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Abstract—Effective fault location algorithms contribute to
reducing the recovery and restoration time and improve the
resilience of the power distribution networks. The existing
machine learning-based approaches for fault location exhibit
limitations, notably the absence of unsupervised feature learning,
disregarding the capture of semantic features, and overlooking
task-relevant features. This paper introduces the deep-attention
Gated Recurrent Unit Gaussian Restricted Boltzmann Machine
(GRU-GRBM) framework for fault location and classification. It
combines an attention-enhanced GRU for accurate task-relevant
temporal feature extraction, a GRBM-based autoencoder for
unsupervised generative feature learning, and a sparse deep
Rectified Linear Unit (ReLU) network with a mutual information
(MI)-based dropout technique for supervised estimation of fault
location and class. The proposed structure is shown to outperform
the state-of-the-art methods on the IEEE 123-bus system through
generative feature extraction, attention mechanisms, and feature
sparseness.

Index Terms—Fault Classification, Fault Location, Power Dis-
tribution Networks

I. INTRODUCTION

Maintaining a continuous electricity supply poses chal-
lenges, mainly attributed to common faults such as single line-
to-ground, line-to-line, double-line-to-ground, and three-phase
faults. Recent research has focused on locating and classi-
fying faults through methods categorized as impedance-based,
traveling wave-based, and machine learning-based approaches.
Impedance-based techniques, utilized in [1], determine fault
location by analyzing the network impedance derived from
voltage and current measurements. Travel wave-based fault
location methods, introduced in [2], analyze time delays
in the arrival times of electrical waves. While effective in
theory, the practical implementation of these methods is often
economically challenging.

Machine learning-based fault location methods mainly
leveraging deep learning algorithms, such as Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN),
and Graph Convolutional Networks (GCN), represent a notable
advancement in learning patterns for precise fault location es-
timation. The method in [3] employs a one-dimensional CNN
to map time-domain measurements of three-phase voltage and
current signals to the corresponding fault locations. In [4], the
adaptive CNN (ACNN) which consisted of a two-dimensional

CNN demonstrated robustness against the variation in system
parameters and load currents in selecting the faulted line.
Another CNN-based approach presented in [5] used capsule
neural networks and spectrogram time-frequency analysis for
fault location. The analysis yielded a faulty image of the
voltage signal as input data and the capsule neural network
extracted nuanced features within deep layers. Leveraging
the capabilities of GCNs in extracting spatiotemporal features
from graph-structured data, the model proposed by [6] demon-
strates improved generalization performance and robustness
against topology modifications, fault resistance variation, and
measurement noise. The effectiveness of hybrid methods was
highlighted in [7] where authors proposed a CNN-LSTM
structure for fault location and classification in power distribu-
tion cables. The proposed approach incorporated the voltage
and current measurements and was shown to be robust to
system parameters.

The current machine learning methodologies have several
limitations: 1) The absence of unsupervised feature learning
and limited generalization capabilities in these methods hin-
ders their ability to generate a robust representation for power
system measurements; 2) These methods primarily capture
discriminative features of the power system, neglecting the ac-
quisition of meaningful semantic features related to the power
network; 3) These approaches do not prioritize the acquisition
of task-relevant deep learning features, potentially resulting in
the inclusion of irrelevant features for fault classification; and
4) The reliance on dense neural networks in these methods
necessitates large datasets and makes them susceptible to
overfitting problems.

Motivated by these drawbacks, this paper proposes a deep-
attention Gated Recurrent Unit Gaussian Restricted Boltzmann
Machine (GRU-GRBM) autoencoding method for fault loca-
tion. First, the distribution power system measurements are
fed to a novel attention-enhanced GRU to capture attention-
guided task-relevant temporal features. These features are
then used by a novel GRBM-based autoencoder structure
designed to learn the temporal features in an unsupervised
and generative manner. The generative features captured in
the latent space of the proposed autoencoder are observed by
a novel sparse deep Rectified Linear Unit (ReLU) network to
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locate and classify the faults. The presented sparse network
uses an innovative MI-based dropout technique to provide a
sparse representation of the measurements which enhances the
generalization capacity and reduces the data requirements of
the proposed framework. We test the proposed approach on
the IEEE 123-bus system and show the superiority of this
approach compared to the state-of-the-art method, which is
due to generative feature extraction, attention mechanism, and
feature sparsity.

II. PROBLEM FORMULATION

Let us define a dataset for fault location and classification
with N samples. Each sample represents a fault location
and class in the distribution network. The following are the
problem’s essential components: The number of samples in
the dataset, N , each of which represents a different power
system fault scenario. The input data for each sample i is
represented as Xi. It is made up of 6-dimensional time series
measurements from the observable buses, which include the
angles and magnitudes of the positive, negative, and zero
sequence components of the observable buses’ voltage. Every
Xi is a matrix with shape (T,D), where D denotes the
measurements’ dimensionality and T denotes the number of
time steps of the measurements taken after the fault occurred.
The ground truth data for each sample Xi consists of the n×n
fault class matrix Ci, where n is the number of buses in the
power system. The fault class that exists between buses i and
j is represented by each element (i, j) of Ci, with 0 denoting
the ”no-fault” class. The ground truth also consists of a fault
location matrix Li, which is an n × n matrix. Each element
(i, j) of Li is a normalized number between 0 and 1, denoting
the location of the fault on the line connecting buses i and j;
Similar to fault classes, here, 0 denotes the absence of a fault
on that line. In this formulation, the distance between the fault
and the bus min(i, j) defines the fault location between buses
i and j. Our goal is to develop and train a model that computes
the occurred fault class and location matrices Ĉi and L̂i for
each sample Xi 1 ≤ i ≤ N in the dataset using the time
series measurements Xi as input. The objective is to reduce
the difference between the ground truth matrices Ci and Li

for each sample i and their predicted matrices Ĉi and L̂i,
respectively.

III. PROPOSED METHOD

Fig. 1 shows the proposed framework for fault location
in the power distribution network. First, the power system
measurements are observed by a novel attention-enhanced
gated recurrent unit (AGRU) to capture task-specific temporal
features. Then, the AGRU’s features are used by a novel
GRBM-based autoencoder to capture the unsupervised gen-
erative features from the power system’s data. Finally, the
generative features of the autoencoder are utilized by a new
sparse deep ReLU network that uses a novel MI-based dropout
technique for sparse fault classification and location.

A. Attention Gated Recurrent Unit

The AGRU captures temporal dependencies in sequential
data while giving varying attention to different parts of the
input sequence to ensure that task-relevant temporal features
ht are captured for each time step t of each fault sample. The
proposed AGRU contains an input gate that controls which
information is allowed to enter its temporal memory cell at
each time step. The input gate is computed by:

it = σ(Wi · [xt, rt · ht−1] + bi) (1)

where xt is the input at time step t which is a D-dimensional
vector of measurements; ht−1 is the previous hidden state
(temporal feature vector from the previous time step); rt is the
relevance score from the attention mechanism; Wi and bi are
the weight and bias parameters for the input gate, respectively.
Also, σ is the sigmoid activation function. The AGRU has a
reset gate that controls which information from the previous
hidden state is forgotten or retained. The reset gate is computed
by:

rt = σ(Wr · xt + Ur · ht−1 + br) (2)

where Wr, Ur, and br are the weights and bias parameters
for the reset gate, respectively. We define a candidate update
vector nt that represents the new information that can be added
to the memory cell at each time step t. The candidate vector
is computed using nt = tanh(Wn ∗ xt + rt ∗Un ∗ ht−1 + bn)
where Wn, Un, and bn are weights and bias parameter for
the candidate update, respectively. In this formulation, tanh
is the hyperbolic tangent activation function. The memory cell
of the AGRU stores time-dependent information of the power
systems measurements over time and is updated using the
input and reset gates using ct = it ∗ nt + (1 − it) ∗ ct−1.
We define a relevance score r̄t that determines how much
attention to give to each input measurement at each time step
t. This attention score is computed using an un-normalized
attention credit for each d-th measurement of t-th time step:
et,d = vT ∗ tanh(We ∗ ht−1 + Ue ∗ xt,d + be) where v, We,
Ue, and be are weights and bias parameters for the attention
mechanism. The relevance scores are normalized across the
measurements using the attention score normalization αt,d =

eet,d∑D
k=1 eet,k

where αt,d is the normalized relevance score for
the d-th measurement at time step t. The final relevance score
r̄t is a weighted sum of the input measurements computed by
r̄t =

∑D
d=1(αt,d ∗ xt,d) where r̄t is computed for the d-th

feature of Xt denoted by xt,d. The hidden state or temporal
feature vector at each time step t is updated based on the
memory cell and the attention-weighted input using:

ht = (1− zt) ∗ ht−1 + zt ∗ ct + γ ∗ r̄t (3)

where zt is the update gate that controls the trade-off between
the previous hidden state and the new information from the
memory cell and the attention mechanism. In this formulation,
γ is a weight parameter. The AGRU processes the input
time series measurements at each time step and computes
temporal feature vectors, giving varying attention to differ-
ent measurements based on the relevance scores. Using this



neural architecture, one can compute the attention-enhanced
temporal features of each fault sample Xi using Hi defined
by Hi =< hi

1, h
i
2, ..., h

i
T > where each hi

t is the t-th temporal
feature computed for sample Xi using the proposed AGRU.

B. GRBM Encoder fRBM
enc

In this step, we employ a GRBM encoder to extract
deep generative features from Hi corresponding to each fault
sample Xi, denoted by H̃i. The GRBM consists of two
layers: a visible layer and a hidden layer. The visible layer
corresponds to the temporal features captured by the AGRU
(denoted as Hi), while the hidden layer represents the learned,
lower-dimensional representation or generative features of the
temporal features. The visible layer units associated with the
temporal features are captured by the AGRU. These features
are real-valued and denoted as Vi, where i represents the i-
th fault sample. Each Vi is a vector of AGRU’s temporal
features of Xi with ω = T ∗ dh elements where dh is
the dimension of the AGRU’s temporal features. Thus, Vi is
written as Vi = [Vi,1, Vi,2, ..., Vi,ω]. The hidden layer units
H̃i are binary units that capture features of Vi in a generative
fashion. Each H̃i = [H̃i,1, H̃i,2, ..., H̃i,M ] is a binary vector
with M elements, representing the activations of the hidden
units. The activation of a hidden unit H̃i,j for the i-th fault
sample Xi is computed by:

p(H̃i,j = 1|Hi) = σ

(
bj +

∑
k=1

wjkVi,k

)
(4)

where H̃i,j is the binary activation of the j-th hidden unit for
the i-th sample; bj is the bias term for the j-th hidden unit.;
wjk is the weight between the j-th hidden unit and the k-
th feature in Vi,; and Vi,k is the k-th feature Vi vector. The
hidden layer’s mean and standard deviation for the i-th fault
sample are computed using E[H̃i,j |Hi] = p(H̃i,j = 1|Hi)

and Std[H̃i,j |Hi] =
√
E[H̃i,j |Hi](1− E[H̃i,j |Hi]), respec-

tively. To sample the hidden units, the mean and standard
deviation computed above could be used. For each hidden
unit H̃i,j , one can sample from a Bernoulli distribution
H̃i,j ∼ Bernoulli(E[hij |Hi]). To compute the visible units
given the hidden vector we model the distribution of the real-
values visible units as a Gaussian distribution. Therefore, the
activation of a visible unit Vi,k for the i-th fault sample can
be computed as Vi,k = µk + σkϵi,k where µk is the mean of
the Gaussian distribution for the k-th visible unit and σk is
the standard deviation, while ϵi,k is a random sample from a
standard Gaussian distribution N (0, 1). For each configuration
of values (Vi, H̃i), the generative energy of the GRBM is
defined as:

F enc
en (Vi, H̃i) =

T∗dh∑
k=1

(Vi,k − bk)
2 −

T∗dh∑
k=1

M∑
j=1

Vi,kWk,jH̃i,j

−
M∑
j=1

ajH̃i,j

(5)

where bi is the bias of the visible layer, Wk,j is the weight
connecting each unit Vi,k to H̃i,j , and aj is the bias of the
hidden unit H̃i,j . In this model, the compressed generative
features for the i-th fault sample are represented as a binary
vector H̃i with M elements. This GRBM-based encoder
captures the binary activations of the hidden units based on
the real-valued temporal features of the AGRU, providing a
lower-dimensional representation of the input data.

C. GRBM Decoder fGRBM
dec

The decoding GRBM observes each generative feature H̃i

of a fault sample Xi and computes a latent feature vector H̄i

which has the same dimension as Hi. Similar to the encoder,
we train this decoder in an unsupervised fashion to initialize
H̄i. Then, we train it using a supervised loss function to
reconstruct Hi by generating a reconstructed Hi in its hidden
layer H̄i. Therefore, after the supervised training, H̄i ≃ Hi.
The supervised training updates the parameters of both the
encoder and decoder in this autoencoding architecture.

D. Deep ReLU neural network with Dropout Regularization

To obtain the fault class Ci and fault location Li matrices,
we define a deep ReLU network with dropout regularization
with Q layers zl 1 ≤ l ≤ Q. The activation of each
computational layer l for an input fault X is defined by:

a1 = X, zl = W l ∗ al−1 + bl, al = ReLU(zl) ∗ dl (6)

Here, ReLU is the ReLU activation function and al is a
masked activation defined by a dropout regularizer. During
each forward and backward pass, a binary dropout mask
vector dl is sampled for each hidden layer l. The dropout
mask dl has the same dimension as the output of layer l
(i.e., al), and its elements are sampled independently from
a Bernoulli distribution using dli ∼ Bernoulli(1 − p) where
i represents the index of a neuron in layer l. This means
that with probability p, a neuron is dropped out (assigned
a value of 0), and with probability (1 − p), it is retained.
During the forward pass, the masked activations al 1 ≤ l ≤ Q
are computed considering dl. The element-wise multiplication
sets the values of neurons that were dropped out (dli = 0) to
zero, effectively deactivating them for that forward pass. For
the backward pass, we also need to scale the activations to
account for the dropout. This is typically done by dividing
the retained activations by (1 − p) using al = al/(1 − p).
This scaling ensures that the expected value of the activations
remains the same as during inference, where no dropout is
applied. It helps in maintaining the correct signal flow and
gradients during training. This regularization process helps
prevent overfitting and improves the generalization of the
proposed deep framework.

E. Training

The proposed framework seeks to minimize the following
loss function to train the AGRU, fRBM

enc , fRBM
dec , and Deep



ReLU network using a fault dataset {Xi}Ni=1 with N faults:

L =
1

N

N∑
i=1

LCi
+ αLLi

+ βEenc + γEdec + κErec (7)

Here, α, β, γ, κ, and ζ are loss coefficients known as
error hyperparameters. Furthermore, Eenc and Edec are the
average error functions (energy functions) of the encoder
and decoder RBMs for the N samples, respectively. Erec =
1
N

∑N
i=1 ||Hi−H̄i||22 is the reconstruction loss function of the

encoding-decoding RBMs. We train the proposed framework
using the cross-entropy loss function for fault classification.
For every fault sample Xi in the dataset, the loss calculates
the difference between the computed and actual classes via
LCi

(Ci, Ĉi) = −
∑

(j,k) Ci(j, k) log(Ĉi(j, k)), where (j, k)
indicates the entry of the j-th row and k-th column of
the matrix. Moreover, we utilize the mean squared error
for the fault location of a sample Xi, which is defined as
LLi(Li, L̂i) =

∑
j,k(Li(j, k) − L̂i(j, k))

2. Algorithm 1 is
presented to train the proposed fault classification framework
in an end-to-end fashion. In this algorithm, we use Batch
Gradient Descent (BGD) and Contrastive Divergence (CD) to
train the neural networks and minimize L.
Algorithm 1 Training Algorithm
while Parameters not converged

- Randomly select a batch B = {Xj}τj=1 from N samples
- Compute AGRU Features Hj for all samples in B
- Train the encoding GRBM using the CD method:

- For each sample Xj with input temporal feature
Hj generate a negative sample Ĥj using Gibbs
sampling

- Update encoding GRBM’s parameters using gradient
descent with gradient of GRBM’s parameters at X̂j

- Train the decoding GRBM using the CD method
- Jointly train the AGRU, encoder, decoder, and the sparse
ReLU network to minimize L using BGD

IV. NUMERICAL RESULTS

In this study, the sequence components of the voltage are
used as the input features. The transient stability analysis is
performed using Digsilent PowerFactory on the IEEE 123-bus
system where the fault is applied on 0%, 20%, 40%, 60%, and
80% of the distribution lines. In this experiment the power
network is partially observable and only 30% of the buses
have observable measurements. The fault is applied at t = 0.1
sec and cleared at t = 0.2 sec. There are 5650 samples in
the dataset. Of the total data, we use 10% for validation, 15%
for testing, and 75% for training. Following [8], we employ
heuristic search in conjunction with validation to determine
the best values for the proposed framework’s hyperparameters,
with the validation fault location Root Mean Squared Error
(RMSE) serving as the primary search criterion. The size of
the GRU hidden feature vector is 35, the number of hidden
units in the encoder RBM is 40, the number of hidden layers in
the Sparse ReLU network is 3, and the size of each layer is 45

Fig. 1. Proposed deep attention GRU-GRBM with dropout for fault location.

units in the ideal hyperparameter set. Here, α = 0.8, β = 1.2,
γ = 1.3, κ = 0.85, and ζ = 0.95. The BGD algorithm has a
learning rate of 10−2 and a batch size of τ = 40. To create a
sparse neural network, we also set the sparse ReLU network’s
Bernoulli parameter to 0.35. A PC equipped with an Intel Core
i7 CPU and a single GeForce RTX 4090 GPU is used to train
and test the model. The fault location performance in this study
is presented as the Mean Absolute Error (MAE), RMSE, and
Mean Absolute Percentage Error (MAPE). In our study, we
also employ classification accuracy metrics including F-score,
Precision, Recall, and Accuracy for fault classification.

We compare the CNN [3], ACNN [4], Wavelet CNN [9],
LSTM [9], GRU [10], Capsule Network (CapsNet) [11],
CNN-LSTM [7], and CNN-GRU [7] with the proposed
GRU-GRBM framework. The fault location and classification
outcomes of the proposed method and the benchmarks are
shown in Tables I and II, respectively. The WCNN shows
better location and classification accuracies in comparison
with the CNN model due to its wavelet decomposition-based
preprocessing stage that makes it a more robust model to
data noise and uncertainty. The time-dependent models, GRU
and LSTM, outperform the CNN and WCNN models, which
are merely spatial feature extraction techniques, as the tables
demonstrate. As an example, the LSTM increases CNN’s
classification accuracy by 2.34%. Due to its smaller parameter
count, which helps it prevent overfitting better than the LSTM
model, the GRU performs better than the LSTM. The ACNN
shows a better performance in location and classification tasks
compared to the GRU as it leverages an attention mechanism
that ensures the task-relevant features of the input are present
in the latent space of the neural network. The ACNN provides
7.51% lower location RMSE and 0.94% higher classification
accuracy compared to the GRU. CapsNet performs better
than the GRU and ACNN because it can handle hierarchical
features more effectively and enhances the deep learning
features’ resilience and generalization ability. For example, the



TABLE I
FAULT LOCATION RESULTS OF THE PROPOSED METHOD AND COMPARED

BENCHMARKS

Model RMSE MAE MAPE (%)
CNN 28.452 17.329 18.530

WCNN 27.052 16.074 17.191
LSTM 26.324 15.204 16.812
GRU 23.740 12.849 12.039

ACNN 21.956 11.302 11.105
CapsNet 21.307 10.804 10.912

CNN-LSTM 17.821 8.563 8.027
CNN-GRU 16.032 7.401 7.042
Proposed 14.751 5.603 5.913

TABLE II
FAULT CLASSIFICATION RESULTS OF THE PROPOSED METHOD AND

COMPARED BENCHMARKS

Model Precision Recall Accuracy (%) F-scroe
CNN 0.7762 0.7609 78.34 0.7684

WCNN 0.7903 0.7882 79.11 0.7892
LSTM 0.8217 0.8143 80.68 0.8179
GRU 0.8664 0.8503 85.21 0.8582

ACNN 0.8733 0.8608 86.01 0.8670
CapsNet 0.8812 0.8732 86.93 0.8771

CNN-LSTM 0.8953 0.9041 90.02 0.8996
CNN-GRU 0.9154 0.9133 91.47 0.9143
Proposed 0.9607 0.9570 95.81 0.9588

F-score and classification accuracy of GRU are improved by
2.2% and 1.72%, respectively, by the CapsNet. In comparison
to deep learning models that only take into account time-
or space-dependent characteristics, the spatiotemporal feature-
extracting deep learning models yield higher accuracies. For
example, as Tables I and II demonstrate, the CNN-LSTM
model enhances the CapsNet’s location RMSE and MAPE by
16.36% and 2.88%, respectively. The CNN-GRU has a smaller
tunable parameter space because it employs a GRU model as
opposed to an LSTM as in the CNN-LSTM. As a result, even
with fewer training data, it has more generalization power and
is more resistant to overfitting. In comparison to the CNN-
LSTM model, the CNN-GRU produces a location MAPE that
is 0.98% lower and a classification accuracy that is 1.45%
higher, as indicated by the tables. When compared to the
most recent benchmarks, the proposed approach demonstrates
much higher classification and location accuracies. The pro-
posed attention GRU-GRBM outperforms the best-compared
benchmark, CNN-GRU, with a 4.34% greater classification
accuracy and a 16.03% lower location MAPE, as the tables
demonstrate. Our method is more accurate compared to other
approaches since it uses RBM-based autoencoding for gener-
ative unsupervised feature learning and MI-based sparsity loss
for sparse feature extraction as well as task-relevant features
found by our attention mechanism. Some of the estimated test
fault locations of the CNN-GRU and the proposed technique
are displayed in Figures 2 and 3, respectively. As the figure
illustrates, the proposed method’s generative feature extrac-
tion, attention-guided pattern recognition, and sparse feature
learning capabilities enable it to track the real locations of the
AG and ABC faults than the CNN-GRU.

To show the robustness of the proposed model to the data
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Fig. 2. Fault location results of the CNN-GRU model
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Fig. 3. Fault location results of the proposed framework

noise and uncertainty, we add Gaussian noises with zero
means and different standard deviations (STDVs) to the input
measurements and show the performance of the proposed
method compared to the recent benchmarks. Fig. 4 shows
the MAPE results of the fault location tasks for the proposed
model and different benchmarks. Here, the noise STDV is
changing from 0 to 0.1. As depicted in this figure, the proposed
model shows a better robustness with a lower increase in the
MAPE values as the noise STDV grows compared to the other
benchmarks. This observation is mainly due to the generative
feature extraction that helps the model capture robust latent
representations of the input data.

In our standard experimental setting, only 30% of the buses
have observable measurements. To compare the performance
of the proposed model and the benchmarks for different input
sizes (i.e., number of observed buses), we increase this number
from 30% to 70% of the total number of buses, and show the
F-score results of the fault classification task. Fig. 5 shows the
F-score results for the compared benchmarks and the proposed



method. As shown in this figure, the proposed GRU-GRBM
keeps having a higher classification accuracy compared to the
recent benchmarks. As the size of the available data grows, the
proposed method can better use the data to classify the faults
compared to the other deep learning-based models. This is due
to learning the unsupervised features of the input data and the
feature sparsity of the proposed decoders.

Fig. 4. Fault location MAPE of the proposed model and recent benchmarks
with different Gaussian noise STDVs.

Fig. 5. Fault classification F-scores with different percentages of visible buses
for the proposed GRU-GRBM and the recent benchmarks.

V. CONCLUSIONS

In this paper, a novel GRU-GRBM autoencoding method
with a deep attention mechanism is proposed to locate faults.
The distribution power system measurements are input to a
newly built attention-enhanced GRU to capture task-relevant
temporal characteristics led by attention. A unique GRBM-
based autoencoder structure uses these temporal character-
istics and generates unsupervised temporal information. The
proposed autoencoder’s generative features are fed to a new
sparse deep ReLU network to discover and characterize faults.
The sparse network uses an MI-based dropout mechanism
to represent measurements sparsely. This method improves

framework generalization and reduces data needs. The IEEE
123-bus system is applied to test the proposed method and
compare it to the present state-of-the-art. Generative feature
extraction, attention mechanism, and feature sparsity explain
the superiority of the proposed method compared to recent
benchmarks.
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