SLP designs that
minimize the transmit power at the CBS and achieve the SM
QoS constraints at both the PUs and CUs.
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A. Primary System

The rotated symbols received at the PUs can be expressed
as

Zpk = Sp Tk = Sp g (Wpp £Xp + hep £Xc), (15)
for k € K. Defining
By 2 5 bppis Bep 285 ihep,  (16)
we have
Zpk = flpp,kxp + ﬁcp,kxc~ 17

The constraints ensuring the QoS of the PUs can be expressed
as

Spe = R{zp} sinb — |Z{z, 1} cos 0 > 6. ;. ,Vk € K (18)
which is equivalent to
R{flppykxp} sinf — I{ﬁpp_,kxp} cosd
+R{l~1¢p7kxc} sinf — I{flcp’kxc} cosf > 52’,6,
R{hyp xX,} sin 6 + Z{h,, 1x,} cos
+R{hep X} sin @ + Z{h, yx.} cos 6 > 89 1
For any given complex vector x, we define the operator
O(x)

s |R{x}sin@ — IT{x} cos® —R{x}cosf —I{x}sind
T | R{x}sinf + Z{x}cosf R{x}cosf —I{x}sinh

19)
and denote
Hy, x =0(hypr), HEp=0U(hgr).  (20)
Using the following real-valued notation,
. R{xp}} ; [R{xc}}
X, = , Xe= , 21
=76 Z{x.} b
the constraints in Eq. (18) can be simplified as
HY %, +HS %> 00,1, Vkek.  (22)

B. Cognitive System

Similarly, the rotated symbols at the CUs can be written as

* *
Zej = SejTej = Se,5(Nee jXe + Dpe j%p) (23)
= hcc,jxc + hpc,jxpa (24)
where
N A i A % )
heej = 8¢ hecy,  hypej = sg hye ;. (25

The SM constraints at the CUs can be expressed as

R{flcwxc} sin @ — I{flccijc} cos 0

i +R {1y %, } 81?9 — T{hy. ;x,} cosf > 8055
Rihce jx.}sind +Z{h.. ;jx.}cosf

+R{hye %, } sin 0 + T{hy. ;x,} cos§ > §°

VA
for j € J, which can again be written more compactly using
the operator in Eq. (19):

HC x.+HY

- 0 .
cc,j peiXp 2 0cjla, Vi€ J.

(26)
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Combining all of the above notation together, we can
express the general power minimization SLP problem with
perfect CSI as follows:

min [|%.||? (27)
~HY HY 5 @1,
; Ter | xo < |orr| 1 —
subject to l_ gj X, < [ch] X, [6? 2 12] (28)

where the inequalities are to be interpreted element-wise,
T T ~

8y = [0p1 - Oy, ] s 00 = [001 -+ Oy, ], and H, £

U(diag(s;)Hap), with a,b € {c,p}. The result is a quadratic

programming problem with linear inequality constraints which

can be efficiently solved using a variety of numerical methods.

IV. RoBUST SLP FOR NORM-BOUNDED CSI ERRORS

In practice, the CSI shared by the PBS with the CBS will be
imperfect due for example to quantization, or somewhat out-
dated due to delays required for processing and transmission.
As a result, robust precoding designs are critical for overlay
systems. We address such a design in this section for the case
where the imperfect CSI can be described in terms of a norm-
bounded error. We model the CSI shared by the PBS with the
CBS as follows:

hpp i =hpp ik + €p ik, (29)

hye; = hpej + €, (30)

where the - indicates the shared CSI and ej;,e.; are
norm-bounded CSI error vectors, i.e., |leprllz < €, and
lec,jll2 < €cj. No other assumption regarding the channels
is required. Using Eq. (19), it is easy to show that

ﬁ]zasp,k: = U(flpp,k) = U(Sz,k(ﬁpp,k +epk)) (3D
=HY , +EY,, (32)

Hp. ;= O(hye) = U(s j(hpej +eci)  (33)

=HS, , +EY;, (34)

where h,, x ) = s;’kﬁp,}k, I:Il?p’k = Ujﬁpp,k), Egk =
U(sz,kep7k)9 hy. ; £ Sz,jhpc,j’ ch,j = O(hy,;), and E?,j £

O(sg j€c,j)- Due to the uncertainty in hy, x, the transmitted
signal at the PBS, i.e., x,,, which necessarily depends on hy,, .,
is not precisely known. Assuming that the precoding method
used at the PBS is known to the CBS, we will assume that
an estimate of the transmitted signal, denoted by X7, can be
computed by the CBS using the quantized CSI fl,,,,’k. With
this notation, the constraints in (27) can be reformulated as

(AS, , + ES X8 + HY, %, > 60,12, VEeK, (35)
HY %+ (H), , +E2 )% > 60,1, VjieJ. (36)

For a robust bounded-CSI-error design, we desire that the
above constraints hold for every possible error realization and
every user:

0 e 70 e 70 0
7Ep,kxp = pr,kxp + Hcrnkxc -9 w12

p
Viepklle < €, VEeK, (37)
0 se 70 5 70 e 0
—Eg %, < He %o +Hy ;%5 — 0 519,
Vlecjllz <ecj, Vied. (38)
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We separate the operator U(x) into two parts, as follows:

2 [Gi(x)] o [xO
O(x) = [62 (x) = [x0: | (39)
where
R{xT}sinf — T{xT} cosd g
_ 01
Or(x) =x™ = [—R{XT}0089 —Z{xT}sing| ° (40)
R{xT} sinf + Z{xT} cosd ’
_ (O2
O2(x) = x7 = [R{XT} cosf) — IT{xT}sinf| ° “h
so that constraint (37) can be rewritten in two parts as
—e X, < hp) G 4 byl Xe — 6,
V||ep,k||2 < €p.ks Vk € IC, (428.)
—&)3 %0 <h)? %¢+h0? % — 0,
V||ec)j||2 < €c,js Vj cJ. (42b)
Note that
I = &35 l2
<I| = &% [l 1%
. T T sinf —cos# -
- H [R{ep,k} I{ep,k}} [ cosf — sin@] » HXPHQ

T T sinf —cosf .
< IRtegd Tl | Sy “Song] | sl
<V2ep 1% 2
and similarly, we can show || — é;{ikg”z < V26 ]1XE 2.

Thus, if we can guarantee that the following constraints are
satisfied, namely

HY %2 +HE (% > (V261X |2 + 00 )12, VEEK,
Hy %5 + HE %o > (Ve [%5lla +02,)12, Vi€,

then the constraints in (37) and (38) will be satisfied as well.
Using the above results, we obtain the robust precoder by
solving the following optimization problem:

min %, (43)

subject to FHS, %% + HS, % > (V261X ||2 + 65 )12,

Vk € K, (44)
HO, %+ HY, % > (V26|58 12 + 02,12,
vieJ. (45)

As in the case with perfect CSI, the robust SLP design
can be found via a quadratic program with linear inequality
constraints.

V. ROBUST SLP FOR STOCHASTIC CSI ERRORS

The bounded error model above is a very conservative
approach, given its goal of ensuring that the SM constraints
are met for all possible CSI error realizations. A less con-
servative approach that allows constraint violations with some
acceptably small probability is to assume a statistical CSI error
model. As an example, in this section we consider the case
where such a model for the PBS CSI error is available due
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TABLE I

DISTORTION FACTORS FOR DIFFERENT QUANTIZATION
BIT RESOLUTIONS [49]
b 1 2 3 4 5
p | 03634 | 0.1175 | 0.03454 | 0.009497 | 0.002499

to knowledge of how the channel is quantlzed. In particular,
we assume that the channels h ., and h ..; shared by the
PBS are element-wise quantlzed and we use the approximate
additive quantization noise model (AQNM) [44], [45] to
describe their resulting statistics. Other models are possible
based on the specific quantization method employed.

We assume that the channels are Gaussian with zero mean
and covariance given by

thp,k E{hpp khpp,k} = ﬂpIMpa (46)
thc,] = E{hpCJ pC,j} = ﬂcIJ\Ip- (47)

Using AQNM, the quantized CSI from the PBS after rotation
is expressed as

h]?p kT = Qhypr) ~ aphyy i + ﬁ,?,;,k, (48)
pc J Q( PC,j) ~ aChPC;j + ﬁgc,jW (49)
where Q(-) is a scalar quantization function applied

element-wise and separately to the real and imaginary parts

of the input. The vectors n C™*M» and

Q 2
0 =& Dyp k Spknppke

n; ;= s;;n 22” € C'™*M» denote the zero-mean Gaussian-
distributed quantization noise vectors, and both are assumed
to be uncorrelated with hpp % and hpC j- The gains oy =
1— py for k € {p, ¢} are functions of the following distortion

factors [46]:

o Bl b %) B — b )
P E{alPl T E{lel?)

The value of p is given in Table II for different bit resolutions
b assuming an optimal non-uniform Lloyd-Max quantizer [49].
The phase rotation does not alter the covariance matrices of
the quantization noise, which are given by [44]

R-a
D pp.k
R
pc,

= apppdiag{Ry, , } = apppBpln,,
; = acpcdiag{thc,j} = acpcﬁc:[]\/[,y

Based on Eq. (48) and Eq. (49), we can derive
N he —n¢ ~
_ T ppk pp.k _ _7Q Q
hyp e = a =aphy,  —ayng ..
n EQ T he Q
hye ;= % = achy ; —aeng ;,
(&
where @, = -~ and a, = --. Therefore,
>0 _~Q QU0  GQ.U
pr k= U(aphpp,k - O‘Pnpp,k) (pr k Npp k)
(50)
s e QU Q.U
Hpca - U(achpcj ch) (pr NPCJ) (D
QU Y Le N@O A =Q Q0 2
where H; = U(hpp, ), N ook = U(n pp’k) e

U(Effw), and N2 £ UB(ng, ;). Substituting Eq. (50) and
Eq. (51) in (28), we have

a,(H2® - N9O%, + HY

@0 —NIO vk e K, (52)

kxc > 5 k12a

1409

~N<%%,

H® .+ ozC(HQ O o

0
ce,j pe,j = 50,]'127

Vje J. (53)

A. Primary System

As a special case to fix the details, we assume that the PBS
employs ZF precoding to cancel the interference among the
PUs. Thus, the transmit symbol at the PBS can be expressed

as
Xp = prg;(prHgy)_lsp, (54)

where

_ by
Ir = trace{ (H,,,HT)~1}

is the scaling factor to satisfy the PBS power budget. Then
we will have

QU 5Q,U

(pr, Npp, ) Xp
70

= appr wXp

B R{h pp.kXp}sind — I{hpp,kxp} cos 6
P\ R{hypxx,} sin @ + Z{h,, 1x,} cos

= q, fpsinfl,

due to flpp,kxp = S,k fpSpk = [fp, which is not surprising,
since even with imperfect CSI, the CBS can assume the ZF
precoding at the PBS is successful in delivering the desired
symbols to the users. The exact value of the scaling factor f,
depends on the true channel H,,,, but the CBS can employ an
estimate based on its quantized approximation:

5o = d:
3 trace{ (FIf, (FI,) 7)1}
T
where HY, = {(h§p71)T (hgp N, )T} , and P, is assumed
to be known. Using a similar argument, we can obtain the
following deterministic form of the constraint in Eq. (52) as
follows:

HY,  %c > (60, — f9sin6)1, (55)

B. Cognitive System

For the cognitive system, the constraint (53) above is
expressed in terms of the unknown random quantization noise,
and thus cannot be directly enforced. Instead, we choose to
pose the problem such that the constraint is achieved with a
certain probability. In particular, considering that X,, relies on
H,, ;. and thus is also uncertain, we rewrite (53) as follows:

]P{Oéc( 007 (SO 12) (NQ 0

pe,j
where IP’{A} denotes the probability of event A, and v, €
(0.5, 1] represent the probability threshold. In the following,
we find expressions for the probabilities in (56).

First, we get

E{Npcj} = O2x2M,,

E{NQ U(NQ U) } = Mpacpcﬁc

pc,g pc,g

—HZ))%,} > ve, (56)

1 — cos 20
— cos 20 1 ’
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Pe,j PC,J

Q.5 /£5Q.0 _ 1 — cos 20
E{H (H ) } = Myacfe [ cos 20 1 } ’

and we define

& (N5 —HZ D%, & [qﬂ : (57)

Aej = pe,J

We can show that q.; is a bivariate correlated Gaussian
random variable with mean

E{qc,;} = 02x1 (58)

and covariance
Rq,, = E{(N;S — HR)%,%) (NG —HE D)) (59)
= oy {BINESED) ™) + BIEZIEL) )}
(60)
_ Ppﬁcacf — ) [_ cis y _C(is 29] 61)

Furthermore, we define

We,j (XC) - aCH?c ]

- 0 N wé i
acéc_jlg =57 (62)
’ We,j
which is affine in %.. Using the new notation, the chance
constraint (56) can be rewritten as

P{wc;(Xc) > qe,j} > ve. (63)

1
. — ~ A -5 ~
For ease of notation, we define w. j(%X.) = Rq.> W, j(X.) and

1
Qec,j = Rq.’; de,j> and we obtain the following lemma.
Lemma 1: P{W. j(X;) > Qc,j} > v, can be approximated
by the inequality
1
HS x.>a VeneRE, 12 + 60 15,

ce,j =

(64)

where 7, = v/2erf ! (2@ - 1) is a preset constant.
Proof: See Appendix. (]
With this lemma, knowledge of the precise value for x,, is
not necessary in the design of the precoder at the CBS, which
is important under the assumption of a finite capacity channel
for information sharing.

C. Optimization Problem for Stochastic CSI Error Model

We can now formulate the robust SLP design with prob-
abilistic constraints by replacing (52) and (53) with (55)
and (64), as follows:

min [[%.? (65)
subject to 1713)7ka > (0p 1 — ff sinf)1s, Vke K, (66)
~ 1
H?c,jkc > dchRéc,j 1+ 6((:),]’12’ V] eJ.
(67)

As with the previous problem studied above, the result is a
quadratic program with linear inequality constraints which is
robust to imperfect CSI shared from the PBS.
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Fig. 5. BER of CU (left) or PU (right) vs. CBS transmit power where
P, =10, QPSK.

VI. NUMERICAL RESULTS

In this section, we assess the performance of our proposed
power-minimizing SLP (PMSLP) approaches. Monte-Carlo
simulations are conducted over 1000 independent channel
realizations, each employing a block of 7" = 100 symbols.
The channels H,,, H.,, H,. and H.. are composed of
ii.d. Gaussian random variables with zero mean and unit
variance. The complex Gaussian noise is assumed to have the
same power (0, = 0. = 1) for all PUs and CUs. The PBS
transmission power is set at P, = 10. We employ the same
threshold for all users within a given network, i.e., 62’1 =

=0y n, = 0, for the PUs and & = --- = &_ = 9 for
the CUs, ensuring the same worst-case SER for the users in
each network.

Since for SLP we work with finite alphabet constellations,
we will analyze the block transmission performance of the
system using the throughput 7 as calculated in [13]:

7=(1—-Pp)xexTxN, (68)

where Pp is the block error rate (BLER), ¢ = log, D is the
number of bits per modulation symbol, 7" is the block length
and N is the number of receivers. In each block for each user,
there are C' = ¢ x T' data message bits transmitted from the
BS. For PSK modulation, assuming a binomial distribution of
errors in each block, the probability of more than ¢ errors
occurring in one block of C' bits is expressed as

rwor=1-3 (T)ra- e,

i=0

(69)

where P, is the BER. If the receiver detects errors without
correction, a block is received correctly only if all C' bits
in the block are received correctly, and thus the BLER is
Pp = P.(0,C). On the other hand, if the receiver is capable
of correcting up to @ errors in each block, then the BLER is
given by P = P.(Q,C) [54].

We begin in Fig. 5 assuming perfect CSI, plotting the
average BER of the users versus the CBS transmission power,
and comparing PMSLP assuming a minimum safety margin
52 = 1.9 with the performance of the CR-PALP algorithm
described in Section II-A. Both the PBS and CBS are assumed
to have M, = M. = 8 antennas and the number of PUs and
CUs are both set at N, = N, = 4. With these settings, even
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Fig. 7. Throughput of CU vs. error norm bound where P, = 10,

69 =62 = 1.5, QPSK.

when the CBS increases its transmit power to better serve
the CUs, it can still avoid any negative impact on the PUs
such that the BER of PUs is not greater than that in the
primary-only case as shown in Fig. 5. Moreover, the BER of
the PUs remains nearly unchanged for both types of precoders,
although the PUs actually enjoy some benefit with PMSLP
since it exploits CI from the CBS signals which can further
improve the SM for the PUs. Meanwhile, PMSLP provides a
much lower BER for the CUs; the CBS can save more than
15dB of power to achieve an uncoded BER of 102, compared
to the CR-PALP method which allows only the CUs to benefit
from the inter-user CI in the cognitive system, but in general
will not entirely eliminate the destructive interference from the
PBS. On the contrary, our proposed PMSLP precoder can take
advantage of CI not only from the CU MUI but also what is
available (although not optimized) from the primary system.
Moreover, the PUs can also benefit from the CI produced by
the cognitive system. CR-PALP requires that the CBS act as a
relay transmitting not only the CUs’ but also the PUs’ signals,
which is unnecessary in our PMSLP design.

Next we consider the norm-bounded CSI error model dis-
cussed in Section IV. With the SM threshold for the PUs
and CUs set to 1.5, we plot the throughput of the PUs
and CUs as the norm of one error (¢, or €. ;) changes as
log,( € while the norm of the other is fixed to 0.3 [17]. For
simplicity, we assume that the CSI error bounds are the same
for all users: €, = €, and e.; = ¢.. Fig. 6 and Fig. 7
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.9 Energy efficiency vs. error norm bound where P, = 10,
=62 = 1.5, QPSK.

respectively show the throughput for the PUs and CUs as a
function of the error bound, and demonstrate that the proposed
robust precoder can mitigate the CSI uncertainty and provide a
much higher throughput compared to the non-robust precoder.
With the robustness introduced, the throughput of the PUs
and CUs actually increases as the norm of the corresponding
error increases. This can be explained by examining (44)
and (45), where we see that a larger error bound creates
a larger effective SM in the constraint, which provides the
robustness necessary to account for the imperfect channel and
also imperfect knowledge of x, and f,. There is however
a price to be paid for this robustness, as clearly seen in
Fig. 8, which shows that the robust schemes require the CBS
to operate with significantly more power, especially as the
error bound increases. It is clear from these results that the
worst-case approach based on the norm-bounded CSI error
leads to a conservative design.

In order to quantify the power-performance trade-off
between the robust and non-robust designs, in Fig. 9 we plot
the energy efficiency (EE) of the approaches, defined as the
ratio between the throughput calculated from Eq. (68) and the
transmit power per channel:

T

EE = ——.
T x |[%|*

(70)

We see that despite the increase in transmit power, the pro-
posed robust SLP algorithm achieves a significantly higher
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energy efficiency. When the uncertainty ¢, in H,, is fixed, the
energy efficiency at the CBS decreases with greater uncertainty
in H,,, since the CBS needs to consume more power to meet
the SM constraint at the PUs.

The remaining examples use the probabilistic SM con-
straints discussed in Section V based on the AQNM
approximation, although the actual quantized CSI is generated
using a non-uniform Lloyd Max quantizer [49], [50]. In this
case, the PBS and CBS are assumed to have M, = M, =
16 antennas and the number of PUs and CUs are both set
at N, = N. = 8. The receiver is capable of correcting
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@@ = 1 bit error in each block [13]. The probability v was
set with the value used in [40]. Fig. 10 shows the throughput
of the CUs as a function of the preset SM threshold at the
CUs, assuming either b = 2 or b = 3 quantization bits
per channel coefficient and different probability constraints.
We see that the CUs reap benefits from the robust SLP design,
achieving significantly higher throughput. Again illustrating
the trade-off of robustness with increased power, we see in
Fig. 11 that as the preset 40 increases, the CBS in the robust
SLP approach requires more power to meet the SM constraint
than the non-robust SLP. In order to fairly compare different
SLP methods, we plot the EE at the CBS in Fig. 12. It is clear
that the greater the preset SM, or the higher the quantization
resolution, the higher the EE. For the case of b = 2, the EE of
the non-robust SLP is nearly 0, but the robust SLP approach
performs particularly well even with very low-resolution CSI.

In the final example, we study the allocation of the quan-
tization bits on the system performance [51]. In particular,
in Fig. 13 we plot the energy efficiency at the CBS when
the direct h,,, ,, and interference channels h,,. ; are quantized
with different resolutions. For the non-robust SLP schemes
(blue curves), the CBS achieves higher EE in cases where
b, > b, indicating that for a fixed number of quantization bits,
it is more energy efficient for the cognitive system to receive
a more accurate representation of the direct channel than
the interference channel. However, the robust-SLP schemes
are less sensitive to the allocation of the quantization bits,
and show roughly the same performance regardless of which
channel is more accurately represented.

VII. CONCLUSION

In this paper, we have designed non-robust and robust SLP
schemes for overlay CR systems with the goal of minimizing
the transmission power and simultaneously ensuring the QoS
of all users. Unlike traditional CR precoding techniques,
we set the SM threshold in the interference constraints instead
of using SINR or BER metrics in order to fully exploit
constructive interference as much as possible. First, under
the assumption of perfect CSI, we propose an SLP algorithm
that performs significantly better than a prior CR-based SLP
approach modified to address our overlay problem. In the
proposed algorithm, not only the CUs but also the PUs benefit
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from the constructive interference. Then, using two different
CSI error models, we derive two robust SLP methods, one
based on a max-min optimization of the worst-case CSI error
and the other on a probability-constrained problem using
AQNM to approximate the impact of the CSI quantization.
All of the proposed optimization problems result in a quadratic
objective function with linear inequality constraints that can be
efficiently solved. Our numerical results demonstrate that our
robust SLP schemes can deal with various types of CSI error
and still maintain a high energy efficiency. A key observation
from our results is that, by enabling the PUs to exploit
constructive interference as well as the CUs, the presence of
the cognitive network can actually improve the PU network
performance rather than degrade it.

APPENDIX
PROOF OF LEMMA 1

From [40] we note that eliminating the (possible) correlation
between the entries of q. ; by applying a whitening transform
can ease the difficulty of finding the desired approximation.
In particular, we will apply the whitening matrix from [55]
which is optimal in terms of mean-squared error, i.e.,

-1 V2 { 1 —cos 20} B
P,Beac(2 — ag) [—cos 20 1

1 — cos 260
—cos 260 1
sin® 260, and thus is always non-negative, and non-zero for
0 # 90°. Thus Rq, . is non-singular, positive definite and
invertible. As a result, the probability expression in (63) can
be equivalently written as

Nl

(71)

The determinant of { } is 1 — cos?20 =

1
P{we,j(%c) = Qej} = P{we,;(%c) = RG. ;Rq.2qc i}
_1 5 ~1

=P{Rq? Wc,j(Xc) = Rq’ qc,j}

= P{Wc,j (5{(‘) > (16,]'} (72)
_1 _1
where W, ;(%X.) = Rq2w.;(%X.) and q.; = RqZ2qc;.
Consequently, the chance constraint (63) is equivalent to
P{Wc,j (kc) Z QC,j} Z Ve

with g ; ~ ./\/'(07 I)

To obtain an efficiently computable constraint, we apply the
Safe Approximation I method in [40]. The two entries of q ;
are uncorrelated and independent. Defining

-1
— b
We,j

the Gaussian cumulative distribution function can be used to
calculate the joint probability in (72) as follows:

P{w;(%c) > Qe j} = P{waj > qijﬁﬂ“f,j > qg,j}
_1 —2
14 erf(Zed 1+ erf(=e
2 )
2 2
where the error function is given by

erf(z) = % /Ofﬁ exp(—t%) dt .

(73)

A le i N
(lc,j = |:q§7j:| 5 WCJ ()v(c) =

g

(74)
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Due to the monotonicity of erf(z), the desired probability is
bounded below by

. it _o 2
min{w, ;,w; ; )

1+ erf( NG )

P{w;(Xc) > Qe j} > 5

In order to satisfy the chance constraint (73), it is sufficient
to consider the deterministic constraint
2
min{ﬁ)}:’j,ﬂ)i_’j
5 2

Ve. (76)

1
. _ - A -5 -« . .
Since W, j(%X.) = Rq.,We j(X.), the constraint can be rewrit-
ten as

_1
RC{c?jwc,j (ic) > \/ierfﬂ (2@ _ 1) 1.,

where erf_1(~) denotes the inverse error function. We thus
finally arrive at the following linear inequality constraint:

(77)

1
G - 3 0
H, %X > aencRg, ;12 + 6, 12,

where 7. £ v/2erf ™! (2y/ve — 1).

(78)
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