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ABSTRACT

Determining collective variables (CVs) for conformational transitions is crucial to understanding their dynamics and targeting them in
enhanced sampling simulations. Often, CV's are proposed based on intuition or prior knowledge of a system. However, the problem of
systematically determining a proper reaction coordinate (RC) for a specific process in terms of a set of putative CVs can be achieved using
committor analysis (CA). Identifying essential degrees of freedom that govern such transitions using CA remains elusive because of the high
dimensionality of the conformational space. Various schemes exist to leverage the power of machine learning (ML) to extract an RC from CA.
Here, we extend these studies and compare the ability of 17 different ML schemes to identify accurate RCs associated with conformational
transitions. We tested these methods on an alanine dipeptide in vacuum and on a sarcosine dipeptoid in an implicit solvent. Our comparison
revealed that the light gradient boosting machine method outperforms other methods. In order to extract key features from the models, we
employed Shapley Additive exPlanations analysis and compared its interpretation with the “feature importance” approach. For the alanine
dipeptide, our methodology identifies ¢ and 6 dihedrals as essential degrees of freedom in the C7,x to C7., transition. For the sarcosine
dipeptoid system, the dihedrals ¥ and w are the most important for the cis ap to trans ap transition. We further argue that analysis of the full
dynamical pathway, and not just endpoint states, is essential for identifying key degrees of freedom governing transitions.
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I. INTRODUCTION

Molecular dynamics simulations allow for changes in chem-
ical or physical processes to be monitored with high spatial and
temporal resolution. At the heart of such molecular changes lie
conformational transitions. Understanding the essential degrees
of freedom that govern a conformational transition is crucial to

elucidate the kinetics and thermodynamics of the molecule of
interest.

The problem of finding the essential coordinates that drive the
process during a transition is highly challenging due to the large
number of degrees of freedom involved. The first step in finding the
reaction coordinate is the identification of a set of collective vari-
ables (CVs), which are molecular features that clearly distinguish
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conformations well separated by energetic barriers. Trajectories con-
necting different regions of the configurational space can serve
to identify a subset of CVs that contribute to the transition
pathway.

Machine learning algorithms are powerful tools to identify
reaction coordinates from a given set of collective variables.'™
Earlier studies on determining reaction coordinates from a set of
collective variables focus on fundamental chemical processes.”
In addition to these studies, different machine learning meth-
ods, such as neural networks, regression, and dimensional-
ity reduction techniques, have been used to suggest reaction
coordinates.'*

Committor analysis provides a natural reaction coordinate to
investigate the transition paths of structural transitions from molec-
ular simulations. The transition path sampling (TPS) approach
is used successfully to study chemical processes and protein
folding.”” " For a phase space region well separated from metastable
states A, B, the committor value of Pg(x) reports the probabil-
ity that trajectories initiated at x with velocities sampled from the
Maxwell-Boltzmann distribution reach state B before reaching state
A. The phase space hypersurface with Pg(x) = 0.5 is of interest to
chemistry, as it defines the dividing surface that separates the states
for the conformational transition understudy.

Although the committor analysis provides the committor dis-
tribution generically as a reaction coordinate, it does not directly
provide insights into the essential degrees of freedom that govern the
change in the committor values and make up the key components
of the reaction coordinate. To find essential coordinates, various
committor-based methods have been proposed that do not employ
transition path sampling (TPS).”*’ A more comprehensive review
of the previous work on this topic can be found in the reviews in
Refs. 34 and 35.

The seminal work of Dellago et al.° utilizing transition path
sampling (TPS) inspired many follow-up studies to investigate and
interpret the reaction coordinates. Introduction of the likelihood
maximization method based on TPS by Peters and Trout® provided a
practical approach to investigating reaction coordinates and identi-
fying and ranking important features of conformational space that
contribute to the transition pathways. The study of Rogal et al.
employed the maximum likelihood approach to committor analy-
sis, which proved to be successful in reducing the complexity of
the high-dimensional systems and, at the same time, accurately
describing the dynamics of molecular transitions.” The work of
Ma and Dinner utilized a genetic algorithm together with a neural
network and proposed reaction coordinates incorporating confor-
mational changes and solvent degrees of freedom in explicit water
simulation.'” The likelihood maximization approach has been used
to study many complex chemical processes, such as nucleation
problems,” "' ion pair association,”” chemical reactions in solu-
tion with quantum mechanical/molecular mechanical models, 1346
ion incorporation at kink sites during crystal growth,”” and protein
folding.”**’ Later extensions of this method, including inertial likeli-
hood maximization, provided additional improvements,”””' notably
effective for inertial barrier crossings, such as those in chemical reac-
tions. The forward flux sampling is also another approach, explored
to uncover the reaction coordinate.”

Instead of maximizing the likelihood, Mori et al. proposed
minimizing a cross-entropy cost function,'””*>* which, consistent
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with earlier work,”'" also provided an accurate description of the

conformational dynamics of the alanine dipeptide in vacuum.

Despite the success of recent studies in determining essen-
tial coordinates for transition path analysis, it remains to be seen
whether current approaches can be extended to more complex
molecular systems. In addition, the increasingly important role
played by machine learning techniques in molecular simulation has
fostered a diverse collection of regression models that could be used
instead of the cross-entropy approach. It remains to be seen whether
different machine learning (ML) methods give rise to a similar inter-
pretation of the dynamics. A comparison of multiple regression
methods to determine reaction coordinates has the potential to pro-
vide a more robust method for reaction coordinates from transition
paths.

Following the approach of Refs. 19, 53, and 54, in this work,
we introduce a computational framework that identifies essential
coordinates from transition path sampling. Figure 1 shows the basic
workflow of this study. As illustrated, the first step is to use enhanced
sampling methods to obtain the metastable states of the molecule
of interest. Methods such as umbrella methods,”> metadynamics,*®
adiabatic free energy dynamics,”” *’ and adaptive biasing potential
methods®' could be used in this stage. In this study, we employed
Unified Free Energy Dynamics (UFED),*” which allows for the
exploration of the high-dimensional free energy surface associated
with conformational transitions. Next, we extract conformations at
the dividing surface of the metastable states to sample committor
probabilities. We trained our models using 17 machine learning
methods with a given set of collective variables in order to predict
the committor value. We evaluated the performance of each method
with a set of rigorous measures.

We find that decision tree-based approaches outperform
regression methods in describing the dynamics of the conforma-
tional transitions. The light gradient boost machine (LGBM), in
particular, gives rise to the highest accuracy among the decision tree
methods. Although many ML methods performed well in the alanine
dipeptide system, the conformational transition of the disarcosine
peptoid served as a more challenging benchmark system for assess-
ing the performance of the ML models. Because the dimensionality
of the conformational landscape of the sarcosine dipeptoid is larger
than that of the alanine dipeptide, the cross-entropy method used
in earlier studies failed to describe the dynamics. In order to iden-
tify the key features of a selected conformational transition in this
system, we utilized SHapley Additive exPlanations (SHAP) analysis
as an alternative method to reveal features of importance for tar-
geted dynamical transitions. SHAP analysis provides a new way to
rank and visualize essential degrees of freedom and their interactions
with each other. Systematic strategies for incorporating explain-
ability into the optimization of reaction coordinates are discussed
in Ref. 35. Numerous other studies have emphasized the signif-
icance of interpreting reaction coordinates.”””**> We have found
that SHAP analysis, as illustrated in Fig. 1, offers a more compre-
hensive interpretation of the reaction coordinates. This is because
it assigns importance to features and provides an overall under-
standing of their effect on the outcome through the inclusion of
sign information.

Using our computational framework, ML models trained by
transition path sampling of the conformational states C7, and C7.,
of the alanine dipeptide in vacuum automatically select the dihedral
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FIG. 1. Steps in the workflow: First, enhanced sampling simulations were performed on the molecule of interest to identify stable conformational states. Then, conformations
were extracted from this trajectory, and for each conformation, a set of committor simulations were performed to calculate the true committor values (Py ). This provides a
committor distribution, and also, from the same conformations, a set of collective variables (CVs) are obtained as molecular input features. Then, multiple regression models
were trained to estimate the committor values (Pg), and the best model was selected. For this selected model, explainable artificial intelligence (Al), specifically SHAP
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analysis in the present study, is used to determine the important CVs from the full set of CVs.

of angles ¥ and </5 _among 45 angles. Furthermore, consistent with
previous work,” " our approach highlights the importance of the
angle 6 as an essential coordinate to study the transition of this sys-
tem. In the case of disarcosine in an implicit solvent, we focus on
the transition between the states cis ap and trans ap. The LGBM and
decision tree approaches identified the y and w angles as the essential
degrees of freedom.

This paper is organized as follows. In Sec. II, we describe the
theoretical and methodological elements of our approach, includ-
ing the UFED enhanced sampling algorithm, the modeling of the
committor or reaction coordinate in terms of CVs, and the vari-
ous machine learning methods investigated. In Sec. I1I, we provide
computational details. In Sec. IV, results for the gas-phase ala-
nine peptide and disarcosine in an implicit solvent are presented.
Conclusions are given in Sec. V.

Il. THEORY

In the following, we summarize the theoretical approaches used
in our study.

A. UFED method for enhanced sampling

Exploring the conformational space of molecules is essential to
identify the stable regions that dominate the conformational ensem-
ble. An enhanced sampling method that overcomes kinetic barriers
allows one to navigate the energy surface effectively. One of the
major obstacles in this process is the selection of the CVs on which
to apply biasing forces. A reasonable practical strategy is to target
a large and possibly redundant set of CVs and bias all of them.
This step requires an enhanced sampling method capable of biasing
more than three CVs, for which adiabatic techniques,” ~”°* such as
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Unified Free Energy Dynamics (UFED),*” constitute a viable choice
to explore the free energy surface of conformational transitions in
higher dimensions. Consequently, we chose to employ the UFED
method in this study.

The UFED method incorporates aspects of various enhanced
sampling methods, such as the temperature accelerated molecular
dynamics®® or driven adiabatic free energy dynamics,”” metadynam-
ics,”® and the use of a biasing force as in adaptive bias force.** The
UFED method is formulated in an extended phase-space, wherein
a set of n dynamical variables (s, ..,s, = s) are harmonically cou-
pled to the CVs and are propagated using a set of corresponding
fictitious momenta 7y, . .., 7, and mass-like parameters y, .. ., 7
The aim of UFED is to generate the free energy surface A(s) using
the following equations of motion:

U & «
mi¥; = 9 + > Ka(sa = a(r)) 9q + Bath(T),
o = Or;
P (1)
ﬂotgoc = _Ka(sa - Qa(r)) - 78]3135 + Bath(TS),
Sa
where ri,...,ry = r are the physical atomic coordinates, m; are the

associated masses, and «, are the harmonic coupling constants. The
particle equation is coupled to a thermostat at physical tempera-
ture T [Bath(T)], and the equation for s, is coupled to a thermostat
at temperature Ts >> T [Bath(T)]. In the adiabatic limit, Eq. (1)
generates the mean force

OA 0
Fu(s) = . = —kgT; Do In Py(s)

= (Ka (qa(r) = sa))s )

Here, Pi(s) is the high-dimensional histogram. Sampled values of
Fa(s) can be used to fit A(s) using a model such as a basis-set expan-
sion® or a neural network.® The bias potential Up;ys(s) in the UFED
approach takes the form of a metadynamics-like bias in the extended
phase space,

Upias(5,1) = Y e 10012 3)

Ly<t

The gradient of Us(s,t) is added to the equations of motion
as indicated in Eq. (1), |-| is the L* norm, and h and o are
the height and width of the added Gaussians. Moreover, a sparse
binning scheme can be employed, where the mean force is accu-
mulated only in populated regions, enabling a robust generation of
high-dimensional free-energy surfaces. Further details of the UFED
approach can be found in Ref. 62.

B. Modeling committor values from CVs

Once the states are identified, we sample transitions. Transition
paths connecting basins serve to find the committor values. Here, the
true values are denoted with an asterisk (*) for the committor, pg,
and the reaction coordinate, r(g)*. The corresponding numerical
estimates from the ML models are denoted without asterisk for the
committor, pg, and the reaction coordinate, r(g).

In order to train machine learning (ML) models, we adopted
two strategies. In the first strategy (method 1), we trained the model
based on the values collected directly from true committor values.

ARTICLE pubs.aip.org/aip/jcp

Here, an implicit mapping from reaction coordinates to committor
is implied. In this method, a linear combination of features (g,,),
here the complete set of CVs, and the corresponding coefficients
(o) serve to predict the committor value via

M
Pg=)" mgm+ &, (4)

m=1

where M is the number of features and ap is the bias term that
serves to prevent overfitting. The optimized coefficients, &, rank
the features based on their importance.

In the second approach, following Refs. 8, 50, 53, and 54, we
represent the reaction coordinate as a linear combination of features
and train our models based on the reaction coordinate value. In this
method (method 2), we first compute the reaction coordinate [r(q) ],
as shown in the following equation:

M
r(q) = > WmGm + ao. (5)

m=1

Then, as expressed in the following equation, we pass r(q)
through an explicit sigmoidal function to obtain the corresponding
committor value:

1

Pe= 1+e7@’

(6)

In both methods, some of the machine learning models we stud-
ied do not contain explicit coefficients (ay), and for these cases,
combining the feature values (g,,) alone leads to a prediction of the
respective committor or reaction coordinate. Therefore, for models
based on decision trees, the reduction of variance of the commit-
tor or the reaction coordinate approach was employed, as explained
later in the text.

C. Machine learning models

The ML models explored in this study can be classified into
two major categories. The first category includes standard regres-
sion methods. Linear, ridge, lasso, elastic net, and cross-entropy
models are included in this group. Regression methods aim to opti-
mize the coefficients of descriptors with the help of a minimization
function. The difference between regression methods lies mainly
in the residuals used in each method. As an example, the linear
regression model obtains optimized coefficients («;) by minimiz-
ing the residual sum of squares between the predicted values (Pg)
and true (P3) values. In linear regression, we minimize the resid-
ual sum of squares between the target and the predicted values
expressed with

min Pz - Pjl5. (7)

Alternatively, the ridge model employs an additional complex-
ity parameter (y) to avoid overfitting, resulting in the following
expression:

min [Py~ P33+ ylail. ®)
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On the other hand, the elastic net model incorporates L;- and
L;-norm regularization terms in the minimization function with an
additional parameter p to obtain the optimized coefficients, i.e.,

. 1 + 1-
min =Py P2+ pyledi+ TPl )

@ Msamples

The second category of ML methods tested uses ensemble
methods based on decision trees. Generally, in decision trees,
categorical variables use the “information gain.” For continuous
variables such as the committor value, we aim at reducing the
variance

* D \2
G(PE) - M, (10)

n

which is achieved by splitting the nodes, where Pj is the target fea-
ture value and PT’; is the mean of feature Pj for the number of data
points 7.

For a continuous input feature, such as a dihedral angle, the
values are sorted in ascending order, and each unique dihedral
value is used to split the committor data. Then, for each child node,
we calculate the variance [Eq. (10)]. For each split, we calculate the
weighted average variance of the child nodes. We select the split that
produces the child node with the lowest weighted average variance.
These steps are repeated until all data points are separated.

These models use the concept of ensemble methods, where an
ensemble of weak learners is trained to improve the model pre-
diction in contrast to a single strong learner. Weak learners are
decision trees, and their outputs are combined to deliver better out-
comes. The ensemble models can be categorized into two types:
bagging and boosting. Boosting methods, the primary focus of this
study, adopt the strategy of sequentially adding weak learners to the
model and filtering out the observations that a learner captures cor-
rectly at every step. Next, they develop new weak learners to handle
the remaining misclassified observations. The final prediction is the
average prediction of the many learners parallel sampling the same
dataset.

The light gradient boosting machine model, which is our prime
focus in this study, uses a gradient boosting type of algorithm.®” The
main steps of the gradient boosting algorithm are given in Table I.
Here, we first compute the predictions of the “base model” Fo(x),
which is set to the mean value. This is shown in the first line of
Table I, Lis the least-squares loss function, y, is the target value (Py),

TABLE . The gradient boosting algorithm adopted from Ref. 66. The variable
definitions and algorithm steps are explained in detail in the text.

Fo(x) = argmin, 3, L(7: - )
form=1toMdo

5 _ _[OLOULF(x)) P
Yi= _[ 6);-"(x,) ]F(x):Fm,l(x)> i=1,N

Generate mth prediction model h(x; an);
am = arg minu)(Zfil i-¢ h(xisam)]?
Ym = arg minyzllil L(yis Fm—1(xi) +y h(xsam))
Fpu(x) = Fuo1(x) +p,y, h(x; am)
end for

0N QN Ul W N
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and y,, are the predicted values (Pg). This results in the base model
Fo(x) being the mean value of the target variable y,. M is the number
of iterations in the for loop, representing the M decision trees, and
N is the number of data points. The next step, as shown in line 3, is
to calculate the pseudo-residuals (j;) of existing m — 1 models. This
is the difference between the target and the predicted one, which is
denoted by the negative direction gradient through a loss function.
We then use the pseudo residuals as the target values and perform
the mth training step. Here, the mth prediction model is h(x; am)
and {a,} are its parameters. Each decision tree computes a differ-
ent multiplier (y,,). The new ensemble model Fy,(x) is computed
by updating the previous ensemble model F,,,—; (x) by linear super-
position. The hyperparameter p, is the learning rate, which is the
regularization term in the range of 0-1. The superior performance
of the light gradient boosting machine model has been reported
recently.” "

D. Cross-entropy minimization method in regression

The maximum likelihood approach in Ref. 8 uses a linear com-
bination of features together with a hyperbolic tangent functional
form Pg = (1 + tanh(r(q)¥))/2 to calculate the predicted committor
(Pg) value (referred to as the MXLK-t model). It uses the following
equation to derive the likelihood maximization:

L(a) = [T Ps(r(d") TT (1-Ps(r(4")). (11)

qk —B qk —A

(¢* - B) denotes the number of trajectories reached at state
B out of a total number of shooting moves performed for each
snapshot in the committor analysis. Similarly, (¢ - A) denotes the
number of trajectories reached at state A. 7(g*) is the set of collective
variables at shooting points.

A modified version of the maximum likelihood approach is uti-
lized by Jung et al. in Ref. 15 that uses a neural network to predict
the reaction coordinate. Here, [r(q)] is passed through a sigmoidal
functional form [similar to Eq. (6)] to obtain the predicted com-
mittor (Pg) value (referred to here as the MXLK-s model). The
following equation is used in parameterization:

N
i, = 3 (% In(1+e7 @) 4 & In(1+@M)],  (12)

n=1

where x4 and xj are the numbers of trajectories out of the total num-
ber of committor shoots performed for a given conformation and
(g, n) is the trained reaction coordinate with the nth conformation.
As an extension of the maximum likelihood method, the use of the
cross-entropy minimization (CREM) method to model committors
has gained popularity recently.'””***

Maximum likelihood is reformulated to minimize the cross-
entropy by Mori et al. in Ref. 54 that uses a linear combi-
nation of features together with a hyperbolic tangent function
Pp = (1+tanh(ry))/2 to acquire the predicted committor (Pg)
value (referred to as the CREM-t model),

N N
lMTl = —Z PE,(VI) In PB,(n) - Z (1 _P;,(n)) In (1 _PB,(n)))
n=1 n

=1
(13)
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which guarantees that the true committor value Py and the cal-
culated committor value Pp are similar. The number # is the
conformation index, and N is the total number of conformations.

Furthermore, we investigated the cross-entropy minimization
approach employed by Mori et al. with Eq. (13) together with a sig-
moidal functional form [used Eq. (6) instead of tanh] to obtain the
predicted committor value (Pg) (referred to as the CREM-s model).

In addition, for MXLK-s, CREM-s, and CREM-t methods
similar to Ref. 54, we adopt a L2-norm regularization to avoid
overfitting,

M

5 A
lMTx(LZ norm) — ZMTX + E Z ”amHz) (14)
m=1

where the A hyperparameter adjusts the strength of the trained
coefficients a,, excluding the bias (ag). M is the total number of
features.

Since both methods employ a sigmoidal functional form and
a L2-norm regularization, as method 1, we chose CREM-s and, as
method 2, we selected MXLK-s in the comparison.

E. SHAP analysis to derive the importance of features

Once the training is complete, it is desirable to identify the
important CVs that contribute to the conformational transition. The
conventional approach for deriving this information is to use opti-
mized coefficients ranked according to their amplitude or “feature
importance” if the model is based on decision trees. Different ML
models use different types of algorithms in the training process. This
makes it difficult to compare various types of trained ML models.

Alternatively, interpretable ML algorithms, such as SHAP'""*
(SHapley Additive exPlanations), can be utilized to quantify the
importance of the features and interpret the transition mechanism.
The Shapley values (¢;) were first introduced by Shapley’’ and
later incorporated as an interpretable ML algorithm in SHAP by
Lundberg and Lee.””

The Shapley value of a feature is its contribution to the pre-
dicted value, weighted and summed over all possible feature value
combinations. The Shapley value ¢, is computed using the following
equation:

S|t (IF[ = IS[-1) !
|F| !

¢i =
SCR\{i}

Usogy (xsugiy) = fs(xs)]. - (15)

As explained in detail in Ref. 72, S is a subset chosen from the
set F containing all the features. For a given feature {i}, a model foy;
is trained with that feature present, and another model fs is trained
without the feature. Then, the predictions of the two models are
compared for the current input foug (xsugi) — fs(xs), where xs
denotes the values of the input features in the subset S. In this
way, the Shapley score value (¢,) corresponds to the average of the
marginal contribution across all features and feature subsets of the
dataset.

Extension of the Shapley values to SHAP inherits the con-
cepts of game theory to explain model predictions. Here, SHAP
starts with some base value for prediction based on prior knowl-
edge and attempts to add features of the dataset one by one and to

ARTICLE pubs.aip.org/aip/jcp

understand the impact of the added feature on the final prediction.
SHAP specifies the explanations as

M
g(Z,) = ¢o + Z ¢i Z,*,. (16)
i=1

The explanation model prediction [g(z")] is computed with
Eq. (16), where ¢, is the base value, that is, the output of the model
if all input features are disregarded. Most of the time, it is the aver-
age of the values of the predicted feature. ¢, is the Shapley value,
where z/ € {0, 1} is the simplified input feature vector and M is the
number of input features.

There are several flavors of SHAP interpretation algorithms
available depending on the ML model. For LGBM, we used Tree-
Explainer, and for CREM, we used LinearExplainer. However, there
are also model-agnostic SHAP Explainer types, such as KernelEx-
plainer. Note that the SHAP values should only be used to interpret
the model. It cannot be used to evaluate the quality of the trained
model.

Features with large absolute Shapley values are important. In
order to obtain a global importance measure, we compute the aver-
age of the absolute Shapley values per feature across the dataset as
in Eq. (17), where I; is the global importance rank of the feature, n
is the number of data points, and \¢]| is the absolute Shapley value
for the jth feature. Then, the descending order of I; gives the global
feature ranking,

-

Ij= |9l (17)

X | =

i=1

In addition to the global ranking of dominant features for the entire
projection, we use SHAP calculations to determine a local feature
importance hierarchy. We also utilized SHAP calculations to deter-
mine the feature interactions or feature correlations within a chosen
feature set.

lll. COMPUTATIONAL DETAILS

A. MD simulation setup and conformational
sampling

In order to investigate various ML models, we selected two
benchmark systems: (i) the alanine dipeptide in vacuum and (ii)
the disarcosine peptoid in implicit water. Interatomic interactions
are represented using AMBER99SB-ILDN.”* We used the improved
generalized Born solvent model for implicit solvent model calcu-
lations (GBn2).”* The simulation box sizes were set to 3.6 x 3.6
x 3.6 nm’ for the alanine dipeptide and 6.0 x 5.4 x 5.6 nm’ for
the disarcosine peptoid. The lengths of all bonds involving hydrogen
atoms were constrained using the SHAKE’® algorithm. The equa-
tions of motion were solved using a time step of one femtosecond
and the geodesic Langevin integrator’®’” with the friction coefficient
set at 10.0 ps~'. The sampling was performed in the NVT ensem-
ble, with a target temperature of 300 K for alanine dipeptide and
500 K for disarcosine. All simulations were performed using the
OpenMM’® MD engine.

We used the unified free energy dynamics (UFED)® approach
to enhance conformational sampling. The dihedral angles ¢, and
y, of the alanine dipeptide served as slow variables. For the
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disarcosine system, we used the five dihedral angles of the backbone
[¢,> ¢(—1)2, ¥;> w(—1)1, w1] to enhance conformational sampling.
UFED calculations were performed using the UFEDMM Python
package”” implemented in OpenMM. The masses of the extended
phase-space variables were set at 30 D/(nm rad”), the force con-
stants were set to 1000 kJ/(mol rad?), and the temperature of the
extended variables was set to 1500 K. Simulations of length 300 ns
were used to sample the conformations. We saved the coordinates
every 1 ps interval for data analysis. We projected the sampled data
onto free energy surfaces of two dimensions for each system in order
to locate the metastable states and the transition state regions. Note
that this is a low-dimensional projection of the five-dimensional
surface generated for the disarcosine peptoid.

B. Committor analysis between stable
conformational states

For a reactive transition path, the committor value Pg is defined
as the probability that a trajectory initiated at the given conforma-
tion with randomized velocities drawn from a Maxwell Boltzmann
distribution will arrive in state B before arriving in state A. The start-
ing conformations in state A have Pp = 0, and the conformations in
state B have Pg = 1.

The committor values in this study were calculated by shooting
100 times from each snapshot sampled in the vicinity of the transi-
tion state region using the path sampling algorithm® and monitoring
whether each trajectory arrives in state B before state A. Each sim-
ulation was seeded with random velocities and was terminated as

X-5-7Y —>» 0
X-7-9Y —» ¢
c) X-0-15-Y =
0.30
0.25 Il Train
Il Test
020
*m
20.15
% 0.10
o= JHH
- ull i __
.00 02 04 06 08 10
Ps
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soon as the trajectory entered one of the two states. A preliminary
grid search was conducted on the free energy surface to find a loca-
tion close to the transition state where the committor values deliver
a range between 0 and 1.

The OpenPathSampling”” ' Python package “Committor-
Simulation” functionality was used to perform committor simula-
tions. For both the alanine dipeptide and the disarcosine peptoid,
~6000 snapshots from the vicinity of the transition state region were
randomly extracted from the UFED trajectories to generate an initial
pool for the committor analysis. Moreover, for each of the shoots,
the corresponding initial dihedral values were recorded together
with the committor values. Consequently, each type of molecule
involves more than 600000 trajectories. Then, from the snapshot
pool, a normal distribution of #3500 data points was randomly
extracted, where the Pg mean is centered around ~0.5, as shown in
Figs. 2(c) and 9(d), to train the ML models. Shapiro and Wilk® val-
ues for the extracted normal distributions were calculated to ensure
that the p-value is greater than 0.05. Learning rate plots, as shown
in the Sec. IV, were used to ensure that the size of the distribu-
tion used was adequate to obtain the convergence of the trained ML
models.

81

C. Machine learning (ML) analysis

The true committor values (Pg ) together with the correspond-
ing dihedral features (45 for alanine dipeptide and 66 dihedrals
from disarcosine) comprised the dataset. First, each dihedral fea-
ture is converted to sine and cosine angles to account for the

C7ax
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FIG. 2. (a) The alanine dipeptide molecule with atom indices and dihedral angles as abbreviated in Table S$1. (b) The conformations at C7e,, C7. states and the free energy
surface of the alanine dipeptide in vacuum projected to ¢, and v, dihedral angles. (c) The true committor probability distribution for the trained and test data.
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periodicity of the feature. The whole dataset is then normalized with
the z-score method, which scales the feature values to range from -2
to 2. In addition, if the two features have perfect colinearity, then one
of them was randomly removed from the dataset. The dataset was
then divided into 80:20 ratios for the training and testing datasets. In
every training of the ML model, a 10-fold cross-validation was used.
Other than the maximum likelihood and CREM models, for which
we generated our own code, we employed standard libraries, such
as Scikit-learn,”"" Yellowbrick,"> SHAP,** pandas,” PyCaret,”
matplotlib,”" seaborn,”” numpy,” and scipy’* in this process. We
used the visual molecular dynamics (VMD)’® software for molecular
visualization.

Here, 17 different types of regression ML models [Light Gradi-
ent Boosting Machine (LGBM),”” Extra Trees Regressor (EXTR),”
Random Forest Regressor (RAFR),”” Gradient Boosting Regres-
sor (GRBR),” Decision Tree Regressor (DECT), Bayesian Ridge
(BAYR),” Orthogonal Matching Pursuit (ORMP),'" AdaBoost
Regressor (ADAB),'"! Ridge Regression (RIDR), Linear Regression
(LINR), Huber Regressor (HUBR), K Nearest Neighbors Regres-
sor (KNNR), Passive Aggressive Regressor (PAGR), Lasso Regres-
sion (LASR),'’” Elastic Net (ELAN), Lasso Least Angle Regression
(LLAR), and Cross-Entropy Minimization (CREM)] were trained.
For method 1, we trained the models on the true committor values
(P3), and for method 2, we used the reaction coordinate [r(g)*]
obtained by inversing the sigmoidal functional form with the true
committor value of Eq. (6).

Furthermore, for each ML model in this study, six different
types of typical regression assessing metric values [MAE (Mean
Absolute Error), MSE (Mean Squared Error), RMSE (Root Mean
Squared Error), R? (coefficient of determination to assess whether
the regression model fits the true data; this ranges from 0 to 1 and
the higher the values the better the fit), RMSLE (Root Mean Squared
Log Error), and MAPE (Mean Absolute Percentage Error)] as the
average of the ten-fold cross-validation scores were calculated for the
training dataset. The models were then arranged according to the R*
values to choose the best-performing model. However, it should be
noted that when comparing methods 1 and 2, in method 1, the true
committor (Pg ) value ranges from 0 to 1, while in method 2, the true
reaction coordinate [r(q)* ] ranges from —5 to 5. Therefore, for com-
parison between the two methods, in Tables S IV and S V presented
for method 2, we have included scores calculated for the predicted
reaction coordinates [r(q)] subsequently converted to the commit-
tor value (Pg) using Eq. (6). To avoid the singularity in Eq. (6), we
set P5 = 0.0001 when P; = 0 and Pj = 0.9999 when Pj = 1. More-
over, for feature ranking, the SHAP values were calculated with the
Python package Shap (https://github.com/slundberg/shap) imple-
mented by Lundberg and Lee’” using the final trained ML model
together with the test dataset.

IV. RESULTS AND DISCUSSION
A. Alanine dipeptide in vacuum

To evaluate the performance of the machine learning (ML)
models, we used the alanine dipeptide in vacuum as our first test
system. We generated the conformational free-energy surface using
the Unified Free Energy Dynamics (UFED) approach, with the two
dihedral angles (¢, y) as our coarse variables. In Figs. 2(a) and 2(b),
we show the model system and the resulting free-energy surface. We

ARTICLE pubs.aip.org/aip/jcp

identified the metastable states (C7.4, C74x) from the free-energy
surface and the range of ¢ and y values that define these states
(Table 1I), and we identified the dividing surface that separates the
two basins by visually inspecting the free-energy surface (FES). We
then sampled transitions from the dividing surface to either of the
two states to obtain the committor values. It is worth noting that
this approach does not necessitate an exact determination of the
location of the transition state. For the construction of the commit-
tor (method 1) or reaction coordinate (method 2), we used all 45
dihedral angles as features. The atom indices used to define these
dihedrals are shown in Fig. 2(a), and Table S1 provides a detailed list
of these dihedrals. Figure 2(c) shows the distribution of committor
values (Pg).

The committor distributions represented in Fig. 2(c) were
based on the training data for the machine learning (ML) mod-
els described in Sec. III. The generated committor data were then
divided into two groups: training and test data. We used a ten-fold
cross-validation method to assess the metrics of each model. As dif-
ferent metrics measure different aspects of accuracy, we report and
rank the models based on these metrics, summarized in Tables SIII
and SIV of the supplementary material.

The results of the performance of the models are also visu-
ally summarized in Fig. 3. This time we focused only on the root
mean square error (RMSE) and the cross correlation score (R?).
Surprisingly, most ML models show that R* > 0.6 and RMSE val-
ues are below 0.15. Lasso Least Angle Regression (LLAR), Lasso
Regression (LASR), and Elastic Net (ELAN) exhibit relatively poor
performance, while other models accurately predict the commit-
tor values of the alanine dipeptide constructed from the full set
of dihedral angles. The performance of the models shows a weak
dependence on the choice of the mathematical representation of the
reaction coordinate (method 1 or method 2).

A notable observation is that the LGBM model provides the
highest R* score and lowest RMSE for both the training and test
datasets using both methods. Therefore, we selected it as our opti-
mal method of choice. It is worth noting that it is possible to further
fine-tune the hyperparameters of other ML models to improve their
accuracy. However, for the sake of simplicity, we focused on com-
paring the LGBM model to the CREM model, which has been used
in earlier studies.'”"”*

To assess the convergence of our results, we first compare the
learning rate of the two ML models. We computed the model pre-
diction score as a function of training instances. We examined the
training and cross-validation scores separately. In comparison, the
results are displayed in Fig. 4 for LGBM and CREM. The learning
rates of MXLK are shown in Fig. S13(b). Regarding learning rates,
CREM shows faster convergence; however, its accuracy is less than

TABLE II. Alanine dipeptide metastable state definitions and the transition state (TS)
region used to extract snapshots for the committor analysis.

States ¢, range v, range

C7¢ -130 > and < -30 0> and <180
C7ax 30 > and < 130 -180>and <0
Snapshots extracted -30 > and < 20 —-80 > and < -30
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FIG. 3. The alanine dipeptide in vacuum, RMSE, and R? values for different ML models trained (a) with method 1 and (b) with method 2. The method 2 output r(q) is converted
to Pg values as demonstrated in Table SIV. Training is done with the AdaBoost Regressor (ADAB), Bayesian Ridge (BAYR), Cross-Entropy Minimization (CREM), Decision
Tree Regressor (DECT), Elastic Net (ELAN), Extra Trees Regressor (EXTR), Gradient Boosting Regressor (GRBR), Huber Regressor (HUBR), K Neighbors Regressor
(KNNR), Lasso Least Angle Regression (LLAR), Lasso Regression (LASR), Light Gradient Boosting Machine (LGBM), Linear Regression (LINR), Orthogonal Matching
Pursuit (ORMP), Passive Aggressive Regressor (PAGR), Random Forest Regressor (RAFR), and Ridge Regression (RIDR). MXLK-t follows the likelihood maximization
approach with the tanh functional form reported by Peters and Trout;> MXLK-s employs the likelihood maximization with a sigmoidal function [similar to Eq. (6)] used by Jung
et al.’> CREM-t uses the tanh functional form reported by Mori et al.,> and CREM-s is using the cross-entropy minimization with sigmoidal function [Eq. (6)]. In (a) and (b),
the method 1 and method 2 models are aligned for comparison. Bars with zero R? values are not displayed.
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FIG. 4. Alanine dipeptide in vacuum learning rate plots from the two selected ML models: (a) LGBM method 1, (b) LGBM method 2, (c) CREM method 1 (CREM-s),
and (d) CREM method 2 (MXLK-s).
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that of the LGBM. The learning rate curves for LGBM and CREM
converge about 600 data points for training scores in both ML mod-
els. While CREM training was completed after 600 data points for
the cross-validation score, LGBM continued to improve as more
data were added to the pool.

To provide a more detailed comparison of the accuracies
offered by these two selected machine learning models, we present
correlation plots of the test datasets. These plots assess the accu-
racy of the methodology by showing the diagonal relation between
the actual data (x axis) and its predicted value (y axis). We com-
pare the LGBM model using two mathematical representations
[Figs. 5(a) and 5(b)]. We also show the MXLK comparison in the
supplementary material [Fig. S15(a)]. We observe a similar perfor-
mance for method 1 and method 2. The major difference is observed
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when we compared the two machine learning models (LGBM and
CREM) [Figs. 5(a) and 5(b) vs Figs. 5(c) and 5(d)]. Similar to the
differences in RMSE and R* scores, LGBM shows a slightly bet-
ter performance than CREM in providing higher cross correlations
and better diagonal fit of the data. Note that the difference is minor
between the ML models.

After the training, the coefficients extracted from the model
rank the features based on their importance. For example, features
with high weight a,, in CREM suggest that this feature is essential to
determining the committor value and likely plays a role in the con-
formational transition. To examine the feature importance analysis
of each method, we compared the features selected by the LGBM and
CREM models. Figure 6 shows the ranking of the dominant features
based on each method and the ML model.
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FIG. 5. Alanine dipeptide in vacuum correlation plots for the test data from the two ML models: (a) LGBM method 1, (b) LGBM method 2, (c) CREM method 1 (CREM-s), and
(d) CREM method 2 (MXLK-s). P5 exp denotes the true committor value, while Pg calc denotes the model prediction.
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FIG. 6. Alanine dipeptide in vacuum feature ranking plots for the two ML models: (a) LGBM feature importance using method 1, (b) LGBM feature importance using method 2,
(c) optimized coefficient values for CREM method 1 (CREM-s), and (d) optimized coefficient values for CREM method 2 (MXLK-s). Dihedral abbreviations are displayed in

Fig. 2(a) and in Table SI.

Feature importance analysis allows for providing a ranking
between the features. Interestingly, in both ML models and meth-
ods, the three angles 6, ¢, and y were ranked high for the transition
of alanine dipeptides Cqax to Cgq in vacuum. The importance of ¢
and v for alanine dipeptide is well established. Studies have also
reported the importance of the angle 6, especially when the alanine
dipeptide is in vacuum.”'*'**'% In our study, minor differences
were observed between the two methods in ML models. Based on
the LGBM model, the highest-ranked features are 6, 63, 64, and ¢,
dihedrals. In contrast, the CREM model identified ¢, 04, 02, and ¢
as the most important features.

Another approach to uncovering details of transition pathways
is by using SHapely Additive exPlanations (SHAP) analysis. SHAP
analysis provides a more in-depth analysis of the essential features
and offers insights into how each feature contributes to the observed
committor value. Details of the SHAP methodology can be found
in Sec. IT and in Refs. 71 and 72. In this study, we focus on how
this algorithm, coupled with the ML model, provides a detailed
mechanistic understanding of the dynamics of the conformational
transitions in the case of alanine dipeptides.

Figure 7 displays the SHAP global feature ranking in a SHAP
summary plot for the ML models. A SHAP summary plot displays
the features ranked from most significant to least significant (y axis),
similar to the analysis of the importance of the feature in Fig. 6.
The x axis of the summary plot reports the distribution of confor-
mations projected on the SHAP value for each important feature
(Fig. 7). In addition, the color bar in the summary plot establishes a

relationship between the feature and the outcome, here in our
case, the committor value. The distribution of data points cen-
tered around a zero SHAP value suggests that an increase/decrease
of the feature does not impact the predicted committor value.
A distribution centered on a positive SHAP value suggests
that the increase in the feature leads to an increase in the
predicted committor value. Similarly, the distribution of the
SHAP value localized in the negative region implies a negative
correlation.

We will now examine the insights derived from the two models
using SHAP analysis and compare our results with the analysis of
feature importance in Fig. 6. The SHAP analysis of the LGBM model
identifies ¢ and 6 dihedrals as essential, in agreement with previous
reports.”'*7*'"> Note that the exact dihedrals identified differ from
the “feature importance” analysis displayed in Figs. 6(a) and 6(b),
but the importance of 6 and ¢ is captured in both approaches. For
the LGBM model, method 1 implies that dihedrals ¢y 55 04, and
0, are essential to describe the dynamics. For method 2, the model
suggests the same dihedrals with a slight change in ranking. As the
color bars indicate, higher sin ¢, feature values negatively correlate
with the value of the committor. In contrast, higher sin ¢, feature
values positively correlate with the value of the committor for the
alanine dipeptide in a vacuum.

In Figs. 7(c) and 7(d), we present the SHAP analysis for the
CREM model. Similar to LGBM, the model selects five to six dihe-
drals to explain the committor value. In agreement with LGBM, the
CREM model identifies ¢, 64, 6, and ¢, as important degrees of
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FIG. 7. Alanine dipeptide in vacuum SHAP feature ranking plots for the two ML models: (a) LGBM method 1, (b) LGBM method 2, (c) CREM method 1 (CREM-s), and (d)
CREM method 2 (MXLK-s). Dihedral abbreviations are displayed in Fig. 2(a) and in Table SI. The y axis ranks the features from the most important (top) to the least (bottom).

freedom. Furthermore, the CREM model also suggests that v and
v, are a secondary set of important features [Figs. 7(c) and 7(d)].
Strikingly, the feature importance displayed in Fig. 6 and the SHAP
analysis of the CREM model produce the same rankings for the top
set. The SHAP analysis and optimized CREM coefficients share the
same ranking in the alanine dipeptide. The top-ranked features of
method 1 and method 2 are the same, with minor variations in the
order observed. These results are similar to the work of Kikutsuji
et al.'® using a different version of SHAP analysis.

SHAP values computed based on Eq. (15) allow for the assess-
ment of the importance of each feature, which is then used to rank
them. In addition to the global feature importance computed based
on the entire range of the committor, the decision plots monitor
the convergence of local feature rankings to various committor val-
ues. This way, we monitor how our ML model improves by adding
new features to describe specific committor values, namely, Pp = 0,
0.25, 0.50, 0.75, and 1 (Figs. S9-S12). Based on this analysis, we
conclude that including five to six features is sufficient to achieve
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high accuracy in predicting the committor values based on dihedral
angles.

The differences in the feature ranking approaches give rise to
which method is more accurate in describing the dynamics of ala-
nine dipeptides. To address this, we trained the models using feature
importance ranking (Fig. 6) or SHAP feature ranking (Fig. 7) by
adding features one by one. We computed the RMSE values for the
top N input features of the LGBM and CREM models. The results
are shown in Fig. 8.

We found that the SHAP ranking generally resulted in lower
RMSE values than the feature importance ranking for LGBM. Both
method 1 and method 2 displayed similar accuracy for alanine
dipeptides. Unlike the SHAP rankings, the feature importance rank-
ing resulted in higher RMSE values for the same number of features.
Interestingly, the two representations (method 1 and method 2) also
show variations.

LGBM with SHAP analysis resulted in a highly accurate
description of the dynamics, even with the first four dihedrals. The
CREM model, however, shows a high RMSE value suggestive of
poor prediction with the first four features selected. All versions of
CREM give rise to the same dependence on several input features,
and accuracy remains lower than the LGBM-SHAP combination.

Based on LGBM coupled with SHAP, we identify four dihe-
drals in alanine dipeptide that capture the dynamics of C7¢4 to C7x
in vacuum. Our automated methodology reduces the conformation
space from 45 dihedrals to four. The selected angles ¢ and 0 give
rise to high precision in describing the dynamics. Our approach sug-
gests that the dihedral y, often used to monitor the transition, is
of secondary importance in describing the dynamics of the alanine
dipeptide in vacuum.

The feature importance analysis helps to interpret transition
pathways robustly by reducing degrees of freedom. With all plots
in Fig. 7, it is clear that only a handful of the 45 dihedral angles (90
features) play a crucial role. The consensus of the selected features by

o? —e— LGBM-SHAP (M1) —e— CREM-s-SHAP (M1)
0.16¢ ; «-e- LGBM-SHAP (M2) [ -e- MXLK-s-SHAP (M2)
—e— LGBM-FI (M1) —e— CREM-s-FI (M1)
--e- LGBM-FI (M2) «re MXLK-s-FI (M2)
0.14 —
& 0.12}
=
o
0.10-
0.08

ONTOVOVONTOWOMO ONTOOWMONT OO
L B B B B B e Lo B B B B B 0

Top ranked N number of input features

FIG. 8. RMSE score for the N number of top-ranked features trained instead of the
full set of features for the two ML models for alanine dipeptides in vacuum using
method 1 (M1) and method 2 (M2). The method 2 r(q) values are converted to Pg
values before calculating the respective RMSE values. The green color is for the
feature importance (FI) ranking in Fig. 6, and the blue color is for the SHAP ranking
in Fig. 7. The solid lines are for method 1, and the dashed lines are for method 2.
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the ML models confirms the general usefulness of ML in identifying
reaction coordinates of conformational transitions.

The SHAP feature ranking calculations treat all input features
as independent, but correlations may exist between them. To iden-
tify these correlations, we used interaction plots. An interaction
plot visualizes the SHAP values projected on two features simulta-
neously, allowing for a more detailed examination of relationships
between features that may show variations between ML models. Our
analysis used a decision tree-based correlation analysis for LGBM
and a linear SHAP interaction plot for CREM. From the top-ranked
global feature rankings (Figs. S1-S4), we selected the four highest
correlating input features. On the x axis of the plots, we display
the top-ranked global feature value, while the color bars indicate
the most correlated feature selected from the pool. For instance,
Fig. S1(b) indicates that for LGBM method 1, sin¢, is the top-
ranked global feature highly correlated with cos 04, sin 04, sin 6, and
cos 6. Dark color bars correspond to higher values of sin 64 on the
x axis and negative SHAP values, implying that these two dihedral
combinations lower the predicted committor value.

B. Disarcosine peptoid in implicit water

As our second example, we studied the conformational tran-
sition of a peptoid system. Peptoids are a class of peptidomimetic
oligomers composed of N-substituted glycine units. Despite their
inability to form hydrogen-bond networks, they adopt stable three-
dimensional structures not accessible by standard peptides. Pep-
toids exhibit notable characteristics, such as the ability to introduce
diverse side-chain functionalities and resistance to hydrolytic degra-
dation by proteases. As a result, they have become potential candi-
dates for biomedical applications with superior biocompatibility and
potent biological activities.'** """’

We focused on the conformational transition of the disarco-
sine peptide [Fig. 9(a)]. Due to its relatively complex structure and
the use of an implicit water model in our study, this system posed
a greater challenge than the alanine dipeptide. Disarcosine has 66
dihedral angles, listed in Table SII. Following the convention, "%’
the conformational state is characterized by middle backbone angles,
designated here as ¢(—1)2, y(-1)1, w1, ¢,, and .

In order to sample the conformational space of disarcosine,
we used UFED simulations, in which all middle backbone dihedrals
(five CVs) were targeted for enhanced sampling. The free energy sur-
face was then projected onto the dihedral angle pairs ¢, and y, and
¥, and w; [Figs. 9(b)-9(d)]. Previous studies'”” """ reported that the
cis ap and trans ap states are essential regions of the conformational
space. Consistent with these studies, we observe distinct minima
corresponding to those states [Figs. 9(b) and 9(c)]. Selecting confor-
mations at the dividing surface between the two basins (Table III),
we shot unbiased trajectories to sample transition paths. In Fig. 9(d),
we show the computed committor distributions constructed for the
training and test datasets.

We applied the ML approaches described earlier to predict
the committor values based on the dihedrals input. Tables SV and
SVI show the mean of the ten-fold cross-validation results obtained
from the ML models trained on the dataset. Similarly to Sec. IV A,
we evaluated the performance of two mathematical representations,
referred to as method 1 and method 2. We present the performance
of each approach based on R* and RMSD in Fig. 10.
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FIG. 9. (a) The disarcosine molecule with atom indices and dihedral angle abbreviations (Table Sll). The two stable conformers cis ap, trans ap states and the UFED free
energy map projected onto the angles (b) ¢, and v, and (c) w and ;. (d) The true committor probability distributions for test and train datasets.

TABLE lll. The disarcosine conformational states and the range used to define the transition state (TS) for committor analysis.

States ¢, range Y, range w; range
cis ap 200 > and <350 150 > and <250 (0 > and < 50) or (300 > and < 360)
trans ap

50 > and < 150

Snapshots extracted 150 > and < 200

150 > and < 250
150 > and < 250

125 > and < 225
250 > and < 300

Due to the added complexity of disarcosine, we observed an
overall reduction in the ML models’ performance. The ML models
that performed well on the alanine dipeptide system showed a simi-
lar trend with disarcosine, suggesting that the performance rankings
are independent of the specific molecule under study. The LGBM
remained the best-ranked among the ML models (see Tables SV and
SVI) with an R? score of 0.75 and an RMSE score of 0.07. The cor-
relation plots remained high with the computed and predicted data
and stayed diagonal for methods 1 and 2 (see Fig. 12). One striking

observation we made is that, while the training scores converge with
about 600 data points, the training scores continued to increase with
added data, suggesting that further improvements could be possible
for LGBM.

In contrast, the CREM model’s R* score fell to around
0.4, with an RMSE greater than 0.1 for both methods, suggest-
ing a poor description of the committor values. Learning curves
show no improvement after 600 training instances [Figs. 11(c)
and 11(d)]. The cross correlation plots also fail to hold their
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FIG. 10. Disarcosine in implicit water, RMSE, and R? values for different ML models trained (a) with method 1 and (b) with method 2. The method 2 output r(q) converted to
Pg values as demonstrated in Table SVI. We benchmarked the ML methods described in Fig. 3. Results with zero R? values are not shown.
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FIG. 11. Disarcosine in implicit water learning rate plots from the two ML models: (a) LGBM method 1 and (b) LGBM method 2. (¢) CREM method 1 (CREM-s) and (d) CREM

method 2 (MXLK-S).
diagonal shape, and correlation scores in CREM [Figs. 12(c) and As the CREM model did not perform well, we focused on
12(d)] remain low in disarcosine, unlike in the case of alanine LGBM. We investigated the important features leading to the con-
dipeptide. The learning rates of MXLK also show the same trend formational transition of disarcosine between the two states. We
[Fig. S14(b)]. looked at features selected by the LGBM feature extraction method
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FIG. 12. Disarcosine in implicit water correlation plots for the test data from the two ML models: (a) LGBM method 1 and (b) LGBM method 2. (c) CREM method 1 (CREM-s)
and (d) CREM method 2 (MXLK-s). P} exp denotes the true committor value, while Py calc denotes the model prediction.

(LGBM-F) and LGBM coupled with the SHAP feature extraction
method (LGBM-SHAP). Results are summarized for comparison in
Figs. 13 and 14.

Previous studies highlight the importance of y,, w1, and ¢,
dihedral angles.'”'" In Fig. 13, we show what the ML algorithm
with method 1 identifies sin w3 as the most important feature, fol-
lowed by cos b, and cos ws. On the other hand, method 2 shows
fairly different dihedrals in the top five rankings. The angles iden-
tified by method 1 were picked but with lower feature importance
scores. The discrepancies observed between the two mathemati-
cal representations suggest problems in the LGBM-feature ranking
combination as the complexity of molecular structure increases.

The LGBM coupled with SHAP analysis, on the other hand,
identifies siny,, cosws, cosw;, and coswy as the five essential
degrees of freedom for both method 1 and method 2. A slight vari-
ation in the ranking order is the only difference between the two

representations, suggesting that LGBM-SHAP is a more consistent
model to provide essential features.

Unlike the discrepancy in feature rankings between mathe-
matical representations, LGBM coupled with SHAP global ranking
offers a more consistent picture that weakly depends on the choice
(method 1,2). Then, we turn our attention to the SHAP inter-
pretation. We first check the important features locally. SHAP
feature ranking analyses were performed for values of Pp =0,
0.25,0.5,0.75,1 from the test dataset, as shown in the decision plots
for each method (Figs. S13-S16). One striking difference is that the
number of CVs needed to accurately represent the committor val-
ues becomes higher than that of the alanine dipeptide, likely due to
the added complexity. Instead of four to five dihedrals that were suf-
ficient to describe committor values with set accuracy in the case
of alanine dipeptides, SHAP analysis suggests about ten features to
describe the transition in the case of disarcosine.
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FIG. 13. Disarcosine in implicit water feature ranking plots for the two models: (a) feature importance value from LGBM method 1 and (b) feature importance value from

LGBM method 2. The dihedral abbreviation is displayed in Fig. 9(a) and in Table SlI.
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FIG. 14. Disarcosine in implicit water SHAP feature ranking plots from the LGBM model: (a) LGBM method 1 and (b) LGBM method 2. The dihedral abbreviations are
displayed in Fig. 9(a) and in Table SlI. The y axis represents the features ranked from the most important to the least.

In order to assess which feature extraction method gives rise
to a more accurate description of the dynamics, we compared
the impact of the N highest ranked input features of the LGBM
model based on the conventional feature importance (Fig. 13) with
the SHAP feature ranking (Fig. 14). Figure 15 compares the two
approaches. Similar to the alanine dipeptide example, a lower RMSE
is observed for the LGBM-SHAP combination compared to fea-
ture importance. This trend remains the same for both methods
(method 1 and method 2).

While visualizing ten angles is challenging, the analysis in
Fig. 15 and in Fig. 14 suggests that the first four features give rise
to an RMSE score small enough to reduce the dimensionality fur-
ther. Based on these features, we uncover a new dihedral angle,
v,. Interestingly, this feature does not change between the end-
point cisap and transap states and has not been identified in earlier

studies. Our approach, based on dynamic information, rather than
looking at the variance at the metastable states, highlights the tran-
sient yet crucial hidden features in the transition pathway. Our
approach allows for a more accurate representation of the reac-
tion mechanism. Note that this feature might be overlooked by
intuition-based or basin-based approaches.'! In addition to v,,
the LGBM model identifies multiple w dihedrals as crucial dihe-
drals. These features serve almost equally with y, in determining
the predicted committor values. Interestingly, unlike y,, these angles
show variation when disarcosine transits between cis ap to trans ap
states.

Through the coupling of LGBM and SHAP global analy-
sis, we have identified transient features that never show vari-
ation at the metastable states and features that show variation
at the end states in one framework. This robust approach can
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FIG. 15. Disarcosine in implicit water, N number of top-ranked features trained
instead of the full set of features in the training dataset, and the calculated RMSE
values for the LGBM model with both method 1 (M1) and method 2 (M2). The
method 2 r(q) values are converted to Pg values before calculating respective
RMSE values. The green color is for the feature importance (FI) ranking in Fig. 13,
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potentially describe the features that play a key role in the tran-
sition state and identify the metastable states of the confor-
mational transitions. To elucidate the relationships between the
essential degrees of freedom, we looked at their interactions to
study whether these two groups of features (y,w) are correlated
(Figs. S5 and S6). Interestingly, we observe a high level of corre-
lation between the two degrees of freedom; v, interacts with wy,
w3, and wy, likely due to its proximity or due to the geometric
constraints imposed by the covalent architecture on the molecular
system.

The LGBM method coupled with SHAP analysis identifies
¥, w3, and w; as essential degrees of freedom, in addition to
v, and ¢, used to separate the cis and trans states (Table III)
[Fig. 16(a)]. To visualize the committors projected onto these
essential coordinates, we plot the selected angle distributions
from the transition path conformations at different committor
values [Fig. 16(b)]. The committor values provide a monotonic
change along the reaction coordinate obtained from these angles.
Based on our methodology, along the transition path from cis

ap to trans ap, the disarcosine angles w 1,3 rotate ~60° anti-

clockwise, while the angles v, change ~30° in the opposite
direction.

and the blue color is for the SHAP ranking in Fig. 14. The solid lines are for
method 1, and the dashed lines are for method 2.
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FIG. 16. Disarcosine in implicit water and top-ranked dihedrals and their change during the transition from cis to trans «p states (as shown in the free energy plotin Fig. 9). (a)
Representative starting conformations show true committor values of Py of 1.0, 0.75, 0.50, 0.25, and 0.0. (b) Dihedral angle probability distribution of starting conformations
at true committor values of Py of 0, 0.25, 0.5, 0.75, and 1.0. The dihedral angles are highlighted above the plots with colors according to the probability distribution.
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V. CONCLUSIONS AND DISCUSSIONS

We investigated the performance of various machine learn-
ing techniques to determine the essential degrees of freedom for
conformational dynamics. Seventeen different ML methods were
tested on two model systems. Our results suggest that decision tree
approaches perform better than regression methods in our applica-
tion, possibly due to their ability to capture nonlinear relationships,
identify complex interactions between variables, and handle noisy
data. Linear regression models assume linear, additive relationships
between variables and are sensitive to outliers. LGBM, a decision
tree-based method, overcomes the limitations of other gradient-
boosting decision tree methods by leveraging two novel techniques:
Gradient-based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB). Details of how these techniques improve perfor-
mance can be found in Ref. 67. We collected a significant number
of configurations to ensure statistical convergence and evaluate the
performance of each ML method. The specific amount of data
required for the task vary based on the desired level of accuracy set
by the user. Our findings, as represented in Figs. 4 and 11, demon-
strate that 600 configurations are adequate to achieve the necessary
accuracy.

We studied the conformational transition C7a to C7¢4 of the
alanine dipeptide in vacuum and the transition of disarcosine from
cisap to transap in an implicit solvent. ML methods successfully
identified a subset of features; however, our study showed that
decision tree-based methods give rise to a better description of
the dynamics with smaller prediction errors in recapitulating the
committor values. Although the CREM approach shows promis-
ing results for the gas-phase alanine dipeptide dynamics, CREM did
not provide an accurate description of the dynamics as the degrees
of freedom increased in the case of disarcosine. Among the meth-
ods investigated, LGBM performed consistently better for different
model systems and using different cost functions.

We employed feature extraction approaches to gain insights
into the transition path’s dynamics. In addition to the classical fea-
ture extraction functionalities of CREM and LGBM, we employed
SHAP as a new tool to probe essential features and their interactions.
We showed that it could provide unprecedented detail in elucidating
complex molecular transitions. We also see that although CREM fea-
ture extraction and SHAP analysis provide similar features, LGBM
feature extraction and SHAP analysis differ. We find that LGBM
coupled with SHAP analysis provides the most robust description
of the conformational dynamics of the two systems under study.

For the alanine dipeptide in vacuum, SHAP analysis for the
LGBM model of both methods implies that the essential coordinate
is 0,. This feature predominantly interacts with ¢,, ¢,, and ¢,, which
are also top features in rankings. Similarly, SHAP analysis suggests
that the two dominant features (6 and ¢) complement each other to
produce a given committor value. The SHAP analysis of the CREM
method chooses ¢, as the top-ranked features for both mathemati-
cal representations. Similarly, the LGBM model ranks ¢, and 6, and
shows that these two variables complement each other. Our analysis
further supports previous studies, suggesting the two critical degrees
of freedom ¢ and 6 for alanine dipeptides in vacuum.

We find that for predicting an alanine dipeptide, a linear com-
bination of features based on Eq. (4) is enough to achieve high
accuracy. However, for more complex molecules or explicit water

ARTICLE pubs.aip.org/aip/jcp

models, neural networks may be a better option due to their versa-
tility. By studying disarcosine in an implicit solvent, we introduce
higher dimensions and complexity that allow for the critical assess-
ment of the ML models. The LGBM model, which performs opti-
mally with SHAP analysis, suggests v, as the most important feature.
Interestingly, the change in this angle is transient, so it is impossi-
ble to be detected by end-state analysis of the metastable states. This
angle is coupled with wy, w, and ¢,.

In this study, we focus on vacuum and implicit solvent sys-
tems, and we examined dihedral angles as features. In a forthcoming
study, we plan to investigate explicit water models with different
collective variables that involve long-range contacts and solvent
degrees of freedom. In our application, the committor relies on
static data from geometric features. An alternative strategy, espe-
cially for the gas phase conformational transitions, is to incorporate
the dynamics of atom positions into the features. This could be done
using inertial likelihood maximization,”’ which we plan to explore
in future studies. Peters demonstrated that binomial deconvolu-
tion, instead of the committor estimate, can significantly decrease
the computational expense of committor analysis by a factor of
10 or more in maximum likelihood.”"""” Similarly, the effective-
ness of LGBM could be enhanced by training it on binary out-
come data because decision trees can act as classifiers just as can
be done with the maximum likelihood method. Studying complex
biomolecular transitions, such as large conformational transitions
occurring in enzymes or allosteric transitions, would be interest-
ing. In addition, we plan to explore more complex machine-learning
models. Our findings indicate that to represent the alanine dipep-
tide accurately, a linear combination of features based on Eq. (4)
is sufficient. However, other models, such as neural networks,
may, due to their versatility, be a better option for more complex
molecules or systems involving explicit water. Specifically, models
such as neural networks may provide greater accuracy, enabling the
study of complex molecular transitions involving solvent degrees of
freedom.

SUPPLEMENTARY MATERIAL

The supplementary material includes alanine dipeptide and
sarcosine dipeptoid molecules, dihedral angle definitions with atom
indices, regression model comparison tables, SHAP feature inter-
action plots, SHAP decision plots, learning curves, and correlation
curves comparing LGBM with the MXLK-t approach.
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