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THE BIGGER PICTURE While learning representations of the environment, biological organisms constantly
take actions that alter their sensory experience. Perception depends on the active selection of this experi-
ence, a process known as active sensing. This perception-action coupling is often overlooked in conven-
tional artificial intelligence (AI), which usually assumes passive perception or learns policies independently
from an agent’s representational objectives. Developing innovative approaches that couple perception and
action could minimize uncertainty about sensory inputs, and embodied AI agents could focus on learning
through exploration. This work explores the opportunities of integrating active sensing in the development
of AI architectures.
SUMMARY
We present an end-to-end architecture for embodied exploration inspired by two biological computations:
predictive coding and uncertainty minimization. The architecture can be applied to any exploration setting
in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze naviga-
tion task and show that it can discover the underlying transition distributions and spatial features of the envi-
ronment. Second, we apply our model to a more complex active vision task, whereby an agent actively
samples its visual environment to gather information.We show that our model builds unsupervised represen-
tations through exploration that allow it to efficiently categorize visual scenes. We further show that using
these representations for downstream classification leads to superior data efficiency and learning speed
compared to other baselines while maintaining lower parameter complexity. Finally, the modular structure
of ourmodel facilitates interpretability, allowing us to probe its internal mechanisms and representations dur-
ing exploration.
INTRODUCTION

Biological organisms interact with the world in cycles of percep-

tion and action. These two processes are intertwined and

interact with one another to guide animal behavior.1–4 Visual

perception, for example, is not passive. Rather, we actively sam-

ple our visual field in search of information (Figure 1A), a process

called active vision in neuroscience and psychology.5–10 Simi-

larly, an animal navigating a maze explores its environment

and builds accurate representations of its structure, subse-

quently using them for various goal-directed tasks (Figure 1B).

In contrast, most models of artificial intelligence (AI) treat

perception and action as separate processes and aim to opti-

mize performance with respect to task-specific objectives. For
Patterns 5, 100983,
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example, visual recognition in machine learning often utilizes

convolutional neural networks,11,12 which passively receive

entire images as input, to directly maximize classification accu-

racy on a given dataset. Another example is reinforcement

learning (RL),13 whereby actions are chosen primarily to maxi-

mize extrinsic reward without accounting for the agent’s intrinsic

motivations and priors. By leveraging insights from neuroscien-

tific theories of perception and action, we can develop embodied

AI models that actively explore their environment and interact

with the physical world.14

In this work, we integrate two theories from systems neurosci-

ence to develop a combined perception-action model for intrin-

sically driven active sensing. The perception component of our

model is based on the theory of predictive coding.15 According
June 14, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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to predictive coding, the brain maintains a generative model of

the world,16 which it uses to predict its sensory input. The goal

of perception, therefore, is to infer the latent states of this gener-

ative model17 so as to minimize prediction error. The action

component of our model is based on the proposition that the

brain minimizes uncertainty of inferred latent states during

exploratory behavior.4,18–21 Due to the intractability of the uncer-

tainty reduction objective (or, equivalently, the information gain

objective), most models that optimize it rely either on sample-

inefficient RL methods or on restrictive assumptions that make

it easier to evaluate. In our approach, we use a deep generative

model based on predictive coding that allows us to optimize a

Monte Carlo (MC) approximation to the information gain objec-

tive in a fully differentiable manner without assuming explicit

knowledge of the true generative model of the environment.

We show that this approximation, even when done in a greedy

fashion, leads to a highly efficient exploration strategy.

Our model integrates perception and action within an end-to-

end differentiable procedure and can be generally applied to

any exploration setting in a task-independent manner without

the need for extrinsic reward signals. To illustrate this, we eval-

uate our model on two sensorimotor tasks. First, we test the

model on a simple maze navigation task with noisy transitions

and show that it explores the environment more efficiently

than both random exploration and visitation-count-based

Boltzmann exploration. We show that our agent learns an

exploration policy that enables its perception model to quickly

discover the underlying transition distributions of the maze.

Second, we apply our model to the more complicated task of

active vision, illustrated in Figure 2. In this task, the model has

a band-limited sensor, which it uses to perceive small patches

of a hidden image through a limited number of fixations. We

show that, despite its band-limited perception, the model is

able to learn the spatial relationships between pixels of a given

image, as demonstrated by its ability to generate full meaningful

images by combining smaller generated patches at different lo-

cations. Furthermore, we show that although these representa-

tions are learned unsupervised, they enable a downstream clas-

sifier to quickly reach high test performance with fewer training

data and lower parameter complexity. We compare these re-

sults to a feedforward network receiving full images as well as

to other popular baselines from the RL literature including the

recurrent attention model (RAM),22 variational information-

maximizing exploration (VIME),23 and Plan2Explore.24

Our model selects actions that are purely intrinsically driven to

minimize its uncertainty about the environment (Figures 1A and

1B). In that sense, the action component is blind to the task at

hand and only has access to the perception model’s internal

states. This makes its ability to perform well on image classifica-

tion quite remarkable. Importantly, the quality of the perceptual

representations depends on the action selection strategy, high-

lighting the perception-action relationship captured by our

framework. We quantify this effect by measuring the mutual in-

formation between image categories and learned representa-

tions under different action strategies. Furthermore, the modular

structure of our model facilitates interpretability, allowing us to

probe its mechanisms and representations during exploration

and providing us with insights into the possible neural computa-

tions utilized in biological systems. For example, we show that
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during active vision, themodel learns representations that reflect

the properties of the data and the structure of the task. Our

approach demonstrates the promise of integrating neuroscien-

tific theories of perception and action into embodied AI agents,

and we hope that it will motivate more research in this area. An

extended survey of related work is provided in Note S2.
RESULTS

Controllable Markov chains
Experimental setup

In the controllable Markov chain (CMC) setting, we test our

model against two baselines, random exploration and visita-

tion-count-based Boltzmann exploration, where the probability

of a transition is inversely proportional to its visitation count.

More precisely, during Boltzmann exploration, actions are

sampled from the distribution

pðatÞ =

exp
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a exp
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where t is a temperature parameter that is linearly annealed from

1.0 to 0.1 throughout the episode. For all agents, the perception

model is used to learn the underlying distributions from observa-

tions. To quantify how well the model’s learned distributions

approximate the true distributions in the environment, we use

the measure of missing information20 ðIMÞ,

IMðPkbPÞ =
X

s˛S;a˛A

DKLðpð: js; aÞkbpð: js; aÞÞ; (Equation 2)

where p and bp are the true and learned distributions, respectively.

We performed experiments in two CMC settings: Dense

Worlds20 and Mazes. In the Dense Worlds setting, there are 10

states and 4 actions. For each state-action combination, a tran-

sition distribution is drawn from a Dirichlet distribution with the

concentration parameter a = 1. Note that there is no particular

interpretation associated with the states and actions in these en-

vironments; they are constructed primarily to test the perception

model’s ability to learn the true transition distributions. As such,

this setting is not appropriate for testing our Bayesian action se-

lection (BAS) model, since random action selection can perform

well in these environments when run for a sufficient number of

steps. Therefore, we conduct additional tests in the Mazes

setting, where there are N = n2 states corresponding to loca-

tions in an n3nmaze, and 4 actions corresponding to the cardi-

nal directions (up, down, right, and left). Each action produces a

noisy translation, with more bias toward the cardinal direction

associatedwith that action. All transitions that do not correspond

to a one-step translation (i.e., a neighboring state) are assigned a

probability of zero. The mazes are randomly generated and the

probability distributions in P are drawn from a Dirichlet distribu-

tion with concentration parameters a = 0:25 for states with

non-zero probability. The experimental settings, as well as archi-

tecture and hyperparameter specifications, are included in sec-

tion C of the supplemental experimental procedures.
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Figure 1. Models for active vision and exploration in CMCs

(A) We actively sample visual scenes to infer hidden states, in contrast to standard machine learning models, which assume passive perception.

(B) Biological systems have an intrinsic drive to actively explore the environment and build internal models of it; in contrast, traditional RL models are primarily

guided by extrinsic reward.

(C) The generative model used in the active vision setting (right) and the architecture of the perception model for active vision (left). At every time step, the lower-

level VAE receives an observation xt along with the corresponding fixation location lt� 1 and infers a lower-level representation zt. After T time steps, the lower-

level representations z1:T and the corresponding locations l0:T �1 are concatenated, summed, and used as input to the higher-level VAE, which infers an abstract

representation s that is then used to hierarchically output reconstructions of lower-level sensory states bzt and bxt .
(D) The generative model for CMCs (right) and the architecture of the agent used in CMC exploration (left). Gray-shaded circles in the generative models represent

observed variables, while unshaded circles represent latent variables.

ll
OPEN ACCESSArticle
Learning and exploration during maze navigation

To show that our perception model is able to learn the under-

lying transition distributions of CMCs, we run it for 2,000 time
steps in the Dense Worlds environment. We then compute

the differences between the distributions learned by the agent

and the true environment distributions. To see the effect of
Patterns 5, 100983, June 14, 2024 3
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Figure 2. Setup for active vision

(A) The setup used in our active vision experiments.

The perception model infers latent states based

on observations selected by the action model.

While this process is performed in an unsupervised

manner, the inferred latent states can be used as

input to downstream classifiers.

(B) Foveation setup for the band-limited sensor in

the active vision task (described in the main text).

(C) Example images from the translated (top row)

and cluttered (bottom row) MNIST datasets.
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our exploration strategy, the same analysis is performed for a

randomly exploring agent that uses the same perception

model. Figure S2 shows that our model is indeed able to learn

good estimates of the environment’s transition distributions.

These estimates are better when data are collected using

BAS, which shows that our agent collects data that are partic-

ularly beneficial for the learning progress of the percep-

tion model.

Next, we test our model’s ability to explore more complicated

maze environments. We test three agents all using our percep-

tion model but employing different exploration strategies: BAS,

random action selection, and Boltzmann exploration. The test

environment was a 636 maze, and the agents were allowed to

navigate for 3,000 time steps. We also performed the same tests

in larger mazes and obtained similar results. Figure 3A shows

that exploration using BAS leads to a significantly faster reduc-

tion in missing information compared to the other two baselines,

despite BAS and Boltzmann achieving similar state-action space

coverage performance. Figure 3A also shows that, while the BAS

explorer covers the state-action space more quickly than the

Boltzmann explorer, it does so more efficiently than the random

explorer. To see this more clearly, we visualize the visitation fre-

quencies of the BAS and random explorers as heatmaps that

show how much time an agent spends in each state (Figures

3C and S4).

Active vision
Experimental setup

In the active vision task, the model explores a hidden image

through a sequence of fixations. Each fixation yields a sample

of the image at the fixation location. The size of this sample cor-

responds to the size of the model’s fovea and is always less

than the size of the input image. Furthermore, ‘‘foveated’’ samples

can be extracted by a foveation process22 as illustrated in Fig-

ure 2B. Specifically, let lt� 1 denote the location of the fixation

that generates the sample xt from the input image I. We use
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normalized coordinates so lt� 1 ˛ ½ � 1;1�3
½ � 1; 1�, with ð�1; � 1Þ corresponding to

the top left corner of the image. Let d

denote both the height and width of the

model’s fovea, and letNfov denote the num-

ber of foveated patches (the number of red

squares in Figure 2B). We first extract Nfov

patches of increasing size, all centered at

lt� 1. We then downsample all patches so

they all have the same size d3 d. The
patches are then flattened and concatenated to generate xt,

which is the input to the model. Note that this is the same setup

used by Mnih et al.22

We test our active vision model on multiple image datasets,

including the Modified National Institute of Standards and Tech-

nology (MNIST) dataset,25 fashion MNIST,26 and grayscale

CIFAR-10.27 First, we test the model’s ability to produce mean-

ingful images by generating and combining small patches at

different locations. This ability reflects an implicit understanding

of the spatial relationships between different locations on an im-

age of a given object. Second, despite the model being trained

with unsupervised objectives, we test its representations on a

downstream image classification task, whereby only a separate

decision network is trained with the supervised classification

loss. The setup for this task is illustrated in Figure 2A.

We also test the model’s ability to build translation and

clutter invariant representations using two variants of the

MNIST dataset: translated MNIST and cluttered MNIST.22

The translated MNIST dataset consists of 60360 images

with a handwritten digit placed at a random location in the im-

age. The cluttered MNIST dataset consists of 60360 images

created by first placing a full digit at a random location and

then randomly scattering multiple cropped parts of other digits

over the canvas. Image examples from both datasets are

shown in Figure 2C.

The complete specification of hyperparameters and settings for

the active vision experiments is included in section D of the sup-

plemental experimental procedures. For the image classification

tasks, we evaluate four variants of our model to investigate the

role of each component. Below is a description of each variant.

BAS + perception. This is our full proposed model. Fixation lo-

cations are selected using BAS and the internal representation s

of the perception model is used as input to the decision network.

Random + perception. Here, fixation locations are selected

randomly. The input to the decision network is still the abstract

state s inferred by the perception model.
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Figure 3. Learning and exploration in CMCs

(A) Missing information and percent state-action

space coverage in a 636 maze for all three agents

described in the main text. Exploration with BAS

(our model) achieves faster learning of the under-

lying transition distributions while visiting more

positions in themaze. Shaded error bars represent

SEM (n = 20 random seeds).

(B) Results of the ablation analysis of the two terms

in the BAS objective for CMCs. Exploration with the

full objective combining the uncertainty reduction

and the expected future uncertainty terms is more

effective than using either term alone. Shaded error

bars represent SEM (n = 20 random seeds).

(C) Example visitation frequency maps for a 636

maze explored by BAS versus a random explora-

tion strategy. Both agentswere allowed to run in the

environment for 1,000 time steps. Visitation fre-

quencies are normalized by the maximum visitation

frequency in each case. Positions visited more

often have colors closer to yellow or white, while

less visited states correspond to darker shades of

red. More examples are shown in Figure S4.
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BAS + RNN. Here, the fixation locations are selected with BAS.

However, instead of using the internal representation s as input

to the decision network, we use a separate recurrent neural

network (RNN) that integrates the collected observations x1:T
and passes its hidden state vector to the decision network. To

ensure a fair comparison between this variant and the percep-

tion-based variants, the size of this RNN is always the same as

the dimensionality of the abstract latent variable s. Note that, in

this case, the perception model is still involved in the action se-

lection process, since BAS determines action scores based on

the entropy of the latent state distribution.

Random + RNN. This is the same as BAS + RNN, but we

replace BAS with a random selection of fixation locations.

Probing the generative model

Predictive coding posits that the brain learns and maintains a

generative model of the world that allows it to make good pre-

dictions about the environment. Additionally, since we assume
that action selection relies on this model,

the optimality of our actions depends on

the quality of our generative models. In

this section, we investigate how good

our trained model is at generating new

patches of images and inferring the

underlying states from sequences of

random fixations.

Figure 4A shows examples of trials in

which a random sequence of patches is

given to the perception model. At the

end of the sequence, the model infers

the abstract state s that might underlie

the given observations. From its esti-

mate of s, it computes reconstructions

of each observed patch. Additionally,

we can generate unobserved patches

from this inferred estimate by querying

the decoder networks at different loca-
tions in space. As seen in Figure 4A, when the generated

patches at the nine central locations are put together, we get

a meaningful image that corresponds to what the model imag-

ines the underlying digit is. This is interesting, since the entire

image at once is never observed by the model, nor is it used

in the training losses. A similar effect is observed when testing

the model on CIFAR-10 images (Figure S6), although the gener-

ated images tend to capture global statistics rather than local

details due to the simplicity of our architecture, which utilizes

only feedforward networks. These results demonstrate that

the model successfully learns the spatial relationships between

patches corresponding to individual image categories in a

completely unsupervised manner, which explains its superior

performance during classification later on.

Interaction between the perception and action models

One of the benefits of our framework is its modularity (perception

and action components), which allows us to examine how each
Patterns 5, 100983, June 14, 2024 5
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Figure 4. Probing the generative model and its effect on action se-

lection

(A) Original (observed) patches of input images (left column) and their re-

constructions (middle column). After the model infers an abstract represen-

tation, it generates an imagined digit at the unobserved locations (right col-

umn). Note that the model never observes the full image of any digit in the

dataset during training, yet it is able to capture the spatial relationships be-

tween patches associated with a digit from many partial observations of its

images in the dataset. Similar analyses were performed for the fashion MNIST

and the grayscale CIFAR-10 datasets (Figures S5 and S6).

(B) Fixation sequences generated using BAS versus random action selection.

After the initial random fixation, the BAS strategy always fixates near the center

of the image, reflecting an understanding of the underlying structure of the data

and its most informative locations.
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component affects the other. First, we look at how the represen-

tations learned by the perception model affect what actions are

selected. In the centered MNIST dataset, the most informative

location about the category of the image is the center. This is re-

flected in the representations of the perception model, which is

able to produce meaningful digits by generating and combining

individual patches. Therefore, a strategy that minimizes uncer-

tainty would ideally choose to fixate at the center most of the

time. Figure 4B shows that this is exactly the case. When we

compare fixation sequences selected by BAS against those

selected by a random strategy, the BAS strategy almost always

chooses the center as its second fixation location after the initial
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random fixation. This shows that the statistical regularities in the

environment are reflected in the behavior of the action model.

Second, we study how selecting actions with BAS affects

the latent representations developed through perception. We

trained two perception models on data collected with random

fixations and data collected with BAS. We then presented both

models with data collected using BAS and examined the result-

ing representations in their latent spaces. We use principal

component analysis (PCA) and t-distributed stochastic neighbor

embedding (t-SNE)28 to visualize these representations in 3D

space, as shown in Figures 5B and S3.We also quantify the qual-

ity of the representations with respect to image categories by

estimating the mutual information29,30 between the three prin-

cipal component (PC) features and image labels, as shown in

Figure 5C.

Performance on downstream image classification

We demonstrate our model’s ability to perform image recogni-

tion using the unsupervised representations it learns through

free visual exploration. Figure 5A shows performance on the

centered, translated, and cluttered MNIST datasets. Perfor-

mance on fashion MNIST is reported in Figure S5. On centered

MNIST, our BAS strategy yields better performance than a

randomaction selection strategy. Furthermore, when the internal

states of the perception model are used as input to the decision

network, the classification accuracy is higher compared to using

a separate RNN that integrates previous observations, indicating

that the learned representations are more informative about

the data.

On both translated and cluttered MNIST, the performance

generally gets worse. However, we can still see that our BAS

strategy outperforms a random exploration strategy, while using

the perception representations leads to slightly higher asymp-

totic performance than using RNN states. However, the repre-

sentations of the perception model do not seem to offer more

benefit than a regular RNN in terms of learning speed. One

reason for this might be the absence of a statistical regularity

in the locations of digits. Therefore, encoding abstract represen-

tations in an individual state s may not be sufficient, since other

hidden states, such as digit location, affect the generative pro-

cess. Nevertheless, the model is able to learn informative repre-

sentations as evidenced by the effectiveness of BAS in selecting

fixation locations. Note that, in the case of translated and clut-

tered MNIST, the model observes foveated samples that cover

a larger area of the image at each location, albeit with lower res-

olution toward the periphery. Therefore, it is possible for the

model to accumulate observations of all parts of the digit during

the fixation process. This may explain why RNN-based methods

learn more quickly on translated and cluttered MNIST compared

to centered MNIST.

Faster training and generalization with Bayesian action

selection

An important feature of our approach is that it can be trained in a

completely unsupervised manner to explore visual scenes and

build generative representations of them. We asked whether

this feature can help improve the computational efficiency and

training speed of a separate downstream classifier whose pa-

rameters are trained with the supervised classification loss.

To test this, we look at the learning speed of a downstream

classifier trained with full images (Full Images + FF) versus one
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Figure 5. Performance on downstream image classification

(A) Performance of the four model variants described in themain text on the centered (left), translated (middle), and cluttered (right) MNIST datasets. Shaded error

bars indicate SEM (n = 5 random seeds).

(B) PCA projections of the latent representations learned by a BAS-trained perception model (left) and a randomly trained perception model (right). Each point in

the PC space corresponds to the projection of the inferred latent state s for a given input image. Points are colored based on the class of their corresponding input

images. Figure S3 shows the results of performing the same analysis but with t-SNE28 projections instead.

(C) Estimated mutual information between the latent representations’ PC projections and class labels for the perception model trained with BAS and that trained

with random exploration.

(D) Comparison of our model with different baselines in terms of their learning speed on the classification task with translatedMNIST. Shaded error bars represent

the SEM (n = 5 random seeds).

(E) Data efficiency and generalization experiments. We compare the same methods in (D) in terms of their test performance during the first episode of supervised

training, when the classification networks see the data for the first time. Each point on the plot represents the test score after observing only x training data points

for the first time. Shaded error bars represent the SEM (n = 5 random seeds).
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trained on concatenated patches collected using BAS (BAS +

FF). We also compare our approach to four baselines from the

RL literature: the RAM,22 VIME,23 Plan2Explore,24 and BYOL-

Explore.31 RAM is a popular method from the machine learning

literature that is known to achieve high performance on the

same task we consider here, while VIME, Plan2Explore, and
BYOL-Explore are popular intrinsically motivated exploration

methods in RL that use uncertainty to guide exploration. These

experiments were conducted on the translated MNIST data,

since the dimensionality of its observation space is higher, so it

serves as a good test of learning speed and data efficiency. In

all test cases, the decision network used for classification had
Patterns 5, 100983, June 14, 2024 7
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two hidden layers with a consistent number of units across all

conditions. However, since our BAS strategy selects a few loca-

tions to observe on the full image, the total number of parameters

trained with the supervised loss was approximately 50% less for

the model trained with BAS-collected data than for the model

trained with full images. Figure 5D shows that, in addition to hav-

ing lower parameter complexity, our method learns much faster

than all other baselines and achieves higher asymptotic perfor-

mance than VIME, Plan2Explore, and Full Images + FF.

We also considered a comparison of the same methods

described above in terms of their data efficiency. Specifically,

we ask the following question: during the first supervised training

episode, how many training examples does a model need to

observe to reach a given performance on the test set? This ques-

tion addresses issues of few-shot learning and fast generaliza-

tion. Since our BAS strategy utilizes the perception model’s ab-

stract representations of the task, we hypothesized that it would

lead to a higher test performance with fewer training examples.

This is exactly what we find through our analysis, as shown in

Figure 5E. From these results, we see that our model is able to

learn significantly faster from fewer training examples, high-

lighting the generalizability and effectiveness of the model’s

abstract representations in guiding action selection. A descrip-

tion of the experiments and hyperparameters used in these ana-

lyses is included in section D of the supplemental experimental

procedures.

DISCUSSION

We developed a biologically inspired model of active sensing by

combining two theories from neuroscience: predictive coding

for perception and uncertainty minimization for action. Although

these two theories have been utilized previously, our model incor-

porates them in a unique, scalable, and end-to-end framework,

enabling flexible intrinsically driven exploration for embodied AI.

Furthermore, the proposed model provides an approximate

method for learning policies that optimize information gain in a

differentiable manner, utilizing a deep generative model. We test

this model in two sensorimotor tasks that integrate perception

and action: (1) learning transition dynamics through pure explora-

tion in discrete environments, and (2) learning unsupervised visual

representations in a continuous setting.

An important aspect of our approach is its generality; it can be

applied to any perception-action setting, while only requiring the

specification of a generative model that relates internal repre-

sentations to sensory observations. By parameterizing this

generative model with neural networks, we are able to compute

the uncertainty with respect to perceptual states in a differen-

tiable manner, allowing the action and perception models to

interact in an end-to-end fashion. We have shown how to instan-

tiate this framework in the discrete setting of CMCs aswell as the

continuous setting of active vision. We note that the perception

model in each case is a variational autoencoder (VAE), despite

the different nature of each task and, thus, the different genera-

tive model. In both cases, the evidence lower bound (ELBO)

objective is used to learn a probabilistic relationship between

latent states and observed variables. However, the action selec-

tion model is different due to the discrete nature of the CMC

problem versus its continuous counterpart in the active vision
8 Patterns 5, 100983, June 14, 2024
task. In CMCs, actions are evaluated directly, while in active

vision, a neural network is trained to output continuous actions.

Nonetheless, in each case, action selection still aims to maxi-

mize uncertainty reduction, complying with our general active

exploration framework.

Our approach emphasizes the relationship between percep-

tion, action, and learning during exploratory behavior. The

importance of this relationship shows up in the CMC and active

vision settings. Specifically, we see that, in both cases, the qual-

ity of the representations learned by the perception model

directly depends on the exploration strategy used to collect in-

formation from the environment. For example, in CMCs, we

see that our BAS exploration strategy leads to faster and more

efficient learning of the underlying transition distributions

compared to Boltzmann and random exploration (Figure 3A).

This is despite BAS and Boltzmann performing somewhat simi-

larly in terms of state-action space coverage, which shows that

the uncertainty reduction objective leads to collecting observa-

tions that are particularly useful for the perception model to learn

accurate representations of its environment. In active vision, we

see a similar effect; when the perceptionmodel is trained on data

collected with BAS (as opposed to random) exploration, the rep-

resentations are well clustered in the latent space and contain

more information about image categories (Figures 5B and 5C).

These perception-action dependencies are captured more effi-

ciently in our approach as a result of using a generative model

with respect to which uncertainty can be measured. In contrast,

RL exploration methods (e.g., Houthooft et al.,23 Shyam et al.,32

Stadie et al.,33 Pathak et al.34) either develop approximate

methods for information-based action selection or learn only

the dynamics of a given Markov decision process (MDP)

instance solely to aid in exploration. As a result, these methods

are mainly concerned with efficient policies for action (explora-

tion) without much emphasis on perception, i.e., learning useful

representations of the environment through exploration.

Our final objective for action selection in CMCs consists of two

terms: uncertainty reduction and expected future uncertainty

(see experimental procedures). The uncertainty reduction term

is a one-step approximation to the long-term expected informa-

tion gain (EIG) objective used in the context of optimal experi-

mental design.35,36 From this perspective, eye saccades are

viewed as experiments performed by an agent to gain informa-

tion about the world.10 In our approach, we add an expected

future uncertainty term that acts as a heuristic that drives the

model toward more uncertain states, thus providing a better

approximation of the long-term information gain without

requiring multi-step planning over long horizons. To test the ef-

fect of these two terms on the learning and exploration in

CMCs, we performed an ablation analysis, which showed that

using either term alone is less effective than using both terms

together (Figure 3B). These results show that our combined

objective works better for exploration than the one-step EIG.

Another important benefit of our approach is the integration of

action selection with a differentiable perception model, which al-

lows for end-to-end learning as opposed to the traditional multi-

step planning and RL approaches used for optimizing the EIG.

While the perception component of our method is based on

the theory of predictive coding, its implementation relies on

amortized variational inference. This is different from the
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standard implementation of predictive coding in the neurosci-

ence literature,15,37,38 which relies on maximum a posteriori esti-

mation using gradient-based optimization of the log-likelihood

objective. Despite the apparent differences, methods such as

iterative amortized inference39 and hybrid predictive coding40

provide a connection between the two implementations. These

methods combine an inference model with iterative updates on

the approximate posterior to compute better hidden state esti-

mates. We include an in-depth exposition of the relationship be-

tween predictive coding and VAEs in Note S1. For a more

comprehensive review, see Marino41 and Salvatori et al.38

Limitations of the study
In discrete-action settings such asCMCs, a potential limitation of

our approach is that action scoring, which relies on enumeration,

may not scale well to larger environments with bigger state-ac-

tion spaces. Although directly evaluating actions is more accu-

rate, we can still select actions with sufficient accuracy while

improving scalability by using a neural network trained to mini-

mize uncertainty, similar to the active vision model. Additionally,

one potential concern (especially for the active vision setting) re-

lates to how well this approach can be applied to more complex

real-world datasets. In this work, we opted to keep our models

as simple as possible (using only feedforward networks) to illus-

trate the advantages of our approach. It is, however, possible to

implement this framework with more complex architectures, uti-

lizing more advanced types of networks such as convolutional

neural networks, which may allow for applications in more

complicated real-world problems. Such applications will be

interesting to investigate as a future extension of this work.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for additional information and resources should be directed to the

lead contact, Abdelrahman Sharafeldin (abdo.sharaf@gatech.edu).

Materials availability

No new unique reagents were generated by the study.

Data and code availability

The code and data to reproduce the results of this study are available as a

GitHub repository: https://github.com/AbdoSharaf98/active-sensing-paper.

The code has also been deposited to Zenodo: https://doi.org/10.5281/

zenodo.10837552.42

General approach for active exploration

Our approach consists of two components: a perception model, which is

based on predictive coding,15 and an action model, which selects actions

that reduce the perception model’s uncertainty about inferred states. For

perception, we rely on a generative model of the world that can be learned

through experience. Perceiving an observation corresponds to inverting this

model to infer the hidden states of the world that gave rise to that observation.

Therefore, the first step when applying our approach to a given problem is to

specify a reasonable generative model; in biological systems, this corre-

sponds to niche-specific priors. The second step is to specify a method for

learning and inference in this model. To this end, we use VAEs43 to perform

amortized variational inference on a generative model parameterized by neural

networks. In essence, given a simple generative model in which a latent vari-

able s and a set of actions a% t give rise to a set of observed variables x% t at

times up to time t, the goal of variational inference44 is to find an approximate

posterior qðsjx% t ; a% tÞ which maximizes the objective

Es�qð$jx% t ;a% t Þ½log pðx% t js; a% tÞ� � DKLðqðsjx% t ; a% tÞkpðsÞÞ; (Equation 3)
whereDKL is the KL divergence. This objective is the ELBO. Amortized learning

can be done by using neural networks to parameterize the distributions in

Equation 3 and optimizing the objective with gradient descent. Inference in

this case corresponds to a simple forward pass through a neural network.

The second component of our approach is the action model, which relies on

uncertainty reduction measured using Shannon entropy. As such, an applica-

tion of our approach requires a method of computing the entropy of the pos-

terior distribution qðsjx% t ; a% tÞ inferred by the perception model. Actions are

then selected to maximize the reduction in uncertainty as represented by the

following score function:

Scoreðat+1Þ = Hðqðsjx% t ; a% tÞÞ � Ext+1�pð$jat+1 ;x% t Þ½Hðqðsjx% t+1; a% t+1ÞÞ�;
(Equation 4)

where H denotes the Shannon entropy. The first term in Equation 4 represents

the agent’s current uncertainty about s. The second term represents the ex-

pected uncertainty if action at+1 is executed. The expectation in the second

term is taken with respect to fictitious future states drawn from the agent’s cur-

rent transition distribution pðxt+1jx% t ;at+1Þ.
The score function in Equation 4 is equivalent to the one-step EIG,35 which

has been used in prior works on modeling eye movements.9,10,18 The key

contribution of this work is in the integration of this objective, formulated in

terms of the Shannon entropy, with a deep generative model that allows

us to learn an estimate of the score function in an amortized and differen-

tiable manner. The benefit of this approach is 2-fold. First, while this score

function can be evaluated directly in discrete-action spaces, it becomes

intractable in continuous state and action spaces. By formulating this func-

tion in terms of entropy and integrating it with a deep generative model,

we can compute an MC approximation to the expectation in Equation 4 in

a differentiable manner without having to lose information by discretizing

the action space. Second, this approach allows us to amortize action selec-

tion by training a neural network end-to-end to output actions that minimize

the uncertainty of the perception model, which leads to faster learning and

higher sample efficiency compared to traditional RL approaches for opti-

mizing information gain.23,32–34 We refer to our action selection strategy

as BAS.

Exploration in controllable Markov chains

As a proof of concept, we first demonstrate our model in the setting of discrete

state and action spaces. Specifically, we develop an instance of the general

framework described above for CMCs.20,45 A CMC is essentially an MDP

but without the specification of a reward function. It is formally defined as a

3-tuple ðS; A; PÞ, where: S is a set of finite states, for example the set of

possible locations in a maze; A is a finite set of allowable actions, e.g., move-

ment directions; and P is a three-dimensional kernel of transition probabilities

p : S3 A/DðSÞ, where DðSÞ is the set of probability distributions on S. That

is, P is a jSj3jAj3jSj matrix containing the probabilities Ps;a;s0 = pðs0 js; aÞ,
where s is the current state, a is the action taken, and s0 is the resulting

next state.

The goal of an agent in this setting is to efficiently explore the environment

and learn an estimate, bP , of the underlying transition probability matrix P.

This setting models the embodiment of the agent because, at any given

time, the agent’s interaction with the world is restricted by its current state.

Perception

We begin by specifying a generative model for this task. This generative model

constitutes the perception component and is learned from observations

collected by the agent. Whenever the agent visits a state s and takes action

a, the observation consists of the resulting state s0. The agent’s goal is to

infer the distribution bpð: js; aÞ for each state-action combination that best ex-

plains all observations collected when that combination was visited. Let

zs;a = bpð: js; aÞ denote themodel’s estimated distribution of the next state after

executing action a in state s. Then, the generative model contains jSj3jAj
latent variables, fzs;ags˛S;a˛A, each corresponding to a state-action combina-

tion. If we let T ðs; aÞ be the set of times at which state swas visited and action a

was taken, then each latent variable zs;a gives rise toK = jT ðs; aÞj observations
(or next states), denoted by fs0tk gtk ˛ T ðs;aÞ. This is illustrated in Figure 1D.

Let H = fðst ; at ; s0tÞgTt = 1 denote the full history of experiences collected by

the agent, and Hs;a = fðs; a; s0tÞgt˛ T ðs;aÞ be the subset of H containing
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experiences in state s when action a was taken. Because the latent variables

are independent, the variational posterior in this model can be expressed as

qð�zs;a���HÞ =
Y

s˛S;a˛A

qðzs;a
��Hs;aÞ: (Equation 5)

To simplify notation, we will drop the subscript ðs;aÞ, but it should be clear

that, in what follows, the latent variables z and the histories H depend on

the specific state-action combination. For a single latent variable z, the corre-

sponding ELBO can be expressed as

log pðHÞR Ez�qð$jHÞ½log pðz;HÞ � log qðzjHÞ�; (Equation 6)

= Ez�qð$jHÞ½log pðHjzÞ� � DKLðqðzjHÞkpðzÞÞ: (Equation 7)

The first term in Equation 7 corresponds to the likelihood of the observations

given the inferred transition distribution z, while the second term controls the

deviation of that distribution from the model’s own prior pðzÞ. We assume

that the prior for all latent variables is a Dirichlet distribution with concentration

parameters a = 1 for all states in S. The posterior qðzjHÞ is also assumed to be

a Dirichlet distribution with a concentration parameter a that is the output of a

simple feedforward neural network with parameters 4.

To compute the quantities in Equation 7, we need a representation of s;a, and

H that facilitates updating the agent’s history with new observations. To achieve

this, we use one-hot vectors to represent the states and actions. We represent

the complete history of the agent as an jSj3jAj3jSjmatrix whose entries repre-

sent number of visits to state s0 from state swhen action awas taken. That is, we

represent the history Hs;a as the vector hs;a ˛N
jSj
0 with entries

hs;aðiÞ =
X

t˛ T ðs;aÞ
d
�
s0t ;SðiÞ

�
for i = 1;2;.; jSj: (Equation 8)

This representation makes updating the history given new observations a

simple summation operation. That is, when the agent takes action a in state

s and receives a new observation s0, the history can simply be updated as

hs;a)hs;a + s0. Now, the log likelihood in Equation 7 can be computed as

log pðHjzÞ = log
YjSj
i = 1

zðiÞhs;aðiÞ =
XjSj
i = 1

hs;aðiÞlog zðiÞ: (Equation 9)

Amortized Inference in this model is performed by the perception network

4, which receives as input the current state s, action a, and history vector hs;a

and outputs a concentration parameter a that parameterizes the Dirichlet

posterior distribution q4ðzjHÞ. The inferred distribution z can be obtained

by drawing a reparameterized sample from q4ðzjHÞ.43 Note that the full

ELBO for this model should be the sum of the terms in Equation 7 over all

state-action combinations. However, since a single transition only changes

the history for the current state s and action a, the inference network will

be affected only by the corresponding term in the full ELBO. Therefore, opti-

mizing the entire ELBO at every step is equivalent to taking a gradient step

with respect to the single ELBO in Equation 7 for the relevant s and a. The

derivation of the ELBO objective in Equation 7 and the full training algorithm

for this model are included in section A of the supplemental experimental

procedures.

Action

Our framework relies on uncertainty minimization for action selection. In this

setting, our model selects actions that lead to the greatest reduction in its un-

certainty about the inferred transition distributions zs;a. This can be done by

planning over long horizons46 or by using value iteration techniques.20 Howev-

er, to keep our model simple and more computationally efficient, we employ a

greedy approach with a simple heuristic that guides the model toward states

with greater uncertainty. Despite this, our model is still able to achieve faster

and more efficient exploration compared to random or visitation-count-based

action selection. At every time step, the agent evaluates each action based on

the following uncertainty reduction score

Uncertainty ReductionðaÞ = Hðq4ðzs;a
��hs;aÞÞ

� Es0�zs;ajhs;a
½Hðq4ðzs;a

��hs;a + s0ÞÞ�;
(Equation 10)
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which is an adaptation of Equation 4 to this specific application. Overall,

Equation 10 represents the expected reduction in uncertainty for action a

over a single step and a single transition distribution. To guide the agent to-

ward future uncertain states, we add the following heuristic that describes

the expected future uncertainty about the transition distributions in the

next state:

Expected Future UncertaintyðaÞ = Es0�zs;ajhs;a

"X
a0 ˛A

Hðq4ðzs0 ;a0
��hðs0; a0ÞÞÞ#:
(Equation 11)

The final score maximized by the agent is the sum of the uncertainty reduc-

tion in Equation 10 and expected future uncertainty in Equation 11.

Active vision model

Perception

The active vision perception model is based on a simple hierarchical two-level

generative model that reflects the structure of the task and can be interpreted

as a dynamical VAE.47 Thismodel is shown in Figure 1C. Let I denote the image

presented on a given trial. The higher level of the perception model encodes a

single abstract representation s, which may reflect high-level properties of the

class to which I belongs. For example, s can represent the number of lines and

circles and the spatial correlations specific to drawing a certain digit. The lower

level contains individual units whose activations are entirely driven by sensory

input. From a biological perspective, these units correspond to neurons in the

primary visual cortex whose receptive fields overlapwith the spatial span of the

fovea. At each time step t and for a given sensory input xt , we denote the activ-

ities of these neurons by zt . Froma generative perspective, zt can contain infor-

mation about the lower-level properties of image Iat agiven location lt� 1. These

properties, for example, can include stroke width, style, and so forth.

Using the chain rule and the fact that the fx1:Tg and s are conditionally inde-

pendent given fz1:Tg, the full variational posterior can then be factorized as a

product of two variational posteriors,

qðz1:T ; sjx1:T ; l0:T � 1Þ = q1ðz1:T jx1:T ; l0:T � 1Þ3q2ðsjz1:T ; l0:T � 1Þ: (Equation 12)

For notational simplicity, we will omit the conditioning in the variational pos-

teriors, e.g., use qðz1:T ; sÞ to refer to qðz1:T ; sjx1:T ; l0:T � 1Þ. The corresponding

ELBO, derived in section B of the supplemental experimental procedures, is

found to be

LELBO =
XT
t = 1

Eq½log pðxt jztÞ� � Eq

�
pðsÞ

q2ðsjz1:T ; l0:T � 1Þ
�
�
XT
t = 1

Eq

�
pðzt js; lt� 1Þ
q1ðzt jxt ; lt� 1Þ

�
:

(Equation 13)

Note that the loss function does not depend on the entire image except at

the locations sampled and viewed by the model. This maintains consistency

with the natural setting, where the agent’s perception does not encompass

the entire image and so it cannot (as a whole) be used for training. Throughout

our experiments, we assume the prior over s to be a standard Gaussian. We

also assume the likelihood distributions, pðxt jztÞ and pðzt js; lt� 1Þ, as well as

the variational posteriors, q1 and q2, to be Gaussian with means and variances

parameterized by feedforward neural networks. The full architecture of the

model with these networks is shown in Figure 1C and is described below.

Network architecture. The perception architecture consists of two VAEs, one

for each posterior in Equation 12. The encoders and decoders for both VAEs

are simple feedforward networks. The following is a description of each model

component.

Lower-level VAE. At each time step t, themodel receives an observation xt
which, together with the corresponding location lt� 1, is passed through an

encoder network to infer the posterior over sensory representations q1ðztÞ.
Let f

ð1Þ
enc;mðxt ; lt� 1Þ and f

ð1Þ
enc;sðxt ; lt�1Þ denote the outputs of the lower-level

encoder network at time t. In our experiments, we assume q1ðztÞ is an isotropic
Gaussian N ðzt

��mz
t ;s

z
t IÞ, where

mz
t = f ð1Þenc;mðxt ; lt� 1Þ; (Equation 14)

sz
t = exp

	
1

2
f ð1Þenc;sðxt ; lt� 1Þ



: (Equation 15)



Algorithm 1. Bayesian action selection in active vision

Input: observations x1:t, locations l0:t� 1, perception model F, action network jt, number of MC samples K

qtðsÞ = F:Encodeðx1:t; l0:t� 1Þ
lt = jtðE½qtðsÞ�Þ
pðxt+1Þ = F:DecodeðqtðsÞ; ltÞ
Draw K samples from pðxt+1Þ
for k = 1 to K do

q
ðkÞ
t+1ðsÞ = F:Encodeðx1:t;xðkÞt+1; l0:t� 1Þ

end for
~VðltÞ = HðqtðsÞÞ � 1

K

PK
k = 1HðqðkÞ

t+1ðsÞÞ
Update action network parameters using gradient descent on ~V: jt+1 = jt +mVjt

~VðltÞ
return: selected action lt and updated action network jt+1
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The lower-level VAE decoder network takes sensory representations zt and

outputs the likelihood distribution pðxt jztÞ. We assume this distribution is

Gaussian N ðxt jbxt ; IÞ, where bxt is the output of the decoder.

Higher-level VAE. At the end of a fixation sequence, the higher-level

encoder network receives the sum of the past sensory representations and

uses it to infer the posterior over abstract representations q2ðsÞ. Similar to

q1ðztÞ, we assume q2ðsÞ is an isotropic Gaussian N ðsjms;ssIÞ parameterized

by the output of the higher-level encoder f
ð2Þ
enc. The decoder network at this level

receives an abstract representation s and a query location lt� 1, and predicts a

distribution over the corresponding lower-level representations pðzt js; lt�1Þ.
Generative mechanism. We can generate new data from the model as fol-

lows.First,wesampleanabstract representations fromastandardGaussiandis-

tribution. We then pick a query location l0 from the interval ½ � 1;1�3 ½ � 1;1�.
Next, wepass s and l0 through the higher-level decoder f ð2Þdec, which outputs a dis-

tribution pðz0Þ. We sample z0 from this distribution and pass it through the lower-

level decoder f
ð1Þ
dec, which outputs an observation x0 that is the same size as the

model’s retina.

Action

Adapting the uncertainty reduction objective for action selection in active

vision gives the following value function for a given action (or fixation loca-

tion) lt :

Vðlt jx1:t ; l0:t� 1Þ : = Hðsjx1:t ; l0:t� 1Þ � Epðxt+1 js;lt Þ½Hðsjx1:t+1; l0:tÞ�; (Equation 16)

where Hð $Þ denotes the Shannon entropy. Intuitively, VðltÞ quantifies how

much information the agent expects to gain as a result of observing the input

image at location lt. Therefore, a good estimate of information gain depends on

how accurate the agent’s generative model is. The objective in Equation 16 is

intractable because it requires evaluating the posterior over s for all possible

observations xt+1 in a continuous space. So, instead, we compute an approx-

imation of it using an MC sampling approach. First, we independently draw K

samples from the agent’s likelihood model pðxt+1js; ltÞ. The approximate ex-

pected entropy can then be computed as the average over the K samples,

yielding the approximate value

~Vðlt jx1:t ; l0:t� 1ÞzHðsjx1:t ; l0:t� 1Þ � 1

K

XK
k = 1

H
�
sðkÞ
���x1:t ; xðkÞt+1; l0:t

�
; (Equation 17)

where x
ðkÞ
t+1 denotes the k

th sample and sðkÞ denotes the corresponding updated

posterior estimate. To make our model end-to-end differentiable, we use a

neural network to select fixation locations that maximize the value in Equa-

tion 17. This action network can be trained with gradient descent because

all the terms in Equation 17 are computed from the neural networks in the

perception model, which receive fixation locations as part of their input. There-

fore, it is possible to compute the gradients of Equation 17 with respect to the

output of the action network. For all experiments, the action network we use is

a simple two-layer feedforward networkwhich receives as input the current es-

timate of the state s and outputs the mean of a Gaussian distribution over fix-

ation locations. The standard deviation of this distribution is a fixed hyperpara-

meter that we specify. The agent chooses a fixation location by sampling from

the output distribution of the action network. Algorithm 1 describes our differ-
entiable approach to selecting continuous actions with uncertainty reduction

in active vision tasks.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.100983.
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Supplemental Notes

Note S1: Relationship between Predictive Coding and Variational Au-
toencoders
According to the predictive coding framework, the brain maintains a generative model of the world which approximates
a mapping between observed sensory input and hidden states of the environment. This is illustrated in Figure
S1. Perception, therefore, corresponds to inverting this model to infer hidden states, while learning corresponds
to updating the parameters of this model based on prediction errors. Here, we outline the relationship between
hierarchical predictive coding as presented in Rao and Ballard (1999)1 and the framework of Variational Auto-
encoders in machine learning2. A similar outline of this relationship is given in Jiang and Rao (2021)3 and Marino
(2022)4 (with more details on the connections between theory and biology).

Figure S1: Simple two-layer hierarchical
generative model. This model is parameterized
by θ and approximates the true distribution of the
generative process giving rise to observations x.
The predictive coding framework postulates that
neural activities encode hidden state estimates,
e.g. s. Thus, perception corresponds to inverting
the generative model and inferring those neural
activities (red arrow).

To simplify the discussion, we assume the generative model
consists of two hierarchical layers (an input layer and a sensory
layer) as shown in Figure S1. In reality, the sensory areas in the
brain contain many more hierarchical levels, and this discussion can
be easily extended to multi-layer hierarchical generative models.

The goal of inference is to find the best estimate s⋆ of the true
hidden state ŝ given an observation x. In the predictive coding
framework, this is done by maximizing the posterior distribution
p(s|x), which is known as maximum a posteriori (MAP) estimation.
Equivalently, we can maximize log p(s|x) since the log is a monotonic
function in p. This problem can be formulated as follows

s⋆ = argmax
s

log p(s|x) (1)

= argmax
s

log
p(x|s)p(s)

p(x)
(2)

= argmax
s

[log p(x|s) + log p(s)] (3)

To perform this optimization, we adopt some assumptions about
the likelihood distribution p(x|s) and the prior on the hidden state
p(s). In their original implementation, Rao and Ballard assume the
following parameterizations

p(x|s) = N (f(W s);σ2
xI) (4)

p(s) = N (µs;σ
2
sI) (5)

where W is a weight matrix, f(·) is a non-linearity, and N (µ, σI)
is an isotropic gassuian with mean µ and covariance σI. Without loss of generality, we can simplify this further by
assuming the prior p(s) is a standard gaussian, i.e. µs = 0 and σ2

s = 1. Substituting this into equation 3, we get

s⋆ = argmax
s

logN (f(W s);σ2
xI) + logN (0; I) (6)

= argmin
s

1

σ2
x

∥x− f(W s)∥22 + ∥s∥22 (7)

Equation 7 is the predictive coding objective for the simple generative model in Figure S1. The first term in the
objective is a reconstruction loss (or prediction error) and the second term is a regularization term which ensures
that the inferred state s⋆ is consistent with the prior over s. To learn the parameters W , the same objective is
minimized with respect to W while fixing the inferred state s.

The predictive coding formulation described above attempts to find a point estimate s⋆ which maximizes p(s|x).
An alternative is to find the full posterior distribution

p(s|x) = p(x|s)p(s)
p(x)

=
p(x|s)p(s)∫
s
p(x, s)ds

(8)

This is intractable to do exactly since it requires evaluating an integral over the continuous space of hidden states.
Variational inference5 allows us to approximate the posterior p(s|x) with some variational posterior q(s). Given a



family of distributions Q defined over the space of hidden states s, we aim to find the distribution q(s) ∈ Q which
minimizes the objective

DKL

(
q(s)||p(s|x)

)
= Es∼q(s)

[
log

q(s)

p(s|x)

]
(9)

= Es∼q(s)

[
log

q(s)p(x)

p(x, s)

]
(10)

= log p(x)− Es∼q(s)

[
log

p(x, s)

q(s)

]
(11)

The quantity Es∼q(s)

[
log

p(x, s)

q(s)

]
is known as the evidence lower bound (ELBO) because, due to the non-negativity

of the KL divergence, it forms a lower bound on the log evidence

log p(x) ≥ Es∼q(s)

[
log

p(x, s)

q(s)

]
= Es∼q(s)[log p(x|s)]−DKL

(
q(s)||p(s)

)
(12)

Therefore, minimizing the KL term DKL

(
q(s)||p(s|x)

)
amounts to maximizing the ELBO since log p(x) does not

depend on either s or the parameters of the model. When we factor in the assumption in Equation 4, the ELBO
reduces to the objective

−Es∼q(s)

[
∥x− f(W s)∥22

]
−DKL

(
q(s)||p(s)

)
(13)

To see the correspondence between the ELBO in Equation 13 and the predictive coding objective in Equation 7,
note that the first term in Equation 13 leads to the minimization of the reconstruction error, while the second term
constrains the deviation of the posterior q(s) from the prior p(s). Finally, We can train neural networks to optimize
the ELBO in equation 13 using the framework of Variational Autoencoders2.



Note S2: Survery of related work
Intrinsic motivation Our approach can be regarded as an intrinsically-motivated exploration strategy6. In
intrinsically-motivated exploration, an agent learns exploratory behavior in the absence of any extrinsic reward
signals. Instead of extrinsic reward, exploration is guided by intrinsic value, which in our case is based on the
expected uncertainty reduction associated with an action. The uncertainty is measured with respect to the agent’s
perception model, which is learned in a completely unsupervised manner. Other types of intrinsic signals have been
used for autonomous exploration, such as prediction error7–9, space coverage10,11, and visitation count12. Intrinsic
motivation strategies can help build representations that generalize to different tasks in the same environment since
there is no dependence on a specific reward function. The closest family of intrinsic motivation approaches to ours
are information-theoretic approaches, discussed below.

Information-theoretic exploration in reinforcement learning Information gain has been used to promote
autonomous exploration in multiple approaches13–15. However, these approaches rely on state-action enumeration
to compute information gain, which limits their applicability to settings with discrete state and action spaces. In
contrast, our framework is general and can be applied to both discrete and continuous settings. In the discrete
setting, our work is most related to Little and Sommer (2013)16; we test our model in a maze navigation task
similar to the one used there. The main difference between their approach and ours is that we do not assume
explicit knowledge about the true generative model of the environment. Instead, the perception component of our
architecture learns a generative model through collected experiences in an end-to-end manner. In the continuous
setting, our work is most similar to Houthooft et al. (2016)17 and Mohamed et al. (2015)18 in deep reinforcement
learning (RL). Our approach is different from those two approaches in that it can be applied in model-based
settings, since the perception component of our model explicitly learns the transition dynamics of the environment,
enabling the generation of imagined trajectories that can be used for model-based planning and training. In contrast,
those two approaches rely on model-free methods by modifying the reward function to include an information
gain component. Finally, some approaches, such as Plan2Explore19, calculate disagreement between ensembles of
predictive models as a surrogate measure of uncertainty that is then used to guide exploration. These ensembles can
be trained to predict observations, in which case exploration can be performed without external reward signals, as
well as future extrinsic rewards20.

Active vision and visual attention in machine learning We apply our model to the task of active vision.
Here, our work is related to the Recurrent Attention Model (RAM)21 and the DRAW model22, but differs from
those models in four key aspects. First, the perception and action components of our model are trained in a
completely unsupervised, task-independent manner. During the classification task, only one feedforward decision
network (separate from the main model) is trained with the classification loss. The learned representations can then
be used for arbitrary tasks: to illustrate, we use these representations as input to the decision network to achieve
high performance on a downstream image classification task. Second, despite the sequential nature of this task, our
model solves it using end-to-end feedforward networks, greatly reducing the amount of computation compared to the
recurrent architectures used in RAM21 and DRAW22. Third, in contrast to DRAW22, our model does not assume
access to the full image in the training loss function, which is consistent with the assumption of bandlimited sensing.
Finally, our model makes explicit links to ideas in neuroscience that enable the testing of functional hypotheses in a
modern machine learning setting.

Our active vision approach is also somewhat related to the framework of Attend, Infer, Repeat (AIR)23,24.
However, there are some key differences in the underlying modeling assumptions. For example, the latent variables
inferred by AIR for a given image (or scene) are assumed to correspond to the attributes of entire objects that
decompose the scene, whereas our model makes no restrictions on what the lower-level latent variables represent.
Further, for biological plausibility, our approach imposes the restriction that only patches of the image corresponding
to the model’s bandlimited sensor are used during inference and training. Since AIR is mainly concerned with
decomposing scenes into constituent objects, it makes no such restriction and so the underlying approach involves a
different inference and training process.

Embodied AI for exploration and learning Embodied AI methods focus on learning perception models
in agents that interact with their environment. This is in contrast, for example, to traditional computer vision
approaches, where vision is treated as a passive process. Much work has been done in the area of embodied
exploration for robotics to find policies (e.g., for movement and sensing) that help agents learn good perceptual
representations of their environments25–28. For example, Self-supervised Embodied Active Learning (SEAL)26



focuses on improving object detection and instance segmentation through actively collecting data that provide the
agent with the most knowledge during training, utilizing a curiosity-based objective. Other methods, such as Active
Neural SLAM25, focus on leveraging a learned SLAM module to guide exploration and navigation in unknown
environments.

Active inference and the free energy principle In general, the theoretical formulation of our approach is
most similar to the active inference formulation in neuroscience29,30. In this formulation, an agent aims to minimize
the Expected Free Energy (EFE) objective, which consists of an epistemic value component that minimizes the
agent’s surprise and an extrinsic value component that maximizes external rewards from the environment. In this
sense, our action selection mechanism can be viewed as a special case of the EFE when no extrinsic reward is
provided and when action selection is performed in a greedy fashion. The main difference between our approach and
standard implementations of active inference is our amortization of action selection with end-to-end optimization,
which avoids expensive trajectory search approaches31 and extends the applicability of our approach to continuous
domains32.

Predictive coding in machine learning There is a large body of work adapting the theory of predictive
coding to machine learning problems, ranging from computer vision33–35, gradient-based optimization36,37, lifelong
learning38, and temporal learning39. However, these models apply the theory in the context of passive perception.
Although some recent work combines predictive coding models with action40, they do not focus on autonomous
exploration. Rao and colleagues have recently introduced the framework of active predictive coding41–44 but their
generative models focus on generating transition and policy functions using hypernetworks, and their policy training
approach utilizes a supervised reinforcement learning algorithm without particular focus on autonomous exploration.
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Figure S2: Differences between learned and true transition distributions for our active explorer (BAS,
top row) and a random explorer (bottom row) in the Dense Worlds environment. Each image represents the
normalized absolute differences between the learned and true transition distributions for a given action (a = 1, 2, 3, 4).
Numbers above each image represent the sum of all values in the corresponding matrix. In each case, agents were allowed to
explore the environment for 2000 steps.



(a) (b)

Figure S3: Effect of action selection strategy on perceptual latent representations visualized through t-SNE.
t-SNE projections45 of the learned latent representations are shown for two cases: (a) the BAS-trained perception model,
and (b) the randomly-trained perception model.



Figure S4: More examples of visitation frequency heatmaps for our BAS explorer model versus a random
exploration strategy in 6× 6 mazes.
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Figure S5: Results on Fashion MNIST. (a) Classification performance on the fashion MNIST dataset during the active
vision task. (b) Examples demonstrating the generative ability of the perception model. The original patches presented are
shown on the left and their reconstructions are shown in the middle. Right shows images generated by first generating small
patches at various locations (not seen during presentation) and combining them to form the final image. These results show
the perception model is able to capture the spatial relationships associated with elements in the dataset.



Figure S6: Results on grayscale CIFAR-10. Original presented patches are shown on the left and their reconstructions
are shown on the second column. Third and fourth column show images generated by the perception model combining smaller
patches at different locations. The last column has more patches at continguous locations followed by bicubic smoothing for
illustration. These results show that, despite the simplicity of our model’s architecture, it is still able to capture the overall
structure and statistics in natural images.



Supplemental Experimental Procedures

A Training of active exploration model in controllable Markov chains
Algorithm 1 describes the Bayesian Action Selection (BAS) algorithm in controllable Markov chains (CMCs) with
discrete action and state spaces. The training algorithm for our full active sensor model (including perception)
in CMCs is outlined in Algorithm 2. After the model is trained for T time steps in the environment, the learned
transition distribution p̂(: |s, a) for a given state s and action a is found as the mean of the Dirichlet posterior
output by the perception network at the end of training. That is,

q(zs,a) = Dir
(
ϕT (s, a,hs,a)

)
(14)

p̂(: |s, a) = Eq[zs,a] (15)

The ELBO objective in Equation 5 of the main text can be derived as follows.

log p(H) = log

∫
z

q(z|H)
p(z,H)

q(z|H
) dz (16)

= logEq

[
p(z,H)

q(z|H)

]
(17)

≥ Eq

[
log

p(H|z)p(z)
q(z|H)

]
(18)

= Eq [log p(H|z)]−DKL (q(z|H)||p(z)) = LELBO (19)

where Equation 18 follows from Jensen’s inequality. In practice, we can multiply the KL term in 19 by a scalar β to
control the balance between the regularity of the learned distributions and how well they explain past experiences46.

Algorithm 1 Bayesian Action Selection in Controllable Markov Chains
Input: current state st, history vectors hs,a for all a ∈ A and s ∈ S, perception network ϕ
Initialize bestAction = a0
Initialize bestV alue = −∞
for each action ai in A do
α = ϕ(st, ai,hst,ai)
q(zst,ai) = Dir(α)

Current Entropy = H
(
q(zst,ai

)
)

Draw reparameterized sample z̃st,ai from q(zst,ai |H)
Expected Entropy = 0
Expected Future Uncertainty = 0
for each state sj in S do
h+
st,ai

= hst,ai
+ sj

q+(zst,ai
) = Dir(ϕ(st, ai,h+

st,ai
))

Expected Entropy = Expected Entropy + z̃st,ai(j)×H
(
q+(zst,ai)

)
Future Uncertainty = 0
for each action ak ∈ A do
q(zsj ,ak

) = Dir(ϕ(sj , ak,hsj ,ak
))

Future Uncertainty = Future Uncertainty + H
(
q(zsj ,ak

)
)

end for
Expected Future Uncertainty = Expected Future Uncertainty + z̃st,ai(j)× Future Uncertainty

end for
value = (Current Entropy − Expected Entropy) + Expected Future Uncertainty
if value > bestV alue then
bestAction = ai

end if
end for



Algorithm 2 Active Sensing in Controllable Markov Chains
Initialize the perception network parameters ϕ0

Initialize the history vectors hs,a = 0 for all s ∈ S and a ∈ A
Get initial state s0 from the environment
for each time step t ≥ 0 do

Select action at with BAS using Algorithm 1
Execute action at and receive the updated state st+1 from the environment
hst,at

= hst,at
+ st+1

q(zst,at) = Dir
(
ϕt(st, at,hst,at)

)
Draw reparameterized sample z̃st,at from q(zst,at)

LELBO = −
∑|S|

i=1 hst,at
(i) log z̃st,at

(i) +DKL

(
q(zst,at

)||Dir(1)
)

Update perception network parameters with gradient descent: ϕt+1 = ϕt + µ∇ϕt
LELBO

end for



B Derivation of the ELBO for the perception model
The generative graphical model for active vision (Figure 1C) admits the following factorization of the joint likelihood

p(x1:T , z1:T , s|l0:T−1) = p(x1:T |z1:T )p(z1:T |l0:T−1, s)p(s) (20)

= p(s)

T∏
t=1

p(xt|zt)
T∏

t=1

p(zt|lt−1, s) (21)

Similarly, the joint posterior factorizes as follows

q(z1:T , s|x1:T , l0:T−1) = q1(z1:T |x1:T , l0:T−1)q2(s|z1:T , x1:T , l0:T−1) (22)
= q1(z1:T |x1:T , l0:T−1)q2(s|z1:T , l0:T−1) (23)

= q2(s|z1:T , l0:T−1)

T∏
t=1

q1(zt|xt, lt−1), (24)

We can, therefore, express the log likelihood and posterior probabilities as

log p(x1:T , z1:T , s|l0:T−1) =
T∑

t=1

log p(xt|zt) +
T∑

t=1

log p(zt|lt−1, s) + log p(s) (25)

log q(z1:T , s|x1:T , l0:T−1) = log q2(s|z1:T , l0:T−1) +

T∑
t=1

log q1(zt|xt, lt−1) (26)

Using the log joint likelihood in Equation 25 and the log posterior in Equation 26, we can obtain the ELBO on the
log marginal likelihood as follows

log p(x1:T |l0:T−1) = logEq

[p(x1:T , z1:T , s|l0:T−1)

q(s, z1:T |x1:T , l0:T−1)

]
(27)

≥ Eq

[
log p(x1:T , z1:T , s|l0:T−1)− log q(s, z1:T |x1:T , l0:T−1)

]
(28)

= Eq

[ T∑
t=1

log p(xt|zt) +
T∑

t=1

log p(zt|lt−1, s) + log p(s)

−
T∑

t=1

log q1(zt|xt, lt−1)− log q2(s|z1:T , l0:T−1)
] (29)

=

T∑
t=1

Eq

[
log p(xt|zt)

]
+

T∑
t=1

Eq

[
log

p(zt|lt−1, s)

q1(zt|xt, lt−1)

]
+ Eq

[
log

p(s)

q2(s|z1:T , l0:T−1)

]
,

(30)

where Equation 28 follows from Jensen’s inequality.



C Experiment settings and hyperparameters for controllable Markov
chains

Dense World
In the dense world experiments, we let the models explore an environment with 10 states and 4 actions for a total
of 2000 timesteps. The transition distributions in the environment were independently drawn from a Dirichlet
distribution with parameter α = 1. That is, for a given state s and action a, the transition distribution p(: |s, a) is
given by

p(: |s, a) ∼ Dir(1) :=
Γ(N)

Γ(1)N
(31)

Γ(x) :=

∫ ∞

0

tx−1e−t dt (32)

For both the BAS and the random agents, the perception network was a two-layer feedforward network with 16
hidden units each followed by a softplus nonlinearity. The learning rate for both agents was fixed at 0.001.

Mazes
In the maze experiments, the agents explored a maze for a total of 3000 time steps. We did experiments with
different maze sizes (6 × 6, 8 × 8, and 12 × 12) and observed qualitatively the same results. We used the same
network architecture and learning rates for all agents as those used in the Dense World experiments.



D Experiment settings and hyperparameters for active vision

MNIST classification
We trained our model on the regular MNIST dataset, the translated MNIST dataset (described in the main text), and
the fashion MNIST dataset. First, the perception model was pre-trained in a completely unsupervised manner with
randomly selected fixation locations. Afterwards, we continued to train the perception model with the unsupervised
loss while actions were selected using our BAS strategy. At the same time, a separate decision network was trained
to take as input the inferred state s at the end of trial output a class label at the end of the trial. Gradients from
classification loss were only used to update the parameters of the decision network. For all experiments, the encoder
and decoder networks of both the the lower-level and the higher-level VAEs were feedforward networks with two
layers, each with 256 hidden units followed by rectified linear unit (ReLU) activation functions. The action network
was a two-layer feedforward network with 64 and 32 hidden units, respectively. When perception states were used
for decision making, the decision network was a two-layer feedforward network with 256 hidden units each. When
an RNN was used to integrate past observations for decision-making, the hidden size of the RNN decision network
was chosen to be the same as the dimensionality of the abstract state s. Table S1 lists the hyperparameters used
for each type of experiment. Hyperparameters were adjust ad hoc based on the resulting accuracy obtained on a
separate validation set. In these experiments, we also use a regularization hyperparameter β as a scalar multiplying
the KL term in the ELBO objective for the perception model46.

Table S1: Settings for Centered, Translated, and Fashion MNIST Experiments

Hyper-parameter Centered MNIST Translated MNIST Cluttered MNIST Fashion MNIST

# pre-training episodes 0 10 20 10
# fixations (n) 3 4 12 5
Patch dim (d) 8 12 12 6
# foveated patches (Nfov) 1 3 3 1
Foveation scale — 2 2 —
z dim 32 64 64 64
s dim 64 128 128 128
σaction 0.15 0.15 0.15 0.05
Action network lr 0.001 0.001 0.001 0.001
Perception model lr 0.001 0.001 0.001 0.001
Decision network lr 0.001 0.001 0.001 0.001
β 0.1 0.1 0.1 1.1
Batch size 64 64 128 64

Grayscale CIFAR-10
We tested our perception model on grayscale CIFAR-10 images to see if it can capture the overall structure and
statistics of natural images. Table S2 lists the hyperparameters used for these experiments.

Table S2: Settings for Grayscale CIFAR-10 Experiments

Hyper-parameter Setting

# fixations (n) 6
Patch dim (d) 12
# foveated patches (Nfov) 1
z dim 32
s dim 64
Perception model lr 0.001
β 0.01
Batch size 64



Learning speed and data efficiency comparisons
Learning speed and data efficiency tests were performed on the translated MNIST dataset. Our approach (BAS +
FF), described in the main text, was compared to four baselines: the Recurrent Attention Model (RAM)21, VIME17,
Plan2Explore19, and a feedforward (FF) neural network receiving full images as input (Full Images + FF). In all
these cases, the decision network (the network that outputs class labels) consisted of two hidden layers each with
128 hidden units followed by ReLU activation functions.

BAS + FF, VIME, BYOL-Explore and Plan2Explore were all pre-trained unsupervised for 10 epochs with a
random action selection strategy. For BAS + FF, the architectures of the perception model and the action network
were the same as those described in Section D. For RAM, the hidden size of the RNN was chosen to match the
dimensionality of the abstract representation s in our perception model, which was 128. In all models (except Full
Images + FF), the location was drawn from a two-component Gaussian (with a pre-determined fixed variance)
parameterized by the output of the location network. Hyperparameters for all models were adjusted ad hoc to
optimize performance on a validation set (separate from the MNIST test set).

All hyperparameters are listed in Tables S3, S4, S5, S6, and S8. In the Full Images + FF case, the only
hyperparameters adjusted were the batch size and the learning rate which were fixed at 64 and 0.001, respectively.

Table S3: Global Hyperparameters

Hyper-parameter Value

# fixations (n) 3
Patch dim (d) 12
# foveated patches (Nfov) 3
Foveation scale 2
Batch size 64

Table S4: Hyperparameters for BAS + FF

Hyper-parameter Value

z dim 64
s dim 128
σaction 0.15
Action network hidden layers [64]
Action network lr 0.001
Perception model lr 0.001
Decision network lr 0.001
β 0.1

Table S5: Hyperparameters for RAM

Hyper-parameter Value

hg 64
hl 64
RNN hidden size 128
σaction 0.05
Action network hidden layers [64]
Action network lr 0.001
Decision network lr 0.001
Core and glimpse networks lr 0.001



Table S6: Hyperparameters for VIME

Hyper-parameter Value

Action network hidden layers [256]
σaction 0.05
BNN hidden size 256
BNN prior std 0.5
BNN likelihood std 5.0
BNN lr 0.0001
Action network lr 0.001
Decision network lr 0.001

Table S7: Hyperparameters for BYOL-Explore

Hyper-parameter Value

Latent dim 256
Encoder hidden layers [256, 256]
Action network hidden layers [64, 32]
Critic network hidden layers [256, 256]
World model hidden layers [256, 256]
σaction 0.05
lr 0.001

Table S8: Hyperparameters for Plan2Explore

Hyper-parameter Value

Number of ensemble models 10
One step model layers [256, 256]
Horizon length 15
Encoder layers [256, 256]
Decoder layers [256, 256]
Action network hidden layers [256, 256]
Critic network hidden layers [256, 256]
Reward network layers [32, 32]
σaction 0.01
Action network lr 0.001
Critic network lr 0.001
One step model lr 0.001
Decision network lr 0.001
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