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ABSTRACT: Infectious disease dynamics operate across biological
scales: pathogens replicate within hosts but transmit among popu-
lations. Functional changes in the pathogen-host interaction thus
generate cascading effects across organizational scales. We investi-
gated within-host dynamics and among-host transmission of three
strains (SAT-1, -2, -3) of foot-and-mouth disease viruses (FMDVs)
in their wildlife host, African buffalo. We combined data on viral
dynamics and host immune responses with mathematical models
to ask the following questions: How do viral and immune dynamics
vary among strains? Which viral and immune parameters deter-
mine viral fitness within hosts? And how do within-host dynamics
relate to virus transmission? Our data reveal contrasting within-
host dynamics among viral strains, with SAT-2 eliciting more rapid
and effective immune responses than SAT-1 and SAT-3. Within-
host viral fitness was overwhelmingly determined by variation
among hosts in immune response activation rates but not by vari-
ation among individual hosts in viral growth rate. Our analyses in-
vestigating across-scale linkages indicate that viral replication rate
in the host correlates with transmission rates among buffalo and
that adaptive immune activation rate determines the infectious pe-
riod. These parameters define the virus’s relative basic reproductive
number (R,), suggesting that viral invasion potential may be pre-
dictable from within-host dynamics.
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Introduction

Linking pathogen dynamics across biological scales, from
cellular and molecular interactions within the host’s
tissues to transmission among individuals and popula-
tions, is critical to understanding ecological and evolu-
tionary trajectories of host-pathogen systems and repre-
sents a central challenge in disease ecology (Plowright
et al. 2008; Pongsiri et al. 2009; Wale and Dufty 2021).
Multiscale models of infectious disease dynamics seek to
address this challenge by linking mechanistic models rep-
resenting pathogen-host interactions at cellular to popu-
lation scales. Developing the mathematical tools for con-
necting dynamic processes operating at vastly different
temporal and spatial scales has been an active focus in
infectious disease modeling (Kadelka and Ciupe 2019;
Agyingi et al. 2020; Browne and Cheng 2020; Garabed et al.
2020; Garira 2020; Jia et al. 2020; Rivera et al. 2020; Xue
and Xiao 2020; Versypt 2021). However, these theoreti-
cal innovations have yet to be matched by empirical data
generation, providing integrated datasets that consistently
document infection processes in the same host-pathogen
system across organizational scales.

In this study, we leveraged experimental data on within-
host dynamics and among-host transmission of three
strains of foot-and-mouth disease viruses (FMDVs) in
their wild reservoir host, African buftalo (Syncerus caffer).
We constructed a data-driven mathematical model to un-
derstand the interplay between viral population growth
and its limitation by the host’s immune responses. We
then investigated to what extent parameters capturing
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within-host viral dynamics can predict variation in viral
fitness at within- and among-host scales. Within the host,
we define fitness as viral production in terms of peak and
cumulative viral load. As such, these are both measures of
relative success between viral strains. At the population
scale, we assessed fitness in terms of the relative basic re-
productive number R,, assuming constant contact rates
and population densities (note that as with any proxy,
R, is an imperfect measure of fitness; for a discussion of
its limitations and alternative metrics, see Lion and Metz
2018). The basic reproductive number is defined as the
mean number of secondary infections caused by a single
infected host in a wholly susceptible population; R, repre-
sents the pathogen’s ability to invade susceptible host pop-
ulations (see Diekmann et al. 1990). Thus, our approach
connects within-host viral dynamics to the potential for
pathogen spread in host populations, providing a first step
toward integrating data and disease dynamic models
across biological scales in this study system.

FMDVs in African buffalo provide a tractable model
system for studying natural populations’ multiscale infec-
tion processes. FMDVss are highly contagious viruses that
cause clinical disease and substantial production losses in
domestic ungulates, while endemic infections in their wild-
life reservoir tend to be milder (Gainaru et al. 1986; Coetzer
et al. 1994). FMDVs are ubiquitous in African buffalo
(Coetzer et al. 1994), with three distinct serotypes circulat-
ing in wild buffalo populations essentially independently
in southern Africa (Thomson et al. 1992; Vosloo et al.
1996; Maree et al. 2016), allowing meaningful comparisons
across sympatric viral strains. FMD is the most important
trade-restricting livestock disease globally. As a result,
well-established methods exist for virus culture, experi-
mental challenges, diagnostics, and quantifying immune
responses (Stenfeldt et al. 2011; Maree et al. 2016; Couch
et al. 2017; Glidden et al. 2018; Jolles et al. 2021).

Previous work has shown that FMDV strains vary sub-
stantially in their transmission dynamics among buffalo
hosts (Jolles et al. 2021), and viral proliferation and im-
mune response patterns in buffalo have been described
(Perez-Martin et al. 2022). However, the functional inter-
play of within-host viral and immune dynamics has yet to
be evaluated in buffalo, compared among Southern African
Territories (SAT) serotypes, or aligned with population-
level disease dynamics. In this study, we combined exper-
imental infection data and a mechanistic mathematical
model to ask the following questions: How do viral and
immune dynamic interactions vary among FMDV strains?
Which viral and immune parameters determine viral fit-
ness within hosts? And how do within-host dynamics re-
late to virus transmission among hosts? Our data and
models show that variation among viral strains in dynam-
ics within buffalo hosts is reflected in variation in transmis-

sion dynamics among hosts, demonstrating agreement in
viral dynamics across biological scales.

Material and Methods
The Data

We conducted transmission experiments in which time
series data were collected to quantify viral and immune
kinetics within each host and to estimate epidemiological
parameters such as transmission rate and infectious pe-
riod for one strain of each serotype for primary (acute)
FMDYV infection. By acute infection, we mean the time
from the beginning of infection to the clearance of the vi-
rus from the blood of each host. Population-scale data
and parameter estimates were published along with our
prior work (Jolles et al. 2021). Detailed experimental pro-
tocols are available in published form (see Jolles et al. 2021;
Perez-Martin et al. 2022); we summarize the most perti-
nent details here. See the supplemental PDF for a detailed
explanation of the computational methods.

Four buffalo were needle infected for each strain and
allowed to contact four naive buffalo. These naive buffalo
were then captured on contact days 0, 2, 4, 6,9, and 12 dur-
ing the acute phase and again at 28 days after contact to
measure viral and immune parameters. While several mark-
ers for the immune responses were considered (Perez-
Martin et al. 2022; Macdonald et al. 2024), here we fo-
cus on the innate response, as measured by haptoglobin
(log,o(ng/mL)) and virus (log,o(genome copies/mL)), and
the adaptive response, as measured by virus neutraliza-
tion titer (log,((VNT)). Fever periods were estimated on
the basis of continuously gathered temperature data ob-
tained via surgically implanted temperature loggers in each
buffalo (for details, see Perez-Martin et al. 2022). The im-
pact of the route of infection on model parameters is dis-
cussed extensively in the supplemental PDF. We find signif-
icant differences between the needle- and contact-infected
hosts and focus our analysis here on the contact-infected
hosts (i.e., animals infected via a natural route of infection).

The Mathematical Model

Within-host tissue tropism in FMDYV is complex (but see
Lietal. 2021). Generally, within a given host, FMDV’s first
target pharyngeal epithelium and then, for primary infec-
tions, spread to many other cell types. Hosts have “acute
infection,” that is, are viremic in both domestic cattle and
buffalo for 6-12 days (including incubation; Yadav et al.
2019; Perez-Martin et al. 2022). Our model (see system
[1]; table 1; fig. 1) includes the pathogen population (P(7));
innate (I(7)) and adaptive (A(7)) immune effectors, where
7 refers to time since infection of the host; and initial



Table 1: Key model quantities with description
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Quantity Description Note

P(7) Pathogen (SAT-1, -2, -3)

I(7) Innate immune response

A(7) Adaptive immune response

T Time since infection began

P, Initial viral load Range: (.005, 1)

I, Initial innate response Range: (.8 x Iy, 1.2 x 1)
A, Initial adaptive response Range: (.8 x Ay, 1.2 x Ay)
r Viral growth rate (maximum) Range: (1, 12)

K Viral carrying capacity Range: (max X}, 12)°

0 Innate clearance rate For fitting, 6 = 0°

1) Adaptive clearance rate Range: (0, 2.25)

A Innate maintenance rate Fixed: .8 x d x min X}

d Innate (haptoglobin) decay rate Fixed: 1/21.23 days ¢

k Maximum innate activation rate Range: (.075, 1)

v Half-saturation for innate activation Range: (.7 x max X}, 1.3 x max X))
a Max adaptive activation rate by dendritic cells For fitting, a = 0°

b Adaptive activation rate (independent) Range: (0, 1.5)

max, P(7) Maximum viral load From fitted time trajectory
[P(r)dr Cumulative viral production From fitted time trajectory

* See “Model Fitting.”

® X}, X are virus and innate data for host j.

< Fixed for individual host j; see table S4, available online.
4 See Glidden et al. 2018.

conditions (densities) I(0) = I,, P(0) = P,,and A(0) = A,.
We fitted this model to three corresponding time series for
each host to elucidate these interactions. We assume that the
virus replicates with a logistic growth rate (1 — P(7)/K),
with a within-host virus carrying capacity absent adaptive
immune response, K. The decision to model viral replication
as logistic instead of exponential growth was made for two
reasons. First, even in the hypothetical absence of an adap-
tive immune response, there is not an infinite number of
cells to infect. Second, we use logistic growth to have a
concentration-dependent viral replication rate, where the
virus replicates more rapidly when fewer cells are infected.
The innate response clears the pathogen at rate 6. The
adaptive immune response, mediated by neutralizing anti-
bodies produced by the host’s B cells, clears the pathogen
at rate 6. On virus introduction, the adaptive immune re-
sponse is activated via two pathways: it ramps up with a
rate b independent of the innate response and responds
to alarm signals induced by innate immune activation with
arate al(7)/(1 + I(7)) (Tizard 2017):

dp _ {r(l _ %) —0I(r) — 5A(T):| P(7),

dr

ar kP(T) _

= A+ V+—P(T)I(T) di(7), (1)
dA I(7)

dr

QTI(T) + bA(T):| P(7).

Innate immune responses, characterized by a marker of
inflammation (haptoglobin), were assessed during exper-
imental infection of buffalo with FMDVs, which yielded
the most consistent fits compared with other measures
of innate immunity that we assessed (see the supplemental
PDF). Our models assume that innate immune response
effectors are always at a maintenance level A/d in the ab-
sence of a virus. On exposure to the virus, the inducible in-
nate immune response is activated at maximum rate k
with half-saturation constant », in terms of viral load, and
decays at rate d, fixed at mean values inferred by Glidden
et al. (2018).

Model parameters are identifiable given the data we
collected (figs. 2, S4; figs. S1-S7 are available online). In
particular, we note that across 12 contact-infected hosts,
the mean average relative error (ARE) is well below the
introduced noise level of 50%. This noise level was chosen
so that our empirical data could have been plausibly gen-
erated by the mathematical model, barring a few obvious
outliers (i.e., that the nonoutliers fall within the 95% con-
fidence intervals [CIs]; see figs. 2, S5, S6).

As an additional reality check for our models, we com-
pared model output against data on fevers mounted by
the animals. The model-inferred time course of immune
and viral dynamics was reasonable in the context of clin-
ical signs (for details of the temperature data, see Perez-
Martin et al. 2022; for a visual representation of these
inferred fever quantities, see the shaded boxes in fig. 2).
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Figure 1: Model diagram corresponding to system (1). Compartments are pathogen (P), innate immune response (I), and adaptive immune
response (A), and 7 is time since infection began. Solid arrows represent population transitions (replication, clearance, maintenance, decay),
and dotted arrows represent activation interactions. The border around arrow labels corresponds to the associated compartment: solid for

pathogen, short dash for innate, and long dash for adaptive.

There was some variability among viral strains and indi-
vidual hosts in the timing and magnitude of the fever re-
sponse to FMDV infection. However, for the most part
buffalo mounted fevers as viral loads peaked and main-
tained elevated body temperature until most of the virus
had been cleared—as one would expect for an acute viral
infection (Tizard 2017).

Model Fitting

Parameter estimates for each host were obtained by tak-
ing a weighted sum of the numerical solutions to the
model compartments (with weights, which were treated
as a chosen hyperparameter for each host so that the
ARE was reduced while retaining the visual quality of
model fits; see Macdonald et al. 2024) as an objective
function in a simultaneous nonlinear least squares fitting
(via the interior reflexive Netwon-Rhapson method as
implemented by Matlab’s Isqcurvefit function) to three
time series each: innate response, as measured by hapto-
globin (log,,(ug/mL)) and virus (log,,(genome copies/
mlL)), and adaptive response, as measured by virus neu-
tralization titer (log,,(VNT)). This was done for each host
given a wide range of possible host-specific infection start
times as part of a profile (pseudo) likelihood approach.
Inherent to this choice is that it is unclear how to pool
the infection start times of each host for a hierarchical ap-
proach. While it is likely not strictly true that each host’s

infection start times are independent, we cannot identify
which host infected which host from a single infection ex-
periment. Additionally, both serotype-specific transmis-
sion qualities and host-specific immunogenicity likely
play a role in infection start time relative to the initiation
of contact.

For both the viral and the adaptive immune assays, an
individual data value of zero is an indication of failure of
detection (due to concentration falling below the detec-
tion limit; see Perez-Martin et al. 2022). As such, when
taking the log of the innate immune data, which was ini-
tially recorded in micrograms per milliliter, before fitting,
we take the log of only the positive values to retain consis-
tency with the other assays. Thus, in the model time tra-
jectories, a value of zero indicates that the virus has been
cleared from the blood after the virus’s proliferation period.
We cannot know precisely when clearance occurs, only
when the virus is below detectable levels. Built-in errors
such as this are a large part of why we perform practical
identifiability analysis, as described below.

Data were collected for contact-infected hosts on con-
tact days t = {0,2,4,6,9,12,28} and for needle-infected
hosts on contact days ¢ = {—2,0,2,4,6,9,12,28}. For
our data fitting, we first randomly draw an infection start
time, 7, € (0,7" — 1), according to the posterior distribu-
tions obtained for each host in Gubbins (2021), where 7"
is the time of the first measured positive viral load in con-
tact days. Once done we obtain initial estimates for initial
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Figure 2: Within-host dynamics of foot-and-mouth disease viruses in African buffalo. Our model reproduces in vivo observations. The
vertical dashed line indicates the host-specific maximum infection start time (Gubbins 2021). Before this line, the dotted lines indicate a
sample of 20 model trajectories. Medians are represented by lines, and 95% confidence intervals are given by shades; haptoglobin is measure
of innate response (light gray; log,(ug/mL)), viral data are represented by colored shades (log,,(genome copies/mL)), and virus neutrali-
zation titer (log,,(VNT)) is measure of adaptive response (dark gray). Virus data are indicated with asterisks, haptoglobin with plus signs,
and VNT with circles. The “F. start” and “F. end” lines indicate the period a fever was detected. Lack of fever indicates logger malfunction. A
value of zero for a given data point indicates that the data falls below the detection limit.

viral load, P,, and viral growth rate, r, given 7, and assum- where 7 is the net viral growth rate (in the presence of innate
ing a simple exponential growth model up to time 77; that immune response). There are two implicit biological as-
is, for host i sumptions inherent to this fitting. First, since the innate im-

. ' mune response is always present, estimating r this way will
P(1) = Py, 1) <7<7, (2) account for the killing of the pathogen by the innate response
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(thus providing a lower bound for r); second, before the pres-
ence of sufficient adaptive immune response pathogen
growth will be exponential (instead of logistic). The second
is a common assumption in the literature when estimating
viral growth rates (Lloyd 2001; Pawelek et al. 2012). This es-
timate of P, was retained and fixed, while this estimate for
viral growth rate was used as a lower bound and initial esti-
mate for viral growth rate when simultaneously fitted with
other model parameters when we consider the following
viral immunological model (obtained by setting 6,a = 0):

g = {r(l - %) - 6A(7')] P(7),

ar kP(7) B 3
= Ar = I(7) — dI(7), (3)
d—A = bA(7)P(7).

dr

For fitting, we ultimately set a,0 = 0. This simplifica-
tion is numerically justified in that when fit, these quan-
tities were approximately (O(107'°) (see program files;
Macdonald et al. 2024). Setting § = 0 does not indicate
that adaptive clearance and innate clearance rates cannot
be differentiated but that viral replication and innate
clearance cannot be separately identified. At some level,
the innate immune response is always present in vivo.
Thus, the estimate of model parameter 6 ~ 0 indicates
the estimated viral replication rates being net viral repli-
cation rates in the presence of innate immune response.

For parameter a = 0, a value of zero does not indicate that
this pathway is unimportant but instead that we do not ob-
serve it in action. This lack of observation may be due to our
data representing a single snapshot in time every 2 days or
to the chosen proxies used to measure both adaptive and in-
nate immune responses. We anticipate that if it were prac-
ticable to gather data from each host more frequently or if
other proxies for the immune response were measured, then
estimation of this parameter may be possible. However,
collecting samples from each host requires sedation, and
more frequent sampling is thus not practical.

To estimate A, I,, we first fitted a simple linear regression
model to the first three time points of the adaptive and innate
immune response levels, respectively, for each host. We then
took the linear model prediction (denoted Ay, 1,) of the im-
mune response at time 7, as an initial guess for these quan-
tities, and our model fitting allowed these parameters to vary
between 80% and 120% of the regression prediction.

Practical Identifiability Analysis and
Uncertainty Quantification

To assess identifiability, appraise confidence in our fitting
procedure, and identify significant differences (i) between

serotypes within a single route of infection and (ii) within
a given serotype across routes of infection, we conducted
uncertainty analysis via Monte Carlo simulations (10,000 in-
dividual replicates per host) simultaneously with our base-
line profile likelihood estimation. This analysis was carried
out in the following manner (for detailed reviews of iden-
tifiability analysis for nonlinear ordinary differential equa-
tion models, see Miao et al. 2011; Tuncer and Le 2018;
Wieland et al. 2021).

On replicate k, for host j and drawn infection start
time, 7,4, we first obtain parameter estimates, p;;, given
the drawn infection start time and host. Next, we gener-
ate a new dataset using equation (4) under the assump-
tion that the measurement error is independently and
normally distributed with variation relative in magnitude
to the expected total at each data point, i, E(X;j|7,;,) =
h(ui,j’ f’j,k|To,j,k)3

Xi,j = h(”i,j?ﬁj,k|70,j,k) + €k
. (4)
&g ~ 1 (0, B (w Pisloj0) x 5°),
where u(r) = [I(7), P(1), A(7)]".

Then we refit model (3) to the newly generated dataset
according to the steps outlined in the preceding section.
Finally, we calculate the relative error between model fit
parameters from the baseline data and the generated data
for each randomly drawn infection start time, host, and
parameter. We then calculate the ARE for all model
parameters across replicates for each host and the mean
ARE across both needle- and contact-infected hosts (see
fig. S4). Let p;; (£ = 1,..., L) indicate an individual param-
eter for host j and denote its ARE, sample mean ARE,
and sample standard deviation as

k=1 pj,l | 70,k

1 n
[ = — E ARE,,, 5
M ARE, " - 10 ( )

. 1 n .
OARE, = \/n ] ijl (AREj,€ - ,U’AREQ)Za

respectively. Following Tuncer and Le (2018), we say that
parameter p, is (strongly) practically identifiable if the sum
of its sample mean and standard error is less than the in-
troduced noise level:

O ARE,

farg, + N

< 50%. (6)

The results of this analysis indicate that for the contact
infected hosts, the key model parameters and associated
quantities are all practically identifiable assuming the



50% noise level in measurement error (i.e., s = 0.5 in
eq. [4]; see figs. 2, S4).

Results

How Do Viral and Immune Dynamics Vary
among FMDYV Strains?

The three viral strains exhibited contrasting dynamics
within buffalo hosts. Relative to the experiment start,
SAT-1 attains its maximum viral load most rapidly, on av-
erage 3.14 days after contact, while SAT-2 and SAT-3 took
4.438 and 7.22 days, respectively (SAT-1: 2.79-3.62 days;
SAT-2:3.95-4.89 days; SAT-3: 6.44-7.95 days; fig. 3¢). In-
deed, the viral growth rate was negatively correlated with
time to maximum viral load, latency period, and infec-
tion start time (in contact days) among individual hosts
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(figs. 34, 3i, 5a; Pearson correlation across median parame-
ter estimates from 10,000 Monte Carlo simulations for each
of the 12 sample hosts: o = —0.89 [p = 8.5x 107°],0 =
—0.83[p =8.2x10*],ando = —0.85 [p = 5.0 x 104,
respectively). Finally, viral replication and initial viral load
are tightly positively correlated (0 = 0.97,p = 2.1 x 1077).
These relationships point to life history variation among
viral strains. Viruses with fast growth rates appear to reach
their within-host peak load quickly after contact initiation
but require comparatively more viral material to mount a
successful infection.

Host immune responses to FMDYV infection also varied
by strain. Buffalo activated innate immune responses (k; as
measured by haptoglobin, an acute inflammatory protein)
more rapidly when infected with SAT-1 than SAT-3, while
SAT-2 is intermediate between them (SAT-1: 0.30 [95%
CIL: 0.200-0.404]; SAT-2: 0.261 [95% CI: 0.162-0.365];
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Figure 3: Variation among foot-and-mouth disease virus serotypes in viral and immune parameters defining within-host dynamics. Violin
plots represent the empirical distribution of serotype sample mean parameter estimates generated from bootstrap and identifiability analysis
procedure; compact letter display is used to denote statistically significant differences as indicated by the 95% confidence interval for the
difference between means not containing zero.
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SAT-3:0.150 [95% CI: 0.0773-0.256]; fig. 3¢). Buffalo ac-
tivated adaptive immune responses, as measured by
FMDV neutralizing antibody titer (b), more rapidly for
SAT-2 than either SAT-1 or SAT-3 (SAT-1: 0.102 [95%
CIL: 0.085-0.123]; SAT-2: 0.221 [95% CI: 0.174-0.279];
SAT-3:0.164 [95% CI: 0.116-0.263]). Finally, SAT-1 hosts
had significantly (o« = .05) elevated adaptive response
levels at the start of infection relative to SAT-2 and SAT-
3 (SAT-1: 0.187 [95% CI: 0.132-0.261]; SAT-2: 0.048
[95% CI: 0.034-0.063]; SAT-3: 0.047 [95% CI: 0.033-
0.062]). Collectively, these results are indicative of varia-

onmguunnm,

tion among hosts in the speed of their immune responses
(figs. 3, 4).

Which Viral and Immune Parameters Determine
Viral Fitness within Hosts?

The observed differences in viral dynamics and host re-
sponses to infection resulted in differences in viral fitness
among strains: SAT-1 attained high maximum and cu-
mulative viral titers in buffalo hosts. SAT-2 lagged con-
spicuously behind the other strains in cumulative and
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Figure 4: Covariation between parameters capturing viral and immune dynamics within buffalo hosts. Blue indicates SAT-1, green SAT-2,
and red SAT-3. Scatterplots show median parameter estimates from 10,000 replications for each host generated by Monte Carlo simulations.
Pairs of parameters that have significant Pearson correlations are framed in solid black lines.



maximum viral load. The maximum viral load of SAT-2
was 67.3% (95% CI: 50.3%-90.9%) that of SAT-1 and
71.1% (95% CI: 51.8%-98.3%) that of SAT-3, and its cu-
mulative viral load was 32.77% (95% CI: 13.9%-48.25%)
lower than the fittest strains (SAT-1, SAT-3; fig. 3e, 3f).
Total viral production by each host (cumulative viral load)
was driven overwhelmingly by variation among buffalo in
adaptive activation rate: a more rapid adaptive immune ac-
tivation rate was associated with lower cumulative viral
load (fig. 4f; 0 = —0.95, p = 3.6 x 107°). Within-host
viral success thus appeared constrained by each strain’s
ability to evade host immune responses rather than the
viruses’ replication capacity. These findings suggest that
different viral life histories can result in similar fitness in
cumulative and maximum viral loads mediated by the viral
interaction with the host’s immune responses.

How Do Within-Host Dynamics Relate to Virus
Transmission among Hosts?

To explore how within-host FMDV dynamics might scale
up to affect viral transmission among hosts, we compared
parameters fitted to our within-host model to population-
scale parameters derived from the same set of experi-
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ments (Jolles et al. 2021). These analyses indicate that var-
iation in viral growth rate among buftalo correlates tightly
and negatively with the latent period (fig. 5a), such that
buffalo harboring fast-growing viral populations progress
to the infectious class more rapidly. Furthermore, viral
growth rate within the host may correlate with variation
among viral strains in transmission rates (fig. 5b): fast-
growing SAT-1 transmitted among buffalo most readily,
followed by SAT-2, while SAT-3’s slower-paced time to
within-host maximum was matched by slower transmis-
sion among hosts. Variation among hosts in the rate at
which adaptive immune responses against FMDV were
activated correlated with each host’s infectious period
(fig. 5¢).

Together, the transmission rate and infectious period
determine the relative basic reproductive number (R,)
of the virus, which can be calculated as R, = (transmis-
sion rate) x (infectious period) given constant contact
rates and host density (reasonable assumptions given
our experimental setup). Our data on cross-scale linkages
in viral dynamics suggest that viral invasion potential
may be predictable from within-host dynamics. We ex-
plored this idea by comparing R, established previously
(Jolles et al. 2021) by observing transmission of FMDV
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Figure 5: Consilience across scales. a, Viral growth rate is negatively correlated with the latent period. b, Sample mean viral growth rate has
apparent positive trend with transmission rate; the blue line is the best fit linear function, f(r). ¢, Adaptive activation rate is negatively cor-
related with the infectious period; the blue line is the best fit linear function, g(b). d, R,, a population-level quantity that summarizes trans-
missibility, may be viewed as a function of viral growth rate and adaptive activation rate. The contour is generated by taking f(r) x g(b). The
inset shows the correlation between within-host and between-host parameter estimates for R,. In the between-host estimates, the group
estimate of transmission rate is used; all other parameters are individual-host estimates. Blue indicates SAT-1, green SAT-2, red SAT-3.
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between hosts, with R, calculated on the basis of within-
host viral and immune kinetic parameters: we estimated
transmission rate and infectious period as increasing
and decreasing linear functions of viral growth rate and
adaptive activation rate, respectively, and computed R,
as their product (see fig. 5b, 5¢).

The immune parameters used in this estimate (r, b) are
from this work, and the population-scale parameters (1/,
1/€, B) are from Jolles et al. (2021). The data points in
figure 5 represent median parameter estimates for each
contact-infected host. The infectious and latent periods
were both assumed to be gamma distributed, with poste-
rior means for the latent period of 0.5 days (95% CI: 0.02-
2.4), 1.3 days (95% CI: 0.1-3.5), and 2.8 days (95% CI:
0.5-7.0) and posterior shape parameters of 1.2 (95% CI:
0.1-8.7), 1.6 (95% CI: 0.2-9.2), and 1.6 (95% CI: 0.2-
8.3) for SAT-1, SAT-2, and SAT-3, respectively (Jolles
et al. 2021). Similarly, for the infectious period, posterior
means were estimated at 5.7 days (95% CI: 4.4-7.4),
4.6 days (95% CI: 3.5-6.3), and 4.2 days (95% CI: 3.2-
5.8), and posterior shape parameters were estimated at
11.8 (95% CI: 3.5-33.5), 8.7 (95% CI: 2.4-27.0), and
11.8 (95% CI: 3.3-35.3).

We then compared these basic reproductive numbers
derived from within-host viral dynamic parameters (fig. 5d)
to reproductive numbers estimated by observing transmis-
sion among hosts in our experiments (Jolles et al. 2021)
and found that both estimates of R, match qualitatively
(fig. 5d, inset). Our data on three strains of FMDV demon-
strate a good match between R, estimated from within-
host parameters and R, measured by observing disease
transmission among hosts. However, more than three
strains of FMDV will need to be studied to test the robust-
ness of this finding.

Discussion

In this study, we used time series data from viral challenge
experiments involving 12 buffalo acutely infected with
three strains of FMDVs (four buffalo per strain) to pa-
rameterize a mathematical model capturing the dynamics
of viral growth and its curtailment by the host’s immune
responses. We sought to determine the following: How do
viral and immune dynamics vary among FMDYV strains?
Which viral and immune parameters determine viral fit-
ness within hosts? And how do within-host dynamics re-
late to virus transmission among hosts? Despite the mod-
erate number of host individuals included in the study,
identifiability analysis of our model parameters suggests
that our models capture the data well: identifiability anal-
ysis yielded robust interval estimates for model param-
eters by replicating the sample 10,000 times as well as a
metric (ARE) to assess whether model parameters can

be reliably identified from available data. Here, we found
that our model parameters were practically identifiable at
an introduced noise level of 50% (chosen to cover the
original data; see figs. S4-56) and that our results corre-
spond well with independently estimated metrics of fever
within the same hosts (see fig. S4).

Our results uncover variation among viral strains in
within-host dynamics. SAT-1 was able to transmit most
rapidly, leading to an early peak in viral load just 3-4 days
after the start of contact. SAT-2 achieved its maximum vi-
ral load somewhat more slowly, reaching its peak about a
day later than SAT-1. By contrast, SAT-3 appeared to fol-
low a strikingly different strategy, attaining its peak viral
load 3 days later than SAT-1. Interestingly, however, de-
spite the significant disparity between SAT-1 and SAT-3
in the time course of viral proliferation within the host,
within-host fitness of these strains was quite similar:
SAT-1 and SAT-3 attained similar maximum and cumu-
lative viral loads. Both measures showed that SAT-2 had
sharply reduced fitness compared with the other two
strains—despite kinetic similarities with SAT-1. This
contrast appeared related to differences in host immune
responses to the three strains. SAT-2 elicited more rapid
and effective innate and adaptive immune responses than
SAT-1 and SAT-3. Differences in viral production among
individual hosts were thus mediated by variation in viral
interactions with the host’s immune responses: fast, effec-
tive adaptive immune responses limited cumulative viral
production within a given host. Rapid activation of adap-
tive immune responses also curtailed each host’s infec-
tious period; thus, the host’s antibody responses shut
down viral production and the potential for transmission
to other hosts. These findings suggest that different viral
life histories—characterized by variation in latency period
and time to maximum population size within the host rel-
ative to contact days—can result in similar viral fitness in
terms of the amount of virus produced in an individual host.
Indeed, adaptive immune activation rate and cumulative vi-
ral production were so tightly correlated (0 = —0.93) asto
be practically synonymous, indicating that viral fitness as
measured by cumulative production in an individual host
near exclusively reflected how speedily the host was able
to mount a neutralizing antibody response to infection.
At least within the parameter space defined by the viral
strains and buffalo that we worked with, no other param-
eters of the virus-host interaction played a significant role
in determining the viral production of each host.

On the other hand, acute transmission rates—the per-
day expected number of successfully infected contacts of
the three strains, estimated in previous work (Jolles et al.
2021)—appear to follow the variation in median viral
replication rate per serotype and not viral load. SAT-1
had the most rapid time to peak load and transmission



rate, SAT-2’s were intermediate, and SAT-3’s were the
lowest, whereas viral load patterns did not match the
transmission rate variation among strains. These obser-
vations are based on a sample size of three strains: unlike
our other trait associations, which evaluated variation in
viral and immune dynamics across 12 hosts, our estimates
of viral transmission rate are group averages. This differ-
ence arises because we cannot distinguish which individ-
ual hosts transmitted infection during our experiments—
we merely recorded the timing of new infections in each
group. Whole-genome sequencing of the virus recovered
from each buffalo during the experiments might allow us
to pinpoint who infected whom, elevating the precision of
our transmission rate estimates to the individual level.
However, even for a rapidly evolving RNA virus such as
FMDV, genomic differentiation of experimental strains
during a single transmission cycle from needle-infected
to in-contact hosts may not prove sufficient to identify
donor and recipient hosts confidently. Finally, a greater
number of viral strains would ideally need to be studied
to assess the generality of our findings.

Two additional observations are consistent with the
finding that viral transmissibility appears to be related
to the within-host replication rate. We found that infec-
tion start time, latency period, and time to maximum viral
load negatively correlated with viral growth rate. In our
results, high transmissibility is correlated with high viral
growth rates and the ability to (apparently) produce large
quantities of virus. In essence, a high viral growth rate in
the blood may be reflected in high production in mucosal
cells and, therefore, shedding of virus. Variation in path-
ogen contagiousness is often related to differences in the
infectious dose sufficient to cause infection in a new host
(Fine 2003)—indeed, FMDVs can notoriously transmit
with tiny amounts of inoculum. Just a few virions suffice
to propagate infections of some FMDVs to susceptible
hosts (Alexandersen et al. 2003; Quan et al. 2004), con-
tributing to these pathogens’ hallmark contagiousness.
Similarly, short incubation periods can contribute to the
rapid spread of highly transmissible pathogens (Sartwell
1995; Fine 2003; Grassly and Fraser 2008; Nishiura et al.
2020). As such, these observations lend credence to the
idea that aggressive within-host replication in FMDVs may
indicate high transmission capacity among hosts.

It is important to note that our findings linking viral
growth and transmission rates refer specifically to trans-
mission during acute infection. In addition, FMDVs can
be transmitted from carrier buffalo that retain the virus
in follicular dendritic cells of the palatine tonsils (Juleff
et al. 2008) long after the virus has been cleared from
the blood. For the FMDV strains we studied, we previously
estimated that SAT-1 and SAT-3 transmit from carrier
hosts at much reduced rates (approximately two orders
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of magnitude lower) compared with transmission from
acutely infected hosts, and carrier transmission of SAT-2
is even rarer if it occurs at all (Jolles et al. 2021).

We note that serotypes are defined by how they interact
with the host immune system (Tizard 2017). Thus, differ-
ing selection pressures on the three strains may explain
these differences in the persistence mechanism for SAT-
1 and SAT-3 versus SAT-2. Although SAT-1, -2, and -3
are not spatially segregated, their occurrence among host
species may vary (Jolles et al. 2021; Sirdar et al. 2021).
Thus, while local adaptation due to spatial segregation
is unlikely, there may be serotype-specific adaptation to
different dominant host species. For example, SAT-2 is
the most common strain causing outbreaks in cattle
(Blignaut et al. 2020). Nonetheless, at least for SAT-1
and SAT-3, viral transmission from carrier hosts may
play a crucial role in maintaining the long-term persis-
tence of these viruses in buffalo populations by sparking
epidemics in newly susceptible calf cohorts. In contrast,
the mechanisms that sustain SAT-2 endemic persistence
at the herd and landscape scales are uncertain, with car-
rier transmission alone appearing insufficient to maintain
it between birth pulses. For this strain, mechanisms such
as antigenic shift, loss of immunity, or spillover among
host populations may be necessary to explain persistence
(Jolles et al. 2021). Future work could use phylodynamic
approaches (Volz et al. 2013) to evaluate the viral trans-
mission and divergence among wildlife and domestic an-
imal hosts.

Bringing together two key findings—that adaptive im-
mune activation drives the duration of the infectious pe-
riod in each host and that viral growth rate may determine
the acute viral transmission rate among hosts—we esti-
mated R,, the virus’s relative basic reproductive number
from within-host dynamic parameters. We showed that
estimates based on viral replication rate and adaptive acti-
vation rate qualitatively matched R, estimates previously
derived from observed transmission events among exper-
imentally infected and naive buffalo (Jolles et al. 2021),
suggesting that viral invasion potential may be predictable
from within-host dynamics. With just three viral strains
and 12 host individuals to work with, these findings are
necessarily tentative. We assumed linear relationships
linking viral replication and transmission rates and adap-
tive activation rate with the infectious period when, in fact,
these functions might follow more complex shapes, and
our power to evaluate how well R, estimated from within
versus among host processes match is limited. Nonethe-
less, the possibility of predicting pathogen behavior in host
populations from within-host experiments is tantalizing:
studying pathogen strains in individual animals is far more
tractable than investigating their behavior at the popula-
tion scale, yet predicting which pathogen strains are likely
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to spread and persist in host populations of interest is an
urgent priority in the face of globally accelerating pathogen
emergence (Cleaveland et al. 2007).

Our study illustrates the value of taking a functional
approach to understanding the consequences of viral di-
versity. By documenting variation among viral strains in
terms of their life history traits rather than focusing on
genomic variation, we were able to bridge biological scales
from kinetics within individual animals to transmission
among hosts. This was effectively an information reduc-
tion step—zooming out to extract relevant life history
signals to understand viral dynamics across scales. Future
work could explore whether a functional approach to vi-
ral dynamics can be extrapolated down, leveraging in
vitro studies of viral kinetics to predict viral life history
traits and interactions with the host, and should test the
generality of our findings by expanding the number of vi-
ral strains that are included. This would also allow param-
eterization of multiscale models that explicitly link within-
host and between-host dynamics and model validation
through evaluating viral dynamics and population struc-
ture in natural host populations.
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“For the last four years I have had an antelope under my own observation, and have watched carefully the process of development of the
horns.” Figured: “The animal in October, immediately after shedding the horns.” From “The Prong-Horn Antelope” by W. J. Hays (The

American Naturalist, 1868, 2:131-133).



