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In brief

By integrating perception and action in an
end-to-end differentiable architecture
and utilizing ideas from theoretical
neuroscience (e.g., predictive coding and
uncertainty minimization), efficient
learning through exploration in the
absence of extrinsic reward can be
achieved. Such integration, applied in
real-time settings, leads to faster
learning, more generalizable
representations, meaningful action
selection, and higher data efficiency.
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THE BIGGER PICTURE

of Al architectures.

While learning representations of the environment, biological organisms constantly
take actions that alter their sensory experience. Perception depends on the active selection of this experi-
ence, a process known as active sensing. This perception-action coupling is often overlooked in conven-
tional artificial intelligence (Al), which usually assumes passive perception or learns policies independently
from an agent’s representational objectives. Developing innovative approaches that couple perception and
action could minimize uncertainty about sensory inputs, and embodied Al agents could focus on learning
through exploration. This work explores the opportunities of integrating active sensing in the development

SUMMARY

We present an end-to-end architecture for embodied exploration inspired by two biological computations:
predictive coding and uncertainty minimization. The architecture can be applied to any exploration setting
in a task-independent and intrinsically driven manner. We first demonstrate our approach in a maze naviga-
tion task and show that it can discover the underlying transition distributions and spatial features of the envi-
ronment. Second, we apply our model to a more complex active vision task, whereby an agent actively
samples its visual environment to gather information. We show that our model builds unsupervised represen-
tations through exploration that allow it to efficiently categorize visual scenes. We further show that using
these representations for downstream classification leads to superior data efficiency and learning speed
compared to other baselines while maintaining lower parameter complexity. Finally, the modular structure
of our model facilitates interpretability, allowing us to probe its internal mechanisms and representations dur-

ing exploration.

INTRODUCTION

Biological organisms interact with the world in cycles of percep-
tion and action. These two processes are intertwined and
interact with one another to guide animal behavior.'™ Visual
perception, for example, is not passive. Rather, we actively sam-
ple our visual field in search of information (Figure 1A), a process
called active vision in neuroscience and psychology.® '° Simi-
larly, an animal navigating a maze explores its environment
and builds accurate representations of its structure, subse-
quently using them for various goal-directed tasks (Figure 1B).
In contrast, most models of artificial intelligence (Al) treat
perception and action as separate processes and aim to opti-
mize performance with respect to task-specific objectives. For

4')

example, visual recognition in machine learning often utilizes
convolutional neural networks,'"'? which passively receive
entire images as input, to directly maximize classification accu-
racy on a given dataset. Another example is reinforcement
learning (RL),"® whereby actions are chosen primarily to maxi-
mize extrinsic reward without accounting for the agent’s intrinsic
motivations and priors. By leveraging insights from neuroscien-
tific theories of perception and action, we can develop embodied
Al models that actively explore their environment and interact
with the physical world."*

In this work, we integrate two theories from systems neurosci-
ence to develop a combined perception-action model for intrin-
sically driven active sensing. The perception component of our
model is based on the theory of predictive coding.'® According

i Patterns 5, 100983, June 14, 2024 © 2024 The Authors. Published by Elsevier Inc. 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).



mailto:abdo.sharaf@gatech.edu
mailto:nimam6@gatech.edu
mailto:hannahch@gatech.edu
https://doi.org/10.1016/j.patter.2024.100983
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2024.100983&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

¢ CellPress

OPEN ACCESS

to predictive coding, the brain maintains a generative model of
the world,'® which it uses to predict its sensory input. The goal
of perception, therefore, is to infer the latent states of this gener-
ative model'” so as to minimize prediction error. The action
component of our model is based on the proposition that the
brain minimizes uncertainty of inferred latent states during
exploratory behavior.*'®" Due to the intractability of the uncer-
tainty reduction objective (or, equivalently, the information gain
objective), most models that optimize it rely either on sample-
inefficient RL methods or on restrictive assumptions that make
it easier to evaluate. In our approach, we use a deep generative
model based on predictive coding that allows us to optimize a
Monte Carlo (MC) approximation to the information gain objec-
tive in a fully differentiable manner without assuming explicit
knowledge of the true generative model of the environment.
We show that this approximation, even when done in a greedy
fashion, leads to a highly efficient exploration strategy.

Our model integrates perception and action within an end-to-
end differentiable procedure and can be generally applied to
any exploration setting in a task-independent manner without
the need for extrinsic reward signals. To illustrate this, we eval-
uate our model on two sensorimotor tasks. First, we test the
model on a simple maze navigation task with noisy transitions
and show that it explores the environment more efficiently
than both random exploration and visitation-count-based
Boltzmann exploration. We show that our agent learns an
exploration policy that enables its perception model to quickly
discover the underlying transition distributions of the maze.
Second, we apply our model to the more complicated task of
active vision, illustrated in Figure 2. In this task, the model has
a band-limited sensor, which it uses to perceive small patches
of a hidden image through a limited number of fixations. We
show that, despite its band-limited perception, the model is
able to learn the spatial relationships between pixels of a given
image, as demonstrated by its ability to generate full meaningful
images by combining smaller generated patches at different lo-
cations. Furthermore, we show that although these representa-
tions are learned unsupervised, they enable a downstream clas-
sifier to quickly reach high test performance with fewer training
data and lower parameter complexity. We compare these re-
sults to a feedforward network receiving full images as well as
to other popular baselines from the RL literature including the
recurrent attention model (RAM),?? variational information-
maximizing exploration (VIME),?® and Plan2Explore.?*

Our model selects actions that are purely intrinsically driven to
minimize its uncertainty about the environment (Figures 1A and
1B). In that sense, the action component is blind to the task at
hand and only has access to the perception model’s internal
states. This makes its ability to perform well on image classifica-
tion quite remarkable. Importantly, the quality of the perceptual
representations depends on the action selection strategy, high-
lighting the perception-action relationship captured by our
framework. We quantify this effect by measuring the mutual in-
formation between image categories and learned representa-
tions under different action strategies. Furthermore, the modular
structure of our model facilitates interpretability, allowing us to
probe its mechanisms and representations during exploration
and providing us with insights into the possible neural computa-
tions utilized in biological systems. For example, we show that
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during active vision, the model learns representations that reflect
the properties of the data and the structure of the task. Our
approach demonstrates the promise of integrating neuroscien-
tific theories of perception and action into embodied Al agents,
and we hope that it will motivate more research in this area. An
extended survey of related work is provided in Note S2.

RESULTS

Controllable Markov chains

Experimental setup

In the controllable Markov chain (CMC) setting, we test our
model against two baselines, random exploration and visita-
tion-count-based Boltzmann exploration, where the probability
of a transition is inversely proportional to its visitation count.
More precisely, during Boltzmann exploration, actions are
sampled from the distribution

1
exp ( - ;ZS’hS[.a{.S,>

]
>a exD( - Tzsfhsf,a,8’>

m(a) = , (Equation 1)

where 7 is a temperature parameter that is linearly annealed from
1.0 to 0.1 throughout the episode. For all agents, the perception
model is used to learn the underlying distributions from observa-
tions. To quantify how well the model’s learned distributions
approximate the true distributions in the environment, we use
the measure of missing information®° (/y),

> Dw(p(:Is.a)llp(: Is.a)),

se Sae A

In(P|P) = (Equation 2)

where p and p are the true and learned distributions, respectively.

We performed experiments in two CMC settings: Dense
Worlds®® and Mazes. In the Dense Worlds setting, there are 10
states and 4 actions. For each state-action combination, a tran-
sition distribution is drawn from a Dirichlet distribution with the
concentration parameter « = 1. Note that there is no particular
interpretation associated with the states and actions in these en-
vironments; they are constructed primarily to test the perception
model’s ability to learn the true transition distributions. As such,
this setting is not appropriate for testing our Bayesian action se-
lection (BAS) model, since random action selection can perform
well in these environments when run for a sufficient number of
steps. Therefore, we conduct additional tests in the Mazes
setting, where there are N = n? states corresponding to loca-
tions in an nxn maze, and 4 actions corresponding to the cardi-
nal directions (up, down, right, and left). Each action produces a
noisy translation, with more bias toward the cardinal direction
associated with that action. All transitions that do not correspond
to a one-step translation (i.e., a neighboring state) are assigned a
probability of zero. The mazes are randomly generated and the
probability distributions in 7 are drawn from a Dirichlet distribu-
tion with concentration parameters « = 0.25 for states with
non-zero probability. The experimental settings, as well as archi-
tecture and hyperparameter specifications, are included in sec-
tion C of the supplemental experimental procedures.
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Figure 1. Models for active vision and exploration in CMCs
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(A) We actively sample visual scenes to infer hidden states, in contrast to standard machine learning models, which assume passive perception.
(B) Biological systems have an intrinsic drive to actively explore the environment and build internal models of it; in contrast, traditional RL models are primarily

guided by extrinsic reward.

(C) The generative model used in the active vision setting (right) and the architecture of the perception model for active vision (left). At every time step, the lower-
level VAE receives an observation x; along with the corresponding fixation location /; _ 1 and infers a lower-level representation z;. After T time steps, the lower-
level representations z1.r and the corresponding locations /o.7 - 1 are concatenated, summed, and used as input to the higher-level VAE, which infers an abstract
representation s that is then used to hierarchically output reconstructions of lower-level sensory states Z; and X;.

(D) The generative model for CMCs (right) and the architecture of the agent used in CMC exploration (left). Gray-shaded circles in the generative models represent

observed variables, while unshaded circles represent latent variables.

Learning and exploration during maze navigation
To show that our perception model is able to learn the under-
lying transition distributions of CMCs, we run it for 2,000 time

steps in the Dense Worlds environment. We then compute
the differences between the distributions learned by the agent
and the true environment distributions. To see the effect of
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our exploration strategy, the same analysis is performed for a
randomly exploring agent that uses the same perception
model. Figure S2 shows that our model is indeed able to learn
good estimates of the environment’s transition distributions.
These estimates are better when data are collected using
BAS, which shows that our agent collects data that are partic-
ularly beneficial for the learning progress of the percep-
tion model.

Next, we test our model’s ability to explore more complicated
maze environments. We test three agents all using our percep-
tion model but employing different exploration strategies: BAS,
random action selection, and Boltzmann exploration. The test
environment was a 6X6 maze, and the agents were allowed to
navigate for 3,000 time steps. We also performed the same tests
in larger mazes and obtained similar results. Figure 3A shows
that exploration using BAS leads to a significantly faster reduc-
tion in missing information compared to the other two baselines,
despite BAS and Boltzmann achieving similar state-action space
coverage performance. Figure 3A also shows that, while the BAS
explorer covers the state-action space more quickly than the
Boltzmann explorer, it does so more efficiently than the random
explorer. To see this more clearly, we visualize the visitation fre-
quencies of the BAS and random explorers as heatmaps that
show how much time an agent spends in each state (Figures
3C and S4).

Active vision

Experimental setup

In the active vision task, the model explores a hidden image
through a sequence of fixations. Each fixation yields a sample
of the image at the fixation location. The size of this sample cor-
responds to the size of the model’s fovea and is always less
than the size of the inputimage. Furthermore, “foveated” samples
can be extracted by a foveation process® as illustrated in Fig-
ure 2B. Specifically, let /1 denote the location of the fixation
that generates the sample x; from the input image /. We use
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Figure 2. Setup for active vision

(A) The setup used in our active vision experiments.
The perception model infers latent states based
on observations selected by the action model.
While this process is performed in an unsupervised
manner, the inferred latent states can be used as
input to downstream classifiers.

(B) Foveation setup for the band-limited sensor in
the active vision task (described in the main text).
(C) Example images from the translated (top row)
and cluttered (bottom row) MNIST datasets.

normalized coordinates so ly_1€ [— 1,1] X
[— 1,1], with (=1, — 1) corresponding to
the top left corner of the image. Let d
denote both the height and width of the
model’s fovea, and let Ny, denote the num-
ber of foveated patches (the number of red
squares in Figure 2B). We first extract Ny,
patches of increasing size, all centered at
It _1. We then downsample all patches so
they all have the same size d x d. The
patches are then flattened and concatenated to generate xi,
which is the input to the model. Note that this is the same setup
used by Mnih et al.*?

We test our active vision model on multiple image datasets,
including the Modified National Institute of Standards and Tech-
nology (MNIST) dataset,”® fashion MNIST,”® and grayscale
CIFAR-10.?" First, we test the model’s ability to produce mean-
ingful images by generating and combining small patches at
different locations. This ability reflects an implicit understanding
of the spatial relationships between different locations on an im-
age of a given object. Second, despite the model being trained
with unsupervised objectives, we test its representations on a
downstream image classification task, whereby only a separate
decision network is trained with the supervised classification
loss. The setup for this task is illustrated in Figure 2A.

We also test the model’s ability to build translation and
clutter invariant representations using two variants of the
MNIST dataset: translated MNIST and cluttered MNIST.?
The translated MNIST dataset consists of 60x60 images
with a handwritten digit placed at a random location in the im-
age. The cluttered MNIST dataset consists of 60x60 images
created by first placing a full digit at a random location and
then randomly scattering multiple cropped parts of other digits
over the canvas. Image examples from both datasets are
shown in Figure 2C.

The complete specification of hyperparameters and settings for
the active vision experiments is included in section D of the sup-
plemental experimental procedures. For the image classification
tasks, we evaluate four variants of our model to investigate the
role of each component. Below is a description of each variant.
BAS + perception. This is our full proposed model. Fixation lo-
cations are selected using BAS and the internal representation s
of the perception model is used as input to the decision network.
Random + perception. Here, fixation locations are selected
randomly. The input to the decision network is still the abstract
state s inferred by the perception model.
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Figure 3. Learning and exploration in CMCs
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(C) Example visitation frequency maps for a 6x6
maze explored by BAS versus a random explora-
tion strategy. Both agents were allowed to runin the
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frequency in each case. Positions visited more
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BAS + RNN. Here, the fixation locations are selected with BAS.
However, instead of using the internal representation s as input
to the decision network, we use a separate recurrent neural
network (RNN) that integrates the collected observations xi.r
and passes its hidden state vector to the decision network. To
ensure a fair comparison between this variant and the percep-
tion-based variants, the size of this RNN is always the same as
the dimensionality of the abstract latent variable s. Note that, in
this case, the perception model is still involved in the action se-
lection process, since BAS determines action scores based on
the entropy of the latent state distribution.

Random + RNN. This is the same as BAS + RNN, but we
replace BAS with a random selection of fixation locations.
Probing the generative model

Predictive coding posits that the brain learns and maintains a
generative model of the world that allows it to make good pre-
dictions about the environment. Additionally, since we assume

1000 1500 2000 2500 3000

red. More examples are shown in Figure S4.

Step #

that action selection relies on this model,
the optimality of our actions depends on
the quality of our generative models. In
this section, we investigate how good
our trained model is at generating new
patches of images and inferring the
underlying states from sequences of
random fixations.

Figure 4A shows examples of trials in
which a random sequence of patches is
given to the perception model. At the
end of the sequence, the model infers
the abstract state s that might underlie
the given observations. From its esti-
mate of s, it computes reconstructions
of each observed patch. Additionally,
we can generate unobserved patches
from this inferred estimate by querying
the decoder networks at different loca-
tions in space. As seen in Figure 4A, when the generated
patches at the nine central locations are put together, we get
a meaningful image that corresponds to what the model imag-
ines the underlying digit is. This is interesting, since the entire
image at once is never observed by the model, nor is it used
in the training losses. A similar effect is observed when testing
the model on CIFAR-10 images (Figure S6), although the gener-
ated images tend to capture global statistics rather than local
details due to the simplicity of our architecture, which utilizes
only feedforward networks. These results demonstrate that
the model successfully learns the spatial relationships between
patches corresponding to individual image categories in a
completely unsupervised manner, which explains its superior
performance during classification later on.

Interaction between the perception and action models
One of the benefits of our framework is its modularity (perception
and action components), which allows us to examine how each

Visitation Frequency
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Figure 4. Probing the generative model and its effect on action se-
lection

(A) Original (observed) patches of input images (left column) and their re-
constructions (middle column). After the model infers an abstract represen-
tation, it generates an imagined digit at the unobserved locations (right col-
umn). Note that the model never observes the full image of any digit in the
dataset during training, yet it is able to capture the spatial relationships be-
tween patches associated with a digit from many partial observations of its
images in the dataset. Similar analyses were performed for the fashion MNIST
and the grayscale CIFAR-10 datasets (Figures S5 and S6).

(B) Fixation sequences generated using BAS versus random action selection.
After the initial random fixation, the BAS strategy always fixates near the center
of the image, reflecting an understanding of the underlying structure of the data
and its most informative locations.

component affects the other. First, we look at how the represen-
tations learned by the perception model affect what actions are
selected. In the centered MNIST dataset, the most informative
location about the category of the image is the center. This is re-
flected in the representations of the perception model, which is
able to produce meaningful digits by generating and combining
individual patches. Therefore, a strategy that minimizes uncer-
tainty would ideally choose to fixate at the center most of the
time. Figure 4B shows that this is exactly the case. When we
compare fixation sequences selected by BAS against those
selected by a random strategy, the BAS strategy almost always
chooses the center as its second fixation location after the initial
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random fixation. This shows that the statistical regularities in the
environment are reflected in the behavior of the action model.

Second, we study how selecting actions with BAS affects
the latent representations developed through perception. We
trained two perception models on data collected with random
fixations and data collected with BAS. We then presented both
models with data collected using BAS and examined the result-
ing representations in their latent spaces. We use principal
component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE)?® to visualize these representations in 3D
space, as shown in Figures 5B and S3. We also quantify the qual-
ity of the representations with respect to image categories by
estimating the mutual information®®*° between the three prin-
cipal component (PC) features and image labels, as shown in
Figure 5C.

Performance on downstream image classification

We demonstrate our model’s ability to perform image recogni-
tion using the unsupervised representations it learns through
free visual exploration. Figure 5A shows performance on the
centered, translated, and cluttered MNIST datasets. Perfor-
mance on fashion MNIST is reported in Figure S5. On centered
MNIST, our BAS strategy yields better performance than a
random action selection strategy. Furthermore, when the internal
states of the perception model are used as input to the decision
network, the classification accuracy is higher compared to using
a separate RNN that integrates previous observations, indicating
that the learned representations are more informative about
the data.

On both translated and cluttered MNIST, the performance
generally gets worse. However, we can still see that our BAS
strategy outperforms a random exploration strategy, while using
the perception representations leads to slightly higher asymp-
totic performance than using RNN states. However, the repre-
sentations of the perception model do not seem to offer more
benefit than a regular RNN in terms of learning speed. One
reason for this might be the absence of a statistical regularity
in the locations of digits. Therefore, encoding abstract represen-
tations in an individual state s may not be sufficient, since other
hidden states, such as digit location, affect the generative pro-
cess. Nevertheless, the model is able to learn informative repre-
sentations as evidenced by the effectiveness of BAS in selecting
fixation locations. Note that, in the case of translated and clut-
tered MNIST, the model observes foveated samples that cover
a larger area of the image at each location, albeit with lower res-
olution toward the periphery. Therefore, it is possible for the
model to accumulate observations of all parts of the digit during
the fixation process. This may explain why RNN-based methods
learn more quickly on translated and cluttered MNIST compared
to centered MNIST.

Faster training and generalization with Bayesian action
selection

An important feature of our approach is that it can be trained in a
completely unsupervised manner to explore visual scenes and
build generative representations of them. We asked whether
this feature can help improve the computational efficiency and
training speed of a separate downstream classifier whose pa-
rameters are trained with the supervised classification loss.

To test this, we look at the learning speed of a downstream
classifier trained with full images (Full Images + FF) versus one
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Figure 5. Performance on downstream image classification
(A) Performance of the four model variants described in the main text on the centered (left), translated (middle), and cluttered (right) MNIST datasets. Shaded error

bars indicate SEM (n = 5 random seeds).

(B) PCA projections of the latent representations learned by a BAS-trained perception model (left) and a randomly trained perception model (right). Each point in
the PC space corresponds to the projection of the inferred latent state s for a given input image. Points are colored based on the class of their corresponding input
images. Figure S3 shows the results of performing the same analysis but with t-SNE® projections instead.

(C) Estimated mutual information between the latent representations’ PC projections and class labels for the perception model trained with BAS and that trained

with random exploration.
(D) Comparison of our model with different baselines in terms of their learning speed on the classification task with translated MNIST. Shaded error bars represent

the SEM (n = 5 random seeds).

(E) Data efficiency and generalization experiments. We compare the same methods in (D) in terms of their test performance during the first episode of supervised
training, when the classification networks see the data for the first time. Each point on the plot represents the test score after observing only x training data points
for the first time. Shaded error bars represent the SEM (n = 5 random seeds).

trained on concatenated patches collected using BAS (BAS + BYOL-Explore are popular intrinsically motivated exploration
FF). We also compare our approach to four baselines from the methods in RL that use uncertainty to guide exploration. These
RL literature: the RAM,?? VIME,?® Plan2Explore,* and BYOL-  experiments were conducted on the translated MNIST data,
Explore.®" RAM is a popular method from the machine learning  since the dimensionality of its observation space is higher, so it
literature that is known to achieve high performance on the serves as a good test of learning speed and data efficiency. In
same task we consider here, while VIME, Plan2Explore, and all test cases, the decision network used for classification had

Patterns 5, 100983, June 14, 2024 7




¢ CellPress

OPEN ACCESS

two hidden layers with a consistent number of units across all
conditions. However, since our BAS strategy selects a few loca-
tions to observe on the full image, the total number of parameters
trained with the supervised loss was approximately 50% less for
the model trained with BAS-collected data than for the model
trained with full images. Figure 5D shows that, in addition to hav-
ing lower parameter complexity, our method learns much faster
than all other baselines and achieves higher asymptotic perfor-
mance than VIME, Plan2Explore, and Full Images + FF.

We also considered a comparison of the same methods
described above in terms of their data efficiency. Specifically,
we ask the following question: during the first supervised training
episode, how many training examples does a model need to
observe to reach a given performance on the test set? This ques-
tion addresses issues of few-shot learning and fast generaliza-
tion. Since our BAS strategy utilizes the perception model’s ab-
stract representations of the task, we hypothesized that it would
lead to a higher test performance with fewer training examples.
This is exactly what we find through our analysis, as shown in
Figure 5E. From these results, we see that our model is able to
learn significantly faster from fewer training examples, high-
lighting the generalizability and effectiveness of the model’s
abstract representations in guiding action selection. A descrip-
tion of the experiments and hyperparameters used in these ana-
lyses is included in section D of the supplemental experimental
procedures.

DISCUSSION

We developed a biologically inspired model of active sensing by
combining two theories from neuroscience: predictive coding
for perception and uncertainty minimization for action. Although
these two theories have been utilized previously, our model incor-
porates them in a unique, scalable, and end-to-end framework,
enabling flexible intrinsically driven exploration for embodied Al.
Furthermore, the proposed model provides an approximate
method for learning policies that optimize information gain in a
differentiable manner, utilizing a deep generative model. We test
this model in two sensorimotor tasks that integrate perception
and action: (1) learning transition dynamics through pure explora-
tion in discrete environments, and (2) learning unsupervised visual
representations in a continuous setting.

An important aspect of our approach is its generality; it can be
applied to any perception-action setting, while only requiring the
specification of a generative model that relates internal repre-
sentations to sensory observations. By parameterizing this
generative model with neural networks, we are able to compute
the uncertainty with respect to perceptual states in a differen-
tiable manner, allowing the action and perception models to
interact in an end-to-end fashion. We have shown how to instan-
tiate this framework in the discrete setting of CMCs as well as the
continuous setting of active vision. We note that the perception
model in each case is a variational autoencoder (VAE), despite
the different nature of each task and, thus, the different genera-
tive model. In both cases, the evidence lower bound (ELBO)
objective is used to learn a probabilistic relationship between
latent states and observed variables. However, the action selec-
tion model is different due to the discrete nature of the CMC
problem versus its continuous counterpart in the active vision
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task. In CMCs, actions are evaluated directly, while in active
vision, a neural network is trained to output continuous actions.
Nonetheless, in each case, action selection still aims to maxi-
mize uncertainty reduction, complying with our general active
exploration framework.

Our approach emphasizes the relationship between percep-
tion, action, and learning during exploratory behavior. The
importance of this relationship shows up in the CMC and active
vision settings. Specifically, we see that, in both cases, the qual-
ity of the representations learned by the perception model
directly depends on the exploration strategy used to collect in-
formation from the environment. For example, in CMCs, we
see that our BAS exploration strategy leads to faster and more
efficient learning of the underlying transition distributions
compared to Boltzmann and random exploration (Figure 3A).
This is despite BAS and Boltzmann performing somewhat simi-
larly in terms of state-action space coverage, which shows that
the uncertainty reduction objective leads to collecting observa-
tions that are particularly useful for the perception model to learn
accurate representations of its environment. In active vision, we
see a similar effect; when the perception model is trained on data
collected with BAS (as opposed to random) exploration, the rep-
resentations are well clustered in the latent space and contain
more information about image categories (Figures 5B and 5C).
These perception-action dependencies are captured more effi-
ciently in our approach as a result of using a generative model
with respect to which uncertainty can be measured. In contrast,
RL exploration methods (e.g., Houthooft et al.,”®> Shyam et al.,*”
Stadie et al.,>® Pathak et al.>%) either develop approximate
methods for information-based action selection or learn only
the dynamics of a given Markov decision process (MDP)
instance solely to aid in exploration. As a result, these methods
are mainly concerned with efficient policies for action (explora-
tion) without much emphasis on perception, i.e., learning useful
representations of the environment through exploration.

Our final objective for action selection in CMCs consists of two
terms: uncertainty reduction and expected future uncertainty
(see experimental procedures). The uncertainty reduction term
is a one-step approximation to the long-term expected informa-
tion gain (EIG) objective used in the context of optimal experi-
mental design.>>*® From this perspective, eye saccades are
viewed as experiments performed by an agent to gain informa-
tion about the world." In our approach, we add an expected
future uncertainty term that acts as a heuristic that drives the
model toward more uncertain states, thus providing a better
approximation of the long-term information gain without
requiring multi-step planning over long horizons. To test the ef-
fect of these two terms on the learning and exploration in
CMCs, we performed an ablation analysis, which showed that
using either term alone is less effective than using both terms
together (Figure 3B). These results show that our combined
objective works better for exploration than the one-step EIG.
Another important benefit of our approach is the integration of
action selection with a differentiable perception model, which al-
lows for end-to-end learning as opposed to the traditional multi-
step planning and RL approaches used for optimizing the EIG.

While the perception component of our method is based on
the theory of predictive coding, its implementation relies on
amortized variational inference. This is different from the
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standard implementation of predictive coding in the neurosci-
ence literature, "> which relies on maximum a posteriori esti-
mation using gradient-based optimization of the log-likelihood
objective. Despite the apparent differences, methods such as
iterative amortized inference®® and hybrid predictive coding*®
provide a connection between the two implementations. These
methods combine an inference model with iterative updates on
the approximate posterior to compute better hidden state esti-
mates. We include an in-depth exposition of the relationship be-
tween predictive coding and VAEs in Note S1. For a more
comprehensive review, see Marino*' and Salvatori et al.*®

Limitations of the study

In discrete-action settings such as CMCs, a potential limitation of
our approach is that action scoring, which relies on enumeration,
may not scale well to larger environments with bigger state-ac-
tion spaces. Although directly evaluating actions is more accu-
rate, we can still select actions with sufficient accuracy while
improving scalability by using a neural network trained to mini-
mize uncertainty, similar to the active vision model. Additionally,
one potential concern (especially for the active vision setting) re-
lates to how well this approach can be applied to more complex
real-world datasets. In this work, we opted to keep our models
as simple as possible (using only feedforward networks) to illus-
trate the advantages of our approach. It is, however, possible to
implement this framework with more complex architectures, uti-
lizing more advanced types of networks such as convolutional
neural networks, which may allow for applications in more
complicated real-world problems. Such applications will be
interesting to investigate as a future extension of this work.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for additional information and resources should be directed to the
lead contact, Abdelrahman Sharafeldin (abdo.sharaf@gatech.edu).
Materials availability

No new unique reagents were generated by the study.

Data and code availability

The code and data to reproduce the results of this study are available as a
GitHub repository: https://github.com/AbdoSharaf98/active-sensing-paper.
The code has also been deposited to Zenodo: https://doi.org/10.5281/
zenodo.10837552.%

General approach for active exploration

Our approach consists of two components: a perception model, which is
based on predictive coding,'® and an action model, which selects actions
that reduce the perception model’s uncertainty about inferred states. For
perception, we rely on a generative model of the world that can be learned
through experience. Perceiving an observation corresponds to inverting this
model to infer the hidden states of the world that gave rise to that observation.
Therefore, the first step when applying our approach to a given problem is to
specify a reasonable generative model; in biological systems, this corre-
sponds to niche-specific priors. The second step is to specify a method for
learning and inference in this model. To this end, we use VAEs*® to perform
amortized variational inference on a generative model parameterized by neural
networks. In essence, given a simple generative model in which a latent vari-
able s and a set of actions a<; give rise to a set of observed variables x < ; at
times up to time t, the goal of variational inference®” is to find an approximate
posterior g(s|x<t,a<¢) which maximizes the objective

Esq(wsrasn 109 P(X<tls,a<e)] — D (q(slx<ta<o)llp(s)),  (Equation 3)
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where Dy, is the KL divergence. This objective is the ELBO. Amortized learning
can be done by using neural networks to parameterize the distributions in
Equation 3 and optimizing the objective with gradient descent. Inference in
this case corresponds to a simple forward pass through a neural network.

The second component of our approach is the action model, which relies on
uncertainty reduction measured using Shannon entropy. As such, an applica-
tion of our approach requires a method of computing the entropy of the pos-
terior distribution q(s|x<¢,a<) inferred by the perception model. Actions are
then selected to maximize the reduction in uncertainty as represented by the
following score function:

Score(a1) = H(Q(s|x<t,8<t)) = Bxymp(-fans x< [HQ(SX<tr1,8< 1))
(Equation 4)

where H denotes the Shannon entropy. The first term in Equation 4 represents
the agent’s current uncertainty about s. The second term represents the ex-
pected uncertainty if action a;,1 is executed. The expectation in the second
term is taken with respect to fictitious future states drawn from the agent’s cur-
rent transition distribution p(x¢.1|X < ¢,at41)-

The score function in Equation 4 is equivalent to the one-step EIG,>° which
has been used in prior works on modeling eye movements.”'%'® The key
contribution of this work is in the integration of this objective, formulated in
terms of the Shannon entropy, with a deep generative model that allows
us to learn an estimate of the score function in an amortized and differen-
tiable manner. The benefit of this approach is 2-fold. First, while this score
function can be evaluated directly in discrete-action spaces, it becomes
intractable in continuous state and action spaces. By formulating this func-
tion in terms of entropy and integrating it with a deep generative model,
we can compute an MC approximation to the expectation in Equation 4 in
a differentiable manner without having to lose information by discretizing
the action space. Second, this approach allows us to amortize action selec-
tion by training a neural network end-to-end to output actions that minimize
the uncertainty of the perception model, which leads to faster learning and
higher sample efficiency compared to traditional RL approaches for opti-
mizing information gain.?>?** We refer to our action selection strategy
as BAS.

Exploration in controllable Markov chains

As a proof of concept, we first demonstrate our model in the setting of discrete
state and action spaces. Specifically, we develop an instance of the general
framework described above for CMCs.?*> A CMC is essentially an MDP
but without the specification of a reward function. It is formally defined as a
3-tuple (S, A, P), where: S is a set of finite states, for example the set of
possible locations in a maze; A is a finite set of allowable actions, e.g., move-
ment directions; and P is a three-dimensional kernel of transition probabilities
p: S x A—D(S), where D(S) is the set of probability distributions on S. That
is, P is a |S|x|A|x|S| matrix containing the probabilities Ps.s = p(s'ls,a),
where s is the current state, a is the action taken, and s’ is the resulting
next state.

The goal of an agent in this setting is to efficiently explore the environment
and learn an estimate, P, of the underlying transition probability matrix P.
This setting models the embodiment of the agent because, at any given
time, the agent’s interaction with the world is restricted by its current state.
Perception
We begin by specifying a generative model for this task. This generative model
constitutes the perception component and is learned from observations
collected by the agent. Whenever the agent visits a state s and takes action
a, the observation consists of the resulting state s’. The agent’s goal is to
infer the distribution p(: |s,a) for each state-action combination that best ex-
plains all observations collected when that combination was visited. Let
Zs4 = P(: |s,a) denote the model’s estimated distribution of the next state after
executing action a in state s. Then, the generative model contains |S|x|A|
latent variables, {Zs 2}, s4c 4, €ach corresponding to a state-action combina-
tion. If we let 7 (s, a) be the set of times at which state s was visited and action a
was taken, then each latent variable z; , gives rise to K = |7 (s, a)| observations
(or next states), denoted by {sj, };, c 7(s4)- This is illustrated in Figure 1D.

Let H = {(st,a,s})}; _ ; denote the full history of experiences collected by
the agent, and Hsa = {(s,8,5))}¢c 70y DE the subset of H containing
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experiences in state s when action a was taken. Because the latent variables
are independent, the variational posterior in this model can be expressed as

II 9@saltsa).

seSaeA

q({zsa}M) = (Equation 5)

To simplify notation, we will drop the subscript (s,a), but it should be clear
that, in what follows, the latent variables z and the histories H depend on
the specific state-action combination. For a single latent variable z, the corre-
sponding ELBO can be expressed as

log p(H) = Ezvq(-m[log p(z, H) — log q(z|H)], (Equation 6)

= Bt llog p(H[2)] — D (q(@H)p@)).  (Equation 7)

The first term in Equation 7 corresponds to the likelihood of the observations
given the inferred transition distribution z, while the second term controls the
deviation of that distribution from the model’s own prior p(z). We assume
that the prior for all latent variables is a Dirichlet distribution with concentration
parameters « = 1 for all states in S. The posterior q(z|H) is also assumed to be
a Dirichlet distribution with a concentration parameter « that is the output of a
simple feedforward neural network with parameters ¢.

To compute the quantities in Equation 7, we need a representation of s,a, and
H that facilitates updating the agent’s history with new observations. To achieve
this, we use one-hot vectors to represent the states and actions. We represent
the complete history of the agent as an | S| X |.A| X |S| matrix whose entries repre-
sent number of visits to state s’ from state s when action a was taken. That is, we
represent the history Hs , as the vector h, € N‘OS | with entries

hea(i) = Y 6(s;,S() fori=1,2,..,]S]. (Equation 8)

te T(sa)

This representation makes updating the history given new observations a
simple summation operation. That is, when the agent takes action a in state
s and receives a new observation s’, the history can simply be updated as
hs,—hs, +S'. Now, the log likelihood in Equation 7 can be computed as

|S| S|

log p(Hlz) = log [] ()" = " hsa(i)log z(i).

i=1 i=1

(Equation 9)

Amortized Inference in this model is performed by the perception network
¢, which receives as input the current state s, action a, and history vector hs 5
and outputs a concentration parameter «a that parameterizes the Dirichlet
posterior distribution q,(z|H). The inferred distribution z can be obtained
by drawing a reparameterized sample from qq,(z\H).43 Note that the full
ELBO for this model should be the sum of the terms in Equation 7 over all
state-action combinations. However, since a single transition only changes
the history for the current state s and action a, the inference network will
be affected only by the corresponding term in the full ELBO. Therefore, opti-
mizing the entire ELBO at every step is equivalent to taking a gradient step
with respect to the single ELBO in Equation 7 for the relevant s and a. The
derivation of the ELBO objective in Equation 7 and the full training algorithm
for this model are included in section A of the supplemental experimental
procedures.

Action

Our framework relies on uncertainty minimization for action selection. In this
setting, our model selects actions that lead to the greatest reduction in its un-
certainty about the inferred transition distributions zs,. This can be done by
planning over long horizons“® or by using value iteration techniques.?® Howev-
er, to keep our model simple and more computationally efficient, we employ a
greedy approach with a simple heuristic that guides the model toward states
with greater uncertainty. Despite this, our model is still able to achieve faster
and more efficient exploration compared to random or visitation-count-based
action selection. At every time step, the agent evaluates each action based on
the following uncertainty reduction score

Uncertainty Reduction(a) = H(qq,(zs_a\hsya))
- [ES'~Zsa|hsa [H(q(/, (Zs.a ‘hs.a + S/))]a
(Equation 10)
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which is an adaptation of Equation 4 to this specific application. Overall,
Equation 10 represents the expected reduction in uncertainty for action a
over a single step and a single transition distribution. To guide the agent to-
ward future uncertain states, we add the following heuristic that describes
the expected future uncertainty about the transition distributions in the
next state:

Expected Future Uncertainty(a) = Es'~zsa|hsa ZH(qw(zs/_a/ h(s',a')))|.
aeA

(Equation 11)

The final score maximized by the agent is the sum of the uncertainty reduc-
tion in Equation 10 and expected future uncertainty in Equation 11.

Active vision model
Perception
The active vision perception model is based on a simple hierarchical two-level
generative model that reflects the structure of the task and can be interpreted
as adynamical VAE.*’ This model is shown in Figure 1C. Let / denote the image
presented on a given trial. The higher level of the perception model encodes a
single abstract representation s, which may reflect high-level properties of the
class to which / belongs. For example, s can represent the number of lines and
circles and the spatial correlations specific to drawing a certain digit. The lower
level contains individual units whose activations are entirely driven by sensory
input. From a biological perspective, these units correspond to neurons in the
primary visual cortex whose receptive fields overlap with the spatial span of the
fovea. At each time step t and for a given sensory input x;, we denote the activ-
ities of these neurons by z;. From a generative perspective, z; can contain infor-
mation about the lower-level properties ofimage / ata givenlocation /s _ 1. These
properties, for example, can include stroke width, style, and so forth.

Using the chain rule and the fact that the {x1.7} and s are conditionally inde-
pendent given {zy.r}, the full variational posterior can then be factorized as a
product of two variational posteriors,

q(z1:T;S|X1:T-,ID:T—1> = g1(@.7IX17,lor—1) X Q2(S|21.7, o7 —1).  (Equation 12)

For notational simplicity, we will omit the conditioning in the variational pos-
teriors, e.g., use q(z1.1,s) to refer to q(z1.7,s|x1.7,lo.T—1). The corresponding
ELBO, derived in section B of the supplemental experimental procedures, is
found to be

T T
p(s) ] [P(Zt\S,It—W) ]
L = Eqllog p(xt|zt)] — Eg | —————F——| — Eq| ————=|-
£Leo ; allog plxlz)] Q[Q2(S\Z1‘T7/O:T71) ; 7 Q1 (2elxe, e 1)

(Equation 13)

Note that the loss function does not depend on the entire image except at
the locations sampled and viewed by the model. This maintains consistency
with the natural setting, where the agent’s perception does not encompass
the entire image and so it cannot (as a whole) be used for training. Throughout
our experiments, we assume the prior over s to be a standard Gaussian. We
also assume the likelihood distributions, p(x¢|z;) and p(z:|s,/i—1), as well as
the variational posteriors, g1 and g2, to be Gaussian with means and variances
parameterized by feedforward neural networks. The full architecture of the
model with these networks is shown in Figure 1C and is described below.
Network architecture. The perception architecture consists of two VAEs, one
for each posterior in Equation 12. The encoders and decoders for both VAEs
are simple feedforward networks. The following is a description of each model
component.

Lower-level VAE. Ateach time step t, the model receives an observation x;
which, together with the corresponding location /;_ 1, is passed through an
encoder network to infer the posterior over sensory representations g1 (z;).
Let fs(?w(xt,ltq) and fe(:,)c“,(x,,lfq) denote the outputs of the lower-level
encoder network at time t. In our experiments, we assume g1 (z;) is an isotropic
Gaussian N (z;|uf,031), where

up = 0L, k1), (Equation 14)

ok = exp(%fg%vu(x,,lt,w)) (Equation 15)
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Algorithm 1. Bayesian action selection in active vision
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g:(s) = F.Encode(X1:,lot—1)
Ie = ¥ (E[ge(s)])
p(xtr1) = F.Decode(q:(s),lt)
Draw K samples from p(x¢.1)
fork =1toK do
q\(s) = F.Encode(x1.4,x*) lox_+)
end for
= K
V(i) = H(@(s)) — % Sk~ H(@(s)

return: selected action /s and updated action network ;4

Input: observations x4, locations /ot _ 1, perception model F, action network y;, number of MC samples K

Update action network parameters using gradient descent on V: Vi1 = Y+ ,uV%V(lt)

The lower-level VAE decoder network takes sensory representations z; and
outputs the likelihood distribution p(x:|z;). We assume this distribution is
Gaussian N (x¢|Xt,/), where X; is the output of the decoder.

Higher-level VAE. At the end of a fixation sequence, the higher-level
encoder network receives the sum of the past sensory representations and
uses it to infer the posterior over abstract representations g»(s). Similar to
g1(z:), we assume g3 (s) is an isotropic Gaussian N'(s|u®, ¢°/) parameterized
by the output of the higher-level encoder féi)c The decoder network at this level
receives an abstract representation s and a query location /;_ 1, and predicts a
distribution over the corresponding lower-level representations p(z:|s,/t—1).

Generative mechanism. We can generate new data from the model as fol-
lows. First, we sample an abstract representation s from a standard Gaussian dis-
tribution. We then pick a query location I’ from the interval [— 1,1] x [— 1,1].

Next, we pass s and /' through the higher-level decoderféi)c, which outputs a dis-

tribution p(z’). We sample z’ from this distribution and pass it through the lower-

level decoder fc(,yc,
model’s retina.
Action

Adapting the uncertainty reduction objective for action selection in active
vision gives the following value function for a given action (or fixation loca-

tion) /s

which outputs an observation x’ that is the same size as the

V(llxta,dot—1) : = HSX1,lo—1) = Epprgyqisi [H(SX1:441,lo)],  (EQuation 16)
where H( -) denotes the Shannon entropy. Intuitively, V(I;) quantifies how
much information the agent expects to gain as a result of observing the input
image at location /;. Therefore, a good estimate of information gain depends on
how accurate the agent’s generative model is. The objective in Equation 16 is
intractable because it requires evaluating the posterior over s for all possible
observations x;,1 in a continuous space. So, instead, we compute an approx-
imation of it using an MC sampling approach. First, we independently draw K
samples from the agent’s likelihood model p(x;.1|s,/;). The approximate ex-
pected entropy can then be computed as the average over the K samples,
yielding the approximate value

- 1 & '
Vlldbrlos 1) =H(Shrdoc 1) = 1 > H(s b xifloc ). (Equation 17)
k=1

where xﬁ’ﬂ denotes the k' sample and s*) denotes the corresponding updated
posterior estimate. To make our model end-to-end differentiable, we use a
neural network to select fixation locations that maximize the value in Equa-
tion 17. This action network can be trained with gradient descent because
all the terms in Equation 17 are computed from the neural networks in the
perception model, which receive fixation locations as part of their input. There-
fore, it is possible to compute the gradients of Equation 17 with respect to the
output of the action network. For all experiments, the action network we use is
asimple two-layer feedforward network which receives as input the current es-
timate of the state s and outputs the mean of a Gaussian distribution over fix-
ation locations. The standard deviation of this distribution is a fixed hyperpara-
meter that we specify. The agent chooses a fixation location by sampling from
the output distribution of the action network. Algorithm 1 describes our differ-

entiable approach to selecting continuous actions with uncertainty reduction
in active vision tasks.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2024.100983.
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Supplemental Notes

Note S1: Relationship between Predictive Coding and Variational Au-
toencoders

According to the predictive coding framework, the brain maintains a generative model of the world which approximates
a mapping between observed sensory input and hidden states of the environment. This is illustrated in Figure
S1. Perception, therefore, corresponds to inverting this model to infer hidden states, while learning corresponds
to updating the parameters of this model based on prediction errors. Here, we outline the relationship between
hierarchical predictive coding as presented in Rao and Ballard (1999)' and the framework of Variational Auto-
encoders in machine learning”. A similar outline of this relationship is given in Jiang and Rao (2021)* and Marino
(2022)* (with more details on the connections between theory and biology).
To simplify the discussion, we assume the generative model
consists of two hierarchical layers (an input layer and a sensory
layer) as shown in Figure S1. In reality, the sensory areas in the Generative Model
brain contain many more hierarchical levels, and this discussion can (Brain)
be easily extended to multi-layer hierarchical generative models.
The goal of inference is to find the best estimate s* of the true
hidden state § given an observation x. In the predictive coding
framework, this is done by maximizing the posterior distribution
p(s|x), which is known as maximum a posteriori (MAP) estimation.
Equivalently, we can maximize log p(s|x) since the log is a monotonic
function in p. This problem can be formulated as follows

§* = argmax log p(s|z) (1)
S
xI|s S
= argmax log IM (2) Generative Process
S p ( T ) (Environment)
= are m?X[Ing(x|8) + Ing(S)] (3) Figure S1: Simple two-layer hierarchical

generative model. This model is parameterized

To perform this optimization, we adopt some assumptions about by 6 and approximates the true distribution of the

the likelihood distribution p(z|s) and the prior on the hidden state . L :
. . X N generative process giving rise to observations .
p(s). In their original implementation, Rao and Ballard assume the . predictive coding framework postulates that

following parameterizations neural activities encode hidden state estimates,

. ) e.g. s. Thus, perception corresponds to inverting
p(z|s) o N(f(WS)’JxI) (4) the generative model and inferring those neural
p(s) = N(ps; 021) (5) activities (red arrow).

where W is a weight matrix, f(-) is a non-linearity, and N (p, o 1)
is an isotropic gassuian with mean p and covariance oI. Without loss of generality, we can simplify this further by
assuming the prior p(s) is a standard gaussian, i.e. s = 0 and o2 = 1. Substituting this into equation 3, we get

s* = argmax log N'(f(Ws); 02I) + log N'(0; I) (6)
o1
= argmin ngU*f(WS)HngHSH% (7)

Equation 7 is the predictive coding objective for the simple generative model in Figure S1. The first term in the
objective is a reconstruction loss (or prediction error) and the second term is a regularization term which ensures
that the inferred state s* is consistent with the prior over s. To learn the parameters W, the same objective is
minimized with respect to W while fixing the inferred state s.

The predictive coding formulation described above attempts to find a point estimate s* which maximizes p(s|x).
An alternative is to find the full posterior distribution

_ p([s)p(s) _ plals)p(s)
p(slz) = = (8)

p(x) [, p(x,s)ds
This is intractable to do exactly since it requires evaluating an integral over the continuous space of hidden states.
Variational inference” allows us to approximate the posterior p(s|r) with some variational posterior ¢(s). Given a



family of distributions Q defined over the space of hidden states s, we aim to find the distribution ¢(s) € Q which
minimizes the objective

_ a(s)

Dict (a(s)lIp(s]2) ) = Eamaey [ log 07 | (9)
q(s)p(z)
=E; (s | log ——= 10
p(x, s
= Ing(x) - Eswq(s) log E](S))} (11)
The quantity Eg () [log p((;(;;; )} is known as the evidence lower bound (ELBO) because, due to the non-negativity
of the KL divergence, it forms a lower bound on the log evidence
p\z,s

1089(0) > B[ 108 2570 ] = Byl p(als)] = Dict. (a(6) () (12

Therefore, minimizing the KL term Dgr, (q(s)|\p(s|x)) amounts to maximizing the ELBO since log p(x) does not

depend on either s or the parameters of the model. When we factor in the assumption in Equation 4, the ELBO
reduces to the objective

~Eongi [Il2 = FW3)] = Dice (a(5)lIp(s)) (13)

To see the correspondence between the ELBO in Equation 13 and the predictive coding objective in Equation 7,
note that the first term in Equation 13 leads to the minimization of the reconstruction error, while the second term
constrains the deviation of the posterior ¢(s) from the prior p(s). Finally, We can train neural networks to optimize
the ELBO in equation 13 using the framework of Variational Autoencoders?.



Note S2: Survery of related work

Intrinsic motivation Our approach can be regarded as an intrinsically-motivated exploration strategy®. In
intrinsically-motivated exploration, an agent learns exploratory behavior in the absence of any extrinsic reward
signals. Instead of extrinsic reward, exploration is guided by intrinsic value, which in our case is based on the
expected uncertainty reduction associated with an action. The uncertainty is measured with respect to the agent’s
perception model, which is learned in a completely unsupervised manner. Other types of intrinsic signals have been
used for autonomous exploration, such as prediction error ", space coverage'’>'!, and visitation count '?. Intrinsic
motivation strategies can help build representations that generalize to different tasks in the same environment since
there is no dependence on a specific reward function. The closest family of intrinsic motivation approaches to ours
are information-theoretic approaches, discussed below.

Information-theoretic exploration in reinforcement learning Information gain has been used to promote
autonomous exploration in multiple approaches '*~'°. However, these approaches rely on state-action enumeration
to compute information gain, which limits their applicability to settings with discrete state and action spaces. In
contrast, our framework is general and can be applied to both discrete and continuous settings. In the discrete
setting, our work is most related to Little and Sommer (2013)'°; we test our model in a maze navigation task
similar to the one used there. The main difference between their approach and ours is that we do not assume
explicit knowledge about the true generative model of the environment. Instead, the perception component of our
architecture learns a generative model through collected experiences in an end-to-end manner. In the continuous
setting, our work is most similar to Houthooft et al. (2016)'” and Mohamed et al. (2015)'® in deep reinforcement
learning (RL). Our approach is different from those two approaches in that it can be applied in model-based
settings, since the perception component of our model explicitly learns the transition dynamics of the environment,
enabling the generation of imagined trajectories that can be used for model-based planning and training. In contrast,
those two approaches rely on model-free methods by modifying the reward function to include an information
gain component. Finally, some approaches, such as Plan2Explore '?, calculate disagreement between ensembles of
predictive models as a surrogate measure of uncertainty that is then used to guide exploration. These ensembles can
be trained to predict observations, in which case exploration can be performed without external reward signals, as
well as future extrinsic rewards?".

Active vision and visual attention in machine learning We apply our model to the task of active vision.
Here, our work is related to the Recurrent Attention Model (RAM)“! and the DRAW model**, but differs from
those models in four key aspects. First, the perception and action components of our model are trained in a
completely unsupervised, task-independent manner. During the classification task, only one feedforward decision
network (separate from the main model) is trained with the classification loss. The learned representations can then
be used for arbitrary tasks: to illustrate, we use these representations as input to the decision network to achieve
high performance on a downstream image classification task. Second, despite the sequential nature of this task, our
model solves it using end-to-end feedforward networks, greatly reducing the amount of computation compared to the
recurrent architectures used in RAM?! and DRAW ?2. Third, in contrast to DRAW %2, our model does not assume
access to the full image in the training loss function, which is consistent with the assumption of bandlimited sensing.
Finally, our model makes explicit links to ideas in neuroscience that enable the testing of functional hypotheses in a
modern machine learning setting.

Our active vision approach is also somewhat related to the framework of Attend, Infer, Repeat (AIR)**?".
However, there are some key differences in the underlying modeling assumptions. For example, the latent variables
inferred by AIR for a given image (or scene) are assumed to correspond to the attributes of entire objects that
decompose the scene, whereas our model makes no restrictions on what the lower-level latent variables represent.
Further, for biological plausibility, our approach imposes the restriction that only patches of the image corresponding
to the model’s bandlimited sensor are used during inference and training. Since AIR is mainly concerned with
decomposing scenes into constituent objects, it makes no such restriction and so the underlying approach involves a
different inference and training process.

Embodied AI for exploration and learning Embodied AI methods focus on learning perception models
in agents that interact with their environment. This is in contrast, for example, to traditional computer vision
approaches, where vision is treated as a passive process. Much work has been done in the area of embodied
exploration for robotics to find policies (e.g., for movement and sensing) that help agents learn good perceptual
representations of their environments®” “®. For example, Self-supervised Embodied Active Learning (SEAL)“



focuses on improving object detection and instance segmentation through actively collecting data that provide the
agent with the most knowledge during training, utilizing a curiosity-based objective. Other methods, such as Active
Neural SLAM?°, focus on leveraging a learned SLAM module to guide exploration and navigation in unknown
environments.

Active inference and the free energy principle In general, the theoretical formulation of our approach is
most similar to the active inference formulation in neuroscience?”:*". In this formulation, an agent aims to minimize
the Expected Free Energy (EFE) objective, which consists of an epistemic value component that minimizes the
agent’s surprise and an extrinsic value component that maximizes external rewards from the environment. In this
sense, our action selection mechanism can be viewed as a special case of the EFE when no extrinsic reward is
provided and when action selection is performed in a greedy fashion. The main difference between our approach and
standard implementations of active inference is our amortization of action selection with end-to-end optimization,
which avoids expensive trajectory search approaches®' and extends the applicability of our approach to continuous
domains 2.

Predictive coding in machine learning There is a large body of work adapting the theory of predictive
coding to machine learning problems, ranging from computer vision®?*° gradient-based optimization ", lifelong
learning*®, and temporal learning*”. However, these models apply the theory in the context of passive perception.
Although some recent work combines predictive coding models with action®’, they do not focus on autonomous
exploration. Rao and colleagues have recently introduced the framework of active predictive coding®'~** but their
generative models focus on generating transition and policy functions using hypernetworks, and their policy training
approach utilizes a supervised reinforcement learning algorithm without particular focus on autonomous exploration.
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Figure S2: Differences between learned and true transition distributions for our active explorer (BAS,
top row) and a random explorer (bottom row) in the Dense Worlds environment. Each image represents the
normalized absolute differences between the learned and true transition distributions for a given action (a = 1, 2, 3, 4).
Numbers above each image represent the sum of all values in the corresponding matrix. In each case, agents were allowed to
explore the environment for 2000 steps.
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Figure S3: Effect of action selection strategy on perceptual latent representations visualized through t-SNE
t-SNE projections*® of the learned latent representations are shown for two cases: (a) the BAS-trained perception model,
and (b) the randomly-trained perception model.
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Figure S4: More examples of visitation frequency heatmaps for our BAS explorer model versus a random
exploration strategy in 6 x 6 mazes.
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Figure S5: Results on Fashion MNIST. (a) Classification performance on the fashion MNIST dataset during the active
vision task. (b) Examples demonstrating the generative ability of the perception model. The original patches presented are
shown on the left and their reconstructions are shown in the middle. Right shows images generated by first generating small
patches at various locations (not seen during presentation) and combining them to form the final image. These results show
the perception model is able to capture the spatial relationships associated with elements in the dataset.
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Figure S6: Results on grayscale CIFAR-10. Original presented patches are shown on the left and their reconstructions
are shown on the second column. Third and fourth column show images generated by the perception model combining smaller
patches at different locations. The last column has more patches at continguous locations followed by bicubic smoothing for
illustration. These results show that, despite the simplicity of our model’s architecture, it is still able to capture the overall
structure and statistics in natural images.




Supplemental Experimental Procedures

A Training of active exploration model in controllable Markov chains

Algorithm 1 describes the Bayesian Action Selection (BAS) algorithm in controllable Markov chains (CMCs) with
discrete action and state spaces. The training algorithm for our full active sensor model (including perception)
in CMCs is outlined in Algorithm 2. After the model is trained for 7' time steps in the environment, the learned
transition distribution p(: |s,a) for a given state s and action a is found as the mean of the Dirichlet posterior
output by the perception network at the end of training. That is,

4(zs.0) = Dir (67(5,, ) (14)
p(: |s,a) = Eqlzs,a] (15)
The ELBO objective in Equation 5 of the main text can be derived as follows.

logp(H) = g [ 4(:17)" Pz, e H)

q(z
= log { } (17)

o ) )

= By log p(H|2)] = D1 (q(2[H)|p(2)) = LeLBO (19)

where Equation 18 follows from Jensen’s inequality. In practice, we can multiply the KL term in 19 by a scalar S to
control the balance between the regularity of the learned distributions and how well they explain past experiences *°

) dz (16)

Algorithm 1 Bayesian Action Selection in Controllable Markov Chains

Input: current state s;, history vectors hy o for all a € A and s € S, perception network ¢
Initialize bestAction = ag
Initialize bestValue = —oo
for each action a; in A do
o = d)(sta Qg hst-,ai)
q(2s,,0,;) = Dir(ax)
Current Entropy = H(q(zst’al))

Draw reparameterized sample Zs, o, from ¢(zs, o,
Expected Entropy = 0
Expected Future Uncertainty = 0
for each state s; in S do
hJr = hst7a7', + Sj

St,Q;

q+ (Zst,ai) - Dir(¢(sta a;, h;rtyai))
Expected Entropy = Expected Entropy + Zs, 4, (j) X H(q"’(zst’ai))

Future Uncertainty = 0
for each action a;, € A do

q(2s;,a;,) = Dir(¢(s;, ax, hs; ;)
Future Uncertainty = Future Uncertainty + H (q(zsj#k))

end for
Expected Future Uncertainty = Expected Future Uncertainty + Zs, o,(j) x Future Uncertainty
end for
value = (Current Entropy — Expected Entropy) 4+ Expected Future Uncertainty
if value > bestValue then
bestAction = a;
end if
end for

H)




Algorithm 2 Active Sensing in Controllable Markov Chains

Initialize the perception network parameters ¢q

Initialize the history vectors h;, =0 for all s€ Sanda € A

Get initial state s from the environment

for each time step ¢t > 0 do
Select action a; with BAS using Algorithm 1
Execute action a; and receive the updated state s;11 from the environment
hst,at = hst,at + St+1

q(zst7at) = Dir (d)t(sta G, hs“at))
Draw reparameterized sample Zs, o, from q(zs,.q,)
EELBO = — Z‘Zill hst,at (Z) log 23t7at (Z) + DKL (q(Z5t7at ) ‘ |DII‘(1))

Update perception network parameters with gradient descent: ¢1y1 = ¢+ + uVy, LELBO
end for




B Derivation of the ELBO for the perception model

The generative graphical model for active vision (Figure 1C) admits the following factorization of the joint likelihood

p(x1.7, 217, S{lor—1) = p(z1.7|20.7)p(21:7 [lo:T—1, 8)P(8) (20)
T T
) [T pterlo) TLpCelt 1) (21)
=1 =1
Similarly, the joint posterior factorizes as follows
q(zrr, slzrr, lor—1) = @1 (zur|Tir, loor—1) g2 (sl 21, T1r, lovr—1) (22)
= q1(zrrl2rT, loor—1)q2 (8|21, lo:r—1) (23)
T
= QQ(8|21:T, lO:T—l) H q1 (Zt|l't7 lt—l), (24)
=1

We can, therefore, express the log likelihood and posterior probabilities as

T T
log (1.7, 2.7, sllor—1) = Y logp(we|z) + Y logp(zelli—1,5) + log p(s) (25)
t=1 t=1
T
log q(21:7, s|w1r, lor—1) = log ga(s|zrr, lor—1) + Y log qu (zelwe, lr-1) (26)
=1

Using the log joint likelihood in Equation 25 and the log posterior in Equation 26, we can obtain the ELBO on the
log marginal likelihood as follows

(w17, 217, 5|l —1)
togp(@irllor1) = logEq[Q(S zur|TT lo-T—l)} @)
> E, [logp($1:T721:T, sllo.r—1) — log q(s, z1.7|T 1.7, lO:Tfl)} (28)
T T
=E, [Zlogp(xt|zt) + Zlogp(zt\lt—l, s) +logp(s)
=1 =1
T (29)
- Z log q1(2¢|we, l—1) — log g2(s]z1.7, lO:T—l)}
=1
Z (Zt|lt—175)
—1 =1 1 (Rt | Tty be—1 (30)
p(s)
+EB [log— P ]
q[ gQ2(3‘z1:Tal0:T—1)}

where Equation 28 follows from Jensen’s inequality.



C Experiment settings and hyperparameters for controllable Markov
chains

Dense World

In the dense world experiments, we let the models explore an environment with 10 states and 4 actions for a total
of 2000 timesteps. The transition distributions in the environment were independently drawn from a Dirichlet
distribution with parameter cc = 1. That is, for a given state s and action a, the transition distribution p(: |s, a) is
given by

p(: |s,a) ~ Dir(1) := (31)

I(z) := /000 t" et dt (32)

For both the BAS and the random agents, the perception network was a two-layer feedforward network with 16
hidden units each followed by a softplus nonlinearity. The learning rate for both agents was fixed at 0.001.

Mazes

In the maze experiments, the agents explored a maze for a total of 3000 time steps. We did experiments with
different maze sizes (6 x 6, 8 x 8, and 12 x 12) and observed qualitatively the same results. We used the same
network architecture and learning rates for all agents as those used in the Dense World experiments.



D Experiment settings and hyperparameters for active vision

MNIST classification

We trained our model on the regular MNIST dataset, the translated MNIST dataset (described in the main text), and
the fashion MNIST dataset. First, the perception model was pre-trained in a completely unsupervised manner with
randomly selected fixation locations. Afterwards, we continued to train the perception model with the unsupervised
loss while actions were selected using our BAS strategy. At the same time, a separate decision network was trained
to take as input the inferred state s at the end of trial output a class label at the end of the trial. Gradients from
classification loss were only used to update the parameters of the decision network. For all experiments, the encoder
and decoder networks of both the the lower-level and the higher-level VAEs were feedforward networks with two
layers, each with 256 hidden units followed by rectified linear unit (ReLU) activation functions. The action network
was a two-layer feedforward network with 64 and 32 hidden units, respectively. When perception states were used
for decision making, the decision network was a two-layer feedforward network with 256 hidden units each. When
an RNN was used to integrate past observations for decision-making, the hidden size of the RNN decision network
was chosen to be the same as the dimensionality of the abstract state s. Table S1 lists the hyperparameters used
for each type of experiment. Hyperparameters were adjust ad hoc based on the resulting accuracy obtained on a
separate validation set. In these experiments, we also use a regularization hyperparameter 5 as a scalar multiplying
the KL term in the ELBO objective for the perception model“°.

Table S1: Settings for Centered, Translated, and Fashion MNIST Experiments

Hyper-parameter Centered MNIST  Translated MNIST  Cluttered MNIST  Fashion MNIST
# pre-training episodes 0 10 20 10

# fixations (n) 3 4 12 5
Patch dim (d) 8 12 12 6

# foveated patches (Nyfo,) 1 3 3 1
Foveation scale — 2 2 —

z dim 32 64 64 64

s dim 64 128 128 128
Oaction 0.15 0.15 0.15 0.05
Action network Ir 0.001 0.001 0.001 0.001
Perception model Ir 0.001 0.001 0.001 0.001
Decision network Ir 0.001 0.001 0.001 0.001
I6] 0.1 0.1 0.1 1.1
Batch size 64 64 128 64

Grayscale CIFAR-10

We tested our perception model on grayscale CIFAR-10 images to see if it can capture the overall structure and
statistics of natural images. Table S2 lists the hyperparameters used for these experiments.

Table S2: Settings for Grayscale CIFAR-10 Experiments

Hyper-parameter Setting
# fixations (n) 6
Patch dim (d) 12

# foveated patches (Nyfo,) 1

z dim 32

s dim 64
Perception model Ir 0.001
B 0.01

Batch size 64




Learning speed and data efficiency comparisons

Learning speed and data efficiency tests were performed on the translated MNIST dataset. Our approach (BAS +
FF), described in the main text, was compared to four baselines: the Recurrent Attention Model (RAM)?!, VIME'",
Plan2Explore '?; and a feedforward (FF) neural network receiving full images as input (Full Images + FF). In all
these cases, the decision network (the network that outputs class labels) consisted of two hidden layers each with
128 hidden units followed by ReLU activation functions.

BAS + FF, VIME, BYOL-Explore and Plan2Explore were all pre-trained unsupervised for 10 epochs with a
random action selection strategy. For BAS + FF, the architectures of the perception model and the action network
were the same as those described in Section D. For RAM, the hidden size of the RNN was chosen to match the
dimensionality of the abstract representation s in our perception model, which was 128. In all models (except Full
Images + FF), the location was drawn from a two-component Gaussian (with a pre-determined fixed variance)
parameterized by the output of the location network. Hyperparameters for all models were adjusted ad hoc to
optimize performance on a validation set (separate from the MNIST test set).

All hyperparameters are listed in Tables S3, S4, S5, S6, and S8. In the Full Images + FF case, the only
hyperparameters adjusted were the batch size and the learning rate which were fixed at 64 and 0.001, respectively.

Table S3: Global Hyperparameters

Hyper-parameter Value
# fixations (n) 3
Patch dim (d) 12

# foveated patches (Nyfo,) 3
Foveation scale 2
Batch size 64

Table S4: Hyperparameters for BAS 4+ FF

Hyper-parameter Value
z dim 64

s dim 128
Oaction 0.15
Action network hidden layers [64]
Action network Ir 0.001
Perception model Ir 0.001
Decision network Ir 0.001
I3 0.1

Table S5: Hyperparameters for RAM

Hyper-parameter Value
hg 64

hy 64
RNN hidden size 128
Oaction 0.05
Action network hidden layers [64]
Action network Ir 0.001
Decision network Ir 0.001

Core and glimpse networks Ir  0.001




Table S6: Hyperparameters for VIME

Hyper-parameter

Value

Action network hidden layers

Oaction

BNN hidden size

BNN prior std

BNN likelihood std

BNN Ir

Action network Ir
Decision network Ir

[256]
0.05
256
0.5
5.0
0.0001
0.001
0.001

Table S7: Hyperparameters for BYOL-Explore

Hyper-parameter Value
Latent dim 256
Encoder hidden layers [256, 256]
Action network hidden layers |64, 32]
Critic network hidden layers  [256, 256]
World model hidden layers [256, 256]
Oaction 0.05

Ir 0.001

Table S8: Hyperparameters for Plan2Explore

Hyper-parameter

Value

Number of ensemble models
One step model layers

Horizon length
Encoder layers
Decoder layers

Action network hidden layers
Critic network hidden layers
Reward network layers

Oaction

Action network Ir
Critic network Ir
One step model Ir
Decision network Ir

10
256, 256
15

[256, 256]
[256, 256]
[256, 256
[256, 256]
32, 32|
0.01
0.001
0.001
0.001
0.001
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