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Abstract— This paper focuses on designing robust symbol-level
precoding (SLP) in an overlay cognitive radio (CR) network,
where the primary and secondary networks transmit signals
concurrently. When the primary base station (PBS) shares data
and perfect channel state information (CSI) with the cognitive
base station (CBS), we derive an SLP approach that minimizes
the CR transmission power and satisfies symbol-wise Safety
Margin (SM) constraints of both primary users (PUs) and
cognitive users (CUs). The resulting optimization has a quadratic
objective and linear inequality (LI) constraints, which can be
solved by standard convex methods. For the case of imperfect
CSI from the PBS, we propose robust SLP schemes. First, with
a norm-bounded CSI error model to approximate the uncertain
channels, we adopt a max-min philosophy to conservatively
achieve robust SLP constraints. Second, we use the additive
quantization noise model (AQNM) to describe the quantized PBS
CSI and employ a stochastic constraint to formulate the problem.
Both robust approaches also result in a quadratic objective with
LI constraints. Simulation results show that, rather than simply
trying to eliminate the network’s cross-interference, the proposed
robust SLP schemes enable the primary and secondary networks
to aid each other in meeting their quality of service constraints.

Index Terms— Cognitive radio, symbol-level precoding,
constructive interference, robust precoding, quantization.

I. INTRODUCTION

AS THE number of wireless devices and their applications

grow exponentially, the availability of unoccupied radio

spectrum is becoming increasingly scarce and occupied bands

are increasingly congested. Over the past two decades, cogni-

tive radio (CR) technology has been extensively studied as a

means to alleviate this problem through more efficient, flexible

and comprehensive use of the spectrum [1], [2], [3].

The fundamental challenge lies in balancing the interfer-

ence generated by the CR at the primary users (PUs) with

the quality of service (QoS) of the cognitive users (CUs).

To address this issue, both the inter-system and inter-user

interference need to be successfully managed. In the standard

Manuscript received 8 November 2022; revised 9 April 2023;
accepted 18 June 2023. Date of publication 30 June 2023; date of current
version 13 February 2024. This work was supported by the National Science
Foundation under Grant CCF-2008714 and Grant CCF-2225575. The work
of Christos Masouros was supported by the Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/S028455/1. The
associate editor coordinating the review of this article and approving it for
publication was L.-C. Wang. (Corresponding author: Lu Liu.)

Lu Liu and A. Lee Swindlehurst are with the Center for Pervasive
Communications and Computing, University of California at Irvine, Irvine,
CA 92697 USA (e-mail: liul22@uci.edu; swindle@uci.edu).

Christos Masouros is with the Department of Electronic and Electrical
Engineering, University College London, WC1E 7JE London, U.K. (e-mail:
c.masouros@ucl.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2023.3289190.

Digital Object Identifier 10.1109/TWC.2023.3289190

(non-cognitive) multiuser downlink scenario, beamforming or

precoding at the multi-antenna transmitter can be employed

to mitigate the multiuser interference (MUI) and compensate

for its adverse affect on the received signals [4]. Existing

precoding schemes can be classified as either block-level

precoding (BLP) or symbol-level precoding (SLP). In recent

decades, many approaches have been proposed to implement

block-level precoders that only depend on the current channel

state information (CSI), such as maximum ratio transmis-

sion (MRT), zero-forcing (ZF), regularized ZF and optimum

interference-constrained or power-constrained precoding [5],

[6], [7], [8], [9], [10]. These approaches all treat the MUI as a

detrimental effect that is to be suppressed as much as possible.

Unlike BLP, SLP techniques exploit information about the

symbols to be transmitted in addition to the CSI, which can

significantly improve performance at the expense of increased

complexity at the transmitter [11], [12], [13]. The additional

degrees of freedom (DoF) provided by the symbol-level infor-

mation make it possible to exploit the constructive component

of the MUI, converting it into constructive interference (CI)

that can move the received signals further from the decision

thresholds of the constellation points [14], [15], [16]. CI-based

SLP recasts the traditional viewpoint of interference as a

source of degradation to one where interference is a potential

resource that can be exploited.

Constructive interference regions (CIRs), which define the

degree to which the received symbols will be robust to

noise and unmodeled perturbations, are fundamental to SLP

designs. While early CI-based SLP approaches were intended

to increase the distance of the CIRs from the symbol decision

boundaries, they did not directly optimize the CIR. More

recent techniques have focused on designing the precoder to

directly optimize this distance [17], [18], [19], [20], [21],

[22], [23], [24], [25], [26], which has been referred to as the

safety margin (SM). Optimal Maximum Safety Margin (MSM)

precoders generally result in a non-linear mapping between the

symbols and the transmitted waveform, and can be shown to

minimize an upper bound on the symbol error rate (SER) [22].

This is contrasted with algorithms that minimize the mean

squared-error (MMSE) between the transmitted and received

symbols, which do not offer the same guarantee [16], [17].

MSM precoders are in general able to achieve a better QoS

for the same level of transmit power, or equivalently the same

QoS with less power consumption. There has been limited

work that studies CI-based SLP in CR systems. Although the

linear precoder proposed in [27] for an overlay CR network

is based on the use of CI with the MMSE criterion, the PU

performance is impaired compared to the primary-only case,

which violates the principle of CR design that we follow.
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The performance of both BLP and SLP are sensitive to

channel uncertainties due for example to channel estimation

errors, quantization noise or latency-related effects [28], [29],

[30]. To mitigate the impact of such errors, robust designs

are needed that properly model the errors and account for

their effect in the optimization of the precoders. Two general

approaches for doing so include assuming worst-case bounded

error models or exploiting known statistical properties of the

CSI error. The former case involves the use of deterministic

CSI error bounds that assume the error is confined to a

convex uncertainty region (typically an ellipsoid) surrounding

the true CSI [31]. In these approaches, robustness is achieved

by constraining the users’ QoS or other design objectives to be

satisfied for all channel realizations in the convex uncertainty

region, effectively minimizing the impact of the worst-case

channel within the given error bound [29], [32]. This max-min

philosophy can lead to a relatively conservative design depend-

ing on the tightness of a priori error bound. In the second case,

a particular distribution (e.g., Gaussian) is assumed for the

error, and Bayesian or other probabilistic approaches [31] are

employed to optimize the quality of service (QoS) or transmit

power under certain stochastic signal-to-interference-plus-

noise-ratio (SINR) or rate-outage probability constraints [33],

[34]. In this case, the probability-constraint formulation is

typically not deterministic and various techniques must be

used to obtain a tractable problem [35], [36]. In either of the

two cases described above, the penalty paid for increasing the

robustness to imperfect CSI is increased transmit power.

In overlay or cooperative CR systems, CSI errors beyond

those due to channel estimation are anticipated due to the

limited cooperation between the PBS and CBS. While robust

BLP designs for traditional MIMO or CR scenarios have

been widely investigated [32], [37], [38], [39], robust SLP

algorithms for general CR scenarios have not been considered.

Prior work on robust designs for SLP includes [17], which

derived a robust SLP algorithm suitable for imperfect CSI

with bounded CSI errors, but it is based on a multicast

formulation without fully taking advantage of CI. The work

described in [40] considered a linear channel distortion model

with bounded additive noise and Gaussian-distributed channel

uncertainties. They designed robust SLP schemes to minimize

transmission power subject to CI constraints as well as QoS

or SINR requirements. While not focused on CR applications,

this prior work demonstrates that robust SLP designs can be

formulated to improve and achieve a better balance between

QoS and power consumption.

In this paper, we propose robust CR SLP algorithms for

each of two different CSI error models that account for the

quantization error in the CSI shared by the PBS with the CBS.

In particular, we focus on overlay CR downlink channels [2],

[41] where the PBS shares with the CBS its CSI to the PUs

and CUs, as well as its data intended for the PUs. The shared

CSI is assumed to be quantized, which is known to often make

achieving the desired user QoS constraints infeasible without

introducing robustness into the problem formulation [42],

[43]. In addition, the imperfect CSI also means that the PBS

precoding is not precisely known at the CBS, and thus the

CBS has an imperfect estimate of the transmitted PBS signal,

even if the PBS data symbols are perfectly known. This

makes finding a robust solution in the cognitive radio case

more complicated than in prior SLP-related work, where the

transmitted signals are assumed to be perfectly known. If left

unaddressed, the combination of these effects will almost

certainly cause the noise-free received symbols at both the PUs

and CUs to fall outside the desired CIR. To derive a robust

SLP formulation for CR systems, we formulate the problem

as one of minimizing the transmit power at the CBS while

simultaneously satisfying the SM constraints at both the PUs

and CUs to guarantee the worst-case user’s QoS.

We first derive a power-minimizing SLP approach for

overlay CR with SM constraints at both the PUs and CUs

assuming perfect CSI, leading to a quadratic optimization

problem with linear constraints that can be efficiently solved.

We then derive the SM at each user for two different imperfect

CSI models, including the effect of the imprecisely known

PBS transmit signal. We first consider the case where the

quantization error is norm-bounded as in [31], and we derive a

robust SLP algorithm based on maximizing the worst case SM.

This leads to a conservative design that trades transmit power

for increased protection of the PUs from the CR interference

due to the quantized CSI. Then we study a stochastic approach

based on the additive quantization noise model (AQNM) [44],

[45] that is sufficiently accurate to approximate the quanti-

zation error at low and medium signal-to-noise ratios and

has been widely used in the analysis of quantized MIMO

systems [46], [47], [48]. In this case, the SM of the PUs

and CUs are constrained to meet a preset threshold with a

certain probability. We then apply the Safe Approximation
I method in [40] to reformulate the intractable probabilistic

constraints as deterministic constraints and finally construct

an optimization problem to obtain the robust SLP solution.

The use of SLP for overlay CR has not been considered

previously in the literature. The work in [27] is the most related

prior effort, but it requires that the CBS directly transmits

the PBS data together with its own data, which is not as

energy efficient as our proposed approach. In addition, unlike

our proposed approaches, [27] does not consider the impact

of the PBS interference at the cognitive users, it does not

assume imprecise knowledge of the PBS waveform, it uses

a less effective SLP technique, and it does not take into

account the fact that the PBS CSI exploited at the CBS

may be imperfect due to quantization or other effects. Most

notably, our proposed SLP algorithms enable the PUs to

exploit constructive interference as well as the CUs, and thus

we can demonstrate that the presence of the cognitive network

can actually improve the PU network performance rather than

degrade it. This result is unique to the literature on CR, which

focuses on not impairing the PU QoS.

We conduct a number of simulations assuming the PBS

channel is quantized using the scalar Lloyd Max algorithm

that minimizes the average quantization noise power [49], [50].

These simulations demonstrate the flexibility of the proposed

robust SLP algorithms in trading transmit power for improved

performance when quantized CSI is present. They further

demonstrate the ability of the proposed methods to improve

the performance of both the primary and cognitive networks.
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TABLE I

DEFINITION FOR ALL ACRONYMS

Furthermore, inspired by the results of [51], we study the

problem of allocating bits to the CSI of the PBS to the PUs

and CUs, and demonstrate that the bit allocation strategy in

our robust SLP algorithm is not as important as that in the non-

robust methods. Note that a subset of the results presented in

this paper were previously reported in [52].

Notation: Bold lower case and upper case letters indicate

vectors and matrices, and non-bold letters express scalars. The

N ×N identity (zero) matrix is denoted by IN (0N×N ). The

N dimensional vector of ones (zeroes) is denoted by 1N (0N ).
Amn denotes the (m, n)-th element in the matrix A and am

denotes the m-th element in the vector a. The operators (·)∗,

(·)−1, (·)T and (·)H stand for the conjugation, the inverse, the

transpose and the Hermitian transpose operations, respectively.

Cm×n represents the space of complex matrices of dimension

m×n. E(·), |(·)| and ‖·‖ respectively represent the expectation

operator, absolute value and the Euclidean norm. CN (μ, σ2)
denotes the complex normal distribution with mean μ and

variance σ2. The functions tr{·} and diag{·} respectively

indicate the trace of a matrix and a vector composed of the

diagonal elements of a square matrix, while diag{a} denotes

a square diagonal matrix with the elements of vector a on the

main diagonal. R{·} and I{·} denote the real and imaginary

parts of a complex number, respectively. For matrices and

vectors, ≥ and ≤ denote element-wise inequalities, and ⊗
denotes the Kronecker product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink CR network with an Mc-antenna

CBS serving Nc single-antenna CUs. The CR network is

granted access to share the primary system spectrum in which

Fig. 1. Cognitive radio system model.

an Mp-antenna PBS is communicating with Np single-antenna

PUs. The system model is depicted in Fig. 1. The direct

primary and cognitive channels are assumed to be respectively

denoted by the following flat-fading model:

Hpp =
[
hT

pp,1 · · · hT
pp,Np

]T ∈ CNp×Mp , (1)

Hcc =
[
hT

cc,1 · · · hT
cc,Np

]T ∈ CNc×Mc . (2)

The corresponding interference channels are defined as

Hpc =
[
hT

pc,1 · · · hT
pc,Np

]T ∈ CNc×Mp , (3)

Hcp =
[
hT

cp,1 · · · hT
cp,Np

]T ∈ CNp×Mc (4)

from the PBS to CUs and the CBS to PUs, respectively.

We will leave further specification of the channel models until

later.

The vectors sp(t) = [sp,1(t), sp,2(t), · · · , sp,Np
(t)]T and

sc(t) = [sc,1(t), sc,2(t), · · · , sc,Nc
(t)]T will be used to rep-

resent the symbols to be transmitted to the individual PUs

and CUs, respectively, at time t. In this work we assume for

simplicity that all transmitted symbols are uncorrelated and

drawn from a D-PSK constellation with unit magnitude, i.e.,

sl,m(t) ∈ {s|s = exp(jπ(2d + 1)/D), d ∈ {0, · · · , D − 1}}
where l ∈ {p, c} denotes the primary or cognitive system,

and m denotes the user index in the corresponding system.

The sets K = {1, · · · , Np} and J = {1, · · · , Nc} enumerate

the PUs and CUs, respectively. The idea of CI precoding can

in principle be applied to any constellation design [25], e.g.,

QAM [22] otherwise, but is most easily formulated for the

case of PSK signals. The algorithm for other constellations

such as QAM is slightly more complicated since the definition

of safety margin becomes dependent on whether an inner,

edge, or corner constellation point is transmitted, but the basic

principle of the algorithm is the same.

At time slot t, the received signals at the PUs and CUs can

be respectively written as

yp(t) = Hppxp(t) + Hcpxc(t) + np(t), (5)

yc(t) = Hccxc(t) + Hpcxp(t) + nc(t), (6)

where xp(t) ∈ CMp×1 and xc(t) ∈ CMc×1 are the transmitted

signals at the PBS and CBS after precoding and power loading,
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Fig. 2. Symbol region for conventional precoding.

and np(t) ∼ CN (0, σ2
p) and nc(t) ∼ CN (0, σ2

c ) are additive

white Gaussian noise (AWGN) vectors. In order to simplify

the notation, in what follows we drop the time index t.

A. Phase Alignment Linear Precoding (PALP)

Conventional precoding methods such as MMSE, ZF and

maximum-SINR beamforming are designed with the objective

of minimizing the inter-user interference so that the received

symbols lie as close as possible to the nominal constellation

points (or scaled versions thereof in the case of PSK). This is

effectively equivalent to ensuring that for each user m, the

noise-free received signal rm = hmx lies within a circle

centered at its corresponding constellation point sm [17],

as depicted in Fig. 2. The shaded area inside the circle is

referred to as the symbol region (SR), a down-scaled version

of the decision region for sm.

The method described in [27] is based on the MMSE

criterion and the early Phase Alignment Linear Precoding

(PALP) technique for SLP [15]; it is the prior approach most

closely related to the algorithms we present in this paper

for cognitive radio scenarios. However, a modification to the

PALP approach in [27] is necessary for a fair comparison,

and to allow the algorithm to protect the PUs from the CR

interference. In particular, we tailor [27] (hereafter referred

to as CR-PALP) by allowing different instantaneous power

scaling factors at the PBS and CBS:

fp =

√
Pp

trace{WpspsH
p WH

p } , fc =

√
Pc

trace{WcscsH
c WH

c }

where Pp and Pc respectively denote the total transmit power

of the PBS and CBS, fp and fc are the respective instantaneous

scaling factors, and Wp and Wc are the linear precoders for

the primary and cognitive systems, respectively. The general-

ized MSE criterion for CR-PALP is given by

ε = E{‖Vps + HWcs − (A + BQφ)s‖2}, (7)

Fig. 3. Symbol region for CI-Based SLP.

where according to [27],

Vp =
[
HppWp 0Np×Nc

HpcWp 0Nc×Nc

]
, s =

[
sp

sc

]
, H =

[
Hcp

Hcc

]
,

A = diag{[1, · · · , 1, 0, · · · , 0]} is a diagonal matrix

whose first Np diagonal elements equal 1, B =
diag{[0, · · · , 0, 1, · · · , 1]} is a diagonal matrix whose last Nc

elements equal 1, and Qφ = diag(s) · |HHH | · diag(s)H con-

tains the phase-corrected correlation elements. The precoding

matrix at the CBS derived from the MMSE criterion is given

by

Wc = HH(HHH)−1(A + BQφ − Vp), (8)

and the received signals at the PUs and CUs are

yp = fpsp + np, (9)

yc = (fp − fc)HpcWpsp + fcQφ
c sc + nc. (10)

The performance of the PUs in our CR scenario will not be

impaired using this modified CR-PALP approach, unlike using

the method of [27] directly.

B. SM-Constrained SLP

For PSK constellations, it is not necessary that rm be close

to sm in order to be decoded correctly, as long as it lies in

the correct decision region with a given level of certainty.

Thus, it is not necessary that all of the inter-user interference

be eliminated, since some interference components could add

constructively and push the received symbol further into the

decision region, making it more robust to noise and interfer-

ence external to the system. We can thus redefine the SR as,

for example, in Fig. 3, where the SR becomes a displaced

version of the circular sector of angular extent 2π/D centered

at the origin and corresponding to sm. This displaced sector

has an infinite radius, and all points within it are at least a

certain distance δm from the decision boundaries for sm. This

region is referred to as a constructive interference region with

safety margin δm [53]. The larger δm, the more robust the

received signal will be to noise, interference, modeling errors,

or other impairments.
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Fig. 4. Symbol region and safety margin in a modified coordinate system.

In order to mathematically interpret the CIR and SM in

a unified way, we rotate the original coordinate system by

the negative phase of the desired constellation symbol, i.e.,

�s∗m, to obtain the modified coordinate system in Fig. 4. After

rotation, sm is placed at 1 on the real axis, and rm is relocated

to

zm = s∗mrm. (11)

Then we can easily calculate the SM of the noise-free symbol

at user m as [53] and [22]

δm = R{zm} sin θ − |I{zm}| cos θ. (12)

Ideally, the SM should be large enough to sufficiently reduce

the probability that noise or other impairments will push

the noise-free signal outside the desired detection region; the

larger the SM, the smaller the SER. To design the precoder,

one can constrain the SM to be above a certain threshold to

ensure a given target SER. The fact that the CIR in Fig. 4

is much larger than the SR in Fig. 3 means that increased

flexibility is available to achieve the given performance objec-

tive. In this paper, we will consider the following type of SLP

optimization, which minimizes the transmit power to achieve

a certain desired SM:

min
x

‖x‖2 (13)

subject to δm ≥ δm,0, ∀m ∈ M (14)

where δm,0 is the desired minimum SM for user m and M =
{1, · · · , M} indexes the users.

III. POWER MINIMIZATION SLP IN CR

Before considering the robust SLP design, we first examine

the simpler case where the PBS shares its data and perfect

CSI with the CBS. The SM for each PU and CU is assumed

to be constrained to be δ0
p,k for k ∈ K and δ0

c,j for j ∈ J ,

corresponding for example to possibly different target SERs

for each PU and SU. Here we focus on SLP designs that

minimize the transmit power at the CBS and achieve the SM

QoS constraints at both the PUs and CUs.

A. Primary System

The rotated symbols received at the PUs can be expressed

as

zp,k = s∗p,krp,k = s∗p,k(hpp,kxp + hcp,kxc), (15)

for k ∈ K. Defining

h̃pp,k � s∗p,khpp,k, h̃cp,k � s∗p,khcp,k, (16)

we have

zp,k = h̃pp,kxp + h̃cp,kxc. (17)

The constraints ensuring the QoS of the PUs can be expressed

as

δp,k = R{zp,k} sin θ − |I{zp,k}| cos θ ≥ δ0
p,k ,∀k ∈ K (18)

which is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩
R{h̃pp,kxp} sin θ − I{h̃pp,kxp} cos θ

+R{h̃cp,kxc} sin θ − I{h̃cp,kxc} cos θ ≥ δ0
p,k,

R{h̃pp,kxp} sin θ + I{h̃pp,kxp} cos θ

+R{h̃cp,kxc} sin θ + I{h̃cp,kxc} cos θ ≥ δ0
p,k.

For any given complex vector x, we define the operator

�(x)

�
[R{x} sin θ − I{x} cos θ −R{x} cos θ − I{x} sin θ
R{x} sin θ + I{x} cos θ R{x} cos θ − I{x} sin θ

]
(19)

and denote

H̃�

pp,k = �(h̃pp,k), H̃�

cp,k = �(h̃cp,k). (20)

Using the following real-valued notation,

x̌p =
[R{xp}
I{xp}

]
, x̌c =

[R{xc}
I{xc}

]
, (21)

the constraints in Eq. (18) can be simplified as

H̃�

pp,kx̌p + H̃�

cp,kx̌c ≥ δ0
p,k12, ∀k ∈ K. (22)

B. Cognitive System

Similarly, the rotated symbols at the CUs can be written as

zc,j = s∗c,jrc,j = s∗c,j(hcc,jxc + hpc,jxp) (23)

= h̃cc,jxc + h̃pc,jxp, (24)

where

h̃cc,j � s∗c,jhcc,j , h̃pc,j � s∗c,jhpc,j . (25)

The SM constraints at the CUs can be expressed as⎧⎪⎪⎪⎨⎪⎪⎪⎩
R{h̃cc,jxc} sin θ − I{h̃cc,jxc} cos θ

+R{h̃pc,jxp} sin θ − I{h̃pc,jxp} cos θ ≥ δ0
c,j ,

R{h̃cc,jxc} sin θ + I{h̃cc,jxc} cos θ

+R{h̃pc,jxp} sin θ + I{h̃pc,jxp} cos θ ≥ δ0
c,j ,

for j ∈ J , which can again be written more compactly using

the operator in Eq. (19):

H̃�

cc,jx̌c + H̃�

pc,jx̌p ≥ δ0
c,j12, ∀j ∈ J . (26)
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Combining all of the above notation together, we can

express the general power minimization SLP problem with

perfect CSI as follows:

min
x̌c

‖x̌c‖2 (27)

subject to

[
−H̃�

cp

−H̃�
cc

]
x̌c ≤

[
H̃�

pp

H̃�
pc

]
x̌p −

[
δ0

p ⊗ 12

δ0
c ⊗ 12

]
(28)

where the inequalities are to be interpreted element-wise,

δ0
p =

[
δ0
p,1 · · · δ0

p,Np

]T
, δ0

c =
[
δ0
c,1 · · · δ0

c,Nc

]T
, and H̃�

ab �
�(diag(s∗b)Hab), with a, b ∈ {c, p}. The result is a quadratic

programming problem with linear inequality constraints which

can be efficiently solved using a variety of numerical methods.

IV. ROBUST SLP FOR NORM-BOUNDED CSI ERRORS

In practice, the CSI shared by the PBS with the CBS will be

imperfect due for example to quantization, or somewhat out-

dated due to delays required for processing and transmission.

As a result, robust precoding designs are critical for overlay

systems. We address such a design in this section for the case

where the imperfect CSI can be described in terms of a norm-

bounded error. We model the CSI shared by the PBS with the

CBS as follows:

hpp,k = ĥpp,k + ep,k, (29)

hpc,j = ĥpc,j + ec,j , (30)

where the ·̂ indicates the shared CSI and ep,k, ec,j are

norm-bounded CSI error vectors, i.e., ‖ep,k‖2 ≤ εp,k and

‖ec,j‖2 ≤ εc,j . No other assumption regarding the channels

is required. Using Eq. (19), it is easy to show that

H̃�

pp,k = �(h̃pp,k) = �(s∗p,k(ĥpp,k + ep,k)) (31)

= H̄�

pp,k + Ẽ�

p,k, (32)

H̃�

pc,j = �(h̃pc,j) = �(s∗c,j(ĥpc,j + ec,j)) (33)

= H̄�

pc,j + Ẽ�

c,j , (34)

where h̄pp,k � s∗p,kĥpp,k, H̄�

pp,k � �(h̄pp,k), Ẽ�

p,k �
�(s∗p,kep,k), h̄pc,j � s∗c,jĥpc,j , H̄�

pc,j � �(h̄pc,j), and Ẽ�

c,j �
�(s∗c,jec,j). Due to the uncertainty in hpp,k, the transmitted

signal at the PBS, i.e., xp, which necessarily depends on hpp,k,

is not precisely known. Assuming that the precoding method

used at the PBS is known to the CBS, we will assume that

an estimate of the transmitted signal, denoted by x̌e
p, can be

computed by the CBS using the quantized CSI ĥpp,k. With

this notation, the constraints in (27) can be reformulated as

(H̄�

pp,k + Ẽ�

p,k)x̌e
p + H̃�

cp,kx̌c ≥ δ0
p,k12, ∀k ∈ K, (35)

H̃�

cc,jx̌c + (H̄�

pc,j + Ẽ�

c,j)x̌
e
p ≥ δ0

c,j12, ∀j ∈ J . (36)

For a robust bounded-CSI-error design, we desire that the

above constraints hold for every possible error realization and

every user:

−Ẽ�

p,kx̌
e
p ≤ H̄�

pp,kx̌
e
p + H̃�

cp,kx̌c − δ0
p,k12,

∀‖ep,k‖2 ≤ εp,k, ∀k ∈ K, (37)

−Ẽ�

c,jx̌
e
p ≤ H̃�

cc,jx̌c + H̄�

pc,jx̌
e
p − δ0

c,j12,

∀‖ec,j‖2 ≤ εc,j , ∀j ∈ J . (38)

We separate the operator �(x) into two parts, as follows:

�(x) �
[
�1(x)
�2(x)

]
�
[
x�1

x�2

]
, (39)

where

�1(x) = x�1 =
[ R{xT } sin θ − I{xT } cos θ
−R{xT } cos θ − I{xT } sin θ

]T

, (40)

�2(x) = x�2 =
[R{xT } sin θ + I{xT } cos θ
R{xT } cos θ − I{xT } sin θ

]T

, (41)

so that constraint (37) can be rewritten in two parts as

−ẽ�1
p,kx̌

e
p ≤ h̄�1

pp,kx̌
e
p + h̃�1

cp,kx̌c − δ0
p,k,

∀‖ep,k‖2 ≤ εp,k, ∀k ∈ K, (42a)

−ẽ�2
p,kx̌

e
p ≤ h̄�2

pp,kx̌
e
p + h̃�2

cp,kx̌c − δ0
p,k,

∀‖ec,j‖2 ≤ εc,j , ∀j ∈ J . (42b)

Note that

‖ − ẽ�1
p,kx̌

e
p‖2

≤‖ − ẽ�1
p,k‖2‖x̌e

p‖2

=
∥∥∥∥[R{eT

p,k} I{eT
p,k}

] [ sin θ − cos θ
− cos θ − sin θ

]∥∥∥∥
F

∥∥x̌e
p

∥∥
2

≤∥∥[R{eT
p,k} I{eT

p,k}
]∥∥

F

∥∥∥∥[ sin θ − cos θ
− cos θ − sin θ

]∥∥∥∥
F

∥∥x̌e
p

∥∥
2

≤
√

2εp,k‖x̌e
p‖2

and similarly, we can show ‖ − ẽ�2
p,kx̌

e
p‖2 ≤ √

2εp,k‖x̌e
p‖2.

Thus, if we can guarantee that the following constraints are

satisfied, namely

H̄�

pp,kx̌
e
p + H̃�

cp,kx̌c ≥ (
√

2εp,k‖x̌e
p‖2 + δ0

p,k)12, ∀k ∈ K,

H̄�

pc,jx̌
e
p + H̃�

cc,jx̌c ≥ (
√

2εc,j‖x̌e
p‖2 + δ0

c,j)12, ∀j ∈ J ,

then the constraints in (37) and (38) will be satisfied as well.

Using the above results, we obtain the robust precoder by

solving the following optimization problem:

min
x̌c

‖x̌c‖2 (43)

subject to H̄�

pp,kx̌
e
p + H̃�

cp,kx̌c ≥ (
√

2εp,k‖x̌e
p‖2 + δ0

p,k)12,

∀k ∈ K, (44)

H̄�

pc,jx̌
e
p + H̃�

cc,jx̌c ≥ (
√

2εc,j‖x̌e
p‖2 + δ0

c,j)12,

∀j ∈ J . (45)

As in the case with perfect CSI, the robust SLP design

can be found via a quadratic program with linear inequality

constraints.

V. ROBUST SLP FOR STOCHASTIC CSI ERRORS

The bounded error model above is a very conservative

approach, given its goal of ensuring that the SM constraints

are met for all possible CSI error realizations. A less con-

servative approach that allows constraint violations with some

acceptably small probability is to assume a statistical CSI error

model. As an example, in this section we consider the case

where such a model for the PBS CSI error is available due
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TABLE II

DISTORTION FACTORS FOR DIFFERENT QUANTIZATION

BIT RESOLUTIONS [49]

to knowledge of how the channel is quantized. In particular,

we assume that the channels hQ
pp,k and hQ

pc,j shared by the

PBS are element-wise quantized, and we use the approximate

additive quantization noise model (AQNM) [44], [45] to

describe their resulting statistics. Other models are possible

based on the specific quantization method employed.

We assume that the channels are Gaussian with zero mean

and covariance given by

Rhpp,k
� E{hH

pp,khpp,k} = βpIMp
, (46)

Rhpc,j
� E{hH

pc,jhpc,j} = βcIMp
. (47)

Using AQNM, the quantized CSI from the PBS after rotation

is expressed as

h̃Q
pp,k = Q(h̃pp,k) ≈ αph̃pp,k + ñQ

pp,k, (48)

h̃Q
pc,j = Q(h̃pc,j) ≈ αch̃pc,j + ñQ

pc,j , (49)

where Q(·) is a scalar quantization function applied

element-wise and separately to the real and imaginary parts

of the input. The vectors ñQ
pp,k � s∗p,kn

Q
pp,k ∈ C1×Mp and

ñQ
pc,j � s∗c,jn

Q
pc,j ∈ C1×Mp denote the zero-mean Gaussian-

distributed quantization noise vectors, and both are assumed

to be uncorrelated with h̃pp,k and h̃pc,j . The gains αk =
1− ρk for k ∈ {p, c} are functions of the following distortion

factors [46]:

ρp =
E{‖hpp,k − hQ

pp,k‖2}
E{‖hpp,k‖2} , ρc =

E{‖hpc,j − hQ
pc,j‖2}

E{‖hpc,j‖2} .

The value of ρ is given in Table II for different bit resolutions

b assuming an optimal non-uniform Lloyd-Max quantizer [49].

The phase rotation does not alter the covariance matrices of

the quantization noise, which are given by [44]

RñQ
pp,k

= αpρpdiag{Rhpp,k
} = αpρpβpIMp

,

RñQ
pc,j

= αcρcdiag{Rhpc,j
} = αcρcβcIMp

.

Based on Eq. (48) and Eq. (49), we can derive

h̃pp,k =
h̃Q

pp,k − ñQ
pp,k

αp
= ᾱph̃

Q
pp,k − ᾱpñ

Q
pp,k,

h̃pc,j =
h̃Q

pc,j − ñQ
pc,j

αc
= ᾱch̃

Q
pc,j − ᾱcñ

Q
pc,j ,

where ᾱp = 1
αp

and ᾱc = 1
αc

. Therefore,

H̃�

pp,k = �(ᾱph̃
Q
pp,k − ᾱpñ

Q
pp,k) = ᾱp(H̃

Q,�
pp,k − ÑQ,�

pp,k),

(50)

H̃�

pc,j = �(ᾱch̃
Q
pc,j − ᾱcñ

Q
pc,j) = ᾱc(H̃

Q,�
pc,j − ÑQ,�

pc,j ), (51)

where H̃Q,�
pp,k � �(h̃Q

pp,k), ÑQ,�
pp,k � �(ñQ

pp,k), H̃Q,�
pc,j �

�(h̃Q
pc,j), and ÑQ,�

pc,j � �(ñQ
pc,j). Substituting Eq. (50) and

Eq. (51) in (28), we have

ᾱp(H̃
Q,�
pp,k − ÑQ,�

pp,k)x̌p + H̃�

cp,kx̌c ≥ δ0
p,k12, ∀k ∈ K, (52)

H̃�

cc,jx̌c + ᾱc(H̃
Q,�
pc,j − ÑQ,�

pc,j )x̌p ≥ δ0
c,j12, ∀j ∈ J . (53)

A. Primary System

As a special case to fix the details, we assume that the PBS

employs ZF precoding to cancel the interference among the

PUs. Thus, the transmit symbol at the PBS can be expressed

as

xp = fpHH
pp(HppHH

pp)
−1sp, (54)

where

fp =

√
Pp

trace{(HppHH
pp)−1}

is the scaling factor to satisfy the PBS power budget. Then

we will have

(H̃Q,�
pp,k − ÑQ,�

pp,k)x̌p

= αpH̃�

pp,kx̌p

= αp

[R{h̃pp,kxp} sin θ − I{h̃pp,kxp} cos θ

R{h̃pp,kxp} sin θ + I{h̃pp,kxp} cos θ

]
= αpfp sin θ12

due to h̃pp,kxp = s∗p,kfpsp,k = fp, which is not surprising,

since even with imperfect CSI, the CBS can assume the ZF

precoding at the PBS is successful in delivering the desired

symbols to the users. The exact value of the scaling factor fp

depends on the true channel Hpp, but the CBS can employ an

estimate based on its quantized approximation:

fQ
p =

√
Pp

trace{(HQ
pp(HQ

pp)H)−1} ,

where HQ
pp =

[
(hQ

pp,1)
T · · · (hQ

pp,Np
)T
]T

, and Pp is assumed

to be known. Using a similar argument, we can obtain the

following deterministic form of the constraint in Eq. (52) as

follows:

H̃�

cp,kx̌c ≥ (δ0
p,k − fQ

p sin θ)12. (55)

B. Cognitive System

For the cognitive system, the constraint (53) above is

expressed in terms of the unknown random quantization noise,

and thus cannot be directly enforced. Instead, we choose to

pose the problem such that the constraint is achieved with a

certain probability. In particular, considering that x̌p relies on

Hpp,k and thus is also uncertain, we rewrite (53) as follows:

P{αc(H̃�

cc,jx̌c − δ0
c,j12) ≥ (ÑQ,�

pc,j − H̃Q,�
pc,j )x̌p} ≥ vc, (56)

where P{A} denotes the probability of event A, and vc ∈
(0.5, 1] represent the probability threshold. In the following,

we find expressions for the probabilities in (56).

First, we get

E{ÑQ,�
pc,j } = 02×2Mp

,

E{ÑQ,�
pc,j (ÑQ,�

pc,j )H} = Mpαcρcβc

[
1 − cos 2θ

− cos 2θ 1

]
,
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E{H̃Q,�
pc,j (H̃Q,�

pc,j )H} = Mpαcβc

[
1 − cos 2θ

− cos 2θ 1

]
,

and we define

qc,j � (ÑQ,�
pc,j − H̃Q,�

pc,j )x̌p �
[
q1
c,j

q2
c,j

]
. (57)

We can show that qc,j is a bivariate correlated Gaussian

random variable with mean

E{qc,j} = 02×1 (58)

and covariance

Rqc,j
= E{(ÑQ,�

pc,j − H̃Q,�
pc,j )x̌px̌H

p (ÑQ,�
pc,j − H̃Q,�

pc,j )H} (59)

=
Pp

2Mp

{
E{ÑQ,�

pc,j (ÑQ,�
pc,j )H} + E{H̃Q,�

pc,j (H̃Q,�
pc,j )H}

}
(60)

=
Ppβcαc(2 − αc)

2

[
1 − cos 2θ

− cos 2θ 1

]
. (61)

Furthermore, we define

wc,j(x̌c) � αcH̃�

cc,jx̌c − αcδ
0
c,j12 �

[
w1

c,j

w2
c,j

]
(62)

which is affine in x̌c. Using the new notation, the chance

constraint (56) can be rewritten as

P{wc,j(x̌c) ≥ qc,j} ≥ vc. (63)

For ease of notation, we define w̄c,j(x̌c) � R
− 1

2
qc,jwc,j(x̌c) and

q̄c,j � R
− 1

2
qc,jqc,j , and we obtain the following lemma.

Lemma 1: P{w̄c,j(x̌c) ≥ q̄c,j} ≥ vc can be approximated

by the inequality

H̃�

cc,jx̌c ≥ ᾱcηcR
1
2
qc,j12 + δ0

c,j12, (64)

where ηc =
√

2 erf−1
(
2
√

vc − 1
)

is a preset constant.

Proof: See Appendix. �
With this lemma, knowledge of the precise value for xp is

not necessary in the design of the precoder at the CBS, which

is important under the assumption of a finite capacity channel

for information sharing.

C. Optimization Problem for Stochastic CSI Error Model

We can now formulate the robust SLP design with prob-

abilistic constraints by replacing (52) and (53) with (55)

and (64), as follows:

min
x̌c

‖x̌c‖2 (65)

subject to H̃�

cp,kx̌c ≥ (δ0
p,k − fQ

p sin θ)12, ∀k ∈ K, (66)

H̃�

cc,jx̌c ≥ ᾱcηcR
1
2
qc,j12 + δ0

c,j12, ∀j ∈ J .

(67)

As with the previous problem studied above, the result is a

quadratic program with linear inequality constraints which is

robust to imperfect CSI shared from the PBS.

Fig. 5. BER of CU (left) or PU (right) vs. CBS transmit power where
Pp = 10, QPSK.

VI. NUMERICAL RESULTS

In this section, we assess the performance of our proposed

power-minimizing SLP (PMSLP) approaches. Monte-Carlo

simulations are conducted over 1000 independent channel

realizations, each employing a block of T = 100 symbols.

The channels Hpp, Hcp, Hpc and Hcc are composed of

i.i.d. Gaussian random variables with zero mean and unit

variance. The complex Gaussian noise is assumed to have the

same power (σp = σc = 1) for all PUs and CUs. The PBS

transmission power is set at Pp = 10. We employ the same

threshold for all users within a given network, i.e., δ0
p,1 =

· · · = δ0
p,Np

= δ0
p for the PUs and δ0

c,1 = · · · = δ0
c,Nc

= δ0
c for

the CUs, ensuring the same worst-case SER for the users in

each network.

Since for SLP we work with finite alphabet constellations,

we will analyze the block transmission performance of the

system using the throughput τ as calculated in [13]:

τ = (1 − PB) × c × T × N, (68)

where PB is the block error rate (BLER), c = log2 D is the

number of bits per modulation symbol, T is the block length

and N is the number of receivers. In each block for each user,

there are C = c × T data message bits transmitted from the

BS. For PSK modulation, assuming a binomial distribution of

errors in each block, the probability of more than q errors

occurring in one block of C bits is expressed as

Pe(q, C) = 1 −
q∑

i=0

(
C

i

)
P i

b (1 − Pb)C−i, (69)

where Pb is the BER. If the receiver detects errors without

correction, a block is received correctly only if all C bits

in the block are received correctly, and thus the BLER is

PB = Pe(0, C). On the other hand, if the receiver is capable

of correcting up to Q errors in each block, then the BLER is

given by PB = Pe(Q, C) [54].

We begin in Fig. 5 assuming perfect CSI, plotting the

average BER of the users versus the CBS transmission power,

and comparing PMSLP assuming a minimum safety margin

δ0
p = 1.9 with the performance of the CR-PALP algorithm

described in Section II-A. Both the PBS and CBS are assumed

to have Mp = Mc = 8 antennas and the number of PUs and

CUs are both set at Np = Nc = 4. With these settings, even
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Fig. 6. Throughput of PU vs. error norm bound where Pp = 10,
δ0
p = δ0

c = 1.5, QPSK.

Fig. 7. Throughput of CU vs. error norm bound where Pp = 10,
δ0
p = δ0

c = 1.5, QPSK.

when the CBS increases its transmit power to better serve

the CUs, it can still avoid any negative impact on the PUs

such that the BER of PUs is not greater than that in the

primary-only case as shown in Fig. 5. Moreover, the BER of

the PUs remains nearly unchanged for both types of precoders,

although the PUs actually enjoy some benefit with PMSLP

since it exploits CI from the CBS signals which can further

improve the SM for the PUs. Meanwhile, PMSLP provides a

much lower BER for the CUs; the CBS can save more than

15dB of power to achieve an uncoded BER of 10−2, compared

to the CR-PALP method which allows only the CUs to benefit

from the inter-user CI in the cognitive system, but in general

will not entirely eliminate the destructive interference from the

PBS. On the contrary, our proposed PMSLP precoder can take

advantage of CI not only from the CU MUI but also what is

available (although not optimized) from the primary system.

Moreover, the PUs can also benefit from the CI produced by

the cognitive system. CR-PALP requires that the CBS act as a

relay transmitting not only the CUs’ but also the PUs’ signals,

which is unnecessary in our PMSLP design.

Next we consider the norm-bounded CSI error model dis-

cussed in Section IV. With the SM threshold for the PUs

and CUs set to 1.5, we plot the throughput of the PUs

and CUs as the norm of one error (εp,k or εc,j) changes as

log10 ε while the norm of the other is fixed to 0.3 [17]. For

simplicity, we assume that the CSI error bounds are the same

for all users: εp,k = εp and εc,j = εc. Fig. 6 and Fig. 7

Fig. 8. Transmit power vs. error norm bound where Pp = 10,
δ0
p = δ0

c = 1.5, QPSK.

Fig. 9. Energy efficiency vs. error norm bound where Pp = 10,
δ0
p = δ0

c = 1.5, QPSK.

respectively show the throughput for the PUs and CUs as a

function of the error bound, and demonstrate that the proposed

robust precoder can mitigate the CSI uncertainty and provide a

much higher throughput compared to the non-robust precoder.

With the robustness introduced, the throughput of the PUs

and CUs actually increases as the norm of the corresponding

error increases. This can be explained by examining (44)

and (45), where we see that a larger error bound creates

a larger effective SM in the constraint, which provides the

robustness necessary to account for the imperfect channel and

also imperfect knowledge of xp and fp. There is however

a price to be paid for this robustness, as clearly seen in

Fig. 8, which shows that the robust schemes require the CBS

to operate with significantly more power, especially as the

error bound increases. It is clear from these results that the

worst-case approach based on the norm-bounded CSI error

leads to a conservative design.

In order to quantify the power-performance trade-off

between the robust and non-robust designs, in Fig. 9 we plot

the energy efficiency (EE) of the approaches, defined as the

ratio between the throughput calculated from Eq. (68) and the

transmit power per channel:

EE =
τ

T × ‖x̌c‖2
. (70)

We see that despite the increase in transmit power, the pro-

posed robust SLP algorithm achieves a significantly higher
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Fig. 10. Throughput of CUs vs. preset SM at the CUs where Pp = 10,
δ0
p = 1.5, Q = 1, QPSK.

Fig. 11. Transmit power at CBS vs. preset SM at the CUs where Pp = 10,
δ0
p = 1.5, Q = 1, QPSK.

Fig. 12. Energy efficiency at CBS vs. preset SM at the CUs where Pp = 10,
δ0
p = 1.5, Q = 1, QPSK.

energy efficiency. When the uncertainty εc in Hpc is fixed, the

energy efficiency at the CBS decreases with greater uncertainty

in Hpp since the CBS needs to consume more power to meet

the SM constraint at the PUs.

The remaining examples use the probabilistic SM con-

straints discussed in Section V based on the AQNM

approximation, although the actual quantized CSI is generated

using a non-uniform Lloyd Max quantizer [49], [50]. In this

case, the PBS and CBS are assumed to have Mp = Mc =
16 antennas and the number of PUs and CUs are both set

at Np = Nc = 8. The receiver is capable of correcting

Fig. 13. Energy efficiency at the CBS vs. quantization resolution where
Pp = 10, δ0

p = δ0
c = 1.5, Q = 1, QPSK.

Q = 1 bit error in each block [13]. The probability v was

set with the value used in [40]. Fig. 10 shows the throughput

of the CUs as a function of the preset SM threshold at the

CUs, assuming either b = 2 or b = 3 quantization bits

per channel coefficient and different probability constraints.

We see that the CUs reap benefits from the robust SLP design,

achieving significantly higher throughput. Again illustrating

the trade-off of robustness with increased power, we see in

Fig. 11 that as the preset δ0
c increases, the CBS in the robust

SLP approach requires more power to meet the SM constraint

than the non-robust SLP. In order to fairly compare different

SLP methods, we plot the EE at the CBS in Fig. 12. It is clear

that the greater the preset SM, or the higher the quantization

resolution, the higher the EE. For the case of b = 2, the EE of

the non-robust SLP is nearly 0, but the robust SLP approach

performs particularly well even with very low-resolution CSI.

In the final example, we study the allocation of the quan-

tization bits on the system performance [51]. In particular,

in Fig. 13 we plot the energy efficiency at the CBS when

the direct hpp,k and interference channels hpc,j are quantized

with different resolutions. For the non-robust SLP schemes

(blue curves), the CBS achieves higher EE in cases where

bp > bc, indicating that for a fixed number of quantization bits,

it is more energy efficient for the cognitive system to receive

a more accurate representation of the direct channel than

the interference channel. However, the robust-SLP schemes

are less sensitive to the allocation of the quantization bits,

and show roughly the same performance regardless of which

channel is more accurately represented.

VII. CONCLUSION

In this paper, we have designed non-robust and robust SLP

schemes for overlay CR systems with the goal of minimizing

the transmission power and simultaneously ensuring the QoS

of all users. Unlike traditional CR precoding techniques,

we set the SM threshold in the interference constraints instead

of using SINR or BER metrics in order to fully exploit

constructive interference as much as possible. First, under

the assumption of perfect CSI, we propose an SLP algorithm

that performs significantly better than a prior CR-based SLP

approach modified to address our overlay problem. In the

proposed algorithm, not only the CUs but also the PUs benefit
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from the constructive interference. Then, using two different

CSI error models, we derive two robust SLP methods, one

based on a max-min optimization of the worst-case CSI error

and the other on a probability-constrained problem using

AQNM to approximate the impact of the CSI quantization.

All of the proposed optimization problems result in a quadratic

objective function with linear inequality constraints that can be

efficiently solved. Our numerical results demonstrate that our

robust SLP schemes can deal with various types of CSI error

and still maintain a high energy efficiency. A key observation

from our results is that, by enabling the PUs to exploit

constructive interference as well as the CUs, the presence of

the cognitive network can actually improve the PU network

performance rather than degrade it.

APPENDIX

PROOF OF LEMMA 1

From [40] we note that eliminating the (possible) correlation

between the entries of qc,j by applying a whitening transform

can ease the difficulty of finding the desired approximation.

In particular, we will apply the whitening matrix from [55]

which is optimal in terms of mean-squared error, i.e.,

R
− 1

2
qc,j =

√
2√

Ppβcαc(2 − αc)

[
1 − cos 2θ

− cos 2θ 1

]− 1
2

. (71)

The determinant of

[
1 − cos 2θ

− cos 2θ 1

]
is 1 − cos2 2θ =

sin2 2θ, and thus is always non-negative, and non-zero for

θ �= 90◦. Thus Rqc,j
is non-singular, positive definite and

invertible. As a result, the probability expression in (63) can

be equivalently written as

P{wc,j(x̌c) ≥ qc,j} = P{wc,j(x̌c) ≥ R
1
2
qc,j R

− 1
2

qc,jqc,j}
= P{R

− 1
2

qc,jwc,j(x̌c) ≥ R
− 1

2
qc,jqc,j}

= P{w̄c,j(x̌c) ≥ q̄c,j} (72)

where w̄c,j(x̌c) � R
− 1

2
qc,jwc,j(x̌c) and q̄c,j � R

− 1
2

qc,jqc,j .

Consequently, the chance constraint (63) is equivalent to

P{w̄c,j(x̌c) ≥ q̄c,j} ≥ vc (73)

with q̄c,j ∼ N (0, I).
To obtain an efficiently computable constraint, we apply the

Safe Approximation I method in [40]. The two entries of q̄c,j

are uncorrelated and independent. Defining

q̄c,j �
[
q̄1
c,j

q̄2
c,j

]
, w̄c,j(x̌c) �

[
w̄1

c,j

w̄2
c,j

]
, (74)

the Gaussian cumulative distribution function can be used to

calculate the joint probability in (72) as follows:

P{w̄c,j(x̌c) ≥ q̄c,j} = P{w̄1
c,j ≥ q̄1

c,j}P{w̄2
c,j ≥ q̄2

c,j}

=
1 + erf( w̄1

c,j√
2

)

2
×

1 + erf( w̄2
c,j√
2

)

2
,

where the error function is given by

erf(x) =
2√
π

∫ x

0

exp(−t2) dt .

Due to the monotonicity of erf(x), the desired probability is

bounded below by

P{w̄c,j(x̌c) ≥ q̄c,j} ≥
⎡⎣1 + erf(min{w̄1

c,j ,w̄2
c,j}√

2
)

2

⎤⎦2

. (75)

In order to satisfy the chance constraint (73), it is sufficient

to consider the deterministic constraint⎡⎢⎣1 + erf
(

min{w̄1
c,j ,w̄2

c,j}√
2

)
2

⎤⎥⎦
2

≥ vc. (76)

Since w̄c,j(x̌c) � R
− 1

2
qc,jwc,j(x̌c), the constraint can be rewrit-

ten as

R
− 1

2
qc,jwc,j(x̌c) ≥

√
2 erf−1 (2

√
vc − 1)12, (77)

where erf−1(·) denotes the inverse error function. We thus

finally arrive at the following linear inequality constraint:

H̃�

cc,jx̌c ≥ ᾱcηcR
1
2
qc,j12 + δ0

c,j12, (78)

where ηc �
√

2 erf−1
(
2
√

vc − 1
)
.
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