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Abstract. We prove that the derivative nonlinear Schrödinger equation in
one space dimension is globally well-posed on the line in L

2(R), which is the
scaling-critical space for this equation.
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1. Introduction

The derivative nonlinear Schrödinger equation

(DNLS) i@tq + q00 + i
�
|q|2q

�0
= 0

describes the evolution of a complex-valued field q defined on the line R. Here and
below, primes indicate spatial derivatives.

Physical applications of (DNLS) are reviewed briefly in subsection 1.4 below.
There, we also discuss certain well-documented changes of variables that convert
(DNLS) to other evolutions of interest in the physical sciences.
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One of the most basic questions we should ask of any model is whether it is
well-posed: Do solutions exist? Are they unique? Do they depend continuously
on the initial data? Without such properties, it is unclear whether the model
is capable of making experimentally falsifiable predictions. The well-posedness
question also forms an important benchmark in our understanding of an equation.
Gaps between well- and ill-posedness results leave open the possibility that there
are basic physical processes — instabilities and/or stabilizing mechanisms — that
remain undiscovered.

The principal goal of this paper is to show that (DNLS) is globally well-posed
in L2(R):

Theorem 1.1. The (DNLS) evolution is globally well-posed in L2(R). Precisely,
there is a jointly continuous map � : R ⇥ L2(R) ! L2(R) that agrees with the
data-to-solution map when restricted to Schwartz-class initial data.

It is not wanton abstraction to define the data-to-solution map as an extension
from Schwartz-class initial data; indeed, this is the textbook approach to defining
the Fourier transform on L2(R) and is widespread in nonlinear PDE. The heart of
the matter is to prove key metric properties that allow one to extend the mapping
to general elements of L2 and then to ensure that the extension retains the many
good properties of its Schwartz-class restriction.

A relatively small fraction of this paper would su�ce to show that L2-precompact
sets of Schwartz initial data are mapped under the flow to Ct([�T, T ];L2(R))-
precompact sets of orbits. (Here T > 0 must be finite, but is otherwise arbitrary.)
This would be a new result and it trivially yields the existence of solutions; however,
it goes no way to justifying uniqueness, nor continuous dependence on the initial
data. This thinking helps us appreciate the uniqueness statement embedded in
Theorem 1.1: no matter how we approximate an L2 initial data by a sequence of
Schwartz initial data, the corresponding trajectories will converge and they will
converge to the same limit! In particular, our solutions have the group property.

Theorem 1.1 implicitly asserts that Schwartz initial data lead to global unique
solutions. This is true. While uniqueness of smooth solutions is easily verified via
the Grönwall inequality, the existence of global solutions for large Schwartz-class
initial data is, in fact, a very recent result! (See the discussion in subsection 1.1.)
Although the existence of such solutions is not a prerequisite for our methods,
building on this result leads to a much clearer exposition. Moreover, without the
triumphs of these authors, which we celebrate in subsection 1.1, we would not have
had the courage to pursue the results of this paper.

Next, we wish to discuss why Theorem 1.1 considers initial data in L2(R). There
are several reasons that make L2(R) a natural space in which to study (DNLS).
First, the L2-norm is conserved by the flow; indeed, we have the microscopic con-
servation law

@t|q|2 + @x
⇥
2 Im(q0q̄) + 3

2 |q|
4
⇤
= 0.(1.1)

Second, it is a scale-invariant space: if q(t, x) is a smooth solution to (DNLS), then
so too is

q�(t, x) :=
p
� q(�2t,�x)(1.2)

for every � > 0. Notice that this transformation does not a↵ect the L2 norm of the
initial data (nor indeed at any later time).
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Long-standing physical intuition dictates that dispersive equations will be ill-
posed below the scaling-critical regularity. For the case of (DNLS), this is justified
by the self-similar solutions constructed in [10, 31]. Beyond proving that well-
posedness fails in Hs(R) with s < 0, these solutions even show that it fails in
weak-L2, which is a scale-invariant space!

It is a matter of some pride for us that we are able to treat (DNLS) in the
most natural scale-invariant space. It is only quite recently that global-in-time
solutions could be constructed for large data in scaling-critical spaces for any kind of
dispersive PDE. Moreover, we are dealing with a focusing nonlinearity (e.g. soliton
solutions abound). Many focusing dispersive equations do not admit large-data
global solutions; it is typical for wave collapse to occur above a certain threshold
size (as measured in scaling-critical spaces).

There is an obvious scapegoat here: (DNLS) is completely integrable, [25]. How-
ever scaling-critical well-posedness does not seem to be the norm for such models:
it fails for KdV, NLS, and mKdV! The phenomenology of (DNLS) becomes even
more curious when we endeavor to find a quantitative expression of the continu-
ous dependence of the solution on its initial data. As discussed below, we know
that when s < 1

2 , the data-to-solution map cannot be uniformly continuous on any
neighborhood of the origin in Hs(R). This is quite di↵erent from the behavior of
the mass- or energy-critical NLS, for example, where the data-to-solution map is
real analytic (cf. [28]).

It is perhaps better to compare (DNLS) to other models with derivative nonlin-
earity. For the notoriously di�cult two-dimensional wave maps equation, for ex-
ample, Tataru [49] proved that the data-to-solution map (defined on scaling-critical
balls) is Lipschitz in lower regularity norms. We will show in Proposition 1.12 that
this fails for (DNLS) — again (DNLS) appears less continuous! Complete integra-
bility, it seems, is not a stern parent that keeps its flows safe and orderly; rather it
is permissive and allows its solutions to become quite wild before issuing the rebuke
of ill-posedness.

Earlier we singled out theHs(R) family of spaces in our discussion of well- and ill-
posedness. Already the natural prerequisite that the linear Schrödinger equation be
well-posed is quite restrictive; this precludes the consideration of Lp-based Sobolev
spaces with p 6= 2. As we will see below, Hs(R) spaces are both the most natural
and most studied classes of initial data; indeed, they arise from the consideration
of conservation laws for (DNLS). Building on Theorem 1.1, we will prove

Corollary 1.2. (DNLS) is globally well-posed in Hs(R) for every s � 0.

Prior work in this direction is discussed at length in the next subsection. It is
evident that Theorem 1.1 guarantees the existence and uniqueness of solutions for
data in Hs with s � 0. That such solutions remain bounded in Hs is known as
persistence of regularity and may be deduced as a consequence of conservation laws.
To complete the proof of well-posedness, one must upgrade continuous dependence
from the L2 metric to the Hs metric. As demonstrated in several prior works of the
authors [5, 18, 27, 29], this is easily done if one can verify that Hs-equicontinuous
sets of initial data lead to Hs-equicontinuous ensembles of orbits.
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Definition 1.3. A subset Q of Hs(R) is Hs(R)-equicontinuous if for every " > 0
there is a � > 0 so that

sup
q2Q

sup
|y|<�

��q(x+ y)� q(x)
��
Hs

x
< ".

This definition extends naturally to any translation-invariant Banach space of
functions on any group. For bounded continuous functions on Rd, one recovers
the notion of equicontinuity familiar from the Arzelà–Ascoli Theorem. Indeed, this
more general notion of equicontinuity was introduced precisely to formulate the
analogous compactness theorem in Lp(Rd) spaces; see [42].

We will also need the second key requirement for compactness, albeit only in the
L2 setting:

Definition 1.4. We say that Q ✓ L2(R) is tight if

lim sup
R!1

sup
q2Q

Z

|x|�R

|q(x)|2 dx = 0.

The transportation of L2 norm is expressed by (1.1). As is characteristic of
dispersive equations, we see that the flux of the conserved quantity involves more
derivatives than the conserved quantity itself. While this is an obstacle in our path
to proving tightness, it is also the key property of microscopic conservation laws
that provides for local smoothing estimates.

To formulate local smoothing estimates, we must first agree on how to localize
the solution in space. We will do this through the Schwartz-class function

(1.3)  (x) :=
q
sech( x

99 ) and its translates  µ(x) :=  (x� µ).

There is nothing terribly special about this choice. The fact that it has slow expo-
nential decay (relative to unit scale) is quite convenient; beyond this, it is merely
the case that this choice has served us well in the prior work [18].

Theorem 1.5 (Local smoothing). Let Q ⇢ S(R) be both L2-bounded and equicon-
tinuous. For each T > 0, solutions q(t) to (DNLS) with initial data q(0) 2 Q
satisfy

sup
µ2R

Z
T

�T

k 12
µ
q(t)k2

H
1
2
dt .T,Q kq(0)k2

L2 .(1.4)

Corollary 1.6. The solutions constructed in Theorem 1.1 are distributional solu-
tions; indeed, the data-to-solution map is continuous as a mapping of L2(R) into
L3
loc(R⇥ R).

The first striking thing about Theorem 1.5 is the fact that the estimate is only
claimed for equicontinuous sets, not balls. This is of necessity, as we will show in
Proposition 1.11, and reiterates the non-perturbative nature of our analysis.

Other than proving Corollary 1.6, Theorem 1.5 will play no role in the analy-
sis. It is not strong enough! For example, it is not su�cient to prove tightness.
For that purpose, we will need the stronger estimate (4.2) expressed in terms of

our local smoothing spaces X1/2
 introduced in subsection 2.3. In essence, these

spaces capture the local smoothing norm living at frequencies |⇠| � . In this way,
(4.2) expresses that there is little local smoothing norm at high frequencies and
consequently, little transportation of the L2 norm by the high frequencies.
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1.1. Prior work. Local well-posedness of (DNLS) was first proved in Hs(R) for
s > 3

2 via energy methods in [50, 51]. Subsequently, this was improved to s � 1
2 by

Takaoka in [45] via contraction mapping inXs,b spaces. The solution so constructed
is a real-analytic function of the initial data.

As explained in [46, §7], the results of [45] show that the data-to-solution map
cannot be real-analytic (or even C3) on Hs(R) for any s < 1

2 . Indeed, by analyzing
the family of solitons reviewed in subsection 1.3, it was shown in [4] that the data-
to-solution map cannot even be uniformly continuous (on bounded sets) in Hs(R)
for s < 1

2 .
Contraction mapping arguments have also been applied in other function spaces.

Local well-posedness of (DNLS) in certain Fourier–Lebesgue and modulation spaces
was shown in [13] and [14], respectively. In both cases, the spaces are based on
s � 1

2 number of derivatives. It is noted in [14] that if fewer derivatives are used,
the data-to-solution map cannot be smooth.

We discussed earlier how this irregularity of the data-to-solution map challenges
the naivest notions of complete integrability. It also has profound implications in
terms of methods. For a generation now, work on well-posedness problems for dis-
persive PDE has been dominated by contraction mapping arguments in increasingly
sophisticated spaces, employing ever subtler harmonic analysis tools. By their very
nature, solutions built by contraction mapping will be real-analytic functions of
their initial data. The poor regularity of the data-to-solution map in the setting of
Theorem 1.1 is a strong signal that very di↵erent methods will be needed.

Let us turn now to the question of global well-posedness. The standing para-
digm here is to extend local-in-time results by employing exact (or approximate)
conservation laws. As a completely integrable system, (DNLS) has a multitude of
exact conservation laws. The most basic three are

M(q) :=

Z
|q(x)|2 dx,(1.5)

H(q) := � 1
2

Z
i(qq̄0 � q̄q0) + |q|4 dx,(1.6)

H2(q) :=

Z
|q0|2 + 3

4 i|q|
2(qq̄0 � q̄q0) + 1

2 |q|
6 dx.(1.7)

The functional H(q) will be called the Hamiltonian since it generates the (DNLS)
dynamics in concert with the Poisson structure

{F,G} :=

Z
�F

�q

�
�G

�q̄

�0
+ �F

�q̄

�
�G

�q

�0
dx.(1.8)

The problem with these conservation laws is that they are not coercive for large
initial data, specifically, when M(q) is large. It was observed in [19] that coercivity
does hold if M(q) < 2⇡, which was used to obtain global well-posedness in H1(R)
under this restriction. The subsequent works [7, 8, 37, 46] ultimately led to Hs-
well-posedness for s � 1

2 under the M(q) < 2⇡ restriction.
Later, Wu showed that the 2⇡ barrier was illusory and that a priori bounds could

be obtained under the weaker restriction M(q) < 4⇡; see [55, 56] and [11]. Global
Hs-well-posedness for s � 1

2 and M(q) < 4⇡ was then shown in [15].
The 4⇡ barrier is certainly not illusory: Algebraic solitons (see (1.26)) are explicit

solutions of (DNLS) with M(q) = 4⇡, but for which all other polynomial conserva-
tion laws vanish. Applying the symmetry (1.2) to these algebraic solitons, we see
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that the polynomial conservation laws alone cannot provide the kind of control that
is needed; see the discussion surrounding (1.27). Because of such obstructions, the
behavior of large-data solutions to (DNLS) was for a long time a terra incognita.

The first definitive evidence that large data do not blow up was provided via
the inverse scattering approach; see [20, 22, 23, 34, 35, 40, 41, 44]. Among these
works, we wish to single out [23] as not only constructing solutions (without any
spectral hypotheses), but also for proving continuous dependence on the initial
data. Concretely, they proved that (DNLS) is globally well-posed in H2,2(R) =
{f 2 H2 : x2f 2 L2}. Combined with the local-in-time arguments in [19], this
result shows that (DNLS) is globally well-posed in Schwartz space.

Strong spatial decay requirements are a prerequisite for the inverse scattering
approach as we understand it today. Currently, there is no satisfactory theory of
forward nor inverse scattering in any Hs(R) space (not only for (DNLS), but also
for KdV, NLS, and mKdV). On the other hand, one of the major strengths of
the inverse scattering method is its ability to describe the long-time behavior of
solutions. Indeed, a soliton resolution result for generic data in H2,2(R) was proved
in [21]; see also [22, 36].

The large-data impasse in Sobolev spaces was dramatically broken by Bahouri
and Perelman in the recent paper [3]. By synthesizing the existing well-posedness
theory with an in-depth analysis of the transmission coe�cient, they proved that
(DNLS) is globally well-posed in H1/2(R).

For what follows, it is more convenient to discuss the reciprocal of the trans-
mission coe�cient and to define this quantity, a(k; q), via a Fredholm determinant.
For  > 0, we first define

⇤(; q) := (� @)�
1
2 q(+ @)�

1
2 and �(; q) := (+ @)�

1
2 q̄(� @)�

1
2 ,(1.9)

which extend to  < 0 via ⇤(�; q) = ��(; q̄). By Lemma 2.5 below (reproduced
from [30]), both ⇤ and � are Hilbert–Schmidt operators; thus we may define

a(i; q) := det
⇥
1� i⇤�

⇤
.(1.10)

This expression originates from a perturbation determinant based on the Lax
pair for (DNLS) discovered in [25]. In particular, it is conserved under the (DNLS)
flow; see [32] for a proof of this.

It follows from (1.10) that k 7! a(k; q) extends to a holomorphic function in both
the upper and lower half-planes. While this extension was essential for [3] and the
paper [17] that we will discuss shortly, we will not need this here and so restrict
our attention to the case where k = i is purely imaginary.

The central problem overcome by [3] was the ine↵ectual nature of the conser-
vation laws attendant to (DNLS); however, this solution did not provide new con-
servation laws with which to fill the void. In particular, [3] does not provide a
priori control on lower regularity norms, nor the means to address the question of
equicontinuity in such spaces.

Using the ideas of [3] as a jumping-o↵ point, the paper [17] shows that (DNLS)
does preserve L2-equicontinuity. Note that this assertion takes the form of an a
priori bound on Schwartz-class solutions since solutions were not known to exist
for merely L2 initial data. In fact (and this will be important for us), the paper
[17] shows that this equicontinuity property is enjoyed by any flow preserving the
perturbation determinant (1.10) and so by the entire (DNLS) hierarchy:
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Theorem 1.7 ([17]). Let Q ✓ S(R) be L2-bounded and equicontinuous. Then

Q⇤ =
�
q 2 S(R) : a(k; q) ⌘ a(k; q̃) for some q̃ 2 Q

 
(1.11)

is also L2-bounded and equicontinuous.

A key motivation for addressing the equicontinuity question in [17] is that it
unlocks a large number of tools in the study of (DNLS); it was this realization that
lead [27] to the explicit formulation of this equicontinuity problem.

The first tools unlocked by the equicontinuity property are low-regularity con-
servation laws, specifically conservation laws at the level of Hs for 0 < s < 1

2 . Such
laws were first derived in [32] following the approach of [30]; however, they were
only applicable to small solutions. The realm of applicability was first raised to
M(q) < 4⇡ in [27] by proving equicontinuity in that regime and then to arbitrarily
large solutions in [17].

Equicontinuity also unlocks higher regularity conservation laws for large data. In
[27], L2-equicontinuity and the conservation of H2(q) are shown to provide global
H1(R) bounds. In [2], the result of [17] is used as the base step of an inductive
argument to cover Hs(R) spaces for all s � 1

2 . This brings closure to the question
of coercive conservation laws: we now know that Hs-bounded sets of Schwartz-class
initial data lead to Hs-bounded solutions for all s � 0.

To prove local smoothing, we need microscopic conservation laws such as (1.1),
rather than mere conserved quantities. Note that (1.1) itself is useless for this
purpose because the current is not coercive. Already for the proof of (1.4), we
need scaling-critical coercive microscopic conservation laws and the full proof of
well-posedness will require even more subtle estimates.

Just such microscopic conservation laws were worked out in [47] and will be
recapitulated in Proposition 3.5. The structure of these laws closely resembles
those of the NLS/mKdV hierarchy presented in [18]. There is a good reason for
this: the Kaup–Newell Lax operator for (DNLS) can be written as

L(; q) :=


1 0
0 �1

� 
� @

p
q

i
p
q̄ + @

�
,(1.12)

which closely resembles the AKNS–ZS Lax operator of the NLS/mKdV hierarchy.
We will only discuss this operator for  2 R. Throughout this paper,

p
 = i

p
|| when  < 0.

There is one more prior result that we wish to discuss, namely, global well-
posedness inH1/6(R). This was first shown in [27] for initial data satisfyingM(q) <
4⇡, a restriction that was removed in [17]. This result was shown using the first-
generation method of commuting flows introduced in [29] and reviewed below.

1.2. Description of the method. The principal problem we must address in or-
der to prove Theorem 1.1 is this: given T > 0 and an L2-convergent sequence qn(0)
of Schwartz initial data, show that the corresponding (Schwartz-class) solutions
qn(t) converge in L2(R) uniformly for |t|  T .

Given the breakdown of uniform continuity of the data-to-solution map (on
bounded sets) and the further instabilities highlighted in Proposition 1.12, it is
di�cult to conceive of a method of controlling di↵erences of solutions in terms
of their initial data. It was to address this specific challenge that the method of
commuting flows was introduced in [29].
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To explain the method of commuting flows, let us imagine that we wish to prove
well-posedness of the flow generated by a Hamiltonian H in L2; in our case, H is
given in (1.6). Central to the method is the construction of a one-parameter family
of Hamiltonians H whose flows satisfy the following three properties:

(1) they commute with the H flow,
(2) they are well-posed in the target well-posedness space L2, and
(3) they converge to the H flow as ! 1.
Let us temporarily take for granted the existence of the family of Hamiltonians

H satisfying these properties. Their construction for (DNLS) is quite involved
and will be discussed shortly. Demonstrating that they satisfy the three properties
requires almost the entire bulk of this paper.

Property (1), namely commutativity of the flows, can be expressed as

etJrH � esJrH = esJrH � etJrH = eJr[tH+sH] for any s, t 2 R,
where we adopt the exponential notation for the flow of a vector field and write Jr
for the symplectic gradient. The relevance of this relation to demonstrating that
a sequence of (Schwartz) solutions qn(t) is Cauchy in C([�T, T ];L2) may be best
understood via the following identity:

qn(t)� qm(t) =
⇥
etJrHqn(0)� etJrHqm(0)

⇤
+
⇥
etJr(H�H) � Id

⇤
� etJrHqn(0)

�
⇥
etJr(H�H) � Id

⇤
� etJrHqm(0).(1.13)

Property (2) is well-posedness of the H flows. This implies that the first term
on the right-hand side of (1.13) converges to zero as n,m ! 1 for each fixed . In
order to prove that the sequence qn(t) is Cauchy in C([�T, T ];L2), it remains to
show that

lim sup
!1

sup
n

sup
|t|T

��⇥etJr(H�H) � Id
⇤
� etJrHqn(0)

��
L2 = 0.(1.14)

We will refer to the flow generated by the Hamiltonian H � H as the di↵erence
flow. Relation (1.14) embodies the statement that as  ! 1, the di↵erence flow
converges to the identity. This is a quantitative interpretation of property (3).

In implementing the method of commuting flows, we have come to regard prop-
erties (1) and (2) as selection criteria for the H Hamiltonians, leaving property
(3) as the key analytical di�culty that must be faced.

In our experience, (1.14) has always proved to be a very di�cult problem. First,
we must acknowledge that the di↵erence flow inherits all the strong instabilities
of the original flow. As the H flow is typically a di↵eomorphism, it cannot undo
these problems. The one big advance, however, is that we no longer need to control
di↵erences of solutions: qn and qm are now completely decoupled. This is partially
o↵-set by the fact that the initial data for the di↵erence flow is not qn(0), but rather
etJrHqn(0) where t varies over [�T, T ]. As a result, we will need to show that the
di↵erence flow converges to the identity uniformly across sets of initial data about
which we know very little.

As in previous works, we will exploit that {etJrHqn(0) : n 2 N, |t|  T} inherits
equicontinuity from the precompact set {qn(0)}. This follows from Theorem 1.7 and
the fact that the H flows constructed below conserve a(i; q). Refracted through
this perspective, property (3) becomes the following assertion:

lim sup
!1

sup
q2Q

sup
|t|T

��⇥etJr(H�H) � Id
⇤
(q)

��
L2 = 0(1.15)
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for any L2-bounded and equicontinuous set Q ✓ S(R).
It is natural to seek to prove (1.15) by estimating the di↵erence-flow vector field,

that is, the time derivative under this flow. As a prerequisite, one needs to be able
to make sense of the nonlinearity appearing therein — this includes the nonlinearity
under the H flow, which for (DNLS) is (|q|2q)0.

The method of commuting flows was applied to (DNLS) in [27], treating initial
data in H1/6. Conservation laws were used to bound the resulting solution in
L1
t
H1/6, which allowed the authors to prove (1.15) with L2 replaced by H�4. The

lost derivatives were then recovered using equicontinuity, specifically, the general
statement that if a sequence qn converges in H� and is equicontinuous in Hs for
s > �, then it converges in Hs. The relevance of H1/6 is that it embeds into L3

and this allows us to interpret the nonlinearity (|q|2q)0 as an element of L1
t
H� for

any � < � 3
2 .

Already in the first application of the method of commuting flows in [29], which
was for KdV in H�1, it was not possible to estimate the di↵erence-flow vector field
directly. To address this problem, the authors introduced a gauge transformation
(a di↵eomorphic change of unknown), whose di↵erence-flow dynamics they could
estimate pointwise in time (albeit with a sizable loss of derivatives, which were then
recovered using equicontinuity).

One advantage of this first-generation method of commuting flows, where the
di↵erence flow (with or without a gauge) is estimated pointwise in time, is that it
works equally well for problems posed both on the line and on the circle. However,
there are models (such as NLS and mKdV) where the threshold regularities for well-
posedness are di↵erent in the two geometries. The treatment of these equations in
[18] necessitated the introduction of a second-generation method of commuting
flows, based on new local smoothing and tightness estimates.

The job of local smoothing estimates is to make sense of the vector field as a
spacetime distribution in instances where this cannot be done pointwise in time.
As the central problem is to control the di↵erence flow by estimating the size of
the corresponding vector field, one must develop local smoothing estimates for this
flow. This is almost paradoxical: local smoothing is an expression of high-frequency
transport; however, our ultimate goal is to demonstrate that the di↵erence flow con-
verges to the identity. The demonstration of su�ciently strong smoothing estimates
for the (DNLS) di↵erence flow (see Proposition 6.1) requires a vast amount of work;
we will return to this topic after the Hamiltonians H have been introduced.

Using local smoothing, we will only be able to prove convergence of the di↵erence
flow to the identity locally in space (cf. Theorem 7.1). The role of the second new
ingredient, tightness, is to overcome this limitation. As both radiation and solitons
move under the (DNLS) flow, establishing tightness is challenging. For (DNLS)
this is accomplished in Proposition 5.1 below and relies on the subtle control of the
high-frequency transportation provided by (4.2).

The H flows and their properties. To introduce the Hamiltonians H for
(DNLS), we return to the perturbation determinant (1.10), or rather, to the closely
related quantity

A(; q) := � sgn() log[a(i; q)] = � sgn() log det
⇥
1� i⇤�

⇤
.(1.16)
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As discussed above, a(i; q) is conserved by the (DNLS) flow. This guarantees
that both the real and imaginary parts of the (complex) functional A(; q) Poisson
commute with the (DNLS) Hamiltonian H(q).

The inclusion of sgn() in (1.16) ensures that A(; q) has the same asymptotic
expansion as ! ±1. This expansion shows that A(; q) encodes all the polyno-
mial conservation laws of (DNLS); it begins

A(; q) = i

2M(q) + 1
4H(q)� i

82H2(q) +O
�

1
3

�
(1.17)

for q 2 S(R). Rearranging this formula leads one to believe that

H(q) := 4ReA(; q)(1.18)

is a good approximation for the (DNLS) Hamiltonian H(q), at least as  ! 1.
Moreover, the Poisson commutativity of ReA(; q) and H(q) noted above guaran-
tees that H and H also commute. This is the sought-after property (1) from our
overview of the method of commuting flows.

The preceding discussion has been predicated on the non-vanishing of a(i; q),
so that one may safely take the logarithm in (1.16). This issue is discussed in
[27], where it is shown that A(; q) is well-defined provided  is su�ciently large;
however, (by necessity) the restriction on  is not dictated solely by the size of q,
but also by its frequency distribution.

Informed by the many computations ahead of us, in this paper we adopt the
expedient of using (1.2) to rescale solutions q so that we may impose a single
restriction on , namely, || � 1. The goal of the rescaling is to make bq(⇠) small at
frequencies |⇠| � 1; such smallness is conveniently expressed through the following
notion:

Definition 1.8. Fix 0 < � < 1
2 . Given � > 0, we say that Q ✓ S(R) is �-good if it

is L2-bounded, L2-equicontinuous, and it satisfies

sup
q2Q

Z |⇠|2�|q̂(⇠)|2

(4 + ⇠2)�
d⇠  �2.(1.19)

Although the parameter � could be frozen once and for all, say � = 1
4 , we believe

that retaining the symbol � makes it easier to check our computations.
As reviewed in Section 3, the series (1.16) converges uniformly on all �-good sets

(once � is small enough). Local well-posedness of the H flow for �-good sets of
initial data follows from Picard’s Theorem because the corresponding vector field
is Lipschitz. Moreover, these solutions remain Schwartz-class and conserve A({; q)
for all |{| � 1. These assertions were shown in [27, §5].

In order to construct a global-in-time H flow, we must ensure that orbits remain
�-good as time progresses. This is accomplished by combining the fact that the H

flow preserves a(i{; q) together with the following consequence of Theorem 1.7:

Corollary 1.9. Let Q ✓ S(R) be an L2-bounded and equicontinuous set. Given
� > 0, there exists � = �(Q, �) so that the set

Q�

⇤ =
�p

� q(�x) 2 S(R) : a(i{; q) ⌘ a(i{; q̃) for some q̃ 2 Q
 

is �-good.

Before turning to the di�cult topic of analyzing the di↵erence flow, let us pause
to summarize the preceding discussion as a theorem. In particular, this theorem
encapsulates properties (1) and (2) of the H flows.
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Theorem 1.10. There exists �0 > 0 su�ciently small so that for any 0 < �  �0
and L2-bounded and equicontinuous set Q ✓ S(R), the H flow is globally well-posed
on the set Q�

⇤ in the L2 topology, where �(Q, �) is chosen according to Corollary 1.9.
In particular, solutions remain of Schwartz-class and remain in the set Q�

⇤ . More-
over, the (DNLS) flow also preserves the set Q�

⇤ and commutes with the H flow.

All the assertions made here about the H flow were proved in [27] contingent on
the question of equicontinuity that was subsequently resolved in [17]. As discussed
earlier, the existence of global Schwartz-class solutions to (DNLS) follows from
[19, 23]. That such (DNLS) solutions conserve the transmission coe�cients is a
classical result.

Analysis of the di↵erence flow. This occupies the bulk of this paper and re-
quires many new insights.

To understand the di↵erence flow, we must first give the explicit form of this
evolution. This relies on the functional derivatives of H, which are easily deduced
from those of A(; q) given in (3.5).

The functions g12(x) and g21(x) appearing in (3.5) are the two o↵-diagonal entries
of the Green’s function corresponding to the Lax operator (1.12) evaluated on the
diagonal x = y. Together with a third component �(x), these functions will be
recurrent characters in our story and Section 3 is devoted to a detailed elaboration
of their algebraic and analytic properties.

Combining the functional derivatives with the Poisson structure (1.8), we find
an explicit formula for the di↵erence flow evolution:

(1.20) i d

dt
q = �q00 � i(|q|2q)0 + 2

⇥p
g012()�

p
�g012(�)

⇤
.

The goal of this section is to explain how to prove (1.15) for the di↵erence flow
given by (1.20).

Unlike all other terms, the nonlinearity (|q|2q)0 appearing on the right-hand
side of (1.20) does not make sense pointwise in time for q 2 CtL2 and so we
are immediately tasked with finding a remedy. Despite strenuous e↵orts, we were
unable to find a gauge transformation that would allow us to estimate the resulting
di↵erence-flow vector field pointwise in time. Based on previous successes with the
diagonal Green’s function [18, 29], it is natural to imagine that this might be a
satisfactory gauge. This idea is refuted by (3.28), as explained there. Therefore,
we are forced to adopt the second-generation method of commuting flows.

As discussed earlier, the characteristic features of the second-generation method
are the use of local smoothing estimates to control the di↵erence flow and the re-
sulting necessity of showing that compact sets of initial data lead to tight ensembles
of orbits under the (DNLS) flow, over bounded time intervals. The proof of the
tightness statement relies on refined local smoothing estimates for the (DNLS) flow.

Local smoothing estimates are a direct expression of the dispersive nature of
an equation: high frequencies travel rapidly and so spend little time in any fixed
spacetime region. As such, they originate from the linear/dispersive part of the
equation.

As discussed in [48], there are two standard ways for proving local smoothing
estimates for a linear equation: via spacetime Fourier transforms and via mono-
tonicity identities. When the nonlinearity may be treated perturbatively, local
smoothing estimates can be transferred directly from the underlying linear flow to
the full nonlinear equation. Correspondingly, it matters little what method one uses
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for establishing the linear estimates. In the non-perturbative regime considered in
this paper, we have no choice but to pursue an approach based on monotonicity
identities for the full nonlinear flow.

All monotonicity-type identities we know originate from microscopic conserva-
tion laws of the form

@t⇢+rx ·~⌘ = 0.(1.21)

In one spatial dimension for example, this implies

@t

Z
tanh(x)⇢(t, x) dx =

Z
sech2(x)j(t, x) dx.(1.22)

In the rare event that one can find such a law with j � 0, (1.21) constitutes
true monotonicity. It is more reflective of actual practice however to find a coercive
term j1 in the current and then integrate (1.22) to obtain

Z
T

�T

Z
sech2(x)j1(t, x) dx dt  2 sup

|t|T

���
Z

tanh(x)⇢(t, x) dx
���

+

Z
T

�T

Z
sech2(x)[j1 � j](t, x) dx dt.(1.23)

The utility of this inequality rests on finding a suitable microscopic conservation
law. First, one must find a density ⇢ whose integral can be controlled uniformly in
time. Second, one must be able to identify a coercive part j1 of the current that
controls the sought-after local smoothing norm. Third, one must be able to control
the contribution of j1 � j.

For our analysis we need two one-parameter families of microscopic conservation
laws, one for (DNLS) and one for the di↵erence flow (1.20). These can be found in
Proposition 3.5, with the density given in (3.27). Local smoothing for (DNLS) is
proved in Proposition 4.1 and for the di↵erence flow in Proposition 6.1.

The first task is to estimate the integral of the density ⇢ in (3.27) uniformly in
time. This is achieved in Lemma 4.2. The complicated structure of this density
makes this a nontrivial task. Moreover, to prove tightness of orbits under the
(DNLS) flow we need the refined local smoothing estimate (4.2), which requires us
to prove that the contribution of ⇢ converges to zero in the high-frequency regime.
The analysis of ⇢ in Lemma 4.2 relies on the detailed study of the diagonal Green’s
functions carried out in Section 3.

Our second task is to identify a coercive part in the currents appearing in Propo-

sition 3.5. In our analysis, the quadratic terms j[2]DNLS and j[2]di↵ of the currents will
play the role of j1 in (1.23). Although these are not sign definite, we are able to
demonstrate the requisite coercivity up to acceptable errors. For the treatment

of j[2]DNLS, see the discussion surrounding (4.32). Extracting coercivity from j[2]di↵
requires considerable regrouping and the estimation of many error terms and com-
mutators; see the treatment of (6.40).

The third and most di�cult part of obtaining local smoothing estimates is con-
trolling the remainder of the current j1 � j. In defocusing problems, the most dan-
gerous parts of j1 � j typically have a favorable sign. When the problem treated
is subcritical, the second term on RHS(1.23) can be controlled by interpolating
between the LHS(1.23) and a priori conservation laws. A small data hypothesis
can also provide the smallness needed to bound the contribution of j1 � j by a
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small fraction of LHS(1.23). The problem studied here has none of these favorable
features. In fact, any of these features would yield local smoothing estimates that
depend only on the norm of the initial data; this is ruled out by Proposition 1.11.

In our case, the remainder j1 � j comprises the quartic and higher order terms

j[�4]
DNLS and j[�4]

di↵ . There is an enormous number of contributions that need to be
controlled. Moreover, these cannot be estimated directly using the L2 norm of q
since they involve both derivatives and higher powers of q. Instead, we endeavor to
control these contributions using local smoothing and a bootstrap argument.

As we are dealing with a large-data scaling-critical problem, there is no easy
source of smallness for closing the bootstrap. This is one of the key analytical
challenges we must overcome in this article. The subcriticality of the models treated
in [18] expressed itself through the appearance of negative powers of the large
parameter , which provided the requisite smallness. For (DNLS), we are forced to
simultaneously exhibit two copies of the local smoothing norm (to be bootstrapped)
and a third factor encoding equicontinuity (the source of smallness) for every single
error term. To achieve this, we must identify and exploit many subtle hidden
cancellations in the flow — see, for example, the carefully curated decompositions

of j[�4]
DNLS and j[�4]

di↵ appearing in (4.27) and in the proof of Lemma 6.3, respectively.
The analysis of these error terms relies on a large body of work built up in

the preceding sections of the paper. In Section 2 we introduce the norms used to
quantify both equicontinuity and local smoothing. We also need to introduce and
analyze a Banach algebra B of bounded multiplication operators on our equicon-
tinuity spaces. This section also contains a suite of basic nonlinear estimates used
later in the paper.

Much of Section 3 is devoted to proving estimates on the diagonal Green’s func-
tions. These arise in several places in our analysis: not only are they an integral
part of the microscopic conservation laws, but they also appear in (1.20) because
they encode the functional derivatives of A(; q). The culmination of Section 3 is
the estimation of the diagonal Green’s functions and key nonlinear combinations
thereof in the equicontinuity and the local smoothing spaces. We also elucidate the
structure of these functions in terms of a new class of paraproducts introduced in
this section; see, for example, Lemma 3.11 and Proposition 3.12.

A second class of paraproducts which incorporates the localizing weights intrinsic
to local smoothing estimates is introduced in Section 4. A key feature of our analysis
is demonstrating that one may distribute these localizing weights to all entries in
these paraproducts. This is important since any one of the input functions in a
paraproduct may be the highest frequency term and so will need to be estimated
in the local smoothing norm. The culmination of Section 4 is the proof of the local
smoothing estimates for the (DNLS) flow stated in Proposition 4.1.

Tightness of orbits for solutions to (DNLS) is proved in Section 5. This argument
is quite short because of the strength of the estimate (4.2) proved in Section 4.

Section 6 contains a proof of local smoothing for the di↵erence flow (1.20). It is
the most demanding part of the paper and relies on all the analysis that precedes
it. Indeed, the needs of this section dictated much of the prior development.

Section 7 combines all that precedes it to prove convergence of the di↵erence
flow to the identity, locally in space. Finally, a short Section 8 deduces all the main
theorems from these prerequisites.
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1.3. The soliton menace. In this subsection we present the family of soliton so-
lutions to (DNLS) and use them to exhibit some of the instabilities of this equation.

For each value of ✓ 2 (0, ⇡2 ), the function

q0(x; ✓) :=
p
2 sin(2✓)

[cos(✓) cosh(x)� i sin(✓) sinh(x)]3

[cos2(✓) cosh2(x) + sin2(✓) sinh2(x)]2
e�ix cot(2✓)

provides initial data for a soliton solution to (DNLS). In understanding the shape of
this function, it is useful to note that the central factor can be written as Z3/|Z|4
with Z = cos(✓) cosh(x) � i sin(✓) sinh(x) = cosh(x � i✓). The soliton with this
initial data takes the form

q(t, x; ✓) = q0
�
x+ 2 cot(2✓)t; ✓

�
eit cosec

2(2✓).(1.24)

Further solitons can be obtained by translation, phase rotation, and scaling.
The ✓ ! 0 limit of this solution exists and is identically zero. Indeed

(1.25) kq0k2L2 = 8✓.

In the form we have presented, the ✓ ! ⇡

2 limit does not exist. However by rescaling
in accordance with (1.2), a limit can be recovered, namely, the algebraic soliton:

q(t, x) = qa(x� t)eit/4 with initial data qa(x) =
2(1� ix)

(1 + ix)2
eix/2.(1.26)

This solution embodies a key obstruction to coercivity of the polynomial conser-
vation laws. Indeed, while M(qa) = 4⇡ all other polynomial conserved quantities
vanish. These properties also hold for all rescalings (1.2) of qa. However,

kqa,�kHs ! 1 as �! 1(1.27)

for any s > 0.
To see that qa also witnesses an obstruction to using the perturbation deter-

minant (1.10) to prove equicontinuity we note that a(i; qa,�) ⌘ 1 for all � > 0.
However, {qa,� : � > 0} is not an equicontinuous family.

Let us now turn our attention to the soliton with ✓ = ⇡

4 , which simplifies to

qs(t, x) =
2eit[cosh(x)� i sinh(x)]3

[cosh2(x) + sinh2(x)]
2 .(1.28)

The subscript s appearing here emphasizes that this is a stationary soliton. (While
it does oscillate in time, it does not propagate through space.) This property makes
it the archenemy of local smoothing and Strichartz estimate. In particular, our next
proposition shows that the inequality (1.4) does not hold for sets Q that are merely
L2-bounded. This further emphasizes the non-perturbative nature of the (DNLS)
flow in the L2 topology.

Proposition 1.11. Local smoothing and Strichartz norms cannot be controlled
solely by the L2 norm of the initial data. Concretely, there is a sequence of solutions
qn to (DNLS) satisfying M(qn) ⌘ 2⇡ but

Z 1

�1
k sech12(x)qn(t, x)k2

H
1/2
x

dt �! 1 and

Z 1

�1

Z

R
|qn(t, x)|6 dx dt �! 1

as n ! 1.
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Proof. We choose the qn to be rescalings of qs according to (1.2) and observe that
M(qs,�) ⌘ 2⇡ but

Z 1

�1
k sech12(x)qs,�(t, x)k2

H
1/2
x

dt ⇡ � and

Z 1

�1

Z

R
|qs,�(t, x)|6 dx dt ⇡ �2. ⇤

As the last topic of this section, we demonstrate another instability inherent
to (DNLS). Concretely, we will show that it is not possible to prove uniqueness
of solutions via Grönwall’s inequality in lower regularity spaces. This is a widely
successful uniqueness technique and a key ingredient in constructing solutions via
compactness/uniqueness arguments; the Grönwall inequality yields Lipschitz de-
pendence in Hs of the data-to-solution map. However, our next proposition shows
failure of Lipschitz dependence, no matter how negative one chooses s.

Proposition 1.12. Fix s  0. There are times tn ! 0 and pairs of solutions qn
and q̃n to (DNLS) so that

kqnkL2 + kq̃nkL2 ! 0 but
kqn(tn)� q̃n(tn)kHs

kqn(0)� q̃n(0)kHs
! 1.(1.29)

Proof. We choose qn and q̃n to be distinct rescalings of the soliton solution (1.24)
with parameter ✓n. We first choose ✓n ! 0 to ensure that their L2 norms converge
to zero; see (1.25).

The key idea to exploit is the fact that qn and q̃n travel at di↵erent speeds. To
ensure that their separation at time tn diverges, we require that

|�n � �̃n| cot(2✓n)tn ! 1 yet tn ! 0 as n ! 1.(1.30)

In order to compute the overall size of the norms at the times 0 and tn, it is
convenient to compute the Fourier transform of a soliton exactly. The key identity
is this:

Z
cosh(x� i✓)

cosh2(x+ i✓)
e�i⇠x dx =

⇡e�✓⇠

cosh(⇡2 ⇠)

⇥
cos(2✓)� ⇠ sin(2✓)

⇤
,(1.31)

which follows by a simple residue computation. It follows from this that q̂0(⇠) has
a simple zero at the origin, yielding three cases: s < � 3

2 , s = � 3
2 , and s > � 3

2 .

In the regime where (1.30) and |�n � �̃n| ⌧ �n both hold, elementary (but
lengthy) computations show

�n

|�n��̃n|
kqn(0)� q̃n(0)kHs(R) . kqn(0)kHs(R) ⇡ kqn(tn)� q̃n(tn)kHs .

With this information it is not di�cult to choose the necessary parameters. ⇤

1.4. Equivalent models and their physical origins. Let us begin by noting
that (DNLS) does not admit a focusing/defocusing dichotomy: the sign of the
nonlinearity can be reversed by simply replacing x 7! �x. Likewise, the relative
coupling of the three terms in (DNLS) can be freely adjusted by rescaling the space
and time variables.

To the best of our knowledge, (DNLS) first appears in the literature as a model
for the propagation of large-wavelength Alfvén waves in plasma. For a further
discussion of this scenario, including how this e↵ective model informs our under-
standing of the stability of such Alfvén waves, see [26, 39, 43, 53].
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It is easily seen that (DNLS) does not inherit the Galilean symmetry of the linear
Schrödinger equation. Indeed, if q solves (DNLS), then

v(t, x) = eikx�ik
2
tq(t, x� 2kt)(1.32)

solves

i@tv + v00 + i(|v|2v)0 + k|v|2v = 0.(1.33)

Here k 2 R is fixed but arbitrary.
This computation indicates that the traditional cubic nonlinear Schrödinger

equations (both focusing and defocusing) are ‘embedded’ inside (DNLS) in the limit
of large modulation. While we know of no mathematical work on this embedding,
we will describe two physical systems which speak to this phenomenology.

The combined nonlinearities of (1.33) arise naturally in nonlinear optics. While
negligible in many experimental scenarios, the derivative nonlinearity becomes
physically important in the propagation of short pulses (cf. [1, 52]).

One early application of the cubic nonlinear Schrödinger equation was to model-
ing amplitude modulations of Alfvén waves, with the unknown function describing
deviations from a plane wave. (In our earlier discussion of (DNLS) as model of
Alfvén waves, q describes the entire amplitude of the wave, not fluctations.) One of
the key assumptions in deriving this model is that the characteristic length of the
modulations far exceeds the carrier wavelength. As argued in [38], the combined
nonlinearities of (1.33) allow one to extend the realm of applicability of this e↵ective
model to include cases where these two length scales are almost comparable.

As part of a search for completely integrable PDE, a di↵erent form of derivative
nonlinear Schrödinger equation was uncovered in [6], namely,

(1.34) i@tq + q00 + i|q|2q0 = 0.

It was subsequently discovered (see, e.g. [54]) that this model can be obtained from
(DNLS) via a change of variables. The change of variables in question takes the
following form:

w(t, x) = q(t, x)ei⌫� with �(t, x) =

Z
x

�1
|q(t, y)|2 dy(1.35)

and ⌫ 2 R fixed. With a little work, we find that w satisfies

iwt + w00 = 2i(⌫ � 1)|w|2w0 + i(2⌫ � 1)w2w̄0 � 1
2⌫(2⌫ � 1)|w|4w.(1.36)

When ⌫ = 1
2 , we recover (1.34). When ⌫ = 1, we obtain the Gerdjikov–Ivanov form

of derivative NLS; see [12].
The more general nonlinearity presented in (1.36), as well as that arising by

further incorporating the Galilei transformation (1.32), appears naturally in the
study of the Benjamin–Feir instability in the theory of water waves; see [9, 24, 33].

It is easy to see that both changes of variables, (1.33) and (1.35), are real-analytic
di↵eomorphisms on L2(R); indeed, they are di↵eomorphisms on Hs(R) for every
s � 0. Thus Theorem 1.1 guarantees the following:

Corollary 1.13. The evolutions (1.33) and (1.36) are globally well-posed in L2(R).

When we look at (1.36), it seems all the more surprising that large data GWP
holds, since it fails for the focusing quintic nonlinear Schrödinger equation!
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2. Preliminaries

Throughout, we will use scaling-homogeneous Littlewood–Paley decompositions
with frequency parameters N 2 2Z. Concretely, choosing a smooth, non-negative
function ' supported on |⇠|  2 with '(⇠) = 1 for |⇠|  1, we define PN as the
Fourier multiplier with symbol '(⇠/N) and then PN = PN �PN/2. Observe that

1 =
X

N22Z
PN .

Such decompositions will be ubiquitous and we often adopt the more compact
notations fN = PNf , fN = PNf , and f>N = [1� PN ]f .

As a similar expedient, we often write Fourier multipliers under their arguments.
For example, for  > 0,

qp
42�@2 := (42 � @2)�1/2q and q

2±@ := (2± @)�1q.

For s 2 R and || � 1 we define the Sobolev space Hs


as the completion of S(R)

with respect to the norm

kqk2
Hs


:=

Z
(42 + ⇠2)s|q̂(⇠)|2 d⇠,

and write Hs = Hs

1 .
Associated to the localizing function  µ defined in (1.3), we have

(2.1)

Z

R
 (x� µ)24 dµ = 512

7 and so f(x) = 7
512

Z

R
f(x) 24

µ
(x) dµ.

2.1. Equicontinuity spaces. To quantify the equicontinuity, for �, s 2 R and
|| � 1 we define

kqk2
E�

s,
:= ||2(s��)k|@|�qk2

H
�s


=

Z
||2(s��)|⇠|2�
(42+⇠2)s |q̂(⇠)|2 d⇠,(2.2)

and take E�

s
= E�

s,1.
We write B for the space of bounded functions that belong to the homogeneous

Besov space Ḃ
1
2
2,1. We equip this space with the norm

kfkB := kfkL1 + sup
N22Z

N
1
2 kfNkL2 .

This space is an algebra; see Lemma 2.3. Moreover, by Lemma 2.4, multiplication
by functions in B defines a bounded operator on our equicontinuity spaces.

Our next lemma shows how the spaces E�

�,
allow us to track the equicontinuity

properties of orbits.

Lemma 2.1. Let Q ⇢ L2 be bounded and equicontinuous. For � > 0 we have

lim
!1

sup
q2Q

kqkE�
�,

= 0.(2.3)

Proof. The claim follows from the following estimate

kqkE�
�,

. kqNkE�
�,

+ kq>NkE�
�,

.
�
N



��kqkL2 + kq>NkL2 ,

by choosing the frequency N 2 2Z appropriately. ⇤
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Lemma 2.2. For s > � > 0, � 2 R, and  � 1,
Z 1



kqk2
E

�+�
s,{

{2� d{
{ ⇠ 2�kqk2

E
�+�
�,

.(2.4)

Further, if  � 2 and I = [1, 2 ] [ [2,1) then
Z

I

kqk2
E

�+�
s,{

{2� d{
{ ⇠ kqk2

E
�+�
�

.(2.5)

Proof. Decomposing into Littlewood–Paley pieces,
Z 1



kqk2
E

�+�
s,{

{2� d{
{ ⇠

X

N

Z 1



N
2(�+�){2(s��)

({+N)2s
d{
{ kqNk2

L2

⇠
X

N

N
2(�+�)

(+N)2� kqNk2
L2 ⇠ 2�kqk2

E
�+�
�,

.

In order to integrate in { one considers separately the cases N   and N > ,
breaking the integral into the regions [, N ] and [N,1) in the latter case. The
estimate (2.5) is proved similarly. ⇤
Lemma 2.3. For 0  � < 1

2 and { � 1 we have the estimates

kfgkB . kfkBkgkB ,(2.6)

kfkB . {� 1
2
⇥
{kfkE�

2�,{ + kf 0kE�
2�,{

⇤
,(2.7)

kfkB . kfkL1 + kf 0kL1 .(2.8)

Proof. To verify (2.6), we employ the basic decomposition

PN (fg) = PN

h
f⇠Ng.N + f.Ng⇠N +

X

M>2N

fMgM
i
.(2.9)

From Bernstein’s and Hölder’s inequalities, we see that

k(fg)NkL2 . kf⇠NkL2kg.NkL1 + kf.NkL1kg⇠NkL2 +
X

M>2N

N
1
2 kfMkL2kgMkL2

. N� 1
2 kfkBkgkB ,

from which (2.6) then follows easily.
The estimate (2.7) follows from Bernstein’s inequality:

kfkB . {�
X

N|{|

N
1
2��kfNkE�

2�,{ + {��
X

N>|{|

N�� 1
2 kf 0

N
kE�

2�,{ . RHS(2.7).

Turning now to (2.8), we recall that the convolution kernel associated to PN is
a Schwartz function which integrates to zero. Indeed, it can be written in the form
NK 0(Nx) for some Schwartz function K. Integrating by parts, we find

N
1
2 kfNkL2  N

1
2

����
Z

K
�
N(x� y)

�
f 0(y) dy

����
L2

x

 kKkL2kf 0kL1 . kf 0kL1 . ⇤

Lemma 2.4. Let 0  � < 1
2 , 0  s < � + 1

2 , and |{|, � 1. Then we have the
estimate

(2.10) |{|kfkE�
s,{ + kf 0kE�

s,{ ⇠ k(2{ � @)fkE�
s,{

and the product estimates

kfgkE�
s,

. kfkE�
s,

kgkB ,(2.11)
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kfgkE�
s,

. |{|� 1
2 kfkE�

s,

h
|{|kgkE�

2�,{ + kg0kE�
2�,{

i
.(2.12)

In particular, if �0 2 S we have the localization estimate

k�fkE�
s,

.� kfkE�
s,

.(2.13)

Proof. The estimate (2.10) follows from

k(2{ � @)fk2
E�

s,{
= 4|{|2kfk2

E�
s,{

+ kf 0k2
E�

s,{
.

For the product estimate (2.11), we have

kfgk2
E�

s,
⇠
X

N


2(s��)

N
2�

(+N)2s kPN (fg)k2
L2 .

Decomposing as in (2.9) and using the Hölder and Bernstein inequalities, we esti-
mate

kfgk2
E�

s,
.
X

N


2(s��)

N
2�

(+N)2s kfNk2
L2kg⌧Nk2

L1

+
X

N


2(s��)

N
2�

(+N)2s

h X

M⌧N

M
1
2 kfMkL2

i2
kgNk2

L2

+
X

N


2(s��)

N
2�

(+N)2s

h X

M>2N

N
1
2 kfMkL2kg⇠MkL2

i2
.

The first summand is easily seen to be acceptable. To estimate the second
summand, we first sum in N and then apply Schur’s test:

X

N


2(s��)

N
2�

(+N)2s

h X

M⌧N

M
1
2 kfMkL2

i2
kgNk2

L2

. kgk2
B

X

M1M2⌧N


2(s��)

N
2�

M

1
2
1 M

1
2
2

N(+N)2s kfM1kL2kfM2kL2

. kgk2
B

X

M1M2

M

1
2
��

1 (+M1)
s

M

1
2
��

2 (+M2)s
kfM1kE�

s,
kfM2kE�

s,

. kfk2
E�

s,
kgk2

B
.

Arguing similarly, we estimate the remaining summand by

X

N


2(s��)

N
2�

(+N)2s

h X

M>2N

N
1
2 kfMkL2kg⇠MkL2

i2

. kgk2
B

X

N<M1M2


2(s��)

N
2�+1

M
� 1

2
1 M

� 1
2

2
(+N)2s kfM1kL2kfM2kL2

. kgk2
B

X

M1M2

M
�+1

2
1 (+M2)

s

M
�+1

2
2 (+M1)s

kfM1kE�
s,

kfM2kE�
s,

. kfk2
E�

s,
kgk2

B
.

The estimate (2.12) follows as a corollary of (2.11) and (2.7). The localization
estimate (2.13) follows from (2.11) and (2.8). ⇤
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2.2. Operator estimates. We begin with the basic Hilbert-Schmidt bound for
the operators ⇤(q) and �(q) introduced in (1.9). This estimate appeared already
in [30, Lemma 4.1]:

Lemma 2.5 ([30]). For q 2 L2 and  > 0 we have

k⇤k2I2
= k�k2I2

⇡
Z

R
log(4 + ⇠

2

2 )
|q̂(⇠)|2p
42 + ⇠2

d⇠ . �1kqk2
L2 ,(2.14)

Using this lemma as our basic tool, we obtain the following basic estimates when
q 2 L2 is frequency localized.

Lemma 2.6 (Operator estimates). For || � 1, 0  � < 1
2 , and 0  s < � + 1

2 we
have

k⇤(qN )kI2 = k�(qN )kI2 ⇡
r

1
||+N

log
⇣
4 + N

2

2

⌘
kqNkL2 ,(2.15)

k⇤(qN )kop = k�(qN )kop .
p
N

||+N

r
log

⇣
4 + N

2

2

⌘
kqNkL2(2.16)

X

MN

k⇤(fM )kop . N

||+N
log

3
2
�
4 + N

2

2

�
sup
M22Z

M� 1
2 kfMkL2 ,(2.17)

X

MN

k⇤(fM )kop . ||�
1
2 N

1
2
��

(||+N)
1
2
��

kfkE�
s,

,(2.18)

X

MN

k⇤(fM )kop . N
1
2
��(1+N)s

||
1
2
+��s(||+N)

1
2
+s��

kfkE�
s
.(2.19)

Proof. The estimate (2.15) follows immediately from Lemma 2.5. The estimate
(2.16) follows from (2.15) for N >  and the Bernstein inequality:

k⇤(qN )kop . 1
||kqNkL1 .

p
N

|| kqNkL2 ,(2.20)

for N  .
Claim (2.17) follows from (2.16):

X

MN

k⇤(fM )kop .
X

MN

M

||+M
log

1
2

⇣
4 + M

2

2

⌘
M� 1

2 kfMkL2

. N

||+N
log

3
2

⇣
4 + N

2

2

⌘
sup
M22Z

M� 1
2 kfMkL2 ,

as does (2.18):

X

MN

k⇤(fM )kop .
X

MN

M
1
2

||+M
log

1
2

⇣
4 + M

2

2

⌘
kfMkL2 . ||�

1
2 N

1
2
��

(||+N)
1
2
��

kfkE�
s,

and (2.19):

X

MN

k⇤(fM )kop .
X

MN

M
1
2
��(1+M)s

||+M
log

1
2

⇣
4 + M

2

2

⌘
kfMkE�

s
. RHS(2.19). ⇤

Corollary 2.7. For q 2 L2 and 0  � < 1
2 ,

p

��⇤(q)

��
op

. kqkE�
�,

uniformly for  � 1.(2.21)
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In particular, if Q is a bounded and equicontinuous subset of L2,

lim
!1

sup
q2Q

p
k⇤(q)kop = 0.(2.22)

Proof. Using (2.18) and Lemma 2.5, we may bound
p

��⇤(q)

��
op

.
p

X

M
k⇤(qM )kop +

p

��⇤(q>)

��
op

. kqkE�
�,

+ kq>kL2 . kqkE�
�,

,

which settles (2.21). Lemma 2.1 then yields (2.22). ⇤
Lemma 2.8. For 0  � < 1

2 and  � 1 we have

k⇤( 3
µ
q;)k8I8

. �5
���  

3
µqp

42�@2

���
2

H
3
2
kqk6

E�
�
.(2.23)

Proof. Decomposing into Littlewood–Paley pieces, applying (2.19) and (2.13) at
low frequency, and (2.15) at high frequency, we have

LHS(2.23) =
���tr
n
⇤( 3

µ
q;)8

o���

.
X

N1⇠N2�···�N8

��⇤
�
PN1( 

3
µ
q)
���

I2

��⇤
�
PN2( 

3
µ
q)
���

I2

8Y

j=3

��⇤
�
PNj ( 

3
µ
q)
���

op

.
X

N1⇠N2

N
3�6�
1 (1+N1)

6�

3(1+N1)3(+N1)2
log

⇣
4 + N

2
1
2

⌘���PN1 ( 
3
µq)p

42�@2

���
H

3
2

���PN2 ( 
3
µq)p

42�@2

���
H

3
2
kqk6

E�
�

. RHS(2.23).

The fact that N1 ⇠ N2 must hold is most evident by computing the trace (which
is unitarily invariant) in Fourier variables. ⇤
2.3. Local smoothing spaces. To control the local smoothing property, for s, h 2
R and || � 1 we define

kqk2
F s

(h)
:=

Z ��  
12
µ qp

42�@2

��2
Hs+1 e

� 1
200 |h�µ| dµ,(2.24)

kqk2
Xs


:= sup

h2R

Z 1

�1
kq(t)k2

F s
(h)

dt.(2.25)

As before, when  = 1 we denote F s(h) = F s

1 (h) and Xs = Xs

1 .
We note that as a consequence of Lemma 2.10 below, we obtain an alternative

characterization of Xs


that is closer to that used in [18]; see Remark 2.11. The

additional complexity apparent in (2.24) is necessitated by the scaling criticality of
the problem.

Multiplicative commutators are an essential tool for repositioning the spatial
localization factors within the paraproducts appearing in our analysis of local
smoothing estimates. The next lemma, which extends [18, Lemma 2.8], is our
basic workhorse in this task:

Lemma 2.9. For |{|, || � 1, s,� 2 R, 1 < p < 1, r 2 Z, and integer |`|  24,
all fixed, we have the following uniformly for µ 2 R and q 2 S(R) :

k(2± @)s(2+ @)� `
µ
({ � @)rqkLp ⇠ k(2± @)s(2+ @)�({ � @)r `

µ
qkLp .(2.26)

If both s,� 2 Z then (2.26) also holds for p 2 {1,1}.
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Proof. The Mikhlin multiplier theorem shows that the choice of ± signs is imma-
terial and we shall restrict attention to the + case.

Both inequalities can be treated simultaneously through a slightly larger family
of estimates involving two parameters ✓, ⌫ 2 Z. Specifically, adopting the notation

W = (2 + @)s(2+ @)�({ � @)⌫

it su�ces to show that for each pair ✓, ⌫ 2 Z,
kW `({ � @)✓ �`({ � @)�✓W�1qkLp . kqkLp .

(In fact, just the two cases (✓, ⌫) = (r, 0) and (✓, ⌫) = (�r, r) are truly needed.)
When 1 < p < 1, complex interpolation allows us to restrict attention to the

case where s,� 2 Z, which we do in what follows.
The next step is to perform additive commutations, moving each positive power

of a di↵erential operator toward its inverse, one factor at a time. Proceeding in
this fashion until all positive powers of said di↵erential operators are exhausted
leaves a very concrete (but combinatorially very messy) finite linear combination
of products of operators from the following list:

 �`(@m `),  `(@m �`), (2 + @)�1, (2+ @)�1, ({ � @)�1, and  `({ � @)�1 �`,

where m is any integer satisfying 0  m  |�|+ |s|+ |⌫|+ |✓|. In this way, we see
that the proof will be complete if we can show that any operator on the list is Lp

bounded for every 1  p  1.
Boundedness of the first two operators in the list is trivial given our choice of  .

Boundedness of the remaining operators can be deduced from their explicit kernels.
Indeed,  `({ � @)�1 �` has kernel

K(x, y) =  (x)` (y)�`e{(x�y)
x<y, which satisfies |K(x, y)| .` e�

1
2{|x�y|.

Thus Lp boundedness follows from Schur’s test. ⇤

As we are dealing with a nonlinear equation, one needs to understand how to
estimate products in our local smoothing spaces. Due to the low regularity of the
objects we are treating in this paper, each term in the product must itself satisfy
local smoothing estimates in order for the product to be bounded. This dictates
the structure of our basic product estimates below.

Lemma 2.10. If 0  � < 1
2 , |{|, � 1, h 2 R, 1  `  12 is an integer, and

�0 2 S then

|{|kqk
F

1
2
 (h)

+ kqk
F

3
2
 (h)

⇠ k(2{ � @)qk
F

1
2
 (h)

(2.27)

and we have the product estimates

kfgk
F

1
2
 (h)

. |{|� 1
2

h
kfk

F

1
2
 (h)

k(2{ � @)gkE�
2�,{ + kfkE�

2�,{k(2{ � @)gk
F

1
2
 (h)

i
,

(2.28)

kfgk
F

3
2
 (h)

. |{|� 1
2

h
kfk

F

3
2
 (h)

k(2{ � @)gkE�
2�,{ + k(2{ � @)fkE�

2�,{kgk
F

3
2
 (h)

i
.

(2.29)

We also have the localization estimatesZ ��  
`
µqp

42�@2

��2
H

3
2
e�

1
200 |h�µ| dµ . kqk2

F

1
2
 (h)

,(2.30)



DNLS IS WELL-POSED IN L
2(R) 23

k�qk
F

1
2
 (h)

.� kqk
F

1
2
 (h)

.(2.31)

Proof. For (2.27), we first use Lemma 2.9 to obtain

k(2{ � @)qk2
F

1
2
 (h)

⇠
Z ��(2{ � @)

 
12
µ qp

42�@2

��2
H

3
2
e�

1
200 |h�µ| dµ

⇠ 4|{|2
Z ��  

12
µ qp

42�@2

��2
H

3
2
e�

1
200 |h�µ| dµ+

Z ���  
12
µ qp

42�@2

�0��2
H

3
2
e�

1
200 |h�µ| dµ

⇠ |{|2kqk2
F

1
2
 (h)

+ kqk
F

3
2
 (h)

.

Using space-translation invariance, it su�ces to prove (2.30) for h = 0. If ` = 12,
the claim follows from the definition. Otherwise, define Tµ,⌫ : L2 ! L2 to have
integral kernel

(4+⇠2)
3
4

(42+⇠2)
1
2

\ `
µ
 12
⌫
(⇠ � ⌘) (4

2+⌘2)
1
2

(4+⌘2)
3
4

,

and apply Schur’s test to bound

kTµ,⌫kop . kh⇠i 5
2 \ `

µ
 12
⌫
(⇠)kL1

⇠
. k `

µ
 12
⌫
k
H

7
2
. e�

1
200 |µ�⌫|.

We then apply (2.1) to obtain
Z ��  

`
µqp

42�@2

��2
H

3
2
e�

1
200 |µ| dµ

.
ZZZ ��  

`
µ 

24
⌫1

q
p
42�@2

��
H

3
2

��  
`
µ 

24
⌫2

q
p
42�@2

��
H

3
2
e�

1
200 |µ| d⌫1 d⌫2 dµ

.
ZZZ

kTµ,⌫1kopkTµ,⌫2kop
��  

12
⌫1

q
p
42�@2

��
H

3
2

��  
12
⌫2

q
p
42�@2

��
H

3
2
e�

1
200 |µ| d⌫1 d⌫2 dµ

.
ZZZ

e�
|⌫1|+|⌫2|

400 e�
|µ�⌫1|+|µ�⌫2|

400

��  
12
⌫1

q
p
42�@2

��
H

3
2

��  
12
⌫2

q
p
42�@2

��
H

3
2
d⌫1 d⌫2 dµ

. kqk2
F

1
2
 (0)

.

In the last step we first integrated in µ and then used L2 boundedness of the
resulting convolution operator.

Turning next to the product estimates (2.28) and (2.29), we take s 2 { 1
2 ,

3
2},

µ 2 R, and use (2.9) to estimate
�� 1p

42�@2 ( 
12
µ
fg)

��2
Hs+1

.
X

N

(1+N)2s+2

(+N)2 kP⇠N ( 6
µ
f)k2

L2kP.N ( 6
µ
g)k2

L1

+
X

N

(1+N)2s+2

(+N)2 kP.N ( 6
µ
f)k2

L1kP⇠N ( 6
µ
g)k2

L2

+
X

N

(1+N)2s+2

(+N)2

h X

M>2N

N
1
2 kPM ( 6

µ
f)kL2kP⇠M ( 6

µ
g)kL2

i2
.

Recalling (2.7), (2.10), and (2.13), we bound the first summand by
X

N

(1+N)2s+2

(+N)2 kPN ( 6
µ
f)k2

L2kP.N ( 6
µ
g)k2

L1

. |{|�1
��  

6
µfp

42�@2

��2
Hs+1

h
|{|k 6

µ
gkE�

2�,{ + k( 6
µ
g)0kE�

2�,{

i2
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. |{|�1
��  

6
µfp

42�@2

��2
Hs+1k(2{ � @)gk2

E
�
2�,{

.

For (2.29), we bound the second summand in a symmetric fashion, reversing the
roles of f, g. For (2.28), we instead apply Schur’s test with (2.10), (2.13), and (2.26)
to bound

X

N

(1+N)3

(+N)2

h X

M.N

M
1
2 kPM ( 6

µ
f)kL2

i2
kPN ( 6

µ
g)k2

L2

.
�� (2{�@)( 6

µg)p
42�@2

��2
H

3
2

X

M1M2

({+M1)
2�

M

1
2
��

1 M

1
2
��

2
|{|2�({+M2)2�2�

��PM1( 
6
µ
f)
��
E

�
2�,{

��PM2( 
6
µ
f)
��
E

�
2�,{

. |{|�1
�� 6

µ(2{�@)gp
42�@2

��2
H

3
2
kfk2

E
�
2�,{

.

The third summand is again bounded using Schur’s test, (2.7), (2.10), and (2.13):

X

N

(1+N)2s+2

(+N)2

h X

M>2N

N
1
2 kPM ( 6

µ
f)kL2

��P⇠MgkL2

i2

. kgk2
B

X

M1M2

(1+M1)
s+1(+M2)M

1
2
1

(1+M2)s+1(+M1)M
1
2
2

��PM1 ( 
6
µf)p

42�@2

��
Hs+1

��PM2 ( 
6
µf)p

42�@2

��
Hs+1

. |{|�1
��  

6
µfp

42�@2

��2
Hs+1k(2{ � @)gk2

E
�
2�,{

.

The estimates (2.28), (2.29) then follow from (2.30).
Applying Schur’s test in Fourier variables, we find

sup
µ

��� h@i3/2p
42�@2 � 

6
µ

p
42�@2

h@i3/2

���
op

.� 1.

In this way, we see that

��  
12
µ �qp

42�@2

��
H

3
2
.�

��  
6
µqp

42�@2

��
H

3
2
,

and consequently, (2.31) follows from (2.30). ⇤

Remark 2.11. As a consequence of the proof of Lemma 2.10, we note that

kqk2
X

1
2


⇠ sup
µ2R

��  
12
µ qp

42�@2

��2
L

2
tH

3
2
.(2.32)

Indeed, the inequality

kqk2
X

1
2


. sup
µ2R

��  
12
µ qp

42�@2

��2
L

2
tH

3
2

follows immediately from the definition. For the converse inequality, we argue as
in (2.30): in view of (2.1),

��  
12
µ qp

42�@2

��2
L

2
tH

3
2
.
ZZ

kTµ,⌫1kopkTµ,⌫2kop
��  

12
⌫1

q
p
42�@2

��
L

2
tH

3
2

��  
12
⌫2

q
p
42�@2

��
L

2
tH

3
2
d⌫1 d⌫2

. kqk2
L

2
tF

1
2
 (h)

.
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3. Green’s functions and microscopic conservation laws

By the Green’s function, we mean the integral kernel associated to the inverse
of the Lax operator presented in (1.12). It is not a given that this operator is
invertible; we will rely on the subtle interplay between the spectral parameter  and
the equicontinuity properties of q. This same issue was discussed in the introduction
in connection with making sense of A(; q). Indeed, it formed the central rationale
for introducing the notion of a �-good subset of L2(R); see Definition 1.8. Let us
begin our discussion by revisiting the construction of A(; q).

We subsequently take 0 < � < 1
2 to be fixed. If Q is a �-good subset of L2(R),

then Corollary 2.7 shows that

|| 12
��⇤(q;)

��
op

. kqkE�
�
 � uniformly for || � 1 and q 2 Q.(3.1)

As shown in [27, Lemma 5.1], it follows that if � is su�ciently small then

A(; q) = � sgn() log det
⇥
1� i(� @)�1q(+ @)�1q̄

⇤

= sgn()
X

`�1

1
`
tr
�
(i⇤�)`

 
(3.2)

defines a real-analytic function of  and q. Moreover, the domain of this function
includes all || � 1 and an L2-neigborhood of Q.

It is important to define A(; q) in such a neighborhood of Q (rather than just
on Q) to ensure that the functional derivatives are well defined. We find that

Z
�A

�q
f + �A

�q̄
f̄ dx = sgn()

X

m�0

tr
n�

i⇤(q)�(q)
�m

i[⇤(f)�(q) + ⇤(q)�(f)]
o
.(3.3)

As Lemma 2.5 and (3.1) show, this series defines a bounded linear functional on
f 2 L2 and correspondingly the functional derivatives exist as L2 functions.

Duality also gives an e�cient way to introduce the functions �(; q), g12(; q),
and g21(; q) that will be of central importance in what follows: for a, b, c 2 L2,

Z
g21 b+ g12 c+ � a dx = sgn() tr

n⇥
a b

c �a

⇤⇥
L�1 � L�1

0

⇤o
.(3.4)

Here L0 denotes the Lax operator (1.12) with q ⌘ 0.
Lemma 2.5 and (3.1) guarantee that a Neumann expansion of the right-hand

side of (3.4) yields a convergent series for all a, b, c 2 L2(R). On comparing these
series with those of (3.3), we find

�A

�q̄
= i

p
 g12 and �A

�q
= �

p
 g21.(3.5)

It is evident from (3.4) that g12, g21, and � are closely connected with the
matrix Green’s function evaluated on the diagonal (i.e. at the coincidence of the
two spatial points). For the continuity needed to make sense of this directly, see
see [18, Prop. 3.1].

For simplicity of exposition, the discussion above only constructed g12, g21, and
� as L2 functions. By estimating more carefully (as was done in [27]), one finds
that the series defining g12, g21, and � converge in H1 to real analytic functions of
q; moreover, these functions are Schwartz whenever q 2 S.

Direct computations also reveal certain basic identities among these functions;
see [18] or [47]. Concretely, we have

g12() = �g21(�), �() = �(�), and A() = �A(�)(3.6)
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as well as

g012 = 2g12 � 
1
2 q(� + 1)(3.7)

g021 = �2g21 � i
1
2 q̄(� + 1)(3.8)

�0 = 2
1
2 (qg21 + iq̄g12).(3.9)

Lastly, we have the quadratic identity

2g12g21 +
1
2�

2 + � = 0,(3.10)

which can be proved by di↵erentiating the left-hand side and applying (3.7)–(3.9).
Using these relations, we may write

(3.11)
g12 =

p


2�@
⇥
q(� + 1)

⇤
, g21 = �i

p


2+@

⇥
q̄(� + 1)

⇤
, � = � 4g12g21

2+� ,

g12

2+� =
p


2(2�@)
⇥
q + 4iq̄

�
g12

2+�

�2⇤
, and g21

2+� = �i
p


2(2+@)

⇥
q̄ � 4iq

�
g21

2+�

�2⇤
.

While it is very elementary to check these last two identities, it is much less obvious
that they are key to e�ciently treating a lot of what follows.

To prove our theorems, we require bounds for these functions in the B, E, and
F spaces introduced in Section 2. We start with the following:

Lemma 3.1. For � su�ciently small and Q ⇢ S a �-good set, the following esti-
mates hold uniformly for q 2 Q and || � 1 :

k�(; q)kB . kqk2
E

�
2�,

 �2,(3.12)

kg12(; q)kB + kg21(; q)kB . kqkE�
2�,

,(3.13)
�� g12(;q)
2+�(;q)

��
B
+
�� g21(;q)
2+�(;q)

��
B
. kqkE�

2�,
.(3.14)

Proof. To prove (3.12), we argue by duality. To this end, we test against functions
f satisfying sup

M22Z M
� 1

2 kfMkL2  1 and employ

hf, �(; q)i =sgn()
X

`�1

(i)` tr
n⇥

(� @)�1q(+ @)�1q̄
⇤`
(� @)�1f̄

o

+ sgn()
X

`�1

(i)` tr
n⇥

(+ @)�1q̄(� @)�1q
⇤`
(+ @)�1f̄

o
.

Let us first observe that by (2.18) and (1.19), there exists C � 1 so that

sup
N22Z

|| 12
X

MN

k⇤(qM )kop  C�,

uniformly in || � 1. Note also that by Lemma 2.6 and our assumptions on f ,
X

MN

k⇤(fM )kop . N

||+N
log

3
2
�
4 + N

2

2

�
and k⇤(fN )kI2 .

q
N

||+N
log

�
4 + N

2

2

�
.

Decomposing into Littlewood–Paley pieces, using that the two highest frequen-
cies must be comparable, together with Lemma 2.6 and the preceding estimates,
we find that���(i)` tr

n⇥
(� @)�1q(+ @)�1q̄

⇤`
(� @)�1f̄

o���

. (C�)2(`�1)
X

N1⇠N2

||N1

||+N1
log

3
2
�
4 + N

2
1
2

�
k⇤(qN1)kI2k⇤(qN2)kI2
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+ (C�)2(`�1)
X

N1⇠N2�N3

||k⇤(qN1)kI2k⇤(fN2)kI2k⇤(qN3)kop

. (C�)2(`�1)
X

N1⇠N2

||N1

(||+N1)2
log

5
2
�
4 + N

2
1

||2
�
kqN1kL2kqN2kL2

+ (C�)2(`�1)
X

N1⇠N2

||
1
2 N

1��
1

(||+N1)
3
2
��

log
�
4 + N

2
1

||2
�
kqN1kL2kqkE�

2�,

. (C�)2(`�1)kqk2
E

�
2�,

.

Choosing � su�ciently small, we may sum in ` � 1 and so deduce (3.12).
Further reducing �, if necessary, the estimates (3.12) and (2.6) allow us to sum

the geometric series and so obtain

(3.15)
�� 1
2+�

��
B
. 1.

Regarding (3.13), we use (2.7), (2.10), (3.11), and (2.11) to obtain

kg12kB . ||� 1
2 k(2� @)g12kE�

2�,
.
⇥
1 + k�kB

⇤
kqkE�

2�,
.

The bound (3.13) then follows from (3.12) and (3.6).
The estimate (3.14) follows directly from (3.13), (3.15), and (2.6). ⇤

Lemma 3.2. For � su�ciently small and Q ⇢ S a �-good set, the following esti-
mates hold uniformly for q 2 Q and |{|, � 1 :

|{|kg12({)kE�
s,

+ kg012({)kE�
s,

. |{| 12 kqkE�
s,

,(3.16)

|{|k�({)kE�
s,

+ k�0({)kE�
s,

. |{| 12 kqkE�
s,

kqkE�
2�,{ ,(3.17)

|{|
�� g12({)
2+�({)

��
E�

s,
+
��� g12

2+�

�0
({)

��
E�

s,
. |{| 12 kqkE�

s,
.(3.18)

Moreover, in view of (3.6), g21 also satisfies the estimates (3.16) and (3.18).

Proof. In view of (3.7), (2.11) and (3.12),

k(2{ � @)g12kE�
s,

. |{| 12 kq(1 + �)kE�
s,

. |{| 12 kqkE�
s,

h
1 + k�kB

i
. |{| 12 kqkE�

s,
.

The estimate (3.16) then follows from (2.10).
Recalling �� = 4g12g21

2+� from (3.11), the estimates (3.16) and (3.14) show that

|{|k�({)kE�
s,

. |{|kg12({)kE�
s,

�� g21({)
2+�({)

��
B
. |{| 12 kqkE�

s,
kqkE�

2�,{ .

To complete the proof of (3.17), we complement this with the estimate

k�0({)kE�
s,

. |{| 12 kqkE�
2�,{kqkE�

s,
,

for which we employed (3.9), (2.12), and (3.16).
Using (2.11), the fact that B is an algebra, and the estimates (3.14), (3.15),

(3.16), (3.17), and (1.19), we obtain
��(2{ � @) g12
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��
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��(2{ � @)g12
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s,
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E
�
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�
. |{| 12 kqkE�

s,
.

The estimate (3.18) now follows from (2.10). ⇤
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Lemma 3.3. For � su�ciently small and Q ⇢ S a �-good set, the following esti-
mates hold uniformly for q 2 Q, |{|, � 1, and h 2 R :

|{|kg12({)k
F

1
2
 (h)

+ kg12({)k
F

3
2
 (h)

. |{| 12 kqk
F
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,(3.19)

|{|k�({)k
F
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 (h)

+ k�({)k
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 (h)

. |{| 12 kqk
F
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2�,{ ,(3.20)
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�� g12({)
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 (h)
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�� g12({)
2+�({)

��
F

3
2
 (h)

. |{| 12 kqk
F

1
2
 (h)

.(3.21)

Proof. Using the quadratic identity (3.10) together with (2.27), (2.28), and (2.29),
followed by (3.16) and (3.17) we get

|{|k�({)k
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1
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 (h)
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3
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 (h)
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+ kg012kE�

2�,

i
max
±{

h
|{|kg12k
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2
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F
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i
.

Using (1.19) we deduce

k(2{ � @)�k
F

1
2
 (h)

. kqkE�
2�,{ max
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|{|kg12k

F

1
2
 (h)

+ kg12k
F

3
2
 (h)

i
(3.22)

and so (3.20) will follow from (3.19).
From (3.22) and (3.7) together with (2.27), (2.28), and (3.17), we obtain

max
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h
|{|kg12k

F

1
2
 (h)

+ kg12k
F
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The estimate (3.19) then follows from (1.19).
It remains to prove (3.21). As a preliminary, let us pause to observe that

(2{ � @)
�

g12

2+�

�2
= 2g12

2+� · ({ � @) g12

2+� .

Using (2.11), (3.14), and (3.18), we get
��(2{ � @)

�
g12
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�2��
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2�,{

.
�� g12

2+�

��
B

��({ � @) g12
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. |{| 12 kqk2
E

�
2�,{

,(3.23)

while by (2.28) and (3.18),
��(2{ � @)
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g12

2+�

�2��
F
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2


. |{|� 1
2

��(2{ � @) g12

2+�
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2
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.(3.24)

Using (2.27) together with (3.11) followed by (2.28), (3.23), and (3.24) we obtain

LHS(3.21) .
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. |{| 12 kqk
F

1
2


⇥
1 + kqk2

E
�
2�,{

⇤
+ kqk2

E
�
2�,{

��(2{ � @) g12

2+�

��
F

1
2


.

Using (1.19), we may absorb the second term on the right-hand side above into the
left-hand side, thus settling (3.21). ⇤

A consequence of Lemmas 3.2 and 3.3 is the following:

Corollary 3.4. Fix � su�ciently small and let Q ⇢ S be a �-good set. All functions
f from the following list (and so finite linear combinations thereof ) :

(3.25)

q, q̄,

2{±@p{ g12({), 2{±@p{ g21({), 2{±@p{
g12({)
2+�({) ,

2{±@p{
g21({)
2+�({) ,

2±@p


g12(),
2±@p


g21(),

2±@p


g12()
2+�() ,

2±@p


g21()
2+�() ,

satisfy the estimates

(3.26)
kfkL2 . kqkL2 , kfkE�

2�,{ . kqkE�
2�,{ , kfkE�

�
. kqkE�

�
,

kfk
F

1
2 (h)

. kqk
F

1
2 (h)

, kfk
F

1
2
 (h)

. kqk
F

1
2
 (h)

uniformly for q 2 Q, |{|, || � 1, and h 2 R.

As discussed in the introduction, multi-parameter local smoothing estimates are
essential for our analysis. As we are in the non-perturbative regime, the only
reasonable approach to proving such estimates is via monotonicity identities. In
all examples that we are aware of, such monotonicity identities stem from a proper
understanding of conserved densities and their corresponding currents. This line of
thinking leads inevitably to the problem of finding a microscopic representation for
the conservation of A({; q).

It is invariably easy to find microscopic representations for conserved quantities
that are polynomial in the underlying field (and its derivatives), such as the mass or
energy. However, even in these simple cases there is no universal algorithm for find-
ing such microscopic laws; indeed, this is an ill-posed problem — the corresponding
cohomology class does not have a unique representative.

When the conserved quantity in question is more complex, discovering a micro-
scopic representation becomes truly challenging. All the more so when we need
our representative to be coercive, if it is to be useful. This is the case for A({; q),
which is defined as the logarithm of a Fredholm determinant or as an infinite series
of traces; see (3.2). Structurally, each of these traces is a paraproduct in q. Never-
theless, just such a microscopic representation was presented in [47] based on the
density

(3.27) ⇢({; q) := q · ig21({; q)p
{(2 + �({; q)) + q̄ · g12({; q)p

{(2 + �({; q)) .

In finding (3.27), the authors of [47] were very much guided by the analogous
form for the AKNS–ZS hierarchy discovered in [18]. The analogue for KdV was
found in [29], although this is of little assistance. Indeed, these few examples would
lead one to believe that the answer will always be a rational function of matrix
elements of the diagonal Green’s function; this notion is refuted in [16].

Once these densities have been discovered, it is not fundamentally di�cult to
derive the corresponding current (though it may require considerable labour) be-
cause the time derivative of the Green’s function may be deduced from the Lax
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pair representation of the flow. For example, under the (DNLS) flow,

(3.28)
i d

dt
g12 = �

⇥
4{2 � 2i{|q|2

⇤
g12 +

⇥
2{ 3

2 q + i{ 1
2 |q|2q + { 1

2 q0
⇤
(1 + �)

= �g0012 � i
�
2|q|2g012 + iq2g021

�
.

We include this to illustrate the point made in the introduction that (unlike for
NLS and mKdV) this change of variables alone does not allow us to treat q 2 L2.
Concretely, we note that for q 2 L2 one cannot make sense of the term |q|2q
appearing in the former expression as a distribution. This cannot be remedied by
the other terms because they are distributions!

The following proposition gives the currents associated to the density (3.27) and
was proved in [47]:

Proposition 3.5. Let Q ⇢ S be �-good for � su�ciently small. Under the (DNLS)
flow, we have that @t⇢({) + @xjDNLS({) = 0 for all |{| � 1, where

jDNLS = (|q|2 � 2i{)⇢+ q0g21 + iq̄0g12p
{(2 + �)

+ i|q|2

= 1p{
g21

2+� · (2{ + @ + i|q|2)q � ip{
g12

2+� · (2{ � @ + i|q|2)q̄ + i|q|2.(3.29)

Likewise, for  � 1, @t⇢({) + @xjdi↵({,) = 0 under the H �H flow. Here,

jdi↵({,) = 1p{
�

g21

2+�

�
({)

h
(2{ + @ + i|q|2)q � 2

5
2
�
g12()
�{ � ig12(�)

+{
�i

(3.30)

� ip{
�

g12

2+�

�
({)

h
(2{ � @ + i|q|2)q̄ � 2

5
2
�
g21(�)
+{ + ig21()

�{
�i

+ i|q|2 � 
2

�{�() +

2

+{�(�).

In our application of the microscopic conservation laws to the proof of local
smoothing, we require a detailed understanding of the structure of the lower order
terms (in powers of q) of the currents. To this end, we adopt the notation from [18]
of using square brackets to identify specific terms in power series expansions:

g[2`+1]
12 () = sgn()

1
2 (i)`

⌦
�x,

⇥
(� @)�1q(+ @)�1q̄

⇤`
(� @)�1q(+ @)�1�x

↵

so that

(3.31) g[�2`+1]
12 () =

1X

m=`

g[2m+1]
12 () and g12() =

1X

`=0

g[2`+1]
12 ().

The terms g[2`+1]
21 and �[2`] admit correspondingly simple definitions; however, we

will also use this notation on more complicated analytic functions of q such as�
g12

2+�

�[2`+1]
, ⇢[2`], and j[2`]DNLS.

Using (3.11), we can derive the following explicit expressions:

g[1]12 =
p
q

2�@ , g[1]21 = �i
p
q̄

2+@ , �[2] = 2i q

2�@ · q̄

2+@ ,(3.32)

g[3]12 = 2i
3
2

2�@
⇥
q · q

2�@ · q̄

2+@

⇤
and g[3]21 = 2

3
2

2+@

⇥
q̄ · q

2�@ · q̄

2+@

⇤
,(3.33)

as well as

1p


�
g12

2+�

�[�3]
= 2i

2�@

h
q̄
�

g12

2+�

�2i
,(3.34)

1p


�
g21

2+�

�[�3]
= �2

2+@

h
q
�

g21

2+�

�2i
.(3.35)



DNLS IS WELL-POSED IN L
2(R) 31

To represent our expansions for higher order terms in a concise form, we in-
troduce a space of paraproducts. We begin by introducing a generating set of
operators:

G :=
n
Id
o
[
n

2{
2{±@ : |{| � 1

o
.(3.36)

One may regard the elements of G as letters in an alphabet. We then define the set
G? to be the set of (finite) words built from the alphabet G. Specifically, elements
in G? are finite products of the form

(3.37) L1L2 . . . Ln where Li 2 G.

Note that each factor Li may have a di↵erent parameter {i.

Example 3.6. For all |{| � 1, the operator 4{2

4{2�@2 = 2{
2{�@

2{
2{+@ 2 G? is a word

over the alphabet G.

We say that the paraproduct m belongs to the class S(1) if it admits a repre-
sentation as a finite linear combination of paraproducts mi satisfying

mi[f ] = Tif where Ti 2 G?.

We will frequently consider families of paraproducts depending continuously on
one or more parameters. For example, all the paraproducts in Proposition 3.12
depend continuously on the parameter {. When this is the case, we will say such
a family is in S(1) only if the coe�cients in this linear combination are uniformly
bounded in the parameter(s).

Example 3.7. For all |{| � 1, the operators

@

2{+@ = Id� 2{
2{+@ and 2{�@

2{+@ = 2 2{
2{+@ � Id

are elements of S(1).

For n � 2, we inductively define S(n) as linear combinations of paraproducts
that admit the representation

(3.38) m[f1, . . . , fn] = T

"
JY

j=1

mj

⇥
f�(nj�1+1), . . . , f�(nj)

⇤
#
,

where 0 = n0 < · · · < nJ = n are integers, mj 2 S(nj � nj�1), T 2 G?, and
� 2 Sn is a permutation. The product appearing in (3.38) is a pointwise product
of functions (and not a composition of operators). As in the case n = 1, we
require the coe�cients in the linear combination to be uniformly bounded in any
parameters.

This definition is clearly symmetric, in the sense that whenever m 2 S(n) and
� 2 Sn we have

(3.39) m
⇥
f�(1), . . . , f�(n)

⇤
2 S(n).

Further, by induction on n, our definition is consistent with interior products, in
the sense that if 2  k  n, m1 2 S(k), and m2 2 S(n+ 1� k) then

(3.40) m1

⇥
f1, . . . , fk�1,m2[fk, . . . , fn]

⇤
2 S(n).

We illustrate our paraproduct classes with an example motivated by (3.33):
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Example 3.8. For all |{| � 1, the paraproduct

m[f1, f2, f3] =
8{3

2{�@

h
f1

f2

2{�@
f3

2{+@

i

is an element of S(3) that can be expressed in the form (3.38) with � = Id,

T = 2{
2{�@ , m1[f1] = f1, m2[f2] =

2{
2{�@ f2, m3[f3] =

2{
2{+@ f3.

While paraproducts are often regarded as multilinear objects, our use of them
here is closer to that of a polynomial in a single variable, namely, q. More accu-
rately, our paraproducts will solely be populated by the objects appearing in the
list presented in Corollary 3.4. Moreover, in estimating these paraproducts, we will
only be employing the information (3.26) about these objects. With these consider-
ations in mind, we will frequently employ the expedient of writing paraproducts as
m[f, . . . , f ]. Similarly, if an expression involves paraproducts m1, . . . ,mk 2 S(n),
we simply denote each paraproduct by m as in, e.g., (3.47) below.

We demonstrate this notation with two examples from the proof of Proposi-
tion 3.12 below:

Example 3.9. If |{| � 1 the paraproduct

m[f1, f2, f3] = 4{2 f1

2{+@
f2

2{+@ f3 = 2{
2{+@ f1 ·

2{
2{+@ f2 · f3

is an element of S(3). We may then write

8i{3

2{�@

h
q

4{2�@2

�� q
0

4{2�@2

��2
i
= 2i{

2{�@m
h

q

2{�@ ,
q
0

2{�@ ,
q̄
0

4{2�@2

i
(3.41)

= 2i{
2{�@m

h
f

2{�@ ,
f
0

2{�@ ,
f
0

4{2�@2

i
,

where each f represents either q or q̄, which are both elements of the list (3.25).

One should observe that using the definition of S(3), the expression (3.41) could
be further simplified to read

m1

h
f

2{�@ , f,
f
0

4{2�@2

i
or even (2{)�2m2

⇥
f, f, f

⇤

with m1,m2 2 S(3). However, we will need the additional structure appearing in
(3.41) when we apply Proposition 3.12.

Example 3.10. If |{| � 1 then, recalling Example 3.7, the paraproduct

m[f1, f2, f3] = 2i
�
2{�@
2{+@ f1

�
f2f3

is again an element of S(3). From (3.32), we then have

1
2{�@

⇥
�[2]({) q

00

4{2�@2

⇤
= 2i{

2{�@
⇥

q̄

2{+@
q

2{�@
q
00

4{2�@2

⇤
(3.42)

= {
2{�@m

h
q̄

2{�@ ,
q

2{�@ ,
q
00

4{2�@2

i

= {
2{�@m

h
f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
,

where each f represents an element of the list (3.25).

Just as in the case of (3.41), one could further simplify (3.42) to read

m1

h
f

2{�@ ,
f

2{�@ , f
i

or (2{)�2m2

⇥
f, f, f

⇤

with m1,m2 2 S(3). The additional structure in (3.42) will be exploited later.
As a first application of our paraproducts we have the following:
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Lemma 3.11. For ` � 1 and |{| � 1 we have the representations

1p{ g
[2`+1]
12 ({) = {

2{�@m
h
f, . . . , f| {z }

`

, f

2{�@ , . . . ,
f

2{�@| {z }
`+1

i
,(3.43)

1p{ g
[�2`+1]
12 ({) = {

2{�@m
h
f, . . . , f| {z }

`

, f

2{�@ , . . . ,
f

2{�@| {z }
`+1

i
,(3.44)

1p{
�

g21

2+�

�[2`+1]
({) = {

2{+@m
h
f, . . . , f| {z }

`

, f

2{�@ , . . . ,
f

2{�@| {z }
`+1

i
,(3.45)

1p{
�

g21

2+�

�[�2`+1]
({) = {

2{+@m
h
f, . . . , f| {z }

`

, f

2{�@ , . . . ,
f

2{�@| {z }
`+1

i
,(3.46)

where m 2 S(2`+1) and each f represents an element from the list (3.25). Similar
representations hold for g21 and g12

2+� .

Proof. We prove all four identities simultaneously by strong induction on `.
When ` = 1, the identity (3.43) follows from (3.33). Using (3.11) and (3.32), we

may write
1p{
�

g21

2+�

�[3]
({) = {

2(2{+@)

h
q · q̄

2{+@ · q̄

2{+@

i
,

which gives (3.45) when ` = 1. Using (3.11) we may also write

1p{ g
[�3]
12 ({) = � 4{

2{�@

h
q · 1

2{�@
�
2{�@p{ g12

�
· 1
2{+@

�
2{+@p{

g21

2+�

�i
,

1p{
�

g21

2+�

�[�3]
({) = � 2{

2{+@

h
q · 1

2{+@

�
2{+@p{

g21

2+�

�
· 1
2{+@

�
2{+@p{

g21

2+�

�i
;

the identities (3.44) and (3.46) for ` = 1 then follow from Corollary 3.4.
Now assume that (3.43)–(3.46) are true for all 0  m  ` � 1. Using (3.11) we

see that

1p{ g
[2`+1]
12 ({) = �

`�1X

n=0

4{
2{�@

h
q 1p{ g

[2n+1]
12

1p{
�

g21

2+�

�[2(`�1�n)+1]
i
,

1p{ g
[�2`+1]
12 ({) = �

`�2X

n=0

4{
2{�@

h
q 1p{ g

[2n+1]
12

1p{
�

g21

2+�

�[�2(`�1�n)+1]
i

� 4{
2{�@

h
q 1p{ g

[�2`�1]
12

1p{
�

g21

2+�

�i
,

1p{
�

g21

2+�

�[2`+1]
({) = �

`�1X

n=0

2{
2{+@

h
q 1p{

�
g21

2+�

�[2n+1] 1p{
�

g21

2+�

�[2(`�1�n)+1]
i
,

1p{
�

g21

2+�

�[�2`+1]
({) = �

`�2X

n=0

2{
2{+@

h
q 1p{

�
g12

2+�

�[2n+1] 1p{
�

g21

2+�

�[�2(`�1�n)+1]
i

� 2{
2{�@

h
q 1p{

�
g21

2+�

�[�2`�1] 1p{
�

g21

2+�

�i
,

and hence (3.43) through (3.46) follow from the inductive hypothesis, (3.39), and
(3.40). ⇤

As a second application, we have the following:
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Proposition 3.12. Denote u = q

4{2�@2 . Then we have the representations

1p{ g
[3]
12 ({) = 16i{4|u|2u+ 24i{3|u|2u0 + {

2{�@ m
h

f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i

+ {
2{�@ m

h
f

2{�@ ,
f
0

2{�@ ,
f
0

4{2�@2

i

= 16i{4|u|2u+ 24i{3|u|2u0 + 8i{2|u|2u00(3.47)

+ 8i{2|u0|2u+ 12i{2(u0)2ū+ 1
2{�@ m

h
f

2{�@ ,
f
0

2{�@ ,
f
00

4{2�@2

i

+ @

2{�@ m
h

f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
+ @

2{�@ m
h

f

2{�@ ,
f
0

2{�@ ,
f
0

4{2�@2

i
,

�[4]({) = �96{6|u|4 � 96{5|u|2
�
u0ū� uū0�(3.48)

+m
h

f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i
+m

h
f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
,

1p{ g
[5]
12 ({) = �192{7|u|4u� 480{6|u|4u0 + 1

2{�@m
h
f, f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i

+ 1
2{�@m

h
f, f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
,(3.49)

�[6]({) = �1280i{9|u|6 +m
h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
,(3.50)

1p{ g
[7]
12 ({) = �2560i{10|u|6u+ 1

2{�@m
h
f, f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
.(3.51)

Further, we have the representations

1p{
�

g21

2+�

�[3]
({) = 4{4|u|2ū+ {

2{+@ m
h

f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i

= 4{4|u|2ū� 8{3|u|2ū0 � 2{3ū2u0 + 1
2{+@ m

h
f, f

2{�@ ,
f
00

4{2�@2

i
(3.52)

+ 1
2{+@ m

h
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i

= 4{4|u|2ū� 8{3|u|2ū0 � 2{3ū2u0 + 4{2|u|2ū00

+ 6{2|u0|2ū+ 5{2(ū0)2u+ 1
2{+@ m

h
f

2{�@ ,
f
0

2{�@ ,
f
00

4{2�@2

i

+ @

2{+@ m
h

f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
+ @

2{+@ m
h

f

2{�@ ,
f
0

2{�@ ,
f
0

4{2�@2

i
,

1p{
�

g21

2+�

�[5]
({) = 32i{7|u|4ū+ {

2{+@m
h
f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i

= 32i{7|u|4ū� 128i{6|u|4ū0 � 48i{6|u|2ū2u0(3.53)

+ 1
2{+@m

h
f, f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i

+ 1
2{+@m

h
f, f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i
,

1p{
�

g21

2+�

�[7]
({) = �320{10|u|6ū+ 1

2{+@m
h
f, f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
.

(3.54)

Throughout, the paraproduct m lies in S(n) for an appropriate integer n, each
f represents an element from the list (3.25), and identical expressions hold with {
replaced by �{.
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Proof. Using (3.32), we derive the identity

(3.55) �[2] = 8i{3|u|2 + 4i{2(u0ū� uū0)� 2i{|u0|2.

To obtain the first expansion for 1p{ g
[3]
12 ({) in (3.47), we use (3.11) to write

1p{ g
[3]
12 = 4{2

2{�@
⇥
u�[2]

⇤
� 1

2{�@
⇥
u00�[2]

⇤

= 32i{5

2{�@
⇥
|u|2u

⇤
+ 16i{4

2{�@
⇥
(u0ū� uū0)u

⇤
� 8i{3

2{�@
⇥
|u0|2u

⇤
� 1

2{�@
⇥
�[2]u00⇤.

Recalling Examples 3.9 and 3.10, the last two summands are of the form

2{i

2{�@m
h

f

2{�@ ,
f
0

2{�@ ,
f
0

4{2�@2

i
+ {

2{�@m
h

f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
(3.56)

and so acceptable.
For the remaining summands we first use that

(3.57) 1
2{�@ = 1

2{ + 1
2{

@

2{�@

to write
16i{4

2{�@
⇥
(u0ū� uū0)u

⇤
= 8i{3(u0ū� uū0)u+ 8i{3

@

2{�@
⇥
(u0ū� uū0)u

⇤
,

where we note that the second summand is of the form (3.56) and so acceptable.
Expanding further, we have

(3.58) 1
2{�@ = 1

2{ + @

4{2 + 1
4{2

@
2

2{�@ ,

which we apply to get

32i{5

2{�@
⇥
|u|2u

⇤
= 16i{4|u|2u+ 16i{3|u|2u0 + 8i{3u2ū0 + 8i{3

@
2

2{�@
⇥
|u|2u

⇤
,

where the final summand is again of the form (3.56). This completes the proof of
the first expansion recorded in (3.47).

We now turn to the second expression for 1p{ g
[3]
12 ({) in (3.47). We again use

(3.11) to write

1p{ g
[3]
12 = 32i{5

2{�@
⇥
|u|2u

⇤
+ 16i{4

2{�@
⇥
(u0ū� uū0)u

⇤
� 8i{3

2{�@
⇥
|u0|2u+ |u|2u00⇤

� 1
2{�@

⇥
(�[2] � 8i{3|u|2)u00⇤.

By (3.55), the final summand is seen to be of the form 1
2{�@m[ f

2{�@ ,
f
0

2{�@ ,
f
00

4{2�@2 ],
and so acceptable. We then use (3.57) to write

� 8i{3

2{�@
⇥
|u0|2u+ |u|2u00⇤ = �4i{2

⇥
|u0|2u+ |u|2u00⇤� 4i{2

@

2{�@
⇥
|u0|2u+ |u|2u00⇤

and note that the final summand is of the form
@

2{�@m
h

f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
+ @

2{�@m
h

f

2{�@ ,
f
0

2{�@ ,
f
0

4{2�@2

i
,(3.59)

and so acceptable. Applying (3.58), we similarly have

16i{4

2{�@
⇥
(u0ū� uū0)u

⇤
= 8i{3

⇥
(u0ū� uū0)u

⇤
+ 4i{2

⇥
(u0ū� uū0)u

⇤0
+ 4i{2

@
2

2{�@
⇥
(u0ū� uū0)u

⇤
,

where the final summand is again of the form (3.59). Expanding even further, we
have

1
2{�@ = 1

2{ + @

4{2 + @
2

8{3 + 1
8{3

@
3

2{�@ ,

which we apply to the remaining term to get

32i{5

2{�@
⇥
|u|2u

⇤
= 16i{4|u|2u+ 8i{3

⇥
|u|2u

⇤0
+ 4i{2

⇥
|u|2u

⇤00
+ 4i{2

@
3

2{�@
⇥
|u|2u

⇤
.
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The final term is once again of the form (3.59) and so acceptable. Combining these
expressions, one obtains the second expansion recorded in (3.47).

Turning next to �[4], we use (3.10) to write

�[4] = � 1
2

⇥
�[2]

⇤2 � 2g[3]12g
[1]
21 � 2g[1]12g

[3]
21 .

For the first summand, we use (3.55) to express

� 1
2

⇥
�[2]

⇤2
= 32{6|u|4 + 32{5|u|2(u0ū� uū0) +m

h
f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i
.

For the second summand, we use (3.47) and (3.32) to write

�2g[3]12 g
[1]
21 = �32{5|u|2u q̄

2{+@ � 48{4|u|2u0 q̄

2{+@

+m
h

f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i
+m

h
f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
.

Writing

(3.60) q̄

2{+@ = 2{ū� ū0,

in the first two terms, we obtain

�2g[3]12 g
[1]
21 = �64{6|u|4 + 32{5|u|2uū0 � 96{5|u|2u0ū

+m
h

f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i
+m

h
f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
.

Thus, using (3.6) we also have

�2g[1]12 g
[3]
21 = �64{6|u|4 � 32{5|u|2ūu0 + 96{5|u|2ū0u

+m
h

f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i
+m

h
f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
.

Combining these expressions gives us (3.48).
Next, consider (3.49). Using (3.11) and then applying (3.48), we find

1p{ g
[5]
12 = 1

2{�@

h
�[4] q

i

= 1
2{�@

h
�96{6|u|4q � 96{5|u|2(u0ū� uū0)q

i

+ 1
2{�@m

h
f, f

2{�@ ,
f

2{�@ ,
f
0

2{�@ ,
f
0

2{�@

i

+ 1
2{�@m

h
f, f, f

2{�@ ,
f

2{�@ ,
f
00

4{2�@2

i
.

For the first term, we employ (3.58) to write

� 96{6

2{�@

h
|u|4 q

i
= �192{7|u|4u� 96{6(|u|4u)0 � 96{6

@
2

2{�@

h
|u|4u

i
+ 96{6

2{�@

h
|u|4 u00

i
,

where the third and fourth terms are seen to be acceptable. Similarly, for the
remaining term we apply (3.57) to get

� 96{5

2{�@

h
|u|2(u0ū� uū0) q

i
= �192{6|u|2(u0ū� uū0)u� 192{6

@

2{�@

h
|u|2(u0ū� uū0)u

i

+ 96{5

2{�@

h
|u|2(u0ū� uū0)u00

i
,

where the second and third summands are similarly acceptable. This completes the
proof of (3.49).

For �[6], we again use the quadratic identity (3.10) to write

�[6] = ��[2]�[4] � 2g[5]12g
[1]
21 � 2g[3]12g

[3]
21 � 2g[1]12g

[5]
21 .
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For the first term, we use (3.48) and (3.32) followed by (3.55) to obtain

��[2]�[4] = 96{6|u|4 �[2] +m
h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i

= 768i{9|u|6 +m
h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
.

Next, applying (3.49) and (3.32) followed by (3.60), we have

�2g[5]12g
[1]
21 = �384i{8|u|4u q̄

2{+@ +m
h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i

= �768i{9|u|6 +m
h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
.

Another application of (3.6) then gives us

�2g[1]12g
[5]
21 = �768i{9|u|6 +m

h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
.

For the remaining term, we use the first expansion in (3.47), (3.6), and (3.33) to
express

�2g[3]12g
[3]
21 = �16i{ 9

2 |u|2ug[3]21 � 16{ 9
2 |u|2ūg[3]12 +m

h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i

= �512i{9|u|6 +m
h
f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
.

Combining all of these expressions gives us (3.50).
Using (3.11) and (3.50), we may write

1p{ g
[7]
12 = 1

2{�@

h
�[6] q

i
= 1

2{�@ [�1280i{9|u|6q] + 1
2{�@m

h
f, f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i

= �2560i{10|u|6u+ 1
2{�@m

h
f, f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
,

which settles (3.51).
Using (3.11), (3.32), and (3.60) we may write

1p{
�

g21

2+�

�[3]
= {

2(2{+@)

h
q
�

q̄

2{+@

�2i

= 2{3

2{+@

h
u
�

q̄

2{+@

�2i� {
2(2{+@)

h
u00� q̄

2{+@

�2i

= 8{5

2{+@

h
|u|2ū

i
� 8{4

2{+@

h
|u|2ū0

i
+ 2{3

2{+@

h
u(ū0)2

i
� {

2(2{+@)

h
u00� q̄

2{+@

�2i
,

from which the first expansion in (3.52) follows easily using that
1

2{+@ = 1
2{ � @

2{(2{+@) .

To obtain the second expression in (3.52), we expand even further

1p{
�

g21

2+�

�[3]
= 8{5

2{+@

h
|u|2ū

i
� 8{4

2{+@

h
|u|2ū0

i
+ 2{3

2{+@

h
u(ū0)2

i
� 2{3

2{+@

h
ū2u00

i

+ 1
2{+@m

h
f

2{�@ ,
f
0

2{�@ ,
f
00

4{2�@2

i

and use that
1

2{+@ = 1
2{ � @

4{2 + @
2

4{2(2{+@)

for the first summand and that
1

2{+@ = 1
2{ � @

2{(2{+@)

for the second summand. The last expression in (3.52) is derived by expanding
1

2{+@ one further degree for each summand.
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For (3.53) we again use (3.11), (3.32), and (3.60) to obtain

1p{
�

g21

2+�

�[5]
= 2i{

2{+@

h
q q̄

2{+@
1p{
�

g21

2+�

�[3]i

= 8i{3

2{+@

h
u q̄

2{+@
1p{
�

g21

2+�

�[3]i� 2i{
2{+@

h
u00 q̄

2{+@
1p{
�

g21

2+�

�[3]i

= 16i{4

2{+@

h
|u|2 1p{

�
g21

2+�

�[3]i� 8i{3

2{+@

h
uū0 1p{

�
g21

2+�

�[3]i

� 2i{
2{+@

h
u00 q̄

2{+@
1p{
�

g21

2+�

�[3]i
.

We then expand 1
2{+@ and use (3.52) and to obtain (3.53).

Similarly, for (3.54) we use (3.52) and (3.53) to write

1p{
�

g21

2+�

�[7]
= 2i{

2{+@

h
q q̄

2{+@
1p{
�

g21

2+�

�[5]i� 2{
2{+@


q
h

1p{
�

g21

2+�

�[3]i2
�

= � 64{8

2{+@

h
q q̄

2{+@ |u|
4ū
i
� 32{9

2{+@

h
q|u|4ū2

i

+ 1
2{+@m

h
f, f, f, f

2{�@ ,
f

2{�@ ,
f

2{�@ ,
f
0

2{�@

i
,

to which we apply (3.60). ⇤

4. Local smoothing for the DNLS

In this section we prove local smoothing for Schwartz solutions of (DNLS):

Proposition 4.1 (Local smoothing for the DNLS). Let Q ⇢ S be an L2 bounded
and equicontinuous set such that

Q⇤ =
�
etJrHq : |t|  1 and q 2 Q

 

is a �-good set for a su�ciently small �. Then the local smoothing estimate

(4.1) kqk
X

1
2
. kq(0)kL2

holds uniformly for q(0) 2 Q.
Further, equicontinuity holds in the local smoothing topology, in the sense that

(4.2) lim
!1

sup
q(0)2Q

kqk
X

1
2


= 0.

We remind the reader that Corollary 1.9 guarantees that for any L2 bounded and
equicontinuous set Q, there is a uniform rescaling so that the corresponding Q⇤ is
�-good. For the remainder of this section, we fix Q⇤ ⇢ S satisfying the hypotheses
of Proposition 4.1.

Our proof of Proposition 4.1 rests on the microscopic conservation law presented
in Proposition 3.5. Taking

(4.3) �µ(x) =

Z
x

0
 µ(y)

24 dy,

and integrating by parts, we obtain

(4.4) Im

Z 1

�1

Z
jDNLS({; q(t)) 24

µ
dx dt = Im

Z
⇢({; q(t))�µ dx

���
t=1

t=�1
.

To bound the right-hand side of this expression, we use the following:
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Lemma 4.2 (Estimate for ⇢). The following estimates hold uniformly for q 2 Q⇤,
,{ � 1, and µ 2 R :

����
Z

Im ⇢({; q)�µ dx
���� . {�1kqk2

E
�
2�,{

h
1 + kqk2

L2

i
,(4.5)

Z 1



Z ����Im
Z
⇢({; q)�µ dx

���� e
� 1

200 |h�µ| dµ d{ . kqk2
E�

�,

h
1 + kqk2

L2

i
.(4.6)

Proof. A computation yields

Im

Z
⇢[2]({; q)�µ dx = 1

2i

Z
q̄ �µ

q
0

4{2�@2 dx� 1
2i

Z
q �µ

q̄
0

4{2�@2 dx,

so using (2.13) we get
�����Im

Z
⇢[2]({; q)�µ dx

�����  {�1k�µqk
E

1/2
1,{

kqk
E

1/2
1,{

. {�1kqk2
E

�
2�,{

.

Turning to the higher order terms, we use (3.34) and (3.35) to write

⇢[�4]({; q) = q · �2i
2{+@

h
q
�

g21

2+�

�2i
+ q̄ · 2i

2{�@

h
q̄
�

g12

2+�

�2i
.

Thus, by (3.14) and the fact that k 1
2{±@ kop . {�1, we obtain

����Im
Z
⇢[�4]({; q)�µ dx

���� . {�1k�µqkL2kqkL2

h�� g12

2+�

��2
L1 +

�� g21

2+�

��2
L1

i

. {�1kqk2
L2kqk2E�

2�,{
,

which completes the proof of (4.5).
The estimate (4.6) follows from (4.5) and Lemma 2.2. ⇤

Turning to the left-hand side of (4.4), our main challenge will be to control the

remainder terms j[�4]
DNLS. To do so, we need to distribute the exponential weight  24

µ

across the arguments of paraproducts in S(n). To accomplish this, we introduce a
modified space of paraproducts, Sloc(n), which involve a spatial parameter µ 2 R.
While this construction will aid our proof of Proposition 4.1, its true value will only
become clear when we turn to the significantly more involved problem of obtaining
local smoothing estimates for the di↵erence flow in Section 6.

We define an extended set of generators

Gloc = G [
n
S±1 `

µ
S⌥1 �`

µ
,  `

µ
S±1 �`

µ
S⌥1 : |`|  24 is an integer and S 2 G?

o
,

(4.7)

which are µ-dependent operators. Recall that the set G was defined in (3.36) and
generates the set G? of finite words over the alphabet G, as in (3.37). We similarly
take G?loc to be the set of words over the alphabet Gloc.

Example 4.3. If |{| � 1 and |`|  24 is an integer then

 `
µ

2{
2{+@ 

�`
µ

=
�
 `
µ

2{
2{+@ 

�`
µ

2{+@
2{

�
2{

2{+@ 2 G?loc.

Paralleling the construction of S(n), we say that a paraproduct m 2 Sloc(1) if it
admits a representation as a finite linear combination of elements of G?loc.
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For n � 2, we inductively define Sloc(n) as finite linear combinations of para-
products that admit the representation

m[f1, . . . , fn] = T

"
JY

j=1

mj [f�(nj�1+1), . . . , f�(nj)]

#
,(4.8)

where 0 = n0 < · · · < nJ = n are integers, mj 2 Sloc(nj � nj�1), T 2 G?loc, and
� 2 Sn. On both sides of (4.8), all paraproducts are evaluated at a common value
of µ. This will be the standing convention whenever we combine paraproducts in
Sloc(n).

As in the case of S(n), we require all coe�cients in these linear combinations to
be uniformly bounded in any parameters.

Example 4.4. Recall from Example 3.8 that for |{| � 1, the paraproduct

m[f1, f2, f3] =
8{3

2{�@

h
f1

f2

2{�@
f3

2{+@

i

is in S(3). We may write

 24
µ
m[f1, f2, f3] = em[ 8

µ
f1, 

8
µ
f2, 

8
µ
f3],

where em 2 Sloc(3) has representation

em[f1, f2, f3] =  24
µ

8{3

2{�@

h
 �8
µ

f1 ·
 

�8
µ f2

2{�@ ·  
�8
µ f3

2{+@

i
,

which can be expressed as in (4.8) with � = Id, T =  24
µ

2{
2{�@ 

�24
µ

,

m1[f1] = f1, m2[f2] =  8
µ

2{
2{�@ ( 

�8
µ

f2), m3[f3] =  8
µ

2{
2{+@ ( 

�8
µ

f3).

Example 4.4 demonstrates one of the key motivations for the introduction of this
class of paraproducts; this is codified in property (i) of Lemma 4.6. It is mandated
by the necessity of employing local smoothing estimates on each and every argument
of our paraproducts.

We first record a result which will be used in the proof of Lemma 4.6.

Lemma 4.5. If T 2 G?loc, then the conjugated operators

2+@
2 T 2

2+@ ,
2�@
2 T 2

2�@ ,
2

2+@T
2+@
2 and 2

2�@T
2�@
2(4.9)

belong to Sloc(1).

Proof. By definition, any T 2 G?loc may be written as a finite product of the gen-
erators Gloc. As conjugating a product is equivalent to conjugating each factor, it
su�ces to verify the claim in the case T 2 Gloc.

The elements of Gloc come in five kinds. The easiest case to deal with is T 2 G
because then T commutes with 2 ± @ and all four operators in (4.9) are all equal
to T . In what follows, we will treat the first two operators in (4.9) for each of the
four remaining kinds of generators in Gloc. The remaining two operators in (4.9)
may be treated in a parallel manner.

To unify our treatment of the first two operators in (4.9), we will show that

(4.10) 2+@
2 T 2

2+@ is a linear combination of words in G?loc
for any || � 1, whenever T = S±1 `

µ
S⌥1 �`

µ
or T =  `

µ
S±1 �`

µ
S⌥1 with S 2

G?\{Id} and |`|  24.
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If T = S�1 `
µ
S �`

µ
, we write

2+@
2 T 2

2+@ =
h�
S 2

2+@

��1
 `
µ

�
S 2

2+@

�
 �`
µ

ih
 `
µ

2+@
2  �`

µ

2
2+@

i
2 G⇤

loc.

Similarly, if T =  `
µ
S�1 �`

µ
S we may write

2+@
2 T 2

2+@ =
h
2+@
2  `

µ

2
2+@ 

�`
µ

ih
 `
µ

�
S 2

2+@

��1
 �`
µ

�
S 2

2+@

�i
2 G⇤

loc.

Next we consider the case T = S `
µ
S�1 �`

µ
. By the definition of G?, we may

write S = 2{
2{+@

eS or S = 2{
2{�@

eS for some |{| � 1 and eS 2 G?. We present the

details in the case S = 2{
2{+@

eS; the remaining case can be treated analogously.
Using the identity

2+@
2

2{
2{+@ = 2{

2{+@ + {


@

2{+@

and the symmetric identity with { $ , we may express

2+@
2 S `

µ
S�1 2

2+@ = S `
µ
S�1 2

2+@ + {


@

2{+@
eS `

µ
eS�1 2{+@

2{
2

2+@

= S `
µ
S�1 2

2+@ + {


@

2{+@
eS `

µ
eS�1

h
2

2+@ + 

{
@

2+@

i

= S `
µ
S�1 2

2+@ +
h
2+@
2

2{
2{+@ � 2{

2{+@

i
eS `

µ
eS�1 2

2+@

+ @

2{+@
eS `

µ
eS�1 @

2+@

= S `
µ
S�1 2

2+@ + 2+@
2

2{
2{+@

eS `
µ
eS�1 2

2+@(4.11)

� 2{
2{+@

eS `
µ
eS�1 2

2+@ + @

2{+@
eS `

µ
eS�1 @

2+@ .

We then apply (4.11) to get

2+@
2 T 2

2+@ =
h
2+@
2 S `

µ
S�1 2

2+@

ih
2+@
2  �`

µ

2
2+@

i

= T 2
2+@ + 2{

2{+@

h
2+@
2

eT 2
2+@

i
� 2{

2{+@
eT 2
2+@

+ @

2{+@
eT
h
 `
µ

@

2{+@ 
�`
µ

ih
 `
µ

2+@
2  �`

µ

2
2+@

i
,(4.12)

where eT = eS `
µ
eS�1 �`

µ
2 G?loc. By using Examples 3.7 and 4.3, we see that

@

2{+@ = Id� 2{
2{+@ and  `

µ

@

2{+@ 
�`
µ

= Id�
⇥
 `
µ

2{
2{+@ 

�`
µ

2{+@
2{

⇤
2{

2{+@(4.13)

are linear combinations of words in G?loc. As a consequence, (4.12) shows that if
2+@
2

eT 2
2+@ is a linear combination of words in G?loc then so is 2+@

2 T 2
2+@ . In this

case, (4.10) follows by induction on the minimal number of letters required to spell
S as in the sense (3.37). The base case corresponds to taking eT = Id.

Finally, we consider the case T =  `
µ
S �`

µ
S�1. Arguing as in the previous case

and using (4.11) (with ` replaced by �`), we get

2+@
2 T 2

2+@ =
h
2+@
2  `

µ

2
2+@

ih
2+@
2 S �`

µ
S�1 2

2+@

i

=
h
2+@
2  `

µ

2
2+@ 

�`
µ

i
T 2

2+@ +
h
2+@
2  `

µ

2{
2{+@ 

�`
µ

2
2+@

i
2+@
2

eT 2
2+@

�
h
2+@
2  `

µ

2
2+@ 

�`
µ

ih
 `
µ

2{
2{+@ 

�`
µ

2{+@
2{

i
2{

2{+@
eT 2
2+@

+
h
2+@
2  `

µ

2
2+@ 

�`
µ

ih
 `
µ

@

2{+@ 
�`
µ

i
eT @

2+@ ,
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where eT =  `
µ
eS �`

µ
eS�1 2 G?loc. Using (4.13) and observing that

2+@
2  `

µ

2{
2{+@ 

�`
µ

2
2+@ = 2{

2{+@

h
2+@
2

2{+@
2{  `

µ

2{
2{+@

2
2+@ 

�`
µ

ih
 `
µ

2+@
2  �`

µ

2
2+@

i

is a word over the alphabet Gloc, we again see that whenever 2+@
2

eT 2
2+@ is a linear

combination of words in G?loc, so is 2+@
2 T 2

2+@ . The proof of (4.10) in this case is
completed by inducting on the minimal number of letters required to spell S. ⇤

Lemma 4.6 (Properties of Sloc(n)).

(i) (Distribution of exponential weights) If m 2 S(n) then for any non-negative
`0 + · · ·+ `n = 24 we have

m[f1, . . . , fn] 
24
µ

=  `0
µ
m1[ 

`1
µ
f1, . . . , 

`n
µ
fn],

m[f1, . . . , fn  
24
µ
] =  `0

µ
m2[ 

`1
µ
f1, . . . , 

`n
µ
fn],

where mj 2 Sloc(n).

(ii) (Symmetry) If m 2 Sloc(n) and � 2 Sn then

m[f�(1), . . . , f�(n)] 2 Sloc(n).

(iii) (Interior products) If 2  k  n, m1 2 Sloc(k), and m2 2 Sloc(n + 1 � k)
then

m1

⇥
f1, . . . , fk�1,m2[fk, . . . , fn]

⇤
2 Sloc(n).

(iv) (Leibniz rule) If n � 2 and m 2 Sloc(n) then

m[f 0
1, . . . , fn�1, fn] = @m1[f1, . . . , fn] +m2[f1, (2� @)f2, f3, . . . , fn](4.14)

+ · · ·+mn[f1, . . . , fn�1, (2� @)fn],

where m1, . . . ,mn 2 Sloc(n).
(v) (Hölder’s inequality) If m 2 Sloc(n) and 1  p, pj  1 are so that 1

p
=

1
p1

+ · · ·+ 1
pn

then

(4.15) km[f1, . . . , fn]kLp .
nY

j=1

kfjkLpj ,

uniformly in µ.

Proof. Part (ii) is an immediate consequence of the definition. Part (iii) follows
from an easy induction in k.

We turn now to the proof of part (i), which we prove by induction on n. We will
prove the very slightly stronger statement that for all m 2 S(n), and non-negative
integers `0 + · · ·+ `n = `  24 we may find em 2 Sloc(n) so that

(4.16) m[f1, . . . , fn] 
`

µ
=  `0

µ
em[ `1

µ
f1, . . . , 

`n
µ
fn].

For the base case of (4.16) we write m 2 S(1) as a linear combination

m[f ] =
nX

i=1

ciTif,

where ci 2 C and Ti 2 G?. In this case, (4.16) follows from writing

m[f ] `
µ
=  `0

µ

nX

i=1

ci( 
`1
µ
Ti 

�`1
µ

)[ `1
µ
f ] =  `0

µ
em[ `1

µ
f ]
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and noting that  `1
µ
Ti �`1

µ
= [ `1

µ
Ti �`1

µ
T�1
i

]Ti 2 G?loc.
For the inductive step, we fix N � 2 and assume that (4.16) is true for all

1  n  N � 1. We recall that elements of S(N) are linear combinations of
paraproducts with the representation

m[f1, . . . , fN ] = T

"
JY

j=1

mj [f�(nj�1+1) , . . . , f�(nj)]

#
,

where 0 = n0 < · · · < nJ = N , mj 2 S(nj � nj�1), T 2 G?, and � 2 SN . Without
loss of generality, we assume � = Id. Applying the inductive hypothesis we write

m[f1, . . . , fN ] `
µ
=  `0

µ
( `�`0

µ
Ti 

`0�`
µ

)

"
 `�`0
µ

JY

j=1

mj [fnj�1+1 , . . . , fnj ]

#

=  `0
µ
eT
"

JY

j=1

emj

h
 
`nj�1+1

µ fnj�1+1 , . . . ,  
`nj
µ fnj

i#

where eT =  `�`0
µ

T `0�`
µ

2 G?loc and emj 2 Sloc(nj � nj�1). From (4.8), it is then
clear that em 2 Sloc(N). The proof of the inductive step is completed by considering
linear combinations of paraproducts of this form.

We now turn to part (iv), which is also proved by induction on n. All the
requisite ideas can be understood most transparently from the treatment of the
base case n = 2.

Given a word T 2 G?loc, we express
2

2�@T@ = 2
2+@T

2+@
2

2+@
2�@ � 2

2�@T
2�@
2 ,(4.17)

@T 2
2�@ = 2+@

2 T 2
2+@

2+@
2�@ � 2�@

2 T 2
2�@ .(4.18)

By Example 3.7 (with { = �1) the operator 2+@
2�@ is a linear combination of words

in G?. Combining this with Lemma 4.5, we see that both LHS(4.17) and LHS(4.18)
are linear combinations of words in G?loc.

For the base step n = 2, it su�ces to consider m 2 Sloc(2) that can be expressed
as

m[f1, f2] = T
⇥
h1[f1] · h2[f2]

⇤
,

where T 2 G?loc and h1, h2 2 Sloc(1). We define the paraproducts k1, k2 via

k1[f ] =
1

2�@h1[f
0], k2[f ] = @h2

⇥
f

2�@
⇤
.

By (4.17) and (4.18) we see that k1, k2 2 Sloc(1). We also define

`[f ] = h2

⇥
2

2�@ f
⇤

and have ` 2 Sloc(1) by definition.
We then compute

m[f 0
1, f2] = T

⇥
(2� @)k1[f1] · h2[f2]

⇤

= T (2� @)
⇥
k1[f1] · h2[f2]

⇤
+ T

⇥
k1[f1] · @h2[f2]

⇤

= (2� @)S
⇥
k1[f1] · h2[f2]

⇤
+ T

⇥
k1[f1] · k2[(2� @)f2]

⇤

=�@S
⇥
k1[f1] · h2[f2]

⇤
| {z }

=@m1[f1,f2]

+S
⇥
k1[f1] · `[(2� @)f2]

⇤
+T

⇥
k1[f1] · k2[(2� @)f2]

⇤
| {z }

=m2[f1,(2�@)f2]

,

where S = 2
2�@T

2�@
2 2 G?loc by (4.10) and m1,m2 2 Sloc(2) by definition.
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To prove part (v), we first apply Lemma 2.9 to see that every element of G?loc
is bounded on Lp whenever 1  p  1. The claim follows from a final induction
on n. ⇤

To state our paraproduct estimates for (DNLS), it will once again be convenient
to employ the convention that if m 2 Sloc(n) and f1, . . . , fn satisfy the estimates
(3.26), then we denote the expression m[f1, . . . , fn] by m[f, . . . , f ]. Moreover, if
an expression involves several paraproducts m1, . . . ,mk 2 Sloc(n), then we denote
each paraproduct by m.

With this convention in hand, we turn to our paraproduct estimates for (DNLS):

Lemma 4.7. Let m 2 Sloc(4) and f satisfy (3.26). Then, the following estimates
hold uniformly for h 2 R and |{| � 1 :

Z ����
Z

m
h
 6
µ
f, 6

µ
f,

 
6
µf

2{�@ ,
2�@
2{�@ ( 

6
µ
f)
i
dx

���� e
� 1

200 |h�µ| dµ(4.19)

+

Z ����
Z

m
h
 6
µ
f, 6

µ
f, 6

µ
f, 2�@

4{2�@2 ( 
6
µ
f)
i
dx

���� e
� 1

200 |h�µ| dµ

. |{|�1kqk2
F

1
2 (h)

kqk2
E

�
2�,{

.

Further, if m 2 Sloc(6) then uniformly for h 2 R and |{| � 1 :
Z ����

Z
m
h
 4
µ
f, 4

µ
f, 4

µ
f, 4

µ
f,

 
4
µf

2{�@ ,
 

4
µf

2{�@

i
dx

���� e
� 1

200 |h�µ| dµ(4.20)

. |{|�1kqk2
F

1
2 (h)

kqk2
E�

�
kqk2

E
�
2�,{

.

Proof. To prove these estimates, we decompose each f into Littlewood–Paley pieces
and estimate the two highest frequencies in L2 with a view to employ (2.30). To
estimate the remaining lower frequency pieces, we rely on the following lemma.

Lemma 4.8. For any f satisfying (3.26), we have

k( `
µ
f)NkL1 . N

1
2��(1 +N)�kqkE�

�
,(4.21)

k( `
µ
f)NkL1 . |{|��N 1

2��(|{|+N)2�kqkE�
2�,{ ,(4.22)

uniformly for 0  `  12 and N 2 2Z. In particular,

X

MN

1
|{|+M

k( `
µ
f)MkL1 . N

1
2
��(1+N)�

|{|
1
2 (|{|+N)

1
2
kqkE�

�
,(4.23)

X

MN

1
|{|+M

k( `
µ
f)MkL1 . N

1
2

|{|
1
2 (|{|+N)

1
2
kqkE�

2�,{ .(4.24)

Proof. The bounds (4.21) and (4.22) follow easily from Bernstein’s inequality, (2.13),
and (3.26). To obtain the last two bounds, one considers separately the contribution
from M  |{| and M > |{|. ⇤

We start by considering (4.20). Decomposing into Littlewood–Paley pieces and
employing Lemma 4.8, we find

Z
m
h
 4
µ
f, 4

µ
f, 4

µ
f, 4

µ
f,

 
4
µf

2{�@ ,
 

4
µf

2{�@

i
dx
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.
X

N1�···�N6

1
(|{|+N5)(|{|+N6)

2Y

j=1

kPNj ( 
4
µ
f)kL2

6Y

j=3

kPNj ( 
4
µ
f)kL1

.
X

N1�N2

|{|�1
N

2�4�
2 (1+N2)

2�

(|{|+N2)1�2� kPN1( 
4
µ
f)kL2kPN2( 

4
µ
f)kL2kqk2

E�
�
kqk2

E
�
2�,{

. |{|�1k 4
µ
fk2

H
1
2
kqk2

E�
�
kqk2

E
�
2�,{

.

In view of (2.30) and (3.26), this contribution is acceptable.
Next we consider the first term on LHS(4.19). Decomposing once again into

Littlewood–Paley pieces, we have

m
h
 6
µ
f, 6

µ
f,

 
6
µf

2{�@ ,
2�@
2{�@

�
 6
µ
f
�i

=
X

M1,M2,M3,M4

m
h
PM1( 

6
µ
f), PM2( 

6
µ
f),

PM3 ( 
6
µf)

2{�@ , 2�@
2{�@PM4( 

6
µ
f)
i
.

To continue, we split the sum into two pieces: the first where M4 < max{Mj} and
the second where M4 = max{Mj}.

For the first summand, we apply (4.15) to estimate the terms with the two
highest frequencies in L2 and the remaining terms in L1. We then apply Bernstein’s
inequality followed by (4.24) to the N4-term and (4.22) to the N3-term to estimate

X

M1,M2,M3,M4
M4<max{Mj}

����
Z

m
h
PM1( 

6
µ
f), PM2( 

6
µ
f),

PM3 ( 
6
µf)

2{�@ , 2�@
2{�@PM4( 

6
µ
f)
i
dx

����

.
X

N1�N2�N3�N4

(1+N2)
(|{|+N2)(|{|+N4)

2Y

j=1

kPNj ( 
6
µ
f)kL2

4Y

j=3

kPNj ( 
6
µ
f)kL1

.
X

N1�N2�N3

(1+N2)N
1��
3

|{|
1
2
+�(|{|+N2)(|{|+N3)

1
2
�2�

kPN1( 
6
µ
f)kL2kPN2( 

6
µ
f)kL2kqk2

E
�
2�,{

.
X

N1�N2

(1+N2)
2��

|{|
1
2
+�(|{|+N2)

3
2
�2�

kPN1( 
6
µ
f)kL2kPN2( 

6
µ
f)kL2kqk2

E
�
2�,{

.
X

N1�N2

(1+N2)
1��

|{|
1
2
+�(|{|+N2)

3
2
�2�

�
1+N2
1+N1

� 1
2 kPN1( 

6
µ
f)k

H
1
2
kPN2( 

6
µ
f)k

H
1
2
kqk2

E
�
2�,{

. |{|�1k 6
µ
fk2

H
1
2
kqk2

E
�
2�,{

.

Note that the frequency parameters Nj represent a permutation of the parameters
Mj so as to account for the largest contribution. Integrating with respect to the

measure e�
1

200 |h�µ| dµ and applying (2.30) and (3.26), we obtain an acceptable
contribution.

For the second summand, we first use (4.14) to redistribute the derivative:

X

M4�M1,M2,M3

����
Z

m
h
PM1( 

6
µ
f), PM2( 

6
µ
f),

PM3 ( 
6
µf)

2{�@ , 2�@
2{�@PM4( 

6
µ
f)
i
dx

����


X

M4�M1,M2,M3

����
Z

m
h
(2� @)PM1( 

6
µ
f), PM2( 

6
µ
f),

PM3 ( 
6
µf)

2{�@ ,
PM4 ( 

6
µf)

2{�@

i
dx

����
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+
X

M4�M1,M2,M3

����
Z

m
h
PM1( 

6
µ
f), (2� @)PM2( 

6
µ
f),

PM3 ( 
6
µf)

2{�@ ,
PM4 ( 

6
µf)

2{�@

i
dx

����

+
X

M4�M1,M2,M3

����
Z

m
h
PM1( 

6
µ
f), PM2( 

6
µ
f), 2�@

2{�@PM3( 
6
µ
f),

PM4 ( 
6
µf)

2{�@

i
dx

���� ,

where each mj 2 Sloc(4). We then proceed as in the first case to estimate each
term by

X

N1�N2�N3�N4

(1+N2)
(|{|+N1)(|{|+N4)

2Y

j=1

kPNj ( 
6
µ
f)kL2

4Y

j=3

kPNj ( 
6
µ
f)kL1

.
X

N1�N2

(1+N2)
2��

|{|�+1
2 (|{|+N1)(|{|+N2)

1
2
�2�

kPN1( 
6
µ
f)kL2kPN2( 

6
µ
f)kL2kqk2

E
�
2�,{

. |{|�1k 6
µ
fk2

H
1
2
kqk2

E
�
2�,{

,

which is seen to be acceptable after an application of (2.30) and (3.26).
Applying a parallel argument, the second term on LHS(4.19) can be bounded by

X

N1�N2�N3�N4

(1+N2)
(|{|+N2)(|{|+N4)

2Y

j=1

kPNj ( 
6
µ
f)kL2

4Y

j=3

kPNj ( 
6
µ
f)kL1 ,

which is acceptable, as demonstrated above. This completes the proof of (4.19). ⇤
Combining Proposition 3.12 and Lemma 4.7, we have the following:

Lemma 4.9. The following estimate holds uniformly for q 2 Q⇤, h 2 R, and
{ � 1 :

Z �����Im
Z

j[�4]
DNLS({) 

24
µ

dx

����� e
� 1

200 |h�µ| dµ . |{|�1kqk2
F

1
2 (h)

kqk2
E

�
2�,{

.(4.25)

In particular, in view of Lemma 2.2,
Z 1



Z �����Im
Z 1

�1

Z
j[�4]
DNLS({) 

24
µ

dx dt

����� e
� 1

200 |h�µ| dµ d{ . kqk2
X

1
2
kqk2

L
1
t E�

�,
.(4.26)

Proof. Using (3.29) and (3.6), we may write

Im j[�4]
DNLS({) = Im

(
2
hp

{
�

g21

2+�

�[�3]
({) +

p
�{

�
g21

2+�

�[�3]
(�{)

i
q

+
h

1p{
�

g21

2+�

�[�3]
({) + 1p

�{
�

g21

2+�

�[�3]
(�{)

i
q0

+ i
h

1p{
�

g21

2+�

�
({) + 1p

�{
�

g21

2+�

�
(�{)

i
|q|2q

)
.(4.27)

Using (3.46), we may integrate by parts to obtain
Z

1p{
�

g21

2+�

�[�3]
({) q0  24

µ
dx =

Z
m
h
 6
µ
f, 6

µ
f,

 
6
µf

2{�@ ,
2�@
2{�@ ( 

6
µ
f)
i
dx,

where m 2 Sloc(4). We then apply (4.19) to obtain
Z �����

Z
1p{
�

g21

2+�

�[�3]
({) q0  24

µ
dx

����� e
� 1

200 |h�µ| dµ . |{|�1kqk2
F

1
2 (h)

kqk2
E

�
2�,{

.(4.28)
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Similarly, from (3.46) we have
Z

1p{
�

g21

2+�

�[�3]
({) |q|2q  24

µ
dx =

Z
m
h
 4
µ
f, 4

µ
f, 4

µ
f, 4

µ
f,

 
4
µf

2{�@ ,
 

4
µf

2{�@

i
dx,

where m 2 Sloc(6). Recalling (3.32) and (3.60) we obtain
Z h

1p{
�

g21

2+�

�[1]
({) + 1p

�{
�

g21

2+�

�[1]
(�{)

i
|q|2q  24

µ
dx

= i

Z
ū0|q|2q  24

µ
dx =

Z
m
h
 6
µ
f, 6

µ
f, 6

µ
f, 2�@

4{2�@2 ( 
6
µ
f)
i
dx,

where m 2 Sloc(4) and we recall that u = q

4{2�@2 . Applying (4.19) and (4.20) then
gives us

Z �����

Z h
1p{
�

g21

2+�

�
({) + 1p

�{
�

g21

2+�

�
(�{)

i
|q|2q  24

µ
dx

����� e
� 1

200 |h�µ| dµ(4.29)

. |{|�1kqk2
F

1
2 (h)

kqk2
E

�
2�,{

.

Another application of (3.46) gives us
Z p

{
�

g21

2+�

�[�5]
({) q  24

µ
dx =

Z
m
h
 4
µ
f, 4

µ
f, 4

µ
f, 4

µ
f,

 
4
µf

2{�@ ,
 

4
µf

2{�@

i
dx,

where m 2 Sloc(6). Further, from (3.52) we have
Z hp

{
�

g21

2+�

�[3]
({)� 4{5|u|2ū

i
q  24

µ
dx =

Z
m
h
 6
µ
f, 6

µ
f,

 
6
µf

2{�@ ,
2�@
2{�@ ( 

6
µ
f)
i
dx,

where m 2 Sloc(4). Once again we use (4.19) and (4.20) to bound
Z �����

Z hp
{
�

g21

2+�

�[�3]
({)� 4{5|u|2ū

i
q  24

µ
dx

����� e
� 1

200 |h�µ| dµ . |{|�1kqk2
F

1
2 (h)

kqk2
E

�
2�,{

.

In particular,
Z �����

Z hp
{
�

g21

2+�

�[�3]
({) +

p
�{

�
g21

2+�

�[�3]
(�{)

i
q  24

µ
dx

����� e
� 1

200 |h�µ| dµ

. |{|�1kqk2
F

1
2 (h)

kqk2
E

�
2�,{

.(4.30)

The estimate (4.25) then follows from combining (4.28) through (4.30). ⇤

We are now in a position to complete the:

Proof of Proposition 4.1. Combining the identity (4.4) with Lemmas 4.2 and 4.9
we obtain

Z 1



Z �����Im
Z 1

�1

Z
j[2]DNLS({) 

24
µ

dx dt

����� e
� 1

200 |h�µ| dµ d{

. kqk2
L

1
t E�

�,

h
1 + kqk2

L
1
t L2 + kqk2

X
1
2

i
.(4.31)

It remains to consider the quadratic terms in jDNLS. A computation yields

Im j[2]DNLS = 2Re
n

q
0

4{2�@2 q̄
0
o
� Re

n
q
0

4{2�@2 q̄
o0
.(4.32)
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We may then integrate by parts to obtain

Im

Z
j[2]DNLS({) 

24
µ

dx = 2k( 12
µ
q)0k2

H
�1
{

+ 2Re

Z
[ 12

µ
, @

4{2�@2 ]q ( 
12
µ
q̄)0 dx

To estimate the error, we use that

[ 12
µ
, @

4{2�@2 ] = � 1
4{2�@2

⇥
( 12

µ
)00 + 2( 12

µ
)0@

⇤
@

4{2�@2 � 1
4{2�@2 ( 

12
µ
)0

together with (2.13) to bound
����
Z
[ 12

µ
, @

4{2�@2 ]q ( 
12
µ
q̄)0 dx

���� . {�1kqk2
E

�
2�,{

.

Thus,

k 12
µ
qk2

E
1
1,{

.
�����Im

Z
j[2]DNLS({) 

24
µ

dx

�����+ {�1kqk2
E

�
2�,{

.

Integrating in { over [,1), using (2.4) and then (4.31) we get
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we then get
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To prove (4.1) we first take  = 1 and use (1.19) to absorb the first term on the
right-hand side of (4.33) into the left-hand side, and then invoke the conservation
of the L2 norm. The estimate (4.2) follows from using (4.1) in (4.33) and then
applying (2.3). ⇤

5. Tightness

The goal of this section is to show that the family of orbits emanating from
an L2-precompact set of Schwartz initial data remains tight, at least for times
t 2 [�1, 1]. We begin by constructing a suitable function �R for localizing to the
spatial region |x| � R for given R � 100. For such R, we first define

�R(x) =
1
R

Z

R|µ|2R
sgn(µ) 24

µ
(x) dµ.

Note that �R is odd and vanishes at x = 0. We then define

�R(x) =

Z
x

0
�R(y) dy,

which is even and everywhere positive. Indeed

�R(x) & 1 uniformly for |x| � 2R � 200.

In view of this property of �R, a bounded subset Q ⇢ L2 is tight in L2 if
Z
�R(x)|q(x)|2 dx ! 0 as R ! 1, uniformly for q 2 Q.
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Proposition 5.1 (Tightness for (DNLS)). Suppose Q ⇢ S is an L2 bounded and
equicontinuous set for which

Q⇤ =
�
etJrHq : |t|  1 and q 2 Q

 

is �-good for some su�ciently small �. If Q is also tight, then so too is Q⇤.

Proof. From the microscopic conservation law (1.1) we obtain

d

dt
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2 |q|
4
⇤
 24
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dx dµ.(5.1)

Our goal is to deduce the tightness of Q⇤ from that of Q by estimating the right-
hand side above in L1([�1, 1]; dt) and showing that it converges to zero as R ! 1.

For the first term on RHS(5.1) we have
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where the second inequality follows from decomposing into frequencies   and > .
For the second term on RHS(5.1), we apply the Gagliardo–Nirenberg inequality to
bound
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In this way we deduce that
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By Fubini, (2.1), and (2.32) we then have
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which can be made arbitrarily small by first choosing  large and applying (4.2),
and then choosing R large. ⇤

6. Local smoothing for the difference flow

In this section we prove local smoothing for Schwartz solutions of the di↵erence
flow.

Proposition 6.1 (Local smoothing for the di↵erence flow). Let Q ⇢ S be an L2

bounded and equicontinuous set such that

Q⇤ =
�
q(t;) = etJr(H�H)q : t 2 R, q 2 Q, and  � 2

 

is a �-good set for a su�ciently small � > 0. Then the local smoothing estimate
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1
2


. kq(0)kL2 .

holds uniformly for  � 2 and q(0) 2 Q.

Our proof will mirror that of Proposition 4.1. Once again, we take 0 < � < 1
2

and Q⇤ as in the hypothesis of Proposition 6.1. Taking �µ to be defined as in (4.3)
and using Propostion 3.5, we integrate by parts to obtain
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⇢(q;{)�µ dx

���
t=1

t=�1
.(6.2)
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Once again, our main challenge will be to estimate the remainder terms j[�4]
di↵ .

To this end, we start with the following collection of paraproduct estimates:

Lemma 6.2. The following paraproduct estimates hold uniformly for q 2 Q⇤, h 2
R, |{|, || � 1, and functions f that are admissible in the sense of (3.26):

i) Quartic paraproducts. Let m 2 Sloc(4). Then we have the estimates
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ii) Sextic paraproducts. If m 2 Sloc(6) then we have the estimates
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iii) Octic paraproducts. If m 2 Sloc(8) then we have the estimates
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iv) Decic paraproducts. If m 2 Sloc(10) then we have the estimates
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Proof. For all of the ensuing estimates, we follow the argument of Lemma 4.7:

(1) Decompose into Littlewood–Paley pieces.
(2) If derivatives fall at high frequency, integrate by parts using (4.14).
(3) Estimate the two highest frequency terms in L2 and the remaining terms

in L1 using (4.15).
(4) Estimate the low frequency terms using Lemma 4.8.
(5) Bound the highest two frequency terms using (2.30).

We illustrate this in detail with the first term on LHS(6.3). Decomposing into
Littlewood–Paley pieces, we consider
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where we note that the Mj have been permuted in the first inequality to account
fo the largest contribution. This is acceptable after integrating with respect to
e�

1
200 |h�µ| dµ and applying (2.30).
The second summand is where M3  M4 = max{Mj}. Here, we use (4.14) to

integrate by parts and then proceed as for the first summand to obtain
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which is again acceptable.
The final summand, where M4 < M3 = max{Mj}, is estimated in a similar way,

using (4.14) to obtain a contribution of
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which is again acceptable, as before.
The remaining terms on LHS(6.3) are estimated similarly. In each case, their

contribution is bounded by
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which is acceptable after summation.
For (6.4), we proceed similarly, to obtain a bound of

X

N1�···�N4

(1+N2)
2

(||+N2)2

2Y

j=1

kPNj ( 
6
µ
f)kL2

4Y

j=3

kPNj ( 
6
µ
f)kL1

.
X

N1�N2

N
1�2�
2 (1+N2)

2+2�

(||+N2)2
kPN1( 

6
µ
f)kL2kPN2( 

6
µ
f)kL2kqk2

E�
�

.
���  

6
µfp

42�@2

���
2

H
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which is acceptable.
For the estimate (6.5) we argue as before to obtain a bound of

X
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,

which is once again acceptable.
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The sextic terms are estimated similarly. For (6.6), after integrating by parts we
obtain a bound of

X
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(|{|+N2)2(|{|+N5)(|{|+N6)

2Y

j=1

kPNj ( 
4
µ
f)kL2

6Y

j=3

kPNj ( 
4
µ
f)kL1

.
X

N1�N2

|{|�1
N

2�4�
2 (1+N2)

2+2�

(|{|+N2)3�2� kPN1( 
4
µ
f)kL2kPN2( 

4
µ
f)kL2kqk2

E�
�
kqk2

E
�
2�,{

. |{|�1 2+{2

{2

���  
4
µfp

42�@2

���
2

H
3
2
kqk2

E�
�
kqk2

E
�
2�,{

,

which is acceptable.
Similarly, we may bound LHS(6.7) by
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which is acceptable.
For (6.8), after integrating by parts we may bound each term by
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which is again acceptable.
Turning to (6.9), our basic technique gives us a bound of

X

⌧2S
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where S is the set of permutations of {3, 4, 5, 6}. Estimating the N⌧(3), N⌧(4) terms
in E�

�
using (4.21) and the N⌧(5), N⌧(6) terms in E�
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bound of
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Turning next to the octic estimates, we may bound LHS(6.10) by
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.
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which is acceptable.
For (6.11), we argue as in (6.9) so that after estimating the low frequency terms

in E�

�
or E�

2�,{ (depending on the associated denominator) we obtain a bound of
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Again applying our basic technique to (6.12), we obtain a bound of
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which is acceptable.
Finally, (6.13) again follows the argument of (6.9), (6.11), estimating the low

frequency terms in E�

�
or E�

2�,{ to obtain an acceptable bound of
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This completes the proof of the lemma. ⇤
Combining Propositions 3.12 and Lemma 6.2, we obtain the following:

Lemma 6.3. Let q 2 Q⇤, h 2 R,  � 1, and { 2 I = [1, 2 ] [ [2,1). Then we
have the estimateZ ����Im

Z
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di↵  24

µ
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i
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Proof. From (3.32), we have
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We may then use (3.30) and (3.6) to decompose
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)
.

We now proceed to use Proposition 3.12 and Lemma 6.2 to remove the leading
order terms from each line as follows:

For (6.15), we first use (3.46) to write
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where m 2 Sloc(10), to which we apply (6.12). Next, we use (3.54) to write
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where m 2 Sloc(8), which we bound using (6.10). Similarly, we use (3.53) to write
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where each m 2 Sloc(6), which can be estimated using (6.6). Finally, we use the
second expression on RHS(3.52) to obtain
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where each m 2 Sloc(4) and then apply (6.3). Combining these estimates and using
(1.19) gives us
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We estimate the contribution of (6.16) similarly. From (3.46), we have
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where m 2 Sloc(8), whereas from (3.53) we have
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where each m 2 Sloc(6). Using the second expression on RHS(3.52) we get
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where each m 2 Sloc(4). Again applying (6.10), (6.6), (6.3), respectively, and using
(1.19) we have the estimate

Z ����
Z h

(6.16)� {2

2�{2

h
�8{4|u({)|2ū({)
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For (6.18), we use (3.46) to write
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Turning to (6.22), we first take a test function w 2 L1 and use (2.26), (2.23),
(2.21), and (1.19) to bound
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For (6.20), we take h =
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which is acceptable. For the lower order terms, we use (3.47) and (3.49) to write
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where each m 2 Sloc(6). As a consequence, if we introduce
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we may apply (6.4) and (6.7) to obtain
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To estimate (6.28), we first use (3.46) to write
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where m 2 Sloc(10), which can be bounded using (6.13). Further, from (3.52) we
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It remains to extract the leading order terms from (6.21). We first use (3.11)
and (3.46) to write

1p{
�

g21

2+�

�[1]
({) + 1p

�{
�

g21

2+�

�[1]
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where m 2 S(3). From (3.44), we then have
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where m 2 Sloc(10). These terms can be estimated using (6.11) and (6.13), respec-
tively. Applying (3.49) we have
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where m 2 Sloc(6), which we bound using (6.9). Similarly, we have
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where m 2 Sloc(8), which is bounded using (6.11). Using (3.47) we have
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where m 2 Sloc(4). This is estimated using (6.5). Also using (3.47) we have
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where m 2 mµ(6). A final application of (6.8) and (1.19) gives us the estimate
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where we define

= 23

2�{2

h
1p{
�

g21

2+�

�
({) + 1p

�{
�

g21

2+�

�
(�{)

ih
i

2 |q|
2q � 32i5|u()|2u()

i
.(6.34)
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for m 2 S(4) and S(6), respectively. As a consequence, we may apply (6.5) and
(6.8) to obtain

Z ����
Z

(6.34) 24
µ

dx

���� e
� 1

200 |h�µ| dµ . |{|�1kqk2
F

1
2
 (h)

kqk2
E

�
2�,{

,(6.35)

We now collect the leading order terms from our above estimates into quartic
and sextic contributions, as folllows
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Combining the estimates (6.23)–(6.27), (6.29), (6.30), (6.33), (6.35) gives us
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where m 2 S(4). Similarly, we have
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where each m 2 S(4). Applying (6.3), (6.4), and (6.5) we then have
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Collecting these bounds gives us
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Finally, we consider J2. Arguing as for J1 we have
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where each m 2 S(6). Applying (6.6), (6.7), and (6.8) gives us
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For the remaining term we compute that
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Together these, yield
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(6.38)

The estimate (6.14) now follows from combining (6.36), (6.37), and (6.38). ⇤
Proof of Proposition 6.1. Recall (6.2). Using Lemma 4.2 and (2.4), we estimate
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Turning to LHS(6.2) and recalling that u() = q
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.(6.40)

Integrating by parts and then applying (2.13) we may bound the contribution of
the last three summands as follows:����
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For the remaining term, we write
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000
o
 24
µ

dx

=

Z n
162

( 12
µ q)00

(4{2�@2)(42�@2)

( 24
µ q̄)00

42�@2 + 2
( 12

µ q)000

(4{2�@2)(42�@2)

( 12
µ q̄)000

42�@2

o
dx

+

Z n
162

⇥
 12
µ
, @

2

(4{2�@2)(42�@2)

⇤
q · ( 24

µ q̄)00

42�@2

o
dx

+

Z n
2
⇥
 12
µ
, @

3

(4{2�@2)(42�@2)

⇤
· ( 12

µ q̄)000

42�@2

o
dx

+

Z n
162 u()00

4{2�@2 q ·
⇥
 12
µ
, @

2

42�@2

⇤
q̄ + 2 u()000

4{2�@2 ·
⇥
 12
µ
, @

3

42�@2

⇤
q̄
o
 12
µ

dx.

Using that
⇥
 12
µ
, 1
4{2�@2

⇤
= � 1

4{2�@2

�
2( 12

µ
)0@ + ( 12

µ
)00
 

1
4{2�@2 ,



DNLS IS WELL-POSED IN L
2(R) 65
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we may again use (2.13) to bound
����
Z n

162
⇥
 12
µ
, @

2

(4{2�@2)(42�@2)

⇤
q · ( 24

µ q̄)00

42�@2

o
dx

����

. 2
(
{
���
⇥
 12
µ
, 1
4{2�@2

⇤
u()00

���
E

1
2
�1,{

+ {�1
���
⇥
 12
µ
, @

2

42�@2 ]q
���
E

1
2
1,{

)��� ( 24
µ q̄)0

42�@2

���
E

1
2
1,{

. {�1kqk2
E

�
2�,{

,
����
Z n

2
⇥
 12
µ
, @

3

(4{2�@2)(42�@2)

⇤
q · ( 12

µ q̄)000

42�@2

o
dx

����

.
(
{
���
⇥
 12
µ
, 1
4{2�@2

⇤
u()000

���
E

1
2
�1,{

+ {�1
���
⇥
 12
µ
, @

3

42�@2 ]q
���
E

1
2
1,{

)��� ( 24
µ q̄)00

42�@2

���
E

1
2
1,{

. {�1kqk2
E

�
2�,{

,
����
Z n

162 u()00

4{2�@2 q ·
⇥
 12
µ
, @

2

42�@2

⇤
q̄
o
 12
µ

dx

����

. 2{�1ku()0k
E

1
2
1,{

��� 12
µ

⇥
 12
µ
, @

2

42�@2

⇤
q
���
E

1
2
1,{

. {�1kqk2
E

�
2�,{

,

����
Z n

2 u()000

4{2�@2 ·
⇥
 12
µ
, @

3

42�@2

⇤
q̄
o
 12
µ

dx

����

. {�1ku()00k
E

1
2
1,{

��� 12
µ

⇥
 12
µ
, @

3

42�@2

⇤
q
���
E

1
2
1,{

. {�1kqk2
E

�
2�,{

.

Combining these estimates gives us

(6.41) {2
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Collecting (6.39), (6.41), (6.14), and using (2.5), we have
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Using (1.19) to absorb the first term on the right-hand side into the left-hand side,
(6.1) then follows from the conservation of the L2 norm. ⇤

7. Convergence of the difference flow

Our main goal in this section is to prove that as ! 1, the flow determined by
the di↵erence of the Hamiltonians Hdi↵


= H�H converges to the identity, locally

in spacetime, uniformly over L2-bounded and equicontinuous sets.

Theorem 7.1 (Di↵erence flow converges to the identity). Let Q ⇢ S(R) be an
L2-bounded and equicontinuous set such that

Q⇤ =
�
etJrH

diff
 q : q 2 Q, |t|  1, and  � 2

 

is a �-good set for a su�ciently small � > 0. Then
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�� 12
µ
etJrH
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 q �  12

µ
q
��
L2

x
= 0.

Proof. The L2-boundedness and equicontinuity of the set Q⇤ extends readily to the
set

{ j

µ
q : q 2 Q⇤, 1  |j|  12, µ 2 R}.

In view of this equicontinuity property and employing the fundamental theorem of
calculus, the proof of the theorem reduces to showing that
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!1
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q2Q

sup
µ2R

�� d

dt

�
 12
µ
etJrH

diff
 q

���
L

1
t ([�1,1];H�5

x )
= 0.(7.1)

A quick computation reveals that

i d

dt

�
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µ
etJrH

diff
 q

�
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µ

⇥
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diff
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where

F(q) = �q0 � i|q|2q + 2
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g12()�

p
�g12(�)
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Thus, (7.1) will follow from

lim
!1
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q2Q⇤

sup
µ2R

�� 12
µ
F(q)

��
L

1
t ([�1,1];H�4

x )
= 0.(7.2)

Employing (3.32) and (3.47), we decompose

F(q) =
@
3

42�@2 q +m
⇥
f, f, f

00
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12 (�)
⇤
,

where f satisfies (3.26) and each paraproduct m lies in S(3).
The contribution of the linear term is easily estimated via

�� 12
µ

@
3

42�@2 q
��
L

1
tH

�4
x

. �2k 12
µ
kH4

x
kqkL1

t L2
x

which converges to 0 as ! 1, uniformly for all q 2 Q⇤ and all µ 2 R, in view of
the conservation of the L2 norm.

To estimate the contribution of the cubic and higher order terms in F(q), we
rely on the consequences of the local smoothing estimates proved in Proposition 6.1.
To simplify our bounds, we introduce

kqkDNLS := kqkL1
t L2

x
+ kqk

X

1
2

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and note that L2-conservation and Proposition 6.1 yield

ketJrH
diff
 qkDNLS . kqkL2(7.3)

uniformly for  � 2 and q 2 Q.

Lemma 7.2 (Local smoothing estimates). For f satisfying (3.26), we have
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Moreover, the following estimate holds uniformly for  � 2, q 2 Q⇤, and µ 2 R :
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Proof. Decomposing into low and high frequencies and using Bernstein’s inequality
for frequencies  

2
3 , and Proposition 6.1 for frequencies > 

2
3 , we may bound
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A parallel argument yields
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Using this latter bound, Sobolev embedding, and interpolation, we obtain
���@( 

4
µf)

2±@

���
2

L
2
tL

4
x

.
���|@|

1
4
@( 4

µf)

2±@

���
2

L
2
t,x

.
���  

4
µf

2±@

���
L

2
tH

3
2
x

��� ( 4
µf)

0

2±@

���
L

2
t,x

. �
1
3 kqk2DNLS

,

which settles (7.4).
Arguing similarly and using (7.7), we may bound
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We now turn to the proof of (7.6). By the Bernstein inequality and Lemma 2.6,
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The estimate (7.6) now follows by interpolation between this bound and

k⇤( µq)kI2 . �
1
2 kqkL2 .

This completes the proof of the lemma. ⇤

Returning to the contribution of the cubic terms in F(q) to LHS(7.2), we employ
Lemmas 4.6 and 7.2 as well as (2.32) to estimate
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In view of (7.3), the contribution of these cubic terms is acceptable.
To estimate the contribution of the quintic and higher order terms in F(q), we

argue by duality. To this end, fix w 2 H4
x
. Using Lemma 2.9 and (7.6), we estimate
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,

where we used Corollary 2.7 combined with the fact that Q⇤ is �-good in order
to sum in ` � 2. By (7.3) and equicontinuity, the contribution of these terms to
LHS(7.2) is also acceptable. ⇤

8. Proofs of the main theorems

All the main di�culties have already been addressed in previous sections, albeit
under the assumption that the solutions remain in a �-good set for some universally
small � and only for the time interval [�1, 1]. In this section, we put all the pieces
together and show how to circumvent these illusory restrictions.

Proof of Theorem 1.1. The fundamental question to settle is this: Given an L2-
Cauchy sequence of initial data qn(0) 2 S and a Cauchy sequence of times tn 2 R,
show that their evolutions qn(tn) under (DNLS) form an L2-Cauchy sequence.

Evidently, the set {qn(0)} is L2-precompact. Thus by Corollary 1.9, there is a
uniform rescaling parameter � so that not only are the rescaled initial data �-good,
but so are their evolutions under (DNLS) as well as any other dynamics preserving
A({; q). This rescaling does not meaningfully alter our original ambition — we just
replace the original sequences of solutions and times by their rescaled values (for
which we reuse the original names).

It su�ces to treat the case where |tn|  1, because larger values can be treated
by iterating the argument. For example, if tn ! 3

2 , then we first run the argument
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with tn ⌘ 1 and then use qn(1), which we now know to be convergent, as initial
data to extend up to the chosen tn ! 3

2 .
Assuming now that |tn|  1, Theorem 1.7 guarantees that {qn(tn)} is equicon-

tinuous and Proposition 5.1 guarantees that it is tight. Thus every subsequence has
an L2-convergent subsequence; we just need to verify that all such subsequential
limits agree. For this purpose, it su�ces to test against some fixed w 2 C1

c
(R).

It is at this moment that we employ the commutativity of (DNLS) and the H

flows. Using (1.13), our task is reduced to verifying the following two claims:

sup
�1

lim sup
m,n!1

��⌦w, etnJrHqn(0)� etmJrHqm(0)
↵�� = 0(8.1)

lim sup
!1

sup
q02Q⇤

sup
|t|1

��⌦w,
⇥
etJr(H�H) � Id

⇤
(q0)

↵�� = 0(8.2)

where Q⇤ is defined via (1.11) with the choice Q = {qn(0) : n 2 N}.
The first of these two claims follows from the L2-wellposedness of the H flow

shown already in [27, Cor. 5.4]. The second was addressed by Theorem 7.1. ⇤

Proof of Corollary 1.2. Recall that local well-posedness for s � 1
2 was proved al-

ready by Takaoka in [45]. This result is rendered global by the a priori bounds
shown in [2, 3].

Consider now 0  s < 1
2 . Evidently, the existence of solutions follows immedi-

ately from Theorem 1.1, as does continuous dependence in the L2 metric. Contin-
uous dependence in the Hs metric follows from this and Hs-equicontinuity, which
was shown in [27, Th. 5.6] contingent on the equicontinuity conjecture that was
subsequently resolved in [17]. ⇤

Proof of Theorem 1.5. By Corollary 1.9, there is a uniform rescaling of the set of
initial data Q so that not only are the rescaled initial data �-good, but so are their
entire (DNLS) evolutions. This allows us to invoke (4.1) from Proposition 4.1 to
obtain the local smoothing estimate (over any unit time interval) for the rescaled
solutions. The estimate (1.4) for the unrescaled solutions follows by a simple cover-
ing argument. Naturally the resulting constant depends on the rescaling parameter;
however, this is dictated solely by Q. ⇤

Proof of Corollary 1.6. Given initial data q(0) 2 L2, we choose Schwartz-class ini-
tial data qn(0) that converge to it in L2. By Theorem 1.1, the solutions qn(t)
converge to q(t) in C([�T, T ];L2(R)). To deduce that q(t) is a distributional solu-
tion, we need another form of convergence to handle the nonlinearity. This can be
obtained with the aid of Theorem 1.5 and a Gagliardo–Nirenberg inequality:
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L
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t,x

. kqn � qkL1
t L2

x

n
k 12qnk2

L
2
tH

1/2
x

+ k 12qk2
L

2
tH

1/2
x

o
! 0 as n ! 1.

Here all norms are taken over the spacetime slab [�T, T ]⇥ R. ⇤
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