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ABSTRACT. We prove that the derivative nonlinear Schrédinger equation in
one space dimension is globally well-posed on the line in L?(R), which is the
scaling-critical space for this equation.
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1. INTRODUCTION
The derivative nonlinear Schrédinger equation

(DNLS) i0hq +q" +1i(lg)?q)" = 0

describes the evolution of a complex-valued field ¢ defined on the line R. Here and
below, primes indicate spatial derivatives.

Physical applications of (DNLS) are reviewed briefly in subsection below.

(DNLS)) to other evolutions of interest in the physical sciences.
1

There, we also discuss certain well-documented changes of variables that convert
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One of the most basic questions we should ask of any model is whether it is
well-posed: Do solutions exist? Are they unique? Do they depend continuously
on the initial data? Without such properties, it is unclear whether the model
is capable of making experimentally falsifiable predictions. The well-posedness
question also forms an important benchmark in our understanding of an equation.
Gaps between well- and ill-posedness results leave open the possibility that there
are basic physical processes — instabilities and/or stabilizing mechanisms — that
remain undiscovered.

The principal goal of this paper is to show that is globally well-posed
in L?(R):

Theorem 1.1. The (DNLS) evolution is globally well-posed in L*(R). Precisely,
there is a jointly continuous map ® : R x L?(R) — L2(R) that agrees with the
data-to-solution map when restricted to Schwartz-class initial data.

It is not wanton abstraction to define the data-to-solution map as an extension
from Schwartz-class initial data; indeed, this is the textbook approach to defining
the Fourier transform on L?(R) and is widespread in nonlinear PDE. The heart of
the matter is to prove key metric properties that allow one to extend the mapping
to general elements of L2 and then to ensure that the extension retains the many
good properties of its Schwartz-class restriction.

A relatively small fraction of this paper would suffice to show that L2-precompact
sets of Schwartz initial data are mapped under the flow to Cy([-T,T]; L*(R))-
precompact sets of orbits. (Here T' > 0 must be finite, but is otherwise arbitrary.)
This would be a new result and it trivially yields the existence of solutions; however,
it goes no way to justifying uniqueness, nor continuous dependence on the initial
data. This thinking helps us appreciate the uniqueness statement embedded in
Theorem no matter how we approximate an L? initial data by a sequence of
Schwartz initial data, the corresponding trajectories will converge and they will
converge to the same limit! In particular, our solutions have the group property.

Theorem implicitly asserts that Schwartz initial data lead to global unique
solutions. This is true. While uniqueness of smooth solutions is easily verified via
the Gronwall inequality, the existence of global solutions for large Schwartz-class
initial data is, in fact, a very recent result! (See the discussion in subsection )
Although the existence of such solutions is not a prerequisite for our methods,
building on this result leads to a much clearer exposition. Moreover, without the
triumphs of these authors, which we celebrate in subsection [I.1] we would not have
had the courage to pursue the results of this paper.

Next, we wish to discuss why Theorem [1.1|considers initial data in L?(R). There
are several reasons that make L?*(R) a natural space in which to study (DNLS).
First, the L2-norm is conserved by the flow; indeed, we have the microscopic con-
servation law

(1.1) tla® + 92 [21m(q'q) + 3lal*] = 0.
X

Second, it is a scale-invariant space: if ¢(¢, ) is a smooth solution to (DNLS)), then
so too is

(1.2) o (t, ) = VA g\t \x)

for every A > 0. Notice that this transformation does not affect the L? norm of the
initial data (nor indeed at any later time).
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Long-standing physical intuition dictates that dispersive equations will be ill-
posed below the scaling-critical regularity. For the case of , this is justified
by the self-similar solutions constructed in [10} 31]. Beyond proving that well-
posedness fails in H*(R) with s < 0, these solutions even show that it fails in
weak-L?, which is a scale-invariant space!

It is a matter of some pride for us that we are able to treat in the
most natural scale-invariant space. It is only quite recently that global-in-time
solutions could be constructed for large data in scaling-critical spaces for any kind of
dispersive PDE. Moreover, we are dealing with a focusing nonlinearity (e.g. soliton
solutions abound). Many focusing dispersive equations do not admit large-data
global solutions; it is typical for wave collapse to occur above a certain threshold
size (as measured in scaling-critical spaces).

There is an obvious scapegoat here: is completely integrable, [25]. How-
ever scaling-critical well-posedness does not seem to be the norm for such models:
it fails for KdV, NLS, and mKdV! The phenomenology of becomes even
more curious when we endeavor to find a quantitative expression of the continu-
ous dependence of the solution on its initial data. As discussed below, we know
that when s < %, the data-to-solution map cannot be uniformly continuous on any
neighborhood of the origin in H*(R). This is quite different from the behavior of
the mass- or energy-critical NLS, for example, where the data-to-solution map is
real analytic (cf. [28]).

It is perhaps better to compare to other models with derivative nonlin-
earity. For the notoriously difficult two-dimensional wave maps equation, for ex-
ample, Tataru [49] proved that the data-to-solution map (defined on scaling-critical
balls) is Lipschitz in lower regularity norms. We will show in Proposition that
this fails for — again appears less continuous! Complete integra-
bility, it seems, is not a stern parent that keeps its flows safe and orderly; rather it
is permissive and allows its solutions to become quite wild before issuing the rebuke
of ill-posedness.

Earlier we singled out the H*(R) family of spaces in our discussion of well- and ill-
posedness. Already the natural prerequisite that the linear Schrodinger equation be
well-posed is quite restrictive; this precludes the consideration of LP-based Sobolev
spaces with p # 2. As we will see below, H*(R) spaces are both the most natural
and most studied classes of initial data; indeed, they arise from the consideration
of conservation laws for . Building on Theorem |1.1} we will prove

Corollary 1.2. (DNLS) is globally well-posed in H*(R) for every s > 0.

Prior work in this direction is discussed at length in the next subsection. It is
evident that Theorem [1.1]| guarantees the existence and uniqueness of solutions for
data in H® with s > 0. That such solutions remain bounded in H?® is known as
persistence of reqularity and may be deduced as a consequence of conservation laws.
To complete the proof of well-posedness, one must upgrade continuous dependence
from the L? metric to the H® metric. As demonstrated in several prior works of the
authors [5], [18] 27] 29], this is easily done if one can verify that H*-equicontinuous
sets of initial data lead to H®-equicontinuous ensembles of orbits.
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Definition 1.3. A subset Q of H*(R) is H*(R)-equicontinuous if for every € > 0
there is a § > 0 so that
sup sup |g(z +y) —q(2)| . <e.
9€Q |y|<s N
This definition extends naturally to any translation-invariant Banach space of
functions on any group. For bounded continuous functions on R?, one recovers
the notion of equicontinuity familiar from the Arzela—Ascoli Theorem. Indeed, this
more general notion of equicontinuity was introduced precisely to formulate the
analogous compactness theorem in LP(R?) spaces; see [42].
We will also need the second key requirement for compactness, albeit only in the
L? setting:

Definition 1.4. We say that Q C L?(R) is tight if

limsup sup / lq(z)|?> dz = 0.
R—oo ¢€Q J|z|>R
The transportation of L? norm is expressed by . As is characteristic of
dispersive equations, we see that the flux of the conserved quantity involves more
derivatives than the conserved quantity itself. While this is an obstacle in our path
to proving tightness, it is also the key property of microscopic conservation laws
that provides for local smoothing estimates.
To formulate local smoothing estimates, we must first agree on how to localize
the solution in space. We will do this through the Schwartz-class function

(1.3) Y(x) := y/sech(gs) and its translates 1, (x) := Y(x — ).

There is nothing terribly special about this choice. The fact that it has slow expo-
nential decay (relative to unit scale) is quite convenient; beyond this, it is merely
the case that this choice has served us well in the prior work [18].

Theorem 1.5 (Local smoothing). Let Q@ C S(R) be both L?-bounded and equicon-
tinuous. For each T > 0, solutions q(t) to with initial data q(0) € Q
satisfy
T

(14) sup [ a1, dt Sro )

HER -T
Corollary 1.6. The solutions constructed in Theorem[1.1 are distributional solu-
tions; indeed, the data-to-solution map is continuous as a mapping of L*(R) into
L3 (R xR).

loc

The first striking thing about Theorem is the fact that the estimate is only
claimed for equicontinuous sets, not balls. This is of necessity, as we will show in
Proposition and reiterates the non-perturbative nature of our analysis.

Other than proving Corollary Theorem will play no role in the analy-
sis. It is not strong enough! For example, it is not sufficient to prove tightness.
For that purpose, we will need the stronger estimate expressed in terms of
our local smoothing spaces X ,1/ % introduced in subsection In essence, these
spaces capture the local smoothing norm living at frequencies || > k. In this way,
(4.2) expresses that there is little local smoothing norm at high frequencies and
consequently, little transportation of the L? norm by the high frequencies.
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1.1. Prior work. Local well-posedness of was first proved in H*(R) for
5> % via energy methods in [50L [51]. Subsequently, this was improved to s > % by
Takaoka in [45] via contraction mapping in X * spaces. The solution so constructed
is a real-analytic function of the initial data.

As explained in [46] §7], the results of [45] show that the data-to-solution map
cannot be real-analytic (or even C?) on H*(R) for any s < 3. Indeed, by analyzing
the family of solitons reviewed in subsection it was shown in [4] that the data-
to-solution map cannot even be uniformly continuous (on bounded sets) in H*(R)
for s < %

Contraction mapping arguments have also been applied in other function spaces.
Local well-posedness of in certain Fourier-Lebesgue and modulation spaces
was shown in [13] and [14], respectively. In both cases, the spaces are based on
s > + number of derivatives. It is noted in [14] that if fewer derivatives are used,
the data-to-solution map cannot be smooth.

We discussed earlier how this irregularity of the data-to-solution map challenges
the naivest notions of complete integrability. It also has profound implications in
terms of methods. For a generation now, work on well-posedness problems for dis-
persive PDE has been dominated by contraction mapping arguments in increasingly
sophisticated spaces, employing ever subtler harmonic analysis tools. By their very
nature, solutions built by contraction mapping will be real-analytic functions of
their initial data. The poor regularity of the data-to-solution map in the setting of
Theorem is a strong signal that very different methods will be needed.

Let us turn now to the question of global well-posedness. The standing para-
digm here is to extend local-in-time results by employing exact (or approximate)
conservation laws. As a completely integrable system, has a multitude of
exact conservation laws. The most basic three are

(15) M(q) = / lg()|? dz,
(1.6) H(g) =1 / i(q? — a¢) + gl dz,
(L.7) Hy(g) = / 1P + 3ilqP(ad — a¢') + blal° de.

The functional H(q) will be called the Hamiltonian since it generates the (DNLS)
dynamics in concert with the Poisson structure

(1) (F.6) = [$(38) + 3 (59) da,

The problem with these conservation laws is that they are not coercive for large
initial data, specifically, when M (q) is large. It was observed in [19] that coercivity
does hold if M(q) < 27, which was used to obtain global well-posedness in H!(RR)
under this restriction. The subsequent works [7, 8, [37] [46] ultimately led to H?®-
well-posedness for s > 1 under the M(g) < 2 restriction.

Later, Wu showed that the 27 barrier was illusory and that a priori bounds could
be obtained under the weaker restriction M(q) < 4m; see [55 56] and [11]. Global
H*-well-posedness for s > § and M (q) < 47 was then shown in [15].

The 47 barrier is certainly not illusory: Algebraic solitons (see (L.26)) are explicit
solutions of with M (q) = 4m, but for which all other polynomial conserva-
tion laws vanish. Applying the symmetry to these algebraic solitons, we see
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that the polynomial conservation laws alone cannot provide the kind of control that
is needed; see the discussion surrounding @ Because of such obstructions, the
behavior of large-data solutions to @ was for a long time a terra incognita.

The first definitive evidence that large data do not blow up was provided via
the inverse scattering approach; see [20] 22| 23 [34] 135 40} [41] [44]. Among these
works, we wish to single out [23] as not only constructing solutions (without any
spectral hypotheses), but also for proving continuous dependence on the initial
data. Concretely, they proved that is globally well-posed in H??2(R) =
{f € H? : 22f € L?}. Combined with the local-in-time arguments in [19], this
result shows that is globally well-posed in Schwartz space.

Strong spatial decay requirements are a prerequisite for the inverse scattering
approach as we understand it today. Currently, there is no satisfactory theory of
forward nor inverse scattering in any H*(R) space (not only for , but also
for KdV, NLS, and mKdV). On the other hand, one of the major strengths of
the inverse scattering method is its ability to describe the long-time behavior of
solutions. Indeed, a soliton resolution result for generic data in H??(R) was proved
in [21]; see also |22 [36].

The large-data impasse in Sobolev spaces was dramatically broken by Bahouri
and Perelman in the recent paper [3]. By synthesizing the existing well-posedness
theory with an in-depth analysis of the transmission coefficient, they proved that
(DNLS) is globally well-posed in H/2(R).

For what follows, it is more convenient to discuss the reciprocal of the trans-
mission coefficient and to define this quantity, a(k; ¢), via a Fredholm determinant.
For k > 0, we first define

(1.9) A(kiq) == (k—09) 2q(k+0)"2 and T(s;q):=(k+0) 2q(k—0)" 2,

which extend to k£ < 0 via A(—k;q) = —I'(x; ). By Lemma [2.5]below (reproduced
from [30]), both A and T" are Hilbert—Schmidt operators; thus we may define

(1.10) a(ir; q) = det[1 — irAT.

This expression originates from a perturbation determinant based on the Lax
pair for discovered in [25]. In particular, it is conserved under the (DNLS))
flow; see [32] for a proof of this.

It follows from that k — a(k; q) extends to a holomorphic function in both
the upper and lower half-planes. While this extension was essential for [3] and the
paper [17] that we will discuss shortly, we will not need this here and so restrict
our attention to the case where k = ix is purely imaginary.

The central problem overcome by [3] was the ineffectual nature of the conser-
vation laws attendant to ; however, this solution did not provide new con-
servation laws with which to fill the void. In particular, [3] does not provide a
priori control on lower regularity norms, nor the means to address the question of
equicontinuity in such spaces.

Using the ideas of [3] as a jumping-off point, the paper [17] shows that
does preserve L%-equicontinuity. Note that this assertion takes the form of an a
priori bound on Schwartz-class solutions since solutions were not known to exist
for merely L? initial data. In fact (and this will be important for us), the paper
[17] shows that this equicontinuity property is enjoyed by any flow preserving the

perturbation determinant (1.10) and so by the entire (DNLS) hierarchy:
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Theorem 1.7 ([L7]). Let Q C S(R) be L?-bounded and equicontinuous. Then
(1.11) Q. = {q € S(R) : a(k; q) = a(k; §) for some G € Q}
is also L?-bounded and equicontinuous.

A key motivation for addressing the equicontinuity question in [17] is that it
unlocks a large number of tools in the study of ; it was this realization that
lead [27] to the explicit formulation of this equicontinuity problem.

The first tools unlocked by the equicontinuity property are low-regularity con-
servation laws, specifically conservation laws at the level of H® for 0 < s < % Such
laws were first derived in [32] following the approach of [30]; however, they were
only applicable to small solutions. The realm of applicability was first raised to
M (q) < 4m in [27] by proving equicontinuity in that regime and then to arbitrarily
large solutions in [17].

Equicontinuity also unlocks higher regularity conservation laws for large data. In
[27], L?-equicontinuity and the conservation of Hz(q) are shown to provide global
H'(R) bounds. In [2], the result of [17] is used as the base step of an inductive
argument to cover H*(R) spaces for all s > % This brings closure to the question
of coercive conservation laws: we now know that H®-bounded sets of Schwartz-class
initial data lead to H®-bounded solutions for all s > 0.

To prove local smoothing, we need microscopic conservation laws such as (L.1),
rather than mere conserved quantities. Note that itself is useless for this
purpose because the current is not coercive. Already for the proof of , we
need scaling-critical coercive microscopic conservation laws and the full proof of
well-posedness will require even more subtle estimates.

Just such microscopic conservation laws were worked out in [47] and will be
recapitulated in Proposition The structure of these laws closely resembles
those of the NLS/mKdV hierarchy presented in [18]. There is a good reason for
this: the Kaup—Newell Lax operator for can be written as

L1 0| [k=0 kg
(1.12) L(riq) = [0 —1] [i\/ﬁq n+a} :
which closely resembles the AKNS-ZS Lax operator of the NLS/mKdV hierarchy.
We will only discuss this operator for k € R. Throughout this paper,

Vi =1iy/|k| when &k <0.

There is one more prior result that we wish to discuss, namely, global well-
posedness in H'/6(R). This was first shown in [27] for initial data satisfying M (q) <
47, a restriction that was removed in [17]. This result was shown using the first-
generation method of commuting flows introduced in [29] and reviewed below.

1.2. Description of the method. The principal problem we must address in or-
der to prove Theorem is this: given 7> 0 and an L2-convergent sequence ¢, (0)
of Schwartz initial data, show that the corresponding (Schwartz-class) solutions
qn(t) converge in L?(R) uniformly for [¢t| < T.

Given the breakdown of uniform continuity of the data-to-solution map (on
bounded sets) and the further instabilities highlighted in Proposition it is
difficult to conceive of a method of controlling differences of solutions in terms
of their initial data. It was to address this specific challenge that the method of
commuting flows was introduced in [29].
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To explain the method of commuting flows, let us imagine that we wish to prove
well-posedness of the flow generated by a Hamiltonian H in L?; in our case, H is
given in . Central to the method is the construction of a one-parameter family
of Hamiltonians H, whose flows satisfy the following three properties:

(1) they commute with the H flow,

(2) they are well-posed in the target well-posedness space L?, and

(3) they converge to the H flow as xk — oo.

Let us temporarily take for granted the existence of the family of Hamiltonians
H,. satisfying these properties. Their construction for is quite involved
and will be discussed shortly. Demonstrating that they satisfy the three properties
requires almost the entire bulk of this paper.

Property (1), namely commutativity of the flows, can be expressed as

etJVH ° esJVH sJVH tJVH _ eJV[tH—i—sH,J

r=e "oe for any s,t € R,

where we adopt the exponential notation for the flow of a vector field and write JV
for the symplectic gradient. The relevance of this relation to demonstrating that
a sequence of (Schwartz) solutions ¢, (t) is Cauchy in C([-T,T]; L?) may be best
understood via the following identity:

qn(t) - Qm(t) = [etJVHNQH(()) - etJVHKQm(O)} + [etJV(H_HK) - Id] © etJVHNQn(O)
(113) _ [etJV(HfH,{) _ Id] o etJVHNqnl(O).

Property (2) is well-posedness of the H,, flows. This implies that the first term
on the right-hand side of converges to zero as n,m — oo for each fixed k. In
order to prove that the sequence ¢, (t) is Cauchy in C([-T,T]; L?), it remains to
show that
(1.14) limsup sup sup || [e”v(H*H“) - Id] o e”mq“qn(O)HL2 =0.

K—00 n |t|§T
We will refer to the flow generated by the Hamiltonian H — H,, as the difference
flow. Relation embodies the statement that as x — oo, the difference flow
converges to the identity. This is a quantitative interpretation of property (3).

In implementing the method of commuting flows, we have come to regard prop-
erties (1) and (2) as selection criteria for the H, Hamiltonians, leaving property
(3) as the key analytical difficulty that must be faced.

In our experience, has always proved to be a very difficult problem. First,
we must acknowledge that the difference flow inherits all the strong instabilities
of the original flow. As the H, flow is typically a diffeomorphism, it cannot undo
these problems. The one big advance, however, is that we no longer need to control
differences of solutions: ¢, and g, are now completely decoupled. This is partially
off-set by the fact that the initial data for the difference flow is not ¢, (0), but rather
e!?VHeq, (0) where t varies over [T, T]. As a result, we will need to show that the
difference flow converges to the identity uniformly across sets of initial data about
which we know very little.

As in previous works, we will exploit that {e!/VH~q, (0) : n € N, [t| < T'} inherits
equicontinuity from the precompact set {¢,(0)}. This follows from Theoremand
the fact that the H, flows constructed below conserve a(ik;q). Refracted through
this perspective, property (3) becomes the following assertion:

(1.15) lim sup sup sup || [¢"/V =) —1d] (g) [ . = 0
K—00 q€EQ |t|§T
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for any L?-bounded and equicontinuous set Q@ C S(R).

It is natural to seek to prove by estimating the difference-flow vector field,
that is, the time derivative under this flow. As a prerequisite, one needs to be able
to make sense of the nonlinearity appearing therein — this includes the nonlinearity
under the H flow, which for is (|q%q)’

The method of commuting flows was applied to in [27], treating initial
data in H'/6. Conservation laws were used to bound the resulting solution in
L H'/6, which allowed the authors to prove with L? replaced by H~*. The
lost derivatives were then recovered using equicontinuity, specifically, the general
statement that if a sequence g, converges in H? and is equicontinuous in H*® for
s > o, then it converges in H®. The relevance of H'/6 is that it embeds into L?
and this allows us to interpret the nonlinearity (|q|?q)’ as an element of L H? for
any o < —%.

Already in the first application of the method of commuting flows in [29], which
was for KAV in H~!, it was not possible to estimate the difference-flow vector field
directly. To address this problem, the authors introduced a gauge transformation
(a diffeomorphic change of unknown), whose difference-flow dynamics they could
estimate pointwise in time (albeit with a sizable loss of derivatives, which were then
recovered using equicontinuity).

One advantage of this first-generation method of commuting flows, where the
difference flow (with or without a gauge) is estimated pointwise in time, is that it
works equally well for problems posed both on the line and on the circle. However,
there are models (such as NLS and mKdV) where the threshold regularities for well-
posedness are different in the two geometries. The treatment of these equations in
[18] necessitated the introduction of a second-generation method of commuting
flows, based on new local smoothing and tightness estimates.

The job of local smoothing estimates is to make sense of the vector field as a
spacetime distribution in instances where this cannot be done pointwise in time.
As the central problem is to control the difference flow by estimating the size of
the corresponding vector field, one must develop local smoothing estimates for this
flow. This is almost paradoxical: local smoothing is an expression of high-frequency
transport; however, our ultimate goal is to demonstrate that the difference flow con-
verges to the identity. The demonstration of sufficiently strong smoothing estimates
for the difference flow (see Proposition requires a vast amount of work;
we will return to this topic after the Hamiltonians H, have been introduced.

Using local smoothing, we will only be able to prove convergence of the difference
flow to the identity locally in space (cf. Theorem . The role of the second new
ingredient, tightness, is to overcome this limitation. As both radiation and solitons
move under the flow, establishing tightness is challenging. For
this is accomplished in Proposition below and relies on the subtle control of the
high-frequency transportation provided by .

The H, flows and their properties. To introduce the Hamiltonians H, for
(DNLS)), we return to the perturbation determinant ((1.10)), or rather, to the closely
related quantity

(1.16) A(k; q) == —sgn(k) logla(ir; )] = —sgn(k) log det [1 — ikAT].
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As discussed above, a(ix;q) is conserved by the flow. This guarantees
that both the real and imaginary parts of the (complex) functional A(x;q) Poisson
commute with the (DNLS) Hamiltonian H(q).

The inclusion of sgn(k) in ensures that A(k;q) has the same asymptotic
expansion as k — £o0o. This expansion shows that A(k;q) encodes all the polyno-
mial conservation laws of (DNLS)); it begins

(1.17) Al a) = $M(q) + & Hlg) — g Ha() + O (%)
for ¢ € S(R). Rearranging this formula leads one to believe that
(1.18) H.(q) := 4k Re A(k; q)

is a good approximation for the Hamiltonian H(q), at least as kK — oo.
Moreover, the Poisson commutativity of Re A(k;¢) and H(q) noted above guaran-
tees that H,, and H also commute. This is the sought-after property (1) from our
overview of the method of commuting flows.

The preceding discussion has been predicated on the non-vanishing of a(ik;q),
so that one may safely take the logarithm in . This issue is discussed in
[27], where it is shown that A(k;q) is well-defined provided & is sufficiently large;
however, (by necessity) the restriction on & is not dictated solely by the size of g,
but also by its frequency distribution.

Informed by the many computations ahead of us, in this paper we adopt the
expedient of using to rescale solutions ¢ so that we may impose a single
restriction on s, namely, || > 1. The goal of the rescaling is to make g(¢) small at
frequencies |¢] > 1; such smallness is conveniently expressed through the following
notion:

Definition 1.8. Fix 0 < ¢ < 3. Given ¢ > 0, we say that Q C S(R) is d-good if it
is L?-bounded, L?-equicontinuous, and it satisfies

€17 1a(&)1? 2
1.19 sup/idggé .
19 b urer
Although the parameter o could be frozen once and for all, say o = i, we believe

that retaining the symbol o makes it easier to check our computations.

As reviewed in Section |3] the series converges uniformly on all §-good sets
(once ¢ is small enough). Local well-posedness of the H, flow for §-good sets of
initial data follows from Picard’s Theorem because the corresponding vector field
is Lipschitz. Moreover, these solutions remain Schwartz-class and conserve A(s; q)
for all |»| > 1. These assertions were shown in [27] §5].

In order to construct a global-in-time H, flow, we must ensure that orbits remain
d-good as time progresses. This is accomplished by combining the fact that the Hy
flow preserves a(is; q) together with the following consequence of Theorem |1.7

Corollary 1.9. Let Q C S(R) be an L%-bounded and equicontinuous set. Given
§ > 0, there exists A = A\(Q, d) so that the set

Q= {\/XQ(AI) € S(R) : a(is; q) = a(is; q) for some G € Q} s 6-good.

Before turning to the difficult topic of analyzing the difference flow, let us pause
to summarize the preceding discussion as a theorem. In particular, this theorem
encapsulates properties (1) and (2) of the H,, flows.
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Theorem 1.10. There exists §g > 0 sufficiently small so that for any 0 < § < &g
and L?-bounded and equicontinuous set Q C S(R), the H, flow is globally well-posed
on the set Q) in the L? topology, where \(Q, 8) is chosen according to Corollary @
In particular, solutions remain of Schwartz-class and remain in the set Q7). More-
over, the flow also preserves the set Q) and commutes with the H, flow.

All the assertions made here about the H, flow were proved in [27] contingent on
the question of equicontinuity that was subsequently resolved in [17]. As discussed
earlier, the existence of global Schwartz-class solutions to follows from
[19) 23]. That such solutions conserve the transmission coefficients is a
classical result.

Analysis of the difference flow. This occupies the bulk of this paper and re-
quires many new insights.

To understand the difference flow, we must first give the explicit form of this
evolution. This relies on the functional derivatives of H,, which are easily deduced
from those of A(k;q) given in .

The functions g12(x) and g1 (x) appearing in are the two off-diagonal entries
of the Green’s function corresponding to the Lax operator evaluated on the
diagonal x = y. Together with a third component 7(z), these functions will be
recurrent characters in our story and Section |3|is devoted to a detailed elaboration
of their algebraic and analytic properties.

Combining the functional derivatives with the Poisson structure , we find
an explicit formula for the difference flow evolution:

(1.20) iga=—d"—i(ld?0) + 26 [Vrg1a(r) — V=rgia(—r)].
The goal of this section is to explain how to prove for the difference flow
given by .

Unlike all other terms, the nonlinearity (|q|?q)’ appearing on the right-hand
side of does not make sense pointwise in time for ¢ € C;L? and so we
are immediately tasked with finding a remedy. Despite strenuous efforts, we were
unable to find a gauge transformation that would allow us to estimate the resulting
difference-flow vector field pointwise in time. Based on previous successes with the
diagonal Green’s function [18] [29], it is natural to imagine that this might be a
satisfactory gauge. This idea is refuted by 7 as explained there. Therefore,
we are forced to adopt the second-generation method of commuting flows.

As discussed earlier, the characteristic features of the second-generation method
are the use of local smoothing estimates to control the difference flow and the re-
sulting necessity of showing that compact sets of initial data lead to tight ensembles
of orbits under the flow, over bounded time intervals. The proof of the
tightness statement relies on refined local smoothing estimates for the flow.

Local smoothing estimates are a direct expression of the dispersive nature of
an equation: high frequencies travel rapidly and so spend little time in any fixed
spacetime region. As such, they originate from the linear/dispersive part of the
equation.

As discussed in [48], there are two standard ways for proving local smoothing
estimates for a linear equation: via spacetime Fourier transforms and via mono-
tonicity identities. When the nonlinearity may be treated perturbatively, local
smoothing estimates can be transferred directly from the underlying linear flow to
the full nonlinear equation. Correspondingly, it matters little what method one uses
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for establishing the linear estimates. In the non-perturbative regime considered in
this paper, we have no choice but to pursue an approach based on monotonicity
identities for the full nonlinear flow.

All monotonicity-type identities we know originate from microscopic conserva-
tion laws of the form

(1.21) Op+ V- T=0.

In one spatial dimension for example, this implies

(1.22) at/tanh(x)p(t,x) dzx = /sechz(x)j(t,x) dz.

In the rare event that one can find such a law with j > 0, (1.21)) constitutes
true monotonicity. It is more reflective of actual practice however to find a coercive
term j; in the current and then integrate ((1.22) to obtain

T
/ /sechz(x)jl (t,z)dxdt <2 sup ’/tanh(x)p(t,x) d:z:‘
-7

[t|I<T
T
(1.23) +[T/sech (x)[j1 — J1(¢t, z) dz dt.

The utility of this inequality rests on finding a suitable microscopic conservation
law. First, one must find a density p whose integral can be controlled uniformly in
time. Second, one must be able to identify a coercive part j; of the current that
controls the sought-after local smoothing norm. Third, one must be able to control
the contribution of j; — j.

For our analysis we need two one-parameter families of microscopic conservation
laws, one for and one for the difference flow . These can be found in

3.5)

Proposition [3.5] with the density given in . Local smoothing for is
proved in Proposition and for the difference flow in Proposition

The first task is to estimate the integral of the density p in uniformly in
time. This is achieved in Lemma 4.2 The complicated structure of this density
makes this a nontrivial task. Moreover, to prove tightness of orbits under the
(DNLS) flow we need the refined local smoothing estimate (|4.2)), which requires us
to prove that the contribution of p converges to zero in the high-frequency regime.
The analysis of p in Lemma[4.2]relies on the detailed study of the diagonal Green’s
functions carried out in Section [31

Our second task is to identify a coercive part in the currents appearing in Propo-
sition In our analysis, the quadratic terms jgl]\ms and j Lﬂf of the currents will
play the role of j; in . Although these are not sign definite, we are able to
demonstrate the requisite coercivity up to acceptable errors. For the treatment
of jg%\ms, see the discussion surrounding (4.32). Extracting coercivity from jc[fi}cf
requires considerable regrouping and the estimation of many error terms and com-
mutators; see the treatment of .

The third and most difficult part of obtaining local smoothing estimates is con-
trolling the remainder of the current j; — j. In defocusing problems, the most dan-
gerous parts of j; — j typically have a favorable sign. When the problem treated
is subcritical, the second term on RHS can be controlled by interpolating
between the LHS and a priori conservation laws. A small data hypothesis
can also provide the smallness needed to bound the contribution of j; — j by a
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small fraction of LHS(1.23)). The problem studied here has none of these favorable
features. In fact, any of these features would yield local smoothing estimates that
depend only on the norm of the initial data; this is ruled out by Proposition [1.11

In our case, the remainder j; — j comprises the quartic and higher order terms
j][Z)ZI\?iS and j Ef?]. There is an enormous number of contributions that need to be
controlled. Moreover, these cannot be estimated directly using the L? norm of ¢
since they involve both derivatives and higher powers of ¢. Instead, we endeavor to
control these contributions using local smoothing and a bootstrap argument.

As we are dealing with a large-data scaling-critical problem, there is no easy
source of smallness for closing the bootstrap. This is one of the key analytical
challenges we must overcome in this article. The subcriticality of the models treated
in [18] expressed itself through the appearance of negative powers of the large
parameter , which provided the requisite smallness. For , we are forced to
simultaneously exhibit two copies of the local smoothing norm (to be bootstrapped)
and a third factor encoding equicontinuity (the source of smallness) for every single
error term. To achieve this, we must identify and exploit many subtle hidden
cancellations in the flow — see, for example, the carefully curated decompositions

[>4] -[>4] R . .
of jiNis and jix appearing in and in the proof of Lemma respectively.

The analysis of these error terms relies on a large body of work built up in
the preceding sections of the paper. In Section [2] we introduce the norms used to
quantify both equicontinuity and local smoothing. We also need to introduce and
analyze a Banach algebra B of bounded multiplication operators on our equicon-
tinuity spaces. This section also contains a suite of basic nonlinear estimates used
later in the paper.

Much of Section [3]is devoted to proving estimates on the diagonal Green’s func-
tions. These arise in several places in our analysis: not only are they an integral
part of the microscopic conservation laws, but they also appear in because
they encode the functional derivatives of A(k;q). The culmination of Section [3|is
the estimation of the diagonal Green’s functions and key nonlinear combinations
thereof in the equicontinuity and the local smoothing spaces. We also elucidate the
structure of these functions in terms of a new class of paraproducts introduced in
this section; see, for example, Lemma [3.11] and Proposition

A second class of paraproducts which incorporates the localizing weights intrinsic
to local smoothing estimates is introduced in Section[d] A key feature of our analysis
is demonstrating that one may distribute these localizing weights to all entries in
these paraproducts. This is important since any one of the input functions in a
paraproduct may be the highest frequency term and so will need to be estimated
in the local smoothing norm. The culmination of Section [4]is the proof of the local
smoothing estimates for the (DNLS|) flow stated in Proposition

Tightness of orbits for solutions to is proved in Section [5| This argument
is quite short because of the strength of the estimate proved in Section

Section |§| contains a proof of local smoothing for the difference flow . It is
the most demanding part of the paper and relies on all the analysis that precedes
it. Indeed, the needs of this section dictated much of the prior development.

Section [7] combines all that precedes it to prove convergence of the difference
flow to the identity, locally in space. Finally, a short Section [8|deduces all the main
theorems from these prerequisites.
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1.3. The soliton menace. In this subsection we present the family of soliton so-
lutions to (DNLS|) and use them to exhibit some of the instabilities of this equation.
For each value of § € (0, §), the function

[cos(6) cosh(z) — isin(f) sinh(z)]? o cot(20)
[cos2() cosh? (z) + sin®(0) sinh? (z)]2
provides initial data for a soliton solution to (DNLS]). In understanding the shape of
this function, it is useful to note that the central factor can be written as Z3/|Z|*
with Z = cos(0) cosh(x) — isin(f) sinh(z) = cosh(x — i6). The soliton with this
initial data takes the form

(1.24) q(t,z;0) = qo(z + 2 cot(20)t;0) e cosec? (26)

qo(x;0) := /2sin(20)

Further solitons can be obtained by translation, phase rotation, and scaling.
The 6 — 0 limit of this solution exists and is identically zero. Indeed

(1.25) lgoI7> = 86.

In the form we have presented, the  — 5 limit does not exist. However by rescaling
in accordance with (|1.2), a limit can be recovered, namely, the algebraic soliton:

2(1 = i) ipyo
— ',
(14 ix)?
This solution embodies a key obstruction to coercivity of the polynomial conser-

vation laws. Indeed, while M (q,) = 47 all other polynomial conserved quantities
vanish. These properties also hold for all rescalings (1.2)) of ¢,. However,

(1.26) q(t, ) = qo(x — t)e/*  with initial data g, (z) =

(1.27) lgarlls = 0 as A — oo

for any s > 0.

To see that g, also witnesses an obstruction to using the perturbation deter-
minant to prove equicontinuity we note that a(ik;q.x) = 1 for all A > 0.
However, {gq,» : A > 0} is not an equicontinuous family.

Let us now turn our attention to the soliton with 6 = 7, which simplifies to

2¢t[cosh(z) — isinh(z)]?
1.28 s(t @) = 2
(1.28) 4:(t:) [cosh?(x) + sinh? ()]

The subscript s appearing here emphasizes that this is a stationary soliton. (While
it does oscillate in time, it does not propagate through space.) This property makes
it the archenemy of local smoothing and Strichartz estimate. In particular, our next
proposition shows that the inequality does not hold for sets  that are merely
L?-bounded. This further emphasizes the non-perturbative nature of the
flow in the L? topology.

Proposition 1.11. Local smoothing and Strichartz morms cannot be controlled
solely by the L? norm of the initial data. Concretely, there is a sequence of solutions
Gn to (DNLS) satisfying M(qy) = 27 but
1 1
/ I se(:h12(:v)qn(t,as)||i[1/2 dt — oo and / / lgn(t, 2)|® dz dt — oo
—1 @ —1JR

as n — o0.
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Proof. We choose the g, to be rescalings of ¢ according to (|1.2) and observe that
M (gs,n) = 2 but

1 1
/ Isech'?(2) g (t,2)|%1 2 dt ~ A and / / |gsa(t, )| dedt = X2 O
—1 ® —1JR

As the last topic of this section, we demonstrate another instability inherent
to . Concretely, we will show that it is not possible to prove uniqueness
of solutions via Gronwall’s inequality in lower regularity spaces. This is a widely
successful uniqueness technique and a key ingredient in constructing solutions via
compactness/uniqueness arguments; the Gronwall inequality yields Lipschitz de-
pendence in H® of the data-to-solution map. However, our next proposition shows
failure of Lipschitz dependence, no matter how negative one chooses s.

Proposition 1.12. Fiz s < 0. There are times t,, — 0 and pairs of solutions q,

and G, to (DNLS|) so that

n tn _~n tn s
129)  flgallze + ldnllze » 0 bur 19U = Gnltn)lm

4 (0) — @n (0)]] 12

Proof. We choose ¢, and §, to be distinct rescalings of the soliton solution ([1.24)
with parameter 6,,. We first choose 8,, — 0 to ensure that their L2 norms converge

to zero; see (|1.25)).

The key idea to exploit is the fact that ¢, and ¢, travel at different speeds. To
ensure that their separation at time ¢,, diverges, we require that

(1.30) An — Ap|cot(20,)t, — 00 yet £, -0 as n— oo.

In order to compute the overall size of the norms at the times 0 and ¢,, it is
convenient to compute the Fourier transform of a soliton exactly. The key identity
is this:

; -6
(1.31) / w e dr = Lﬁ [cos(26) — &sin(26)],
cosh”(x + i) cosh(5¢)
which follows by a simple residue computation. It follows from this that §o(§) has
a simple zero at the origin, yielding three cases: s < —%, s = —%, and s > —%.
In the regime where (1.30) and |\, — 5\n| < A, both hold, elementary (but
lengthy) computations show

25 190(0) = @Ol ar-ey < an (Ol 2 n (tn) — () 11

With this information it is not difficult to choose the necessary parameters. O

1.4. Equivalent models and their physical origins. Let us begin by noting
that does not admit a focusing/defocusing dichotomy: the sign of the
nonlinearity can be reversed by simply replacing x — —z. Likewise, the relative
coupling of the three terms in can be freely adjusted by rescaling the space
and time variables.

To the best of our knowledge, first appears in the literature as a model
for the propagation of large-wavelength Alfvén waves in plasma. For a further
discussion of this scenario, including how this effective model informs our under-
standing of the stability of such Alfvén waves, see [26] [39] 43] [53].
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It is easily seen that (DNLS) does not inherit the Galilean symmetry of the linear
Schrédinger equation. Indeed, if g solves (DNLS), then

(1.32) o(t,x) = e R (4 o — 2kt)
solves
(1.33) i0pv + " +i(|v|*v)" + klv|?v = 0.

Here k € R is fixed but arbitrary.

This computation indicates that the traditional cubic nonlinear Schrédinger
equations (both focusing and defocusing) are ‘embedded’ inside in the limit
of large modulation. While we know of no mathematical work on this embedding,
we will describe two physical systems which speak to this phenomenology.

The combined nonlinearities of arise naturally in nonlinear optics. While
negligible in many experimental scenarios, the derivative nonlinearity becomes
physically important in the propagation of short pulses (cf. [1} [52]).

One early application of the cubic nonlinear Schrédinger equation was to model-
ing amplitude modulations of Alfvén waves, with the unknown function describing
deviations from a plane wave. (In our earlier discussion of as model of
Alfvén waves, ¢ describes the entire amplitude of the wave, not fluctations.) One of
the key assumptions in deriving this model is that the characteristic length of the
modulations far exceeds the carrier wavelength. As argued in [38], the combined
nonlinearities of allow one to extend the realm of applicability of this effective
model to include cases where these two length scales are almost comparable.

As part of a search for completely integrable PDE, a different form of derivative
nonlinear Schrodinger equation was uncovered in [6], namely,

(1.34) i0rq +q" +ilg*q = 0.
It was subsequently discovered (see, e.g. [564]) that this model can be obtained from
(DNLS)) via a change of variables. The change of variables in question takes the

following form:

x

(1.35) wit, z) = q(t,2)e™®  with ®(t,z) = / lq(t, )2 dy

— 00

and v € R fixed. With a little work, we find that w satisfies
(1.36) iwy +w" = 2i(v — D|ww’ +i(2v — Dw’w’ — Lv(2v — 1) |w|*w.

When v = 3, we recover (.34). When v = 1, we obtain the Gerdjikov-Ivanov form
of derivative NLS; see [12].

The more general nonlinearity presented in (1.36)), as well as that arising by
further incorporating the Galilei transformation7 appears naturally in the
study of the Benjamin—Feir instability in the theory of water waves; see [9} [24] [33].

It is easy to see that both changes of variables, and ([1.35), are real-analytic
diffeomorphisms on L?(R); indeed, they are diffeomorphisms on H*(R) for every
s > 0. Thus Theorem guarantees the following:

Corollary 1.13. The evolutions (1.33)) and (1.36) are globally well-posed in L*(R).

When we look at (1.36]), it seems all the more surprising that large data GWP
holds, since it fails for the focusing quintic nonlinear Schrédinger equation!
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2. PRELIMINARIES

Throughout, we will use scaling-homogeneous Littlewood—Paley decompositions
with frequency parameters N € 2%. Concretely, choosing a smooth, non-negative
function ¢ supported on [¢] < 2 with ¢(§) = 1 for |£| < 1, we define P<y as the
Fourier multiplier with symbol ¢(§/N) and then Py = P<y — P<y/2. Observe that

1= ZPN.

Ne2zZ

Such decompositions will be ubiquitous and we often adopt the more compact
notations fy = Pnf , f<y = P<yf, and fsny = [1 — P<ylf.

As a similar expedient, we often write Fourier multipliers under their arguments.
For example, for k > 0,

Vi = (47 =917 % and

For s € R and |x| > 1 we define the Sobolev space H as the completion of S(R)
with respect to the norm

gl = / (46 + ) |G(O)[? de,

72@18 = (2k = 3)71q.

and write H° = HY.
Associated to the localizing function 1, defined in (1.3)), we have

@1 [da-ptde= S andso f@) = [ f@ia d

2.1. Equicontinuity spaces. To quantify the equicontinuity, for o,s € R and
|k| > 1 we define

Y o 2(s—0)|¢|20
@2 Ny, = WPONR R = [ g ) P
and take EY = EY ;.

We write B for the space of bounded functions that belong to the homogeneous
1

Besov space B; - We equip this space with the norm
1
£l = [l fll= + sup NZ|fn] 2.
Ne2?

This space is an algebra; see Lemma [2.3] Moreover, by Lemma [2.4] multiplication
by functions in B defines a bounded operator on our equicontinuity spaces.

Our next lemma shows how the spaces E7 . allow us to track the equicontinuity
properties of orbits.

Lemma 2.1. Let Q C L? be bounded and equicontinuous. For o > 0 we have

(2.3) lim sup ||¢||gs . = 0.
K—00 qu ’

Proof. The claim follows from the following estimate
lallss, S lasnlleg, + lasnlleg, S () Nallee + lasnllzz,

by choosing the frequency N € 2% appropriately. O
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Lemma 2.2. Fors>o >0, S €R, and k > 1,

(2.4) / gl 52 2 e k2 gl
Further, if K > 2 and I, = [1, §] U [2k,00) then
(25) [ Ml 2 4 o Ll

Proof. Decomposing into Littlewood—Paley pieces,

2(048),,2(s—0)
| el 2~ > | el
K

2(o+8)
~ Z o lanllze ~ w27 lall e o
N

In order to integrate in 3¢ one considers separately the cases N < k and N > &,
breaking the integral into the regions [k, N] and [N,o0) in the latter case. The

estimate is proved similarly. O
Lemma 2.3. For0 <o < % and » > 1 we have the estimates

(2.6) Ifgllz < Ifllsllglls,

(2.7) Iflls S 52 [l flleg, .+ 11F lleg, ),

(2.8) 1flls S I fllzee + 1 Mz

Proof. To verify 7 we employ the basic decomposition

(2.9) Pn(fg) = Pn {f~N95N +fsngon + D fMgM]

M>2N
From Bernstein’s and Holder’s inequalities, we see that
1
I(fo)nllee S I fmnliellggnlloe + [ fsnllizellganllee + Y N2 | farlle2llgarl e
1 M>2N
SN2 flsllglls
from which (2.6) then follows easily.
The estimate (2.7)) follows from Bernstein’s inequality:
Ifllz S 57 > N*|lfnllpg, . +27 > N3 fillpg, . < RHSET).
N<] 5| N>|x|
Turning now to (2.8), we recall that the convolution kernel associated to Py is
a Schwartz function which integrates to zero. Indeed, it can be written in the form
NK'(Nz) for some Schwartz function K. Integrating by parts, we find

N#|fyllp: < N3 /K(N(a: =) f'(y) dy

<Kzl e S Nz O
L3

Lemma 2.4. Let 0 < 0 < 2, 0< s <o+1, and ||,k > 1. Then we have the
estimate

(2.10) sl flles, + 1 e, ~ (22¢ = O) fll g,
and the product estimates
(2.11) If9lles, S Iflleg, lglls,
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(2.12) Ifglles, < « 19l =

20,3

+19/lles, .|
In particular, if ¢’ € S we have the localization estimate
(2.13) leflles, So lflles,,-
Proof. The estimate follows from
12 = 0) fll e, = Al [ I s
For the product estimate , we have

2(s—o) nj20
e Z ﬁ”PN(ﬁg)HQL?’
N

Decomposing as in (2.9) and using the Holder and Bernstein inequalities, we esti-
mate

K2(s—0) N20
Ifol%s <Z e e T

k2(s—0) N20 1 2
+ X | > MEfullze] gwl3e

M<&N
z(e o) nT20 1 2
+Z SRS Nl lgearlzz] -
M>2N

The first summand is easily seen to be acceptable. To estimate the second
summand, we first sum in N and then apply Schur’s test:

2(s—o) A720 1 2
S M]3
N M<&N

2(s—o) N2o M M
S lals Z W\\fMlHHHszHL?
My <My<N

1
e
Slalls > iME )
2

My <M, rtMz)*

Be, | fas B,

2 2
. gl
Arguing similarly, we estimate the remaining summand by

2(s—0o) A720 1 2
S [ S NI lzellgearlize]
N

M>2N

1 1
2(s—0) N20+1 T2 T2
Sholy 3 SN R gl fava e

N<M; <M,
+ M.
Slally Y %HMHE Ifazz ez,
My <M, (rtM)°

< IIfII%gwllgllzg

The estimate follows as a corollary of (2.11) and (2.7). The localization

estimate - follows from (2.11) and ({ . O
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2.2. Operator estimates. We begin with the basic Hilbert-Schmidt bound for
the operators A(g) and I'(q) introduced in (1.9). This estimate appeared already
in [30, Lemma 4.1]:

Lemma 2.5 ([30]). For q € L? and x > 0 we have

2 Q)
(214) A2, = T2, ~ / tog(d + &) —2&)!

/4,12 + 52
Using this lemma as our basic tool, we obtain the following basic estimates when
q € L? is frequency localized.

d¢ < s gl

Lemma 2.6 (Operator estimates). For || >1,0<0 < 3, and 0 < s <o+ 3 we

have
2
(215)  A(aw)l = IT(an)]l, ~ \/ e 1og (44 27 ) lawll oz,
2
(216) M@ lop = IT(@n)lop S 5y 108 (44 25 )llanlz2
(2‘17) Z HA(fM)HOPN |n\+N log (4+ 22) SUP M~ 2”fM”L2
M<N
@18) 3 1A S B
M<N
< N2~ 7(14N)°
@19) 3 IAGlke S Ce

Proof. The estimate (2.15) follows immediately from Lemma The estimate
(2.16]) follows from (2.15)) for N > x and the Bernstein inequality:

(2.20) 1A lop S Rllanllie € Elawllze,
for N < k.

Claim (2.17) follows from ([2.16]):
1 2 _1
S UMM lop S D0 arlog? (4 22) M7E| fagl e

M<N M<N

2 _1
< ‘HH_Nlog (4+ %) sup M2 || farll 2z,
Me2r
as does (2.18):
5 i K 5o
S 1A £ 3 2 tog? (44 22 vl < EE

(Ir[+N)2™°
M<N M<N

and (2.19 m
ST Al S 30 MO0 1ok (44 2%) I fmllps S RHSET).

M<N M<N

-

Corollary 2.7. Forge L?* and 0 <o < 3,
(2.21) VE||A(g) Hop Slalles,,  uniformly for > 1.
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In particular, if Q is a bounded and equicontinuous subset of L?,
(2:22) lim_sup V&l A(g)lop = 0.
KR—00 qu

Proof. Using and Lemmaﬂ we may bound
VAIA@) o S VE D 1@ llop + Vi [[Ag5)l,,

M<k
Slalleg,. +llassllze S llalles.,
which settles (2.2I). Lemma [2.1] then yields (2.22). O
Lemma 2.8. For0 <o < l and k > 1 we have
(2.23) IA@ia RIS, S 50| e | -

Proof. Decomposmg 1nt0 Littlewood—Paley pieces, applying (2.19) and ( at
low frequency, and (2.15)) at high frequency, we have

LHS(2.23) = tr{A( f;q; H)SH

S 2 AP, 1A (Pr(via) szﬂHA P, (4129)) o

Ni~N3>--->Ng
N3767 (14 N,)67 P, (¥3q)
S Z FOATMP e N7 108 ( )"\/4;2 =5
Ni~N>
< RHS(2.23)).

The fact that N3 ~ Na must hold is most evident by computing the trace (which
is unitarily invariant) in Fourier variables. ]

PN2 (d’i
V4rZ —02

Ll

§
H?2

2.3. Local smoothing spaces. To control the local smoothing property, for s, h €
R and |k| > 1 we define

(224 otz = [ 1|tk e o) d

(2.25) lall%, = sup / la(t)] .
heR J -1

As before, when k = 1 we denote F*(h) = FY(h) and X*® = X73.

We note that as a consequence of Lemma below, we obtain an alternative
characterization of X7 that is closer to that used in [18]; see Remark The
additional complexity apparent in is necessitated by the scaling criticality of
the problem.

Multiplicative commutators are an essential tool for repositioning the spatial
localization factors within the paraproducts appearing in our analysis of local
smoothing estimates. The next lemma, which extends [18, Lemma 2.8], is our
basic workhorse in this task:

Lemma 2.9. For |x|,|k| > 1, s,0 €R, 1 < p < oo, r €Z, and integer |[¢| < 24,
all fized, we have the following uniformly for p € R and g € S(R) :

(2.26) [[(2+0)°(2K + 8)”1/1ﬁ(% —0)"qlle ~||(2£9)° (25 + 0)7 (3¢ — 6)T1/)f;q||Lp.
If both s,0 € Z then also holds for p € {1, 00}.
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Proof. The Mikhlin multiplier theorem shows that the choice of 4+ signs is imma-
terial and we shall restrict attention to the + case.

Both inequalities can be treated simultaneously through a slightly larger family
of estimates involving two parameters 0, v € Z. Specifically, adopting the notation

W =(2+40)°2k+9)(3—09)"
it suffices to show that for each pair 0,v € Z,
W3 (5 = 0)" 9" (3 = ) "W qll1e < llgllro-

(In fact, just the two cases (6,v) = (r,0) and (6,v) = (—r,r) are truly needed.)

When 1 < p < oo, complex interpolation allows us to restrict attention to the
case where s,0 € 7Z, which we do in what follows.

The next step is to perform additive commutations, moving each positive power
of a differential operator toward its inverse, one factor at a time. Proceeding in
this fashion until all positive powers of said differential operators are exhausted
leaves a very concrete (but combinatorially very messy) finite linear combination
of products of operators from the following list:

w_z(amwz)a ¢£(6m¢_£)a (2+8)_17 (2K+8)_15 (%_8)_1a and wz(%—a)_l¢_£a

where m is any integer satisfying 0 < m < |o| + |s| + |v| + |0]. In this way, we see
that the proof will be complete if we can show that any operator on the list is L”
bounded for every 1 < p < cc.

Boundedness of the first two operators in the list is trivial given our choice of .

Boundedness of the remaining operators can be deduced from their explicit kernels.
Indeed, (3 — @)~ 11 ~* has kernel

K(z,y) = w(x)gw(y)_ée”(l_y)ﬂx<y7 which satisfies |K(z,y)| <¢ e 2xle—yl
Thus L? boundedness follows from Schur’s test. O

As we are dealing with a nonlinear equation, one needs to understand how to
estimate products in our local smoothing spaces. Due to the low regularity of the
objects we are treating in this paper, each term in the product must itself satisfy
local smoothing estimates in order for the product to be bounded. This dictates
the structure of our basic product estimates below.

Lemma 2.10. If0 < o < %, |7,k > 1, h € R, 1 < ¢ < 12 is an integer, and
¢’ €S then

2.2 ~ (220 —
(2.27) |%|||qHF§(h) + ||q||F§(h) [[(25¢ 5)Q|\F§(h)
and we have the product estimates
(2.28)
IFall g, S 172 [171 . 1o = Odgleg, . + 1171, 25— gl y ]
(2.29)
Il 5., S 1A [||f||F§<h> (25 = D)gllg, . + 112 = O)fllez, ol 3 (h)] ,

We also have the localization estimates

Va2, ks lh—ul 2
(2.30) /HW”H%B e Sl gy
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2.31
(2.31) loall 5 ) S lall 3

Proof. For (2.27)), we first use Lemma [2.9] to obtain

||(2% 8 qH2§ ) /H 23 — 8 \/WHHS e 2oo|h wl d/~L

A [t g e d [ () g el

2
P
~ [l lqll? . llall g,
Using space-translation invariance, it suffices to prove (2.30) for h = 0. If £ = 12,
the claim follows from the definition. Otherwise, define T, ,: L?> — L? to have

integral kernel

F2(h)

(a+e)t ST (4r+0%)3
e ¥ V0 E TN
and apply Schur’s test to bound

ITullop S 166 FOEDRONzs S 5025 S el
We then apply to obtain
Skl e ol
© [ Sy e
/// T llop | T HOPH\/%HHg H\/%HH% e~ 7o lu dvy dve dp

< /// \u1I+IV2\e o el H\/%HH% H\/%HH% dvy dvs dps

< llall®
FE©)

)

In the last step we first integrated in g and then used L? boundedness of the

resulting convolution operator.
Turning next to the product estimates and -7 we take s € {2, 5
© € R, and use . ) to estimate

Hs+1

| Tz (¥,2f9)
2542
<Z“<m>z 1Pon (8 F) 122 | Py (05 9) |3

1 N 2s+2
+ %HPSN(wﬁf)n%wnPw( 59)12

N)2s+2 1 2
+Z UM T ST NE Py D | Porr (659) | 2
M>2N

Recalling (2.7] , , and (| -7 we bound the first summand by

> %N—N)ZHPNW )22l Py (859) |2
N

< A ks o [0S gl + (656 s,
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e 7 | s |5 l125¢ — D),

For (2.29), we bound the second summand in a symmetric fashion, reversing the

roles of f,g. For (2.28)), we instead apply Schur’s test with (2.10)), (2.13), and (2.26))

to bound

e[S MAPu ) 2] 1P (5012
N MZEN

(2%-0)(¥,.9) o M2 A E
S IR S e P U g, IPan 2
M <M>

< el 7| L2002 £,

The third summand is again bounded using Schur’s test, (2.7)), (2.10), and (2.13):

14 N)2s+2 1 2
> U0 > NP WL llaz || Perrgllre]
N M>2N

5 HgH2 Z (1+M1)s+1(H+M2)M2 || PMl(wgf) PMg(’bﬁf)

My <My (TFM2)*H (kM )M2 VAar? =02 HH‘*“”W”WH

SN 1||\/WHHS+1H(2%_8)9”2}35’67%-

The estimates , - ) then follow from

Applying Schur s test in Fourier variables, we ﬁnd

9)8/2 6 VirZ_9?
supH o ol Y || St
In this way, we see that
|t So | vkl
Inz—o2 llgs ~¢ 4k2—02 112
and consequently, (2.31) follows from ([2.30). O

Remark 2.11. As a consequence of the proof of Lemma we note that
(2:32) lal® 4 ~ sup = |l 2t
Indeed, the inequality

||Q||i% SUPHWHBHz

follows immediately from the definition. For the converse inequality, we argue as

in (2.30): in view of (2.1,

1[)12 ,1,2
||\/WHL2H2 ~/ [T llop | T, VzHOPH\/ﬁHLgH%H\/%HLzHS dvy dvy
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3. GREEN’S FUNCTIONS AND MICROSCOPIC CONSERVATION LAWS

By the Green’s function, we mean the integral kernel associated to the inverse
of the Lax operator presented in . It is not a given that this operator is
invertible; we will rely on the subtle interplay between the spectral parameter £ and
the equicontinuity properties of g. This same issue was discussed in the introduction
in connection with making sense of A(k;q). Indeed, it formed the central rationale
for introducing the notion of a -good subset of L?(R); see Definition Let us
begin our discussion by revisiting the construction of A(k;q).

We subsequently take 0 < ¢ < 1 to be fixed. If Q is a §-good subset of L*(R),
then Corollary 2.7 shows that

(3.1) k|2 | A(g; K)Hop S llglles <0 uniformly for [x] > 1 and ¢ € Q.
As shown in |27, Lemma 5.1], it follows that if ¢ is sufficiently small then
A(k; q) = —sgn(k)logdet[1 —ir(k — ) 'q(k + 9)'q]

(3.2) = sgn(k) Y § tr{(irAL)"}
>1
defines a real-analytic function of x and g. Moreover, the domain of this function
includes all |k| > 1 and an L2-neighborhood of Q.
It is important to define A(k;q) in such a neighborhood of @ (rather than just
on @) to ensure that the functional derivatives are well defined. We find that

(3:3) [ 51+ 5 Fde =sen(o) Y ef (imA@)l (@) "RAUL (@) + MOL()]}.
m>0
As Lemma and (3.1) show, this series defines a bounded linear functional on
f € L? and correspondingly the functional derivatives exist as L? functions.
Duality also gives an efficient way to introduce the functions v(k;q), g12(%; q),
and go1(k;q) that will be of central importance in what follows: for a,b,c € L?,

(3.4) /gglb + gi12¢ + yadx = sgn(k) tr{ [a S][L7" - Lgl] }

Here Lo denotes the Lax operator with ¢ = 0.

Lemma and guarantee that a Neumann expansion of the right-hand
side of ields a convergent series for all a,b,c € L?(R). On comparing these
series with those of , we find

(3.5) %—’;} =ivKkgo and %—’3 =~k go1.

It is evident from that g¢12, g21, and « are closely connected with the
matrix Green’s function evaluated on the diagonal (i.e. at the coincidence of the
two spatial points). For the continuity needed to make sense of this directly, see
see [18, Prop. 3.1].

For simplicity of exposition, the discussion above only constructed gi2, g21, and
v as L? functions. By estimating more carefully (as was done in [27]), one finds
that the series defining g2, go1, and v converge in H'! to real analytic functions of
q; moreover, these functions are Schwartz whenever g € S.

Direct computations also reveal certain basic identities among these functions;
see [18] or [47]. Concretely, we have

(3.6) g12(k) = —ga1(—k), (k) =~v(-k), and A(k)=—A(-kK)
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as well as

(3.7) Gho = 26g12 — K2 q(y +1)
(3.8) oy = —2kgor — iRz q(y + 1)
(3.9) v =267 (qga1 + i912).
Lastly, we have the quadratic identity

(3.10) 2012921 + 37° +7 =0,

which can be proved by differentiating the left-hand side and applying (3.7)—(3.9)).
Using these relations, we may write

(3 11) g1z = 2;/58[(](7—’_1)]’ - 2l€+8[ ’Y"‘l ] ’y:—%’
. = L 2 i ) ‘ iy
iﬁ::ﬂ%%sh+4m(ﬂi)h and 2L — SVE (g gig (f21)7].

While it is very elementary to check these last two identities, it is much less obvious
that they are key to efficiently treating a lot of what follows.

To prove our theorems, we require bounds for these functions in the B, F, and
F spaces introduced in Section |2l We start with the following:

Lemma 3.1. For § sufficiently small and Q C S a §-good set, the following esti-
mates hold uniformly for ¢ € Q and |k| > 1:

(3.12) (s )lls < llalig, < 6%
(3.13) ||912(f€ Q)||B + llgz1(x; Q)||B ||Q\|Eg,, .
(r39)

Proof. To prove (3.12)), we argue by duality. To this end, we test against functions
[ satisfying sup;cqz M—2 Ifallzz <1 and employ

(Fv(:0) =sen(e) D (i0) ] [(x = O) a(k+0) ') (n = 0) 7' F}

£>1
+sgn(n)2(in)é {[(Fc—i—@) (n—@)‘lq}z(n—i—@)_lf}.
£>1
Let us first observe that by (2.18) and ( m there exists C' > 1 so that
sup. 612 >~ IAlga)lop < €5,
M<N
uniformly in |k| > 1. Note also that by Lemma and our assumptions on f,

3 2 2
S AU lop < iy log (44 25) and [A(w)]la, £ /iy los (4 + 25).
M<N

Decomposing into Littlewood—Paley pieces, using that the two highest frequen-
cies must be comparable, together with Lemma and the preceding estimates,
we find that

]u@%qunfm (n+0)7q) (n—0)"'f}

S(Co)D M oz (44 H—;)||A(qN1>||j2||A<qN2>||a2
NlNN2
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(€D IsllA Gl AN s A (@) llop

Ni~N>>Nj
2(0—
(COD 3 ey to® (4-+ ) law, 22 law, 22
Ni~No
1
— s N1-o N2
H(EOD 3T B tog(d + i) law e lal ez, ,
Ni~No

S (08" Vgl

Choosing ¢ sufficiently small, we may sum in £ > 1 and so deduce (3.12).
Further reducing ¢, if necessary, the estimates (3.12)) and (2.6) allow us to sum
the geometric series and so obtain

1
(3.15) [B==1 P
Regarding (3.13), we use (2.7), (2.10), (3.11]), and (2.11) to obtain
_1
lgr2llz < k172126 — D)gi2llrg, . < [L+ I1vll5] llalleg

20, e
The bound (3.13)) then follows from (3.12)) and (3.6]).
The estimate ([3.14) follows directly from (3.13), (3.15), and (2.6). O

Lemma 3.2. For § sufficiently small and Q C S a §-good set, the following esti-
mates hold uniformly for ¢ € Q and ||,k > 1:

(3.16) 9125 | 22, + lgia Gz, < 12 gl g,
(3.17) v Gl + 17 Glleg,, S s llalleg, Nlalles, .
(3’18) |H2+'y(% E7., (Qg—f’y) (%)HE;?,N Sf |%|7

Moreover, in view of (3.6), go1 also satisfies the estimates (3.16)) and (3.18]).
Proof. In view of (3.7), (2.11) and (3.12)),

1
[1(2¢ — 3)912IIEM S [xI2llg(1 +V)HEM S I512 ll 2., {1+ ||7HB} S =2 lalee -

The estimate ) then follows from
Recalling —v = 4912921 from the estlmates and ((3.14) show that
|| [l (50)|

To complete the proof of (3.17)), we complement this with the estimate
Bz, S | IIqHEU

19 (59)] Sooe
for which we employed (3.9)), -7 and .

Using (2.11), the fact that B is an algebra, and the estimates (3.14)), (3.15),
[3.16), (3.17)), and (T.19)), we obtain

125 = D)% | <|| (25 = 0)gaa| 5,

g21(>0)

s S 2 llall g, Nlall g

20,

Be,. S 17lllg12()

Iz 15 + 1 e Nt

o (L+llallEg, ) S 12 lallez,

20,3¢

The estimate (3.18) now follows from ([2.10]). O
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Lemma 3.3. For § sufficiently small and Q@ C S a -good set, the following esti-
mates hold uniformly for ¢ € Q, ||,k > 1, and h € R:

(3.19) lllgr2 Gl g+ g2l g <\%I%||q|\

F2(h) F2(h) 2 (n)’
2 < -
(3.20) |52y (5« )IIFz(h)+|Iv(%)IIF§(h) | |2IIQI\F2(h)IIqIIEQM
g12(32) g12(32)
(321) |%‘H2—&1-2’y(%)HFé(h) ||2-&1-27(%)||F§(h) S ‘ |2 ”qHF2(h)

Proof. Using the quadratic identity (3.10]) together with , , and (2.29)),
followed by (3.16) and (3.17)) we get

7 1 + V4 3
G,y ) + G5

(h)
S (2 = ey, N2 =00l
+ o maxlellgrel e, . + falleg, | max{lodlonsl g+ ool g, ]
S lallts, =00l y o+ lalleg,  max[ldlonl y 4+ ol g, ]
Using we deduce
(322) (2= Nl %(h)<||q\|EgMngx[|%\||gu|\ by +Hloszl g, ]

and so (3.20)) will follow from
From (3.22) and . together Wlth -, -, and -, we obtain

max|[llgsally , + w2l ]
< 3 1
g+ D,
< bty o+ lall g 1252 = Olmg, , + llalles, (2= Oy
< el lall g (h)(l +lallts, ) + lallbs, , max|belloell, 5+ ol ]

The estimate (3.19) then follows from (1.19)).

It remains to prove (3.21)). As a preliminary, let us pause to observe that
(22— 0)(£2)” = 292 . (5, — ) @

24y 24y

Using (2.11), ; and (3.18), we get

(3:23)  [|2 =) ($2) | g, S 855 lle— D) 822

2+’Y

2+’YHEUY < |%‘2”qHE§”%

2+ 2+
while by and (3.18),

2o = O)(#2)[| .3 < 1l 2|20 = )izl N2~ D) 2] 4
(3.24) < IIqIIEgMH (25¢ = 9) ﬂ?HFQ-

Using ([2.27) together with ( followed by ([2.28] , 7 and (3.24)) we obtain
LHS@B.21) < [|(2» - 0) 42

S el llall g+ llall 12 — 0) () Nz, +llalles, , [125 - 0)(#22)°]

an

1
F2
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S el lall g [0+ Nallg, ]+ lallisg, N2 —0) 25 5

20,3¢ 20,3

Using (1.19)), we may absorb the second term on the right-hand side above into the
left-hand side, thus settling (3.21). O

A consequence of Lemmas [3.2] and [3.3] is the following:

Corollary 3.4. Fix d sufficiently small and let Q@ C S be a 6-good set. All functions
f from the following list (and so finite linear combinations thereof ) :

4 4
(325)  ZEg(e), 2Ega(x), ZE2LE0D 2 mi

2k+0 2K+ 2k+0 () 2k49 g21(kK)
Ve oon(e), SR e(R), SEEEEG SR SGy

satisfy the estimates

1z S llgliezs W flles, . S llallss, .. [flleg < llalleg

20,

3.26
(3:26) Iy S gy 1000 Sl g,

uniformly for g € Q, |x|,|k| > 1, and h € R.

As discussed in the introduction, multi-parameter local smoothing estimates are
essential for our analysis. As we are in the non-perturbative regime, the only
reasonable approach to proving such estimates is via monotonicity identities. In
all examples that we are aware of, such monotonicity identities stem from a proper
understanding of conserved densities and their corresponding currents. This line of
thinking leads inevitably to the problem of finding a microscopic representation for
the conservation of A(s¢;q).

It is invariably easy to find microscopic representations for conserved quantities
that are polynomial in the underlying field (and its derivatives), such as the mass or
energy. However, even in these simple cases there is no universal algorithm for find-
ing such microscopic laws; indeed, this is an ill-posed problem — the corresponding
cohomology class does not have a unique representative.

When the conserved quantity in question is more complex, discovering a micro-
scopic representation becomes truly challenging. All the more so when we need
our representative to be coercive, if it is to be useful. This is the case for A(s;q),
which is defined as the logarithm of a Fredholm determinant or as an infinite series
of traces; see . Structurally, each of these traces is a paraproduct in gq. Never-
theless, just such a microscopic representation was presented in [47] based on the
density

Sy igai(359) _ 912(5 q)
B2 ) S e G T V2 )

In finding (3.27), the authors of [47] were very much guided by the analogous
form for the AKNS-ZS hierarchy discovered in [18]. The analogue for KdV was
found in [29], although this is of little assistance. Indeed, these few examples would
lead one to believe that the answer will always be a rational function of matrix
elements of the diagonal Green’s function; this notion is refuted in [16].

Once these densities have been discovered, it is not fundamentally difficult to
derive the corresponding current (though it may require considerable labour) be-
cause the time derivative of the Green’s function may be deduced from the Lax
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pair representation of the flow. For example, under the (DNLS|) flow,
. . 3 1 1
idg1o = — 45" — 2islq|*] g1 + [252 g + 2 |qPq + 22 ¢'| (1 + )

= —gis — i(2lqld1s + i’ gh)-
We include this to illustrate the point made in the introduction that (unlike for
NLS and mKdV) this change of variables alone does not allow us to treat ¢ € L2
Concretely, we note that for ¢ € L? one cannot make sense of the term |q|%q
appearing in the former expression as a distribution. This cannot be remedied by
the other terms because they are distributions!

The following proposition gives the currents associated to the density (3.27)) and
was proved in [47]:

Proposition 3.5. Let Q C S be d-good for § sufficiently small. Under the (DNLS))
flow, we have that dyp(s¢) + OpjpNLs(3¢) = 0 for all || > 1, where

(3.28)

. . q 921 +i7 g2 | o
jonts = (|g? = 2ix)p + ~T=—"5= +1q]|
V#(2+7)

(3.29) = % B2 (230 + 0 +i|q|*)q — f2+7 (25 — 0 +i|q*)q + ilq|>.
K2

2+
Likewise, for 1, Oyp(5¢) + Ozjairt (3¢, k) = 0 under the H — H,, flow. Here,

(3.30)  Jaig(3,K) = %( 21 )(%) {(2%—1— 0+ i|q|2)q —9k3 (9127(“) _ iglz(—ﬁ))}

K— K+

2 (#52) ()25 — 0 +ila?)g — 2 (2R 4 92

K+oc K—

- I{z K}2
+ilg* — £ (k) + Z(—k).

In our application of the microscopic conservation laws to the proof of local
smoothing, we require a detailed understanding of the structure of the lower order
terms (in powers of ¢) of the currents. To this end, we adopt the notation from [18§]
of using square brackets to identify specific terms in power series expansions:

g (k) = sgu(r)r? (ir) (6., [(5 — 0) (ke + 0)7'q) (x — 0) Yq(k + 0) 5,
so that

(3.31) 95" k) = D0 g k) and gia(r) = gl ).
m=~{ =0
The terms gi”l] and 712 admit correspondingly simple definitions; however, we

will also use this notation on more complicated analytic functions of ¢ such as
(227, 2, anc 551

24~ DNLS*
Using (3.11)), we can derive the following explicit expressions:
1 —i\/Kq . q
(332) gZ[L2] = 2\[(]8’ ggl] = 2;;1;17 7[2] = 22'%2/{(]78 : 2;{%87
3 K q 3 ﬁ§ = q
(3.33) 952] = 3 za[q Py 2nq+a] and ggl] = 22114-26 G 555 2&3—8]7
as well as
1 [=3] 2 |~ 2
(3.34) (2) = 25 a7
1 2 \[23] 2 21 )2
(3.35) 325 = 525 la)7)
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To represent our expansions for higher order terms in a concise form, we in-
troduce a space of paraproducts. We begin by introducing a generating set of
operators:

(3.36) G:={1abu{s2g: x= 1}

One may regard the elements of G as letters in an alphabet. We then define the set
G* to be the set of (finite) words built from the alphabet G. Specifically, elements
in G* are finite products of the form

(3.37) LiLs...L, where L; €G.

Note that each factor L; may have a different parameter s;.

Example 3.6. For all |»| > 1, the operator 4:2’1282 = 2% 5 2%+8 € G* is a word
over the alphabet G.

We say that the paraproduct m belongs to the class S(1) if it admits a repre-
sentation as a finite linear combination of paraproducts m; satisfying

m;[f] =T;f where T; € G*.

We will frequently consider families of paraproducts depending continuously on
one or more parameters. For example, all the paraproducts in Proposition [3.12
depend continuously on the parameter ». When this is the case, we will say such
a family is in S(1) only if the coefficients in this linear combination are uniformly
bounded in the parameter(s).

Example 3.7. For all |»| > 1, the operators

23c—0 __ 2
=1 o and 555 =257 —1d

2%+8

are elements of S(1).

For n > 2, we inductively define S(n) as linear combinations of paraproducts
that admit the representation

J
(338) m[fla"'afn - H fo’(nj 1+1)7"'7fo(nj)}
where 0 = ng < --- < ny = n are integers, m; € S(n; —n;—1), T € G*, and

o € &, is a permutation. The product appearing in is a pointwise product
of functions (and not a composition of operators). As in the case n = 1, we
require the coefficients in the linear combination to be uniformly bounded in any
parameters.

This definition is clearly symmetric, in the sense that whenever m € S(n) and
o € 6, we have

(3.39) m{fa1ys -+ fomy] € S(n).

Further, by induction on n, our definition is consistent with interior products, in
the sense that if 2 <k <n, m; € S(k), and ma € S(n+1 — k) then

(340) mi [fl,...,fkfl,mg[fk,...,an € S(n)
We illustrate our paraproduct classes with an example motivated by (3.33):
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Example 3.8. For all |»| > 1, the paraproduct
3
mlfy, f2. 3] = 575 {fl o 2516}
is an element of S(3) that can be expressed in the form (3.38) with ¢ = Id,
T =325 mlfl=FfH  mlf =250  mslfs] =525/

While paraproducts are often regarded as multilinear objects, our use of them
here is closer to that of a polynomial in a single variable, namely, q. More accu-
rately, our paraproducts will solely be populated by the objects appearing in the
list presented in Corollary [3.4] Moreover, in estimating these paraproducts, we will
only be employing the information about these objects. With these consider-
ations in mind, we will frequently employ the expedient of writing paraproducts as
m[f,..., f]. Similarly, if an expression involves paraproducts my,...,my € S(n),
we simply denote each paraproduct by m as in, e.g., below.

We demonstrate this notation with two examples from the proof of Proposi-
tion B.12] below:

Example 3.9. If || > 1 the paraproduct

mlfy, f2, fs] = 4%22;5}%8 2;{iaf3 = ziiafl ) 2318102 fs

is an element of S(3). We may then write

’ —/

8is® q q 2] 26 q q q
(341) 23c—0 [4%2—82 |4%2—82 | - 2%—3m 23— 23— 43202

_ 2ix ol f ! !
T 23x—0 22— 22— 43202 |’

where each f represents either ¢ or g, which are both elements of the list (3.25).

One should observe that using the definition of S(3), the expression ([3.41)) could
be further simplified to read

mi ﬁ,f, ﬁ] or even (23) %may [f, /s f}
with mq, ms € S(3). However, we will need the additional structure appearing in
when we apply Proposition
Example 3.10. If |5| > 1 then, recalling Example the paraproduct
mlfi, f2, f3] = Qi(%fl)féﬁ
is again an element of S(3). From (3.32), we then have

"

(3.42) 55 [0 o] = 225 5l sty b

S o q q”
2:x—0 22— 22— 422-02

_ _ = f f "’
=3 ™Mm [2%78’ 2xx—07 4;«:2782:| ’
where each f represents an element of the list (3.25)).
Just as in the case of (3.41]), one could further simplify (3.42) to read
ml[ﬁ7ﬁ,f:| or (2%)72m2|:fafaf]

with mq, mg € S(3). The additional structure in (3.42) will be exploited later.
As a first application of our paraproducts we have the following;:
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Lemma 3.11. For ¢ > 1 and |»| > 1 we have the representations

20+1
(3.43) F0ts 60 = mlf bl
¢ £+1
22041\ _ s
(3.44) ﬁgm (%)—mm[fwu,f,ﬁwu,ﬁ}a
¢ 0+1
20+1] »
(3.45) =(3%) (%)me[f,--.,f,ﬁ,---,ﬁ},
£ 04+1
[>20+1] o
(3.46) =) (> )=mm[f,-~-,f,ﬁ,m,ﬁ},
£ 41

where m € S(2041) and each f represents an element from the list (3.25). Similar

representations hold for g1 and zgﬁy

Proof. We prove all four identities simultaneously by strong induction on £.

When ¢ = 1, the identity (3.43) follows from (3.33)). Using (3.11) and (3.32), we

may write

1 3] x q q
ﬁ(2+~,) (%) = 2(2+9) {q' e 2%(1—&-8:|’

which gives (3.45) when ¢ = 1. Using (3.11) we may also write

1 [ 3] _ 4 1 2 9 1 23010
V=9 () = -5 {(1 75 ( itf g12) - 2%+a( ’\‘/; 29%)]
1 (23] _ 2 1 (23408 1 (2540 )
\/;(QQJ?’Y) (3) = T 2349 |:(] 2%+8( NE 2g~2k1'y) ’ 2%+3( N ngfl,y)},

the identities (3.44) and ([3.46)) for £ = 1 then follow from Corollary
Now assume that (3.43)—(3.46) are true for all 0 < m < ¢ — 1. Using (3.11]) we
see that

{—1
20+1 2n+1 2(6—1—n)+1]
Lol == 5 o el (g,
n=0
£—2
>20+1 2n+1 01 \ [22(4—1—n)+1]
F05" G = =) g a[qf B g (8) }
n=0
4 [ 1 [>21’ 1 1 (g )}
2—0 f \f 24+ ’
[2é+1 [2n+1] [2(6—1—n)+1]
& (£) Z% o () P () ]
£—
[>20+1] » [2n+1] [>2(¢~1—n)+1]
F= )6 = - X e ()" () )

n=0

s [>2¢-1]
- 5255 |0 (85) 7 ()]

and hence (3.43) through (3.46) follow from the inductive hypothesis, (3.39), and
(3-20). 0

As a second application, we have the following:
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Proposition 3.12. Denote u = »1—55. Then we have the representations

3
ﬁgg

(50) = 165 uu + 24058 [uu’ + 525 m[ 2, 2, ]

w f 7 ’
+ 23¢c—0 m|:2%78’ 23¢—0" 4%2782:|
(3.47) = 1602 [u|?u + 2405 |u|*u’ + 8is?|ul*u”

S 20712 S 20 N2~ 1 f ! "’
+ 8isx |u| u+ 1215 (u) u+ 2%78m|:2%78’ 23c—07 432—02

9 f f f" o) f I’ f!
+ 25x—0 m|:2%78’ 2x—07 42 —-9? + 25—0 M 35:28° 200 52—02 |

(3.48) AW () = —9655|u|* — 965¢°|u|? (u'd — ua’)

f f ! I f f i
+ m|:2%—8’ 23x—0) 23— 2%—8:| + m|:f’ 2x—07 2x—0" 4%2—82i|’

5 o/ v
ﬁgb](%) = —1925¢ |u[*u — 4805°|u| *u’ + 2%{8m[f, 2;({37 2%f73’ zyffav 2;576}
(349) + 2%1—8m|:f’ f’ Q%f—({)’ 2zf—87 4%5—32:|’

(3:50) 71(0) = —1280ilul’ + m . f. 5. 55 55 s

(3:51) 20 = ~2560i""ulu + igm[ £, 1. f. 5. 2t e -

Further, we have the representations

1 ;3] AL A 25 > f b I’
ﬁ(%) (%) = 4 "LL| u+ 23¢+0 m|:2%787 22—07 2—0

(3.52) = 4o u*a — 853’ — 230 + 2%1-1-8 m[f, 2%f_8, 4%5_82}

1 f !’ !’
+ 23¢4+0 m|:2%78’ 23¢—0" 2%78:|

= dotulu — 85 ul? @ — 2530’ + 4o ul*a”

20, 112 2/-1\2 1 f il o
+ 6¢ |’LL | U+ 5 (u ) u+ 2c4+0 m|:2%—8’ 22c—07 42c2—9?
1"

I5i f f I5i f ! '
+ 22c+0 m|:2%78’ 2—0" 4%2782:| + 22c+0 m|:2%78’ 22c—07 422-02 |?

£ (824) 760 = 320l + 5z L5 s s

f
Ve \2+y f’ 2x—07 22x—07 2x—0’ 2xx—0

(3.53) = 325" |u|*a — 128055 ul*a’ — 48is°|ul*a’u’

+ |2 f e wie T
2:¢+0 709 220—07 23c—0 7 422 —-02

1 f f I '
+ 2%+8m|:f’ 23x—07 2x—0 2x—0" 2%—8]’
(3.54)

1 (7] _ 10,164 1 f f f !
ﬁ(%) (30) = =3205¢"Jul"a + 2%+8m|:f’ ] 5 500 5 2;:73]-

Throughout, the paraproduct m lies in S(n) for an appropriate integer n, each
f represents an element from the list (3.25)), and identical expressions hold with
replaced by — .
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Proof. Using (3.32)), we derive the identity

(3.55) A = 8 |u|? + 4is® (W't — uﬂ’) - 21'%|u’|2
To obtain the first expansion for \ng( ) in , We use - ) to write
B] _ 452 2 1 2
ﬁgu = 555 u [ ]] 22—0 [UHV[ ]]

= = i3>
22 o] + 88 5 ] — 55 ] g ]
Recalling Examples [3.9] and [3.10] the last two summands are of the form

’ ’

2 f ! f f f !
(3.56) zxmam[h 9 22— A2 82} + 2%%—6m{2%—8’ 2%—0° 4%2—62:|

and so acceptable.
For the remaining summands we first use that

(3.57) 5 = ot e

to write

% ('t — v )u] = 8is®(v'u — utt)u + % [(W'a — ut)u],

where we note that the second summand is of the form (3.56) and so acceptable.
Expanding further, we have
2
(3.58) ﬁ =5 + & + 4;142 23—8’
which we apply to get

320 [uf?u) = 1605 [ulu + 1605 |ul*u’ + Sis®u?d’ + 29 [|uf*u],

where the final summand is again of the form (3.56]). This completes the proof of
the first expansion recorded in (3.47).

We now turn to the second expression for fgy( ) in (3.47). We again use
(3.11) to write

3 i2° iz = - i
ol = 2 (] + 39 [l — it Yo — 525 P+ P
— 5 [P = 8is[uf?)u"].
By (3.55)), the final summand is seen to be of the form
and so acceptable. We then use (3.57) to write

_28::;(33 [|'U,/‘2U + |U‘2U//] _ _42'%2 [|’U,/|2’LL + "LL|2’LLH] _ éijjg [|U/|2’LL + "LL|2’LLH]

’ 12

1 f
2%78m[2%78 7 23— 43202 ]’

and note that the final summand is of the form

"

ol f f Iéi f ' ’
<359) 22— |:2%78’ 2:c—8° 4%2782] + 22— [2%76’ 23c—87 4%2782:| ’

and so acceptable. Applying (3.58)), we similarly have

% [(u'ﬂ — uﬁ’)u] = 8isx> [(u’ﬂ — uﬂ')u] + 445 [(u’ﬂ — uf/)u} gt 45:?; [(u’a — ua’)u],

where the final summand is again of the form (3.59). Expanding even further, we
have

11 fe) fél 198
%50 — 22 T L2 VT &3 T sa 0
which we apply to the remaining term to get

% [ul?u] = 1675 |u|?u + 8isx® [|u|2u]/ + dise? [|ul*u] "y % [Jul?u].

25
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The final term is once again of the form (3.59) and so acceptable. Combining these
expressions, one obtains the second expansion recorded in ([3.47).
Turning next to v, we use (3.10) to write
2 3 3
A = —1[P]° — 29 gb) — 20165

For the first summand, we use (3.55) to express

—3[3E)? = 32 + 32wl — wi) + m | 2 5, g 5l |
For the second summand, we use (3.47) and (3.32) to write

3 1 g q
~291% 51 = — 325 |ul*u 5L — 485 ul 2

/

f f f I’ f f i
+m [2%78’ 2x—07 2x—0" 2;{78:| +m |:f7 23x—07 23x— 07 432 —9? ] .

Writing
(3.60) Tty = 20—,
in the first two terms, we obtain

—208) gl = 6455 ul* + 3256 |uPun’ — 9656 |ul*u'w

f f f I ! f
+ m|:2%78’ 2:—07 23— 27476:| + m|:f’ 2:x—07 23— 4%2762]'
Thus, using (3.6)) we also have

*29£2] g[g] = —645%|ul* — 325 |u2an + 965 |ul*a'u

/

f f f I’ f f "’
+m |:2%—8’ 23x—87 23x—9? 2%—8:| +m |:f7 25— 23— 432 —-0? ] .

Combining these expressions gives us (3.48]).

Next, consider (3.49)). Using (3.11]) and then applying (3.48), we find
5
\/*9£2] = 2;41 ) [7[4] ‘I}
=51 [—96%6|u|4q — 965¢° |u|?(u'u — ua')q}

23c—0

1 f f b ’
+ 2%76m[f7 2x—07 2:x—0? 2:c—0 2—0

+ 2;{1—8m|:f’ f’ 2%f—8’ Q%f—ﬁ’ 4;{2—32:| :
For the first term, we employ (3.58) to write

55 [l a] = —192:¢|uf'u — 96565 (Jul'u)’ — %222 [Jufu] + 255 [ul "]

2:x—0 2xx—0
where the third and fourth terms are seen to be acceptable. Similarly, for the
remaining term we apply (3.57) to get

967" {|u|2(u’ﬂ —udt') q} = —192:8|ul?* (W@ — ut)u —

19274 8
T 2x-0

+292”8 {|u| (v'u — vt )’ },

where the second and third summands are similarly acceptable. This completes the
proof of (|3.49

F-
For v we again use the quadratic identity - ) to write

6] = 12,14 — [5] 1] [3] (3] [1] (51

v 2921 — 2912951 — 2912931
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For the first term, we use (3.48) and (3.32) followed by (3.55) to obtain

7Py _96%6‘“|4 "’m{f’f’ Tom 072%fa’2%fa72[a}

= 7681%9‘7‘46 + m|:f7 f’ 274f—3’ 2%f—8’ 2%]:8’ 2%—8:| :

Next, applying (3.49) and ( - ) followed by (3.60), we have

—2g%g = —384ws|u\4u

q f f f!
22¢+0 + m|:f’ f’ 2%78’ 22¢—0° 22x—0" 2%73]

. 9,16 !
= —T768is" |ul” + m[f, f 2uf—a7 2;ff—a7 2uf—av 2;5—8]

Another application of (3.6) then gives us

1 . ’
729%2]'9%1] - 7687’%9|u|6 +m |:f’ f’ 2;«tf—3’ Q%f—a’ 2Mf—3’ 2)5—8] :

For the remaining term, we use the first expansion in (3.47)), (3.6)), and (3.33)) to
express

3] [3
2013051

.9 9 _ [3 !
—16i> \u|2ug£1] 162 |u|2U9£2] + m[f, £, 2%f—a’ 2%f—a’ Q%f—a’ 2;{—6}

f’ f’ 2:x—07 22x—07 2x—0 2x—0
Combining all of these expressions gives us (3.50).
Using (3.11) and (3.50), we may write

= —5120¢u[ +m| Ly 5 5l wls |

’

7
ﬁggg] = 2%1—8 |:7[6] q] = 25— 8[ 12801%9|u|6 ] + 2%1—8m|:f’ 'f’ f’ 2%f—8’ 2%f—37 2%f—6’ 2)5—8

~2560i5¢'|ulu + 5Lm| Ly 5 wls wls |
which settles (3.51)).
Using (3.11), (3.32)), and (3.60)) we may write
22" = e o) ]
= 22;:138 [U(Q%ia)ﬂ ~ 3@ 10) {UH(Z;EH’))Q}
= 5559 [‘ *a } prey [|u|2_l] + 23:0—38 {u(ﬂ/)z} ~ 3% 10) {“//(2;:26)2}

from which the first expansion in (3.52) follows easily using that
11 )

2240 — 23 25¢(25c+9) °

To obtain the second expression in (3.52)), we expand even further
1 Bl _ 2 21 25 —1\2 P
o (20) = = lula] — [l + 255 [uw)?] - 2 [

1 f ! "
+ 2%+8m|:2%—8’ 2:x—0" 4%2—62:|

and use that

119 4 97
2x4+0 ~ 2 %2 45¢2(25c+0)

for the first summand and that

1 _ 1 8
240~ 2 25¢(25¢+0)

for the second summand. The last expression in (3.52)) is derived by expanding
ﬁ one further degree for each summand.

f’f’f’ 2x—07 22x—07 2x—0’ 2x—0 |’

}
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For (3.53)) we again use (3.11)), (3.32)), and (3.60)) to obtain

']
-

1(&)[5]_21'74[ <7

1
ﬁ 24+~ — 2140 T

o)
= 28;212 [u z )
il

_ 160t

2
= 1855 Jul 7(
213¢ " q 21 [3]
T 2340 23c+0 \/; (2+'y) :
We then expand 5 and use (3.52)) and to obtain (3.53).
Similarly, for (3.54) we use (3.52)) and (3.53) to write
1 21 [7] 24 1 21 [5] 23c 1 21 (3] 2
ﬁ(iﬂ—y) T 2340 |:q2%+8 \F(29+»y) ] T 2%+0 {q{\/;(iqu) } ]
P 29 _
= 26ft+3 |:q2%+8|u|4 :| - 233;+3 |:q|u|4u2:|
+ 2%1—‘,-8m |:f’ f’ f’ 2%f—3’ 2%f—8’ Q%f—a’ 2%—8:| ’
to which we apply (3.60)). O

921

4. LOCAL SMOOTHING FOR THE DNLS
In this section we prove local smoothing for Schwartz solutions of (DNLS)):

Proposition 4.1 (Local smoothing for the DNLS). Let Q C S be an L? bounded
and equicontinuous set such that

Qs = {e“VHq (Jt| <1 andqe€ Q}
is a d-good set for a sufficiently small 6. Then the local smoothing estimate

(4.1) lall 3 < lg(0)]] 2

holds uniformly for q(0) € Q.
Further, equicontinuity holds in the local smoothing topology, in the sense that

(4.2) lim sup J[lg|| 1 =0.

1
K—00 2(0)€Q X2

We remind the reader that Corollarym guarantees that for any L? bounded and
equicontinuous set @, there is a uniform rescaling so that the corresponding @, is
d-good. For the remainder of this section, we fix Q. C S satisfying the hypotheses
of Proposition

Our proof of Proposition rests on the microscopic conservation law presented
in Proposition Taking

(4.3) bu(x) = / " () dy,

and integrating by parts, we obtain

t=1
(4.4) Im / / jonLs (3 q(t)) ¥t da dt = Im / t))b, dx .

t=—1

To bound the right-hand side of this expression, we use the following:
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Lemma 4.2 (Estimate for p). The following estimates hold uniformly for q € Q.,
Kyoe>1, and peR:

(45) ‘ [ 1moti) 0, s

(4.6) /:O/‘Im/p(%; Q) dx

Proof. A computation yields
Im/pm(%m%dﬂc: %/6%4%57_@26@— %/q¢uu57_azd%
so using (2.13)) we get

S s Mlalkg, 1+ llal3],

e dudoe S gl [1+ all%)-

Im / P2 (5¢:q) ¢y, da

< 5wl s lal s < 5+l
Turning to the higher order terms, we use (3.34) and (3.35)) to write

P00 = - 5235 [a(35)°] + 0 w2 a(23)7)

Thus, by (3.14) and the fact that || 5 lop < 21, We obtain

‘Im/p[z‘l](%; q) ¢ dx

< o daloz lalos [[| #8215~ + 1821

S MlglZallallEy

20,3

which completes the proof of (4.5).

The estimate (4.6) follows from (4.5) and Lemma[2.2] O
Turning to the left-hand side of (4.4]), our main challenge will be to control the

remainder terms jg\?{S. To do so, we need to distribute the exponential weight wff

across the arguments of paraproducts in S(n). To accomplish this, we introduce a
modified space of paraproducts, Sjoc(n), which involve a spatial parameter y € R.
While this construction will aid our proof of Proposition [4.1] its true value will only
become clear when we turn to the significantly more involved problem of obtaining
local smoothing estimates for the difference flow in Section [6]

We define an extended set of generators

(4.7)
Groc =G U {SilwﬁSjFl ;z, wfbsiw;fsﬂ : [£] <24 is an integer and S € Q*},
which are p-dependent operators. Recall that the set G was defined in (3.36) and

generates the set G* of finite words over the alphabet G, as in (3.37). We similarly
take G . to be the set of words over the alphabet Giqc.

Example 4.3. If || > 1 and |¢] < 24 is an integer then
¢_2 —0 (g 2 025040\ _2
,(/)M Q%iawﬂ - ( MQ%iawM ;;% )2%18 € gl*OC'

Paralleling the construction of S(n), we say that a paraproduct m € Sjoc(1) if it
admits a representation as a finite linear combination of elements of G}t .
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For n > 2, we inductively define Sj,c(n) as finite linear combinations of para-
products that admit the representation

(48) m[flw'wfﬂ - Hmj fo’(n] 1+1)7"‘7f0(nj)] )
j=1
where 0 = ng < --- < njy = n are integers, m; € Sic(n; —nj—1), T € G, and

o € G,,. On both sides of (4.8)), all paraproducts are evaluated at a common value
of p. This will be the standing convention whenever we combine paraproducts in

Sloc(n).
As in the case of S(n), we require all coefficients in these linear combinations to
be uniformly bounded in any parameters.

Example 4.4. Recall from Example that for |»| > 1, the paraproduct
mlf. fo. fo) = 25 | st ot
is in S(3). We may write
¢34m[f1,f2,f3] = m[¢,§f1,¢2f2ﬂ/fﬁf3]a
where m € Sjoc(3) has representation
mlf1, fa, f3] = 3421%_33 {1/1 f1- w fz : ﬁii@]a
which can be expressed as in with o =1d, T = wu 2% =50, 2
milfil = fi,  malfe] = igii‘a(w,fsfz), ms|fs] = V5 5225 (1, f3).

Example demonstrates one of the key motivations for the introduction of this
class of paraproducts; this is codified in property (i) of Lemma It is mandated
by the necessity of employing local smoothing estimates on each and every argument
of our paraproducts.

We first record a result which will be used in the proof of Lemma

Lemma 4.5. IfT € G ., then the conjugated operators
2+6 2-9m_2 240 2 m2-9
(49) T == TTE’ 2+8T 2 and =T

belong to Sioc(1).

2+8’

Proof. By definition, any T' € G . may be written as a finite product of the gen-
erators Gio.. As conjugating a product is equivalent to conjugating each factor, it
suffices to verify the claim in the case T € Gioc.

The elements of G, come in five kinds. The easiest case to deal withis T' € G
because then T commutes with 2 + 9 and all four operators in (4.9) are all equal
to T. In what follows, we will treat the first two operators in or each of the
four remaining kinds of generators in Gj,.. The remaining two operators in
may be treated in a parallel manner.

To unify our treatment of the first two operators in , we will show that

2 +8 2 . . . . . *
(4.10) 51545 s a linear combination of words in Gy,

for any |k| > 1, whenever T = SilwﬁSjFlw;Z or T = w£5i1¢;25¢1 with S €
G*\{Id} and |¢| < 24.
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T = S’lwl‘iSw’e we write

B
2640 2k _ 25 \"1 ¢ 2 —L| |0 2648, —£_2
Z/—c TQKj—a - {(52513) ¢M(52n18)¢# :||: w K2/-c 1% 25—7—3i| € glt)c'
Similarly, if T = 1/)/€S711ZJ;€S we may write
2640 2k _ |2k48,0 2 AR 25\l ¢ 2
ST 2y — |25k0yf 2yt [t (S5255) T v (S525) | € Gine
Next we consider the case T = SzbﬁS’li//;Z. By the definition of G*, we may

write S = 2;%185 or S = ziiag for some |3| > 1 and = G*. We present the

details in the case S = S ; the remaining case can be treated analogously.
Using the identity

25

2x+0

26+0 22 23 +1 o
2k 2x+0 T 2x+0 K 2x+0

and the symmetric identity with » <> k, we may express

2640 @0 @—1_2k  _ ¢ o—1 2k x 0 ol 9—12x40 2k
2K S¢MS 2k+0 S’(/J#S 2k+0 + K 2%+85¢HS 2 2Kk+0

_ o—-1 2k » 0 gl Q-1| 2k Kk _ O
- S’l/J#S 2k+0 K 240 Sw#S |:2n+8 > 2n+6}

2k 2+0  23x+0
+ 52508 5
(a.11) - SULST gy + B 2 Syt Sl e
— 225 50,5 7 555 + 5i LS 5o
We then apply to get

2KZ+8T 25 __ [2&4—831/}[!;571 2K }[2&4—3 —{ 2K i|

_ L o—1 2k 2k4+0 2« 2 ol a—1 2k
- Swlls 2k+0 + [ ]S¢u5 2k+0

2K 2k+0 2K 2k+0 2K n 2k+0

_ 2K 23 2k4+0 T 2k 2 T 2k
- T2/’i+6 + 2%+8|: 2K T2m+8:| 2%+6T2n+8

o ml,l 0 —L 02540 ,,—0 2K
(4.12) + mT{ Mmdjy } {wu 2-: H 2m+8:|7
where T = §wﬁ§*1w;£ € Gy .. By using Examples and E we see that

o) _ 2¢ L 9 —0 ¢ 23 —4 240 2
(413) 22c+0 Id — 23¢+0 and ,(/)M 23¢4+0 wu« =1Id - [wu 2%+8,¢)M 23 } 23¢+0

are linear combinations of words in Gf.. As a consequence, (4.12) shows that if
2’;:8T23"3 is a linear combination of words in G then so is 2’;:8T2§i3. In this
case, (4.10) follows by induction on the minimal number of letters required to spell
S as in the sense (3.37). The base case corresponds to taking 7' = Id.

Finally, we consider the case T = wﬁSd);eS_l. Arguing as in the previous case

and using (4.11]) (with ¢ replaced by —/), we get

2k+0 26 __ | 264+0,4 2k 2640 —Lgo—1 2k
2K T2K,+8 - |: 2K #2n+8:| |: 2K SQ/)# S 2I€+8:|
_ | 2640, 2k ¢—l T 2K + 26+0 10  23c —0 2K 2/{+8f 2K
- 2K M2k+0 T 1 2k+0 2K H23x+0 7T 2k4+0 2K 2k+0
_ | 2648, 25, —L 0 23 ) —€23x40 | 23 2k
|: 2K M2n+8wu :||:Z/}H2%+8wl»b 23¢ :|2J4+8T2/{+8

2k+0 0 2K —/ ¢ 9 —l|lF o
+ |: 2K IL2R+81Z)N :||: #2u+81/}# i|T2n+8’
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where T = ¥ §¢*5§*1 € G} Using (4.13) and observing that

2540 L 2k 23 |:2K+6 2%-{-81/}4 22¢ w :||:w€ 2;1-5—811)75 2K :|

»
2K ﬂ2%+3w# 2k+0 T 23+0 2K K 23c+0 2&—}-8 n 2k H 2k+0

is a word over the alphabet G,., we again see that whenever 2"+8T23ﬁ 5 is a linear

combination of words in G} , so is 2N+8T 25 The proof of (4.10) in this case is
loc 2k40°

completed by inducting on the mlmmal number of letters required to spell S. O

Lemma 4.6 (Properties of Sioc(n)).

(i) (Distribution of exponential weights) If m € S(n) then for any non-negative
bo+ -+ £, =24 we have

mlfi, ..o fal 02 = oma [l 1, fal,
mlfi, - fa R = romalWl 1, fal,
where mj € Sioc(n).
(ii) (Symmetry) If m € Sioc(n) and o € &, then
m[fo1ys - fom)] € Stoc(n)-

(iii) (Interior products) If 2 < k < n, my1 € Sipe(k), and mg € Sioc(n +1 — k)
then

mll:fla"'vfk—lva[fk;-"afn]] S Sloc(n)-
(iv) (Leibniz rule) If n > 2 and m € Sjoc(n) then
(4.14) mfls. s faets ful = Omalfi, ..., ful + malf1, (2 —0)fa, f3,. .., fu]
+"'+mn[fla'"7fn—17(2ia)fn]7

where my, ..., my € Sioc(n).
(v) (Holder’s inequality) If m € Sioc(n) and 1 < p,p; < oo are so that % =

1 1
ot oo then

n
(4.15) Imlfrs. s fallee S Tl zes
j=1
uniformly in .
Proof. Part (ii) is an immediate consequence of the definition. Part (iii) follows
from an easy induction in k.
We turn now to the proof of part (i), which we prove by induction on n. We will

prove the very slightly stronger statement that for all m € S(n), and non-negative
integers o + - - - + £, = £ < 24 we may find m € Sjoc(n) so that

(4.16) mlfrs. o fal U = ORM f1 o U .

For the base case of (4.16)) we write m € S(1) as a linear combination

= Z el f,
i=1
where ¢; € C and T; € G*. In this case, m 4.16]) follows from writing

Z (Wi Ty, )W 1 = e mlyy f]
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and noting that ¢ Ty, = [ Tyap, T T € G

For the 1nduct1ve step, we ﬁx N > 2 and assume that is true for all
1 <n < N -1 We recall that elements of S(IN) are hnear combmatlons of
paraproducts with the representation

Hm] fa (nj—1+41)5 <+ > fo(nj)}]v

Jj=1
where 0 =ng < --- <ny=N,m; € S(n; —nj_1), T € G*, and 0 € Sy. Without
loss of generality, we assume o = Id. Applying the inductive hypothesis we write

m[fla"'afN

J
e f] W = (T W [Tt n .. fnj}]

_ wfoT

Hmj[ T 1+1fnj—1+1’ R wftnjfnjn

j=1

where T = wffZOT'L/)f;"’e € Gr.. and m; € Sige(n; —nj—1). From , it is then
clear that m € Sjoc(IN). The proof of the inductive step is completed by considering
linear combinations of paraproducts of this form.

We now turn to part (iv), which is also proved by induction on n. All the
requisite ideas can be understood most transparently from the treatment of the
base case n = 2.

Given a word T' € G}, we express

(4.17) 72510 = 25 T4 555 — 25752,
(4.18) M52 = 5 T5i5575 — 57T

By Example (with sc = —1) the operator %‘9 is a linear combination of words

in G*. omblnmg this with Lemma[4.5] we see that both LHS(4.17) and LHS(4.18)
are linear combinations of words in GJf .

For the base step n = 2, it suffices to consider m € Sj,.(2) that can be expressed
as

mlf1, fo] = T [ha[f1] - ho[f2]],
where T' € Gf' . and hi, hg € Sioe(1). We define the paraproducts k1, ko via
kalf] = sl kalf] = 0ha[555].
By (4.17) and (4.18) we see that ki, k2 € Sioc(1). We also define
0f] = ha[5%5 /]

and have £ € Sj,.(1) by definition.
We then compute

m[fi, fal = T[(2 = D)k1[f1] - ha[fo]]

]
=T (2= 0)[k1[f1] - ha[f2]] + T[k1[f1] - Oha[f2]]
]

ha| |- Ohs
)S[k[f1] - ho[f]] + [kl[fl] ka[(2 = 0) fo]]
:—8S[k1 f1] - halfo] |48 [ki[f1] - €02 = 0) fol| +T [k [ f1] - k2[(2 — 0) f2]],
=0ma[f1,f2] =ms|f1,(2-9) 2]

where S = %T% € G by (4.10) and my, ma € Sioe(2) by definition.
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To prove part (v), we first apply Lemma to see that every element of G
is bounded on LP whenever 1 < p < oo. The claim follows from a final induction
on n. [l

To state our paraproduct estimates for (DNLS)), it will once again be convenient

to employ the convention that if m € Sioc(n) and fi,..., f, satisfy the estimates
(3.26)), then we denote the expression m[f1,..., fn] by m[f,..., f]. Moreover, if
an expression involves several paraproducts mq,...,my € Siec(n), then we denote

each paraproduct by m.
With this convention in hand, we turn to our paraproduct estimates for (DNLS):

Lemma 4.7. Let m € Sioc(4) and f satisfy (3.26). Then, the following estimates
hold uniformly for h € R and |»| > 1:

@) f|[mlerin i A in)] a
v [| [ mluts i ois. 2] do

Sl Nl el

Further, if m € Sioc(6) then uniformly forh e R and || > 1:

1 |ph—
e 200|h .“'l d/’(’

e~ 300l h—nl du

20%

Yif o ULf S T A
a2 [|[mlvir ittt . S ol e g

S 7 Nl g, Nl allg

20%

Proof. To prove these estimates, we decompose each f into Littlewood—Paley pieces
and estimate the two highest frequencies in L? with a view to employ (2.30). To
estimate the remaining lower frequency pieces, we rely on the following lemma.

Lemma 4.8. For any [ satisfying m, we have

(4.21) I@h e S NZ77(1+ N)"|allgz,
(4.22) I(@p)n e S 127N 277 (3 + N)* gl g

20,3

uniformly for 0 < £ <12 and N € 2Z. In particular,

N)
(4.23) 3 @)l < %nan 7
NN |52 2 (|2 +N) 2
1
4.24 || (¥* o < N2 _
(4.24) MEN el S o lalles,

Proof. The bounds (4.21)) and (4.22) follow easily from Bernstein’s inequality, (2.13)),
and (3.26]). To obtain the last two bounds, one considers separately the contribution

from M < |s| and M > |5|. O

We start by considering . Decomposing into Littlewood—Paley pieces and
employing Lemma [4.8] we ﬁnd

[mlvis.vis ot ois 52 250 ao
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Y WHHPM1/Jf||L2HHPNJ¢f)||Loo

N1>--->Ng j=3
S| TIN2— 4 14N
S S0 TG Py, (it )2 1P (V) 2l Nl s,
N1>No

S 1AM I, 3 lallg g

In view of (2.30) and (3.26)), this contribution is acceptable.
Next we consider the first term on LHS(4.19). Decomposing once again into
Littlewood—Paley pieces, we have

S5

98 f,us f, s, 2225 (0]
B Z m[PMl(wa),PM2(¢ﬁf)7%:”g”,2% aPM4(¢6f)

My, M2, Mz, My

To continue, we split the sum into two pieces: the first where M, < max{M;} and
the second where M, = max{M;}.

For the first summand, we apply to estimate the terms with the two
highest frequencies in L? and the remaining terms in L>. We then apply Bernstein’s
inequality followed by to the Ny-term and to the Ns-term to estimate

>

My, Mo, M3, M4

[ m[Pasp0), Pas ). B0, 222 P, )] do

My<max{M;}
(1+N2) 6 6
DY WHHPN (WS f HLzHHPN W5 )l
N12>N2>N3>Ny Jj=3
< (1+N2)N; 7 6 6 .
NN>;>N T 12w @)l P (6 Hllz gl s,
1 2
14+ N3)“™
S Y e 1P P e P (8 D el
N1>N»
14+N. 1—o 1
S Y e ()1 (U Dy 1P (5D el
N1>Ns

S 1AM AR, 3 lallg

2:7%

Note that the frequency parameters N; represent a permutation of the parameters
M; so as to account for the largest contribution. Integrating with respect to the

measure e~ 20 h—#l dp and applying (2.30) and (3.26)), we obtain an acceptable

contribution.
For the second summand, we first use (4.14)) to redistribute the derivative:

>

Ma>Mq,M2,Ms3

< D

My> My, M2,M3

m[PMl (wgf)aPMz(wﬁf)v %ﬁ%”a Dr— aPM4(¢6f)}

P S Pay (¥
/m[(Zia)PM1(wﬁf)7PM2( Ef)a Agit(l_pgf)v Agi(_gf)} dﬁC‘
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DY

My>Mq,M2,M3

LD

My> My, M2,M3

6
/ m[[Pas, (BE1), (2= D) Py (05), el Puall ] g ‘

m [P, (611). Py (U1). 855 Pas, (05, 557 |

where each m; € Sioc(4). We then proceed as in the first case to estimate each
term by

1 N
> MWHHPNJ (Whf) ||L2H||PN Wh )l

N12>N2>N3>Ny

< (1+N2)%~ 6 f P 6 2
NNZ:N \%|”+%(|n|+zv1)<\%|+w)5—% 1P, (V)2 1P (V) 2l e,

S T s 12 3 g, s

which is seen to be acceptable after an application of (2.30) d -

Applying a parallel argument, the second term on LHS |-D can be bounded by

N3)
) Mwﬂnm 0 e T 1P, 81

N1>N2>N3>Ny j=3

which is acceptable, as demonstrated above. This completes the proof of (4.19 .
Combining Proposition and Lemma 4.7 we have the following:

Lemma 4.9. The following estimate holds uniformly for ¢ € Q., h € R, and
n>1:

@) [l [ R0 vt do

In particular, in view of Lemma[2.2,

(4.26) / / Im / / s () 024 da dt

Proof. Using (3.29)) and (3.6]), we may write

N T i

2y ol

20%

e — 500 |h—nl dud%< ||(I||2 1 Hq”L CEg

+[ﬁ(é’i§)[23](%>+j— )" ]q,
(4.27) +Z{f(29~il'y)(%)+ (3 |Q|2}

Using (3 , we may integrate by parts to obtain

L) g vt do= [mluisonr 255, 225 w0 do
where m € Sjoc(4). We then apply (4.19) to obtain

(4.28) / ' / L (28) 560 ¢ w2t da

—_ 1 |p= -
=zl gy < 5] Hlalhy ol

20,5
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Similarly, from 1) we have
> ¥,
[ @) 00 laPaitds = [m [wuf,w‘*f,z/f‘fﬂb“f, il 28]
where m € Sjoc(6). Recalling (3.32) and ( we obtain
1 1
) e + ﬁ(f%)[ ]w)} R
=i [WlaPavztie = [m[uts v st o2 wﬁf)]

where m € S)oc(4) and we recall that u = 4%2"732 Applying (4.19) and - then

gives us

(4.29) /‘/ ()9 + V%—%(zgj;)(—%)] lql*q i da

S Iﬂfl_l\lql\2 IIqIIEo

20,5

.
e 200“” l"'dlu

Another application of ([3.46) gives us
5 vl ut
[V B eoquttde = [mltsoviroir ot 5. 25 d
where m € S)oc(6). Further, from (3.52) we have
3 _ Vo f
[ [v(a) P60 - wfufa] quitdo - / m (V5 f VL, 2, 25 (05 )] da,
where m € Sjoc(4). Once again we use (4.19) and - to bound

][Vt 560 - v iupa) guitas

In particular,

1] vtz 2o + v ) 0] guitda

< 1 2
(4.30) a2y

The estimate (4.25]) then follows from combining (4.28) through (4.30). O

We are now in a position to complete the:

_ 1 \p_ —
el dp S 1l ol

S

e_ﬁ‘h_m d’u

lqllg

20-;4

Proof of Proposition[{.1. Combining the identity (4.4) with Lemmas and

we obtain
I 2] 24
m ]DNLS 1/) dz dt

(431) S lalEemg, |1+ lalere + ol

It remains to consider the quadratic terms in jpnps. A computation yields

(4.32) Imj][m]%S = QRe{ﬁq'} - Re{ﬁ(j}/.

e~ 200 |h—nl dp ds
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We may then integrate by parts to obtain
i [ B0t do = 202y + 2Re [0, ppela (via) do

To estimate the error, we use that

[0 4%3@2] =~ (1) + 2007 0] g — e ()
together with ) to bound

’/ “’4742 72)d (wif(j)’da:

< gl
Thus,

leialy < e ally, -

t [ a0 02 ds
Integrating in s over [k, 00), using (2.4) and then (4.31)) we get

T
“/||¢iZQ||QLng e~ o=l gy < ”CI”%;"’E;K [1+ ||Q||2L;>°Lg + ||Q||§(%}
L

Estimating

¥2q 2 P<i(¥,29) Psi(y.29)
||m||L§H% ~S H Vi 02 HL?H + || Vi HL2H2

S “_2||q||L§°Lg + ’@"W}ﬁQHL’;’Ell )
1.

we then get
(4.33)  lall?

1
X2
To prove (4.1) we first take kK = 1 and use ((1.19) to absorb the first term on the
right-hand side of (4.33)) into the left-hand side, and then invoke the conservation
of the L? norm. The estimate (4.2) follows from using (4.1) in (4.33) and then
O

applying (2.3).

< llalB gy gl s + gl oy (14 0l 2] + A 2llal3e 12

5. TIGHTNESS

The goal of this section is to show that the family of orbits emanating from
an L2?-precompact set of Schwartz initial data remains tight, at least for times
t € [-1,1]. We begin by constructing a suitable function ¢ for localizing to the
spatial region |z| > R for given R > 100. For such R, we first define

xele) =4 [ sl @) du
R<|u|<2R
Note that x g is odd and vanishes at z = 0. We then define
or(x) = / xXr(y) dy,
0
which is even and everywhere positive. Indeed

¢r(x) 21 uniformly for |z| > 2R > 200.
In view of this property of ¢, a bounded subset Q C L? is tight in L? if

/¢R(x)\q(x)|2dx — 0 as R — oo, uniformly for ¢ € Q.
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Proposition 5.1 (Tightness for (DNLS)). Suppose Q@ C S is an L? bounded and
equicontinuous set for which

Qs = {e”VHq (Jt| <1 andqe€ Q}
s 6-good for some sufficiently small 6. If Q is also tight, then so too is Q.

Proof. From the microscopic conservation law (1.1)) we obtain

d
G G [onlaPdo=k [ et [Rint) + 3al") o3 dodn
R<|p|<2R

Our goal is to deduce the tightness of @, from that of @) by estimating the right-
hand side above in L!([—1,1];dt) and showing that it converges to zero as R — oc.
For the first term on RHS(5.1) we have

1
/ / {792 da
—1

where the second inequality follows from decomposing into frequencies < x and > k.
For the second term on RHS(5.1), we apply the Gagliardo—Nirenberg inequality to
bound

Yiqg 2
IBalty, S ISal, g W0alim e S [s0alse, + 1| b s R o

dt S |lval?, 0 S sllvnallz; |+ H\/WHLZH%
t

In this way we deduce that

IRESED 2 S [51082a135 150 + | v I e | [+ lalloe 2],
By Fubini, (2 , and (| - we then have
IRHSED 22 S |lallEens + lal | [+ lalzzz].
which can be made arbitrarily small by first choosing « large and applying (4.2)),
and then choosing R large. (]
6. LOCAL SMOOTHING FOR THE DIFFERENCE FLOW

In this section we prove local smoothing for Schwartz solutions of the difference
flow.

Proposition 6.1 (Local smoothing for the difference flow). Let Q C S be an L?
bounded and equicontinuous set such that

Q. = {q(t; K) = VHH) e R g e Q, and k> 2}
is a 6-good set for a sufficiently small § > 0. Then the local smoothing estimate
(6.1) lall 5 < la(0) 2=
holds uniformly for k > 2 and q(0) € Q.

Our proof will mirror that of Proposition Once again, we take 0 < o < 1
and Q. as in the hypothesis of Proposition Taking ¢, to be defined as in (4.3)
and using Propostion we integrate by parts to obtain

1
(6.2) Im/_l/jdiﬂr(q;%, K) z/ff dx dt = Im/p(q; )¢, dx

t=1

t=—1
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Once again, our main challenge will be to estimate the remainder terms ][— I,

To this end, we start with the following collection of paraproduct estimates:

Lemma 6.2. The following paraproduct estimates hold uniformly for ¢ € Q., h €
R, |5|,|k|] > 1, and functions f that are admissible in the sense of (3.26):
i) Quartic paraproducts. Let m € Sioc(4). Then we have the estimates

(63) // [wGﬁ 2 3’2% B(wa)’4i2 832 (d’ﬁf)} dx
+/ /m{;i“fa’i S(Wnf), o=
+// Wﬁf’wa, Lo—o? 32 (wﬁf) 4%2 62 wﬁf)} dx

+// {¢6fv Doe— aa;i fau;(i?az’az(zﬂgf)} dx

1.2 2
Sl 1%qul2 IIqIIE

efﬁm*l‘«‘ dlu

=5 (W50, 525 (W5 F) | da e~

A
e zoglh l du

e~ 300l h—nl du

20;{

e_ﬁ“l_ﬂ‘ d'u/

(6.4) /‘/ wﬁﬁ O f, 220 (48 ), 225 (1/16f)} "
/'/ AR AR A

< llal®

efﬁlh*lﬂ du

2y ol
P\« )

e~ zoo‘h H dILL

/‘/ OF 22l 220 (1), 7T (V] f)] dz

Yo f 9) 1 p
6f7w6 i P 97 (@oe— (02(4@ 32)(¢ f)] e~z lh—nl dp

5 EL WL, 5275 (W5)] da| e~ ay

+

m

eleﬁ‘h*l” d,LL

+

+
\\\\\

oJIf mle
[nlits
[ [wﬁf, Uit 3t W), 22 (L) | dr| i 0
[l

S 1 VL VS, Sty (VE)] de

e 200‘}7’ | d‘u

vt Unf _
it [ | b, i, A (0, £ (L)) o
< I%I’lllq\l2 HqIIE

20}(

zz) Sextic pamproducts. Ifm € Sioc(6) then we have the estimates

efﬁ‘h*/” d/"’

/'/ w4f,w4f 1/14f,2% o] 674;322@%)} I

# | [mlutsrovis. 5205, 555 2208, 20 do

e 200|h Bl d’u
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S |l 71 ||¢IH2% ||q||E<’||QHE20K

e~ 3001 h—nl du

(6.7 /‘/ USRS LS s, L 220 ()] da

S sl all )HQHE;M

S
e zoolh Kl d'u

/ ‘ / UL LS UL, oy, il A ()]

/ [ i, i, il %(w 7.2

e 200|h I d/}/

=5 (yh)] de

e_ﬁlh_l” dﬂ'

m[UAL LS O VLS, 5L iy (WA )] do

_|_

efﬁ‘h*/” d,LL

S S
e 200|h Bl d'LL

_|_

+
\\\\

i Wi f Vo f i f Yl 4-9> /4
m [452}—62 ’ 4&2;—[‘)2 ’ 4m2l—62 ’ 4&21—82 ’ 4&2}—82 ) 43c2—0? (’wﬂf) dzx

2 [ m[6h 1,08 01V, 5, o (UL)] do
8 /
< I

“Hlal? HqIIEoIIQHE

1
2 20;4
K/

(6.9)
e~ zoolh=nl gy

/ [ i f o e 20 (k) 2 (WA )] d

1 p—
e zoolh wl d’u

+

|:7/}4f7 872% 3(7/1 f)ag,.@ 07211; fa72163(¢ﬁf)i| dI

S,I%I‘llqu2 HQHE Il

20,2
ii1) Octic pampmducts. Ifm € Sioc(8) then we have the estimates
(6.10)
vaf YL f o WS
[ [l ovirovis, 2, S5 . 25 28 i) as

efﬁlh*lﬂ dﬂ

2 2
S [l 1%”(1\?% qulEolquEQM
(6.11)
YrF YR f WSS — e
/ / [¢3f7¢3f7¢3 72; 59 55— =0’ In=B" 22,«V 83(1/5:]0)} da| e~z = du
3, 3 3 Yuf WUl Lt wLf de| e==olh—nl g
+ 1/} f»i/J fv 2;{ 372% 3(/(/) f)’2n78’2n78’2n73721€76 x|e K
vaf  waf Wi f Wi _ T
+ “Q/m[wif’ wzfv ¢3f’ Gy Ry D ey R yesar B 4527682 (wif)} dz| e~ l" 1 dyy

< 1 Hlall?

1
FzZ (h)

IIQIIE gl

2(7:4
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iv) Decic paraproducts. If m € Sioc(10) then we have the estimates

2
(612) /‘ w f?"'7¢ifa 2@21,_f8’”.’27i‘_f:|¢ d.]f zrl)o|h*md,u
4 6
I Hf_/zll2 IIqIIEaHQIIEzm
vl vnf  wnf va f T
(613) / 52/m{¢if, L ,wi , 2%/—67 2%M—8’ 2,;_67. . 2};_@] wﬁdm e 550 |h—ul d/l

4 4
SI%\’lllqlli o g llallZs

20,5

Proof. For all of the ensuing estimates, we follow the argument of Lemma

(1) Decompose into Littlewood—Paley pieces.
(2) If derivatives fall at high frequency, integrate by parts using (4.14)).
(3) Estimate the two highest frequency terms in L? and the remaining terms

in L using (4.15)).
(4) Estimate the low frequency terms using Lemma
(5) Bound the highest two frequency terms using (2.30).

We illustrate this in detail with the first term on LHS(6.3). Decomposing into
Littlewood—Paley pieces, we consider

Pury (45 _ _ 92
Z /m|:PM1 (wgf% #7 22%_38PM3 Wﬁf)a %PNM Wﬁf)} dx

My, M2, Ms,My

We now decompose the sum into three parts.
The first summand is where M3, My < max{M;}. Here, we apply (4.15)), Bern-
stein’s inequality, and Lemma [£.8] to estimate

‘/ PM1 w(j )’M’ i_faaPM:».(wﬁf)v4:1,2332PM4('(/} f)}

M17M21M3,M4
M3, Ms<max{M;}

(14-N2)> (14 N5) 0 s 6 s
Y (\%|+N2>2(|i|+zv3(f%|+N4>H||PN1/’ |\L2HHPN¢ ) Lo

Ny>-->Ny
1N1 20 1+N
s> ""(‘%HW 2l Py, (05 f >\|L2|\PN2<w2f>||Lzan%gw
N1>N2
_ — Yo f
S |se | m JHQHE” <|%| 1K+% The=7 H%HqHJQEgU,%a

where we note that the M; have been permuted in the first inequality to account
fo the largest contribution. This is acceptable after integrating with respect to
e zoolh—nl dp and applying .

The second summand is where M3 < M, = max{M,}. Here, we use to
integrate by parts and then proceed as for the first summand to obtain

D

My, Mz, M3, M4
M3§M4:max{Mj}

/m{PI\/ﬁ (wﬁf), %ﬁ%ﬁv Dr— 3PM3 (¢6f)7 %PM4 (wﬁf)} dx
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(1+N2)3 6 6
S Y I AT H”PN bt ||L2H||PN (Wa)lLes
Jj=3

Ni>>N,
1—20
< N, 27 (14+N2)® 6 6 f
NP e 1P, (5 )l 22 | Py (0 ) 22 Nl g,
1Z4V2
- WS r |12 WS r |2
S oA™Y |, s B, S 17 8 | v | Nl

which is again acceptable.
The final summand, where My < Ms = max{M,}, is estimated in a similar way,

using (4.14) to obtain a contribution of

>

My, Mz, Ms,My
My<Mz=max{M;}

(1+N3)? 0 6
5 Z (Te[+ N1) (| ¢]+N2) 2 ([2¢[+Na) H ”PN 1/’ HL2 H HPN 1/1 ||L°°

Ni>->N, j=3

/m{Plegf)a%i%f) - PMs(qz[}p,f)v4%2 02PM4(1/’6f)}

which is again acceptable, as before.
The remaining terms on LHS(6.3) are estimated similarly. In each case, their

contribution is bounded by

4
14+Ns) 6
> TS H 1P, WS )l TT I, (05 F)llzee
N1>->Ny j=3

which is acceptable after summation.
For (/6.4), we proceed similarly, to obtain a bound of

Yoo e HHPN WS ||L2H||PN UAR] I

Ny>>Ny j=3
Nl 20 1+N
<> WL—N;HPW Mz 1P, (W8 F) |2 llal
N;>N,
2
2
~ ”m 2 ”qHEgu

which is acceptable.
For the estimate (6.5) we argue as before to obtain a bound of

4
14+Ns) 6
Z (|N\+N2)2E|%|+§V3 Y(J[+Na) H ”PN Lf)HL2 H HPNj (wuf)”L‘”
N1Z>-->Ny j=3

1N1 20 1+N
PR e %HPNI(W e 1Py (8 )2 lall3g,
N12>N»
- wof |2
Sl ™! i SHQHE‘%%

which is once again acceptable.
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The sextic terms are estimated similarly. For (6.6)), after integrating by parts we
obtain a bound of

6
(14N3)? 4 4
Z (|2¢]+N2)2(]3¢|[+Ns) (| 2¢|+Ng) H ||PN 1[} ||L2 H ||PNJ (wuf)HLOC

Ni>--->Nsg J=3
1240 (14 N,
< Y ||le<w,§f>uLz|\PN2<¢4 ieellalE lalEs,
N1>N»
< —1 k2452 Tl’ﬁf 2
Sl | ALl Nl

which is acceptable.
Similarly, we may bound LHS@ by

14+N3)
Z (\,{|+N2)(\(,{|+1\?S)(|,{|+N6) H HPN 1/J f ||L2 H ||PN 7/) f)||L°°

N1>--->Ng j=3
N2747 (14N
< S0 N N T Py () e | P (D) 2l
N1>Ny
- i
S el \/4,;;7_32 H%HQH?E;a

which is acceptable.
For 7 after integrating by parts we may bound each term by

(1+N3)? 4 4
> <|~\+Nz>2(|u|+?vs)(\%|+zv6>H”PN (Wt HLZHHPN (W)l

N12>-->Ng Jj=3
LN249 (14 N,) 22
< YD IO bt ) P (0Dl g,
N12>N»
| v 1P
S el | o SHQHEUHQHE”

20-;4

V4k2—02
which is again acceptable.
Turning to , our basic technique gives us a bound of

|k|(14N2)?
Z Z (J&[+N2)(|5[+Nr(3)) (|&]4+Nr4)) ([2¢]+ N7 (5)) (|2¢[+Nr6))
TEG N1 >-->Ng

2 6
H I1Pn, (W f)l 2 H I Pn, (W )l Los s

j=1 j=3
where & is the set of permutations of {3,4,5,6}. Estimating the N, 3y, N7(4) terms
in E7 using (4.21) and the N;(), N, terms in EF,  using (4.22), we obtain a
bound of

1N2 40 1+N
S e HHPN WPzl lal %
N1>N,

20%

which is acceptable.
Turning next to the octic estimates, we may bound LHS(6.10]) by

> 'ETL?LJVVJ)HWNJHHPN (Waf) ||L2H||PN Wl

Ni>--->Ng
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71N3—6o' 14N 1+4
<y H||PN WDl Nalg
N1 >N

20,3

—1 n2+%2 wgf
< |% 4,;;_82

~ 22

3||q||E<’HQ||E

20;«:

which is acceptable.
For (6.11), we argue as in so that after estimating the low frequency terms
in £7 or ES, . (depending on the associated denominator) we obtain a bound of

2
‘%|—1N3—60(1+N yitdo |%\_%_”N3’2°(1+N yite 3
> { v + i S TP @ el ol
N1 >Nz 2 2 j=1

which is acceptable.
Again applying our basic technique to , we obtain a bound of

R Hl,{HN HHPN (W2 f) |L2H||PN W2 )z

N12:-->Nio Jj=5 Jj=3
1N4 8o 1+N
<Y HMaser Tp n) 2l Nallg,
N1 >N, j=1
1 k24,52 Y2 f
S Jae ThEbE T 3||Q||E<’||Q||E20%

which is acceptable.

Finally, (6.13) again follows the argument of 7 (6.11), estimating the low

frequency terms in E7 or EF,  to obtain an acceptable bound of

1N4 8o 1+N
PO R H 1Px, (WDl ez gl g s,
N1>N,
This completes the proof of the lemma. O

Combining Propositions and Lemma we obtain the following;:
Lemma 6.3. Let ¢ € Q., h € R, k > 1, and x € I, = [1, 5] U [2K,00). Then we

have the estimate

(6.14) / 'Im / G W2 da

J
e zoo‘h l"ldﬂ

+ anz”q”%g :

20,3¢

< a2 [ ~1 ;
Shal?y [l
Proof. From (3.32)), we have
1 1
g [ Lol - Aol (—r)| = —Lu(w),
ﬂq/ - {\/Egm( )= V- 9[1] )] = —iu(/ﬁ)'".
We may then use (3.30) and (3.6 to decompose

Imj([iizé] = Im{

(6.15) — 2 [Vor(825) B ) + v (42) B (-9 g
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(6.16) - ﬁ(fi;)[”] )+ A= (35 )
(6.17) — 5 | = (38) 00 + A (885) (-9 laPg
(6.18) - V() +W(§i2)[23](*%)}u(ff)"
(6.19) — 25 ﬁ(ﬁ;)wﬂ r(2+lv)[23]( )} (R)"
(6.20) — B V(42 () + V(42 ()|
x [L957(x) - AoV (-]

(6.21) - 2 [ 2 ()00 + A (8) ()]

x [Vigls” (5) = vV=rgl5” (=) — 5lald]
(6.22) _ sz_i‘"’ﬁ :7[24](@ _ 7[241(,%)}

}.

We now proceed to use Proposition and Lemma to remove the leading
order terms from each line as follows:

For (6.15)), we first use (3.46) to write
921 (> 9] (50) g2t dar = 52 2 Vi f 4
2+’Y qwu €T = mwufw"vw fag% 97" 2x—0 wu €L,

4 6
where m € Sj¢(10), to which we apply (6.12). Next, we use (3.54) to write

[ v + F(fi;) (0] it da
/ [¢3f, 1/’3f’1/’3 ) 2% 6’ 211 ffﬂ 2?4 fB’ zi fa7 22;4 aa(wif)} dx
where m € Sjoc(8), which we bound using (6.10). Similarly, we use to write
[ VA6 + v (82) () — 64 () o) a i d
= [mluttvirois 52, i i) da

+ [ mluts vkt . ity 25 i), 25w do

where each m € Sjoc(6), which can be estimated using . Finally, we use the
second expression on RHS(3.52) to obtain

v 00+ v 2) P9
+ 16%4|’U,(J{)|2ﬂ(%)/ + 4%4ﬁ(%)2u(%)/:| q¢i4 dr

— [mluis, 225 200, el i) da
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+ [ BhG 500, A2, £ )] do

where each m € Sjoc(4) and then apply (6.3). Combining these estimates and using
(1.19)) gives us

/‘/ - %2 [16%4|u( )2(5¢) + 4364 (56)%u (52’

— L |p— -
e~ 200 P /leug‘%| 1”(]”2 HqHE“

20,5

(6.23) - 64i%8|u(%)|4a(%)} q] V2 da

We estimate the contribution of (6.16]) similarly. From (3.46)), we have

921 [>7]

f 2+’v
= o [ mhr v s, S, S S R 28 3] da
where m € S),c(8), whereas from we have
[l 00+ A 51; )] 02 do
— [mlutrvir i, 27 A5 Wi, 5 L) do
where each m € Sjoc(6). Using the second expression on RHS we get
3660+ s (83) P - 8%4\u<%)\2a(z>] ¢ vt da
/ [wﬁfv 25 2p V) 4;44;?82 }
b [, 2 i), 5 ), 2 )]

where each m € Sjoc(4). Again applying (6.10)), , (6.3)), respectively, and using
(1.19) we have the estimate

(6.24) / /{6.16 - H;i(z, [—8%4|u(%)|212(%)} q’} w?f dx

< bAlalR, Nl
For we first write
|q\2q - 16%4\u<%>\2q+ m|f f |
where m € S(3). From , we then have
/ E () >[|q|2 16%4|u<%>|2]q¢34 dr
/ [ TS . e 20 (b )] da
where m € Sioc(6), to which we can apply (6.6). Next, we use (3.46) to write

/f (£2) 57 5 1656 u () g w2 do

() Y2t da

1 |h—
e QOO‘h l"ldu

T,
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Vit Vit
:%2/m[¢if,...,z/)i ,2;;_6,...,2;;_6} vt da,
4 6
where m € Sjoc(10), which can be estimated using (6.12)). Similarly, using (3.53)

we have

{L(Wil)[{j%%) 4+ 1 (9271)[5]<_%)} 16%4|u(%)|2 ,(/)24 dx

V24 V= \24y 9%y

YR F o waf Wi WS —
= %/m{ﬁf’ Vo Up S 525 550 55 T s Wﬁf)} du
where m € Sioc(6), which we estimate using (6.6). From (3.52) we have
(3] (3] _
/[ﬁ(fjg) (»2) + 7\/i7(§ji/) (=) — 8%4|u(%)|2u(%)} 1656 |u()|%q ’(/JZ4 dx

4 4 5
= [m[uttvirois 52 i, e win) da

+ [ mlvirvis i, ik, 2w, £S5 i) do

where m € Sjpc(4), and can then apply . Finally, using that

(1] (1] .
—\/1; (;fv) (5) + —é% (—;jg) (=) = it(x)
and (| -, we obtain the estimate

/I/lem

(6.25) Sl 1||‘1||2% Nl

i) = S fuo0)Palo0) | 105 () P ! daf sl

20;«

For , we use - ) to write
5 v f
/f 2000 ule) w2t de = [ m{vtf 08 vt 5k, 2 i ()] da
where m € Sioc(6), and (3.52)) to write
(3] 13
[Voe(425) () + \ﬁ—%(;’jw) (59 u(r)" v da
_ 92
= [m[uis, 22 2000, e 0] do

where m € Sloc( ). Similarly, for (6.19) we use 1l to write
/\F é]j_l,y B %) U(KJ)/N 1024 dx :/ {w(jfa 'I;ZJva 2% 6’ (27— (g) 8,12 52) (¢6f):|
Applying (6.5) and . gives us

(6.26) /‘/ 6.18) + (6.19) ]¢24dx

Turning to (6.22), we first take a test function w € L> and use -, (2:23),
(2.21), and (1.19) to bound

/w7[>8](if£ 1524 dx| <

e~z lh=hl 4y < ||~ 1\Iqll2 IIqIIE

20%

ZH‘*HA Mopll A5, (CVEIA@) [op)*
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allalEg el

o2
H \/4n2 02
By duality, this yields

7= ) 620 S 12|

/4,{2 52 3 HqHE"

For the remaining terms, first use - ) to write
/{7[6](5) — Ol (—k) + 2560i/-@9|u(/1)|6} 1/)/34 dx

S Rl AR AR = T
which we bound using (6.7). Second, apply (3.48)) to obtain

/[7[4](,@ — M (=k) + 1926 [u(k)|? [u(k) a(x) — u(n)ﬂ(/@)’]}d)ﬁ4 dx
2 /’”[wﬁf, LA (WRS). S5 )] da

7 [ m{uS it 0, i i) da,

which we estimate by (6.4). Together, these give us

(6.27) /

/ [6.22 — o [1928% ()2 ) () — ()i

+ 2560i/f9u(m)|6H 1/)34 da| e~z =1l gy

S ﬁllq\li%( HQ||2Eg'

For (6.20)), we take h = \/:I:%( 2L )(:I:%) and again apply (2.26)), (2.23), (2.21),
(1.19), and Corollary [3.4] to estimate

\ [ b el e vt da < ZH?’HA hw3>||38||A<qwf:>||§8(cmm(q)nop)”

o2
H m Hq ||an
which is acceptable. For the lower order terms7 we use and (3.49) to write

[ 1[0 - Aabd-n) - 48m3|u<n>|2u<fc>’] V2 ds

= [mluprols 250w

5] da
17 [ Ul 0 0, i i) da,

where each m € Sjo.(4), and
1 [ot0 - Aol (=) + 38467 (el ulr) | 02 de

=t (bt uirvis i, i k)] de
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where each m € S),.(6). As a consequence, if we introduce
(6.28)

= F5 [VA(E) () + Vo (425) ()]

X [—48in3|u(ﬁ)|2u(fi)' + 384/@7|u(f£)|4u(ﬁ)],
we may apply and to obtain
(6.29) /‘/[ _ } e

To estimate , we first use ([3.46) to write
[ vt B 3\u<n>|2u<n>/w,%4dx
= [ mless s is S 5 S S 2w as
where m € Sioc(8), to which we apply (6.11). Similarly,
[ vtz >n7|u<n>|4u<n> Y2 da
:“/m[wif“”’d’ f, 2% 8’ 2?4 fa’ zﬁ faﬂ'“’ 21;@21]06} Wy, da,

4 4

where m € Sjo(10), which can be bounded using (6.13). Further, from (3.52) we
have

e~ 3001 h—ul dp <

ez lal? =y )Hq||2Eg-

3 3
/[\/;(;jlv)[ ](%) + \/—%(Zgﬁy)[ ](—%)} /{3|u(/i)\2u(n)'¢i4 dx
Y f

/ |:w f’Q% 8’274 3(¢ f)’2/<a 0 2k— 8722/§ aa(@[’ﬁf)] dx

where m € Sjoc(6) to which we apply , and
/[\/;(;j;) (3) + V=5 (;j;) (- %)} KT u(k) | u(k) 2 da
R o

/ |:w3f’ '(/}3 ’ 2;«(M a7 2% 8(w3f)7 2/;76’ 2;:8’ 25}18’ 2/;78j| dl‘,

which we estimate with (6.11]). Observing that

V() o) + V= (822 ) M (—50) = —2iu(50),

and once again using ([1.19)), these bounds combine to give us the estimate

1@ e

(6.30) X [48i/§3|u(/i)|2u(/~;)’ — 384m7u(m)|4u(n)H wz4 dx

e_ﬁm_ﬂ‘ dﬁb

< 1 gl HqIIEalquIE

1
2 20;«
Fy
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It remains to extract the leading order terms from (6.21). We first use (3.11)

and (3.46)) to write

631) 5 (#2) Y60+ A () () = ey
3 3 P
632  E3) 00+ A1) (0 = Zam|f 5l 5l

where m € S(3). From ([3.44)), we then have
[ intoervERg5 (r v2 da

— [ m{vbr 0l s, vt S s i S et i) do
where m € Sjo.(8) and

J 1@ 60 + A (82) 200 VRl o) vt

_ 2 2 Vi WL f 4
= [m[an i S S R gt an,
——— —
4 4

where m € Sjo¢(10). These terms can be estimated using and (6.13)), respec-
tively. Applying (3.49) we have

[ty [Vl ) - vral(-n)]| vt de
— [m[ bt vir i, 255 25k, A i) do,
where m € Sj¢(6), which we bound using . Similarly, we have
) 500 + ﬁ(%)w(w] (Vo (s) v =rgd ()| w3t do
/ {quf’ ¢3f’¢3fv P av 21 fav zﬁ fav 2ﬁ fav o %(ﬁf)] dx
where m € Sioc(8), which is bounded using (6.11). Using we have
[ ey [Vigl(n) = v=ral-w) = 32067l Put) | 02 de
=t [ 00, BN, 2 (i) da
r7t [m[vl 001, 2 ), T2 0 )] do
where m € Sioc(4). This is estimated using . Also using we have
36500 + S (82) 2 ()]
[Vigi () = v=rold (=) — 820 |u(w) Pu(r) | 2! da
=k /m[ibfjf, wﬁ ’21f§—fa7 21f;—fa> 22,:{),9(1#3]0)7 D aw f)}
+r7t [ vt s oir vt 5, 2. i i) da
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where m € m,(6). A final application of (6.8) and (1.19) gives us the estimate

039 [|[[620- @3] vt a0
where we define
3 ; .
(6.30) = 225 [ L (#2)00) + A (425) (=) [ shlalPa — 32in°|u(x) Pu(x)]
However, by writing
sl — 32ik u(k) *u(k) = — 5 lql*u(k)” — 2isu(r)u(s)"q — 8ir®|u(k) *u(k)",
and using (6.31)), (6.32), we obtain

= (5’1;) 60 + A= (221 ()] [ lal*a = 320 () Pu(e)]

|h—p] 1 2
e 565 d‘u<‘%| ||C]|| % ||QHE20%

[ 7f74;f2 82’4;&{”02}’
100+ A (32) 5 (=) | lalPa — 3207 () Pute)|
]

f f/l
£, 5.8, 55 s b=

for m € S(4) and S(6), respectively. As a consequence, we may apply (6.5) and

to obtain
(6.35) / ‘ / (6:34) vt da

We now collect the leading order terms from our above estimates into quartic
and sextic contributions, as folllows

J = 2t { — 4865 |u () Pqu( ) + 858 quu(5¢)?u(5¢) — 88| u(s)|*u(5)q

— 19265 5% |u (k)P ()u(x) + 384/@8|u(/@)|212(/£)u(/£)’},

= 'm
>3
[ﬁ(%) —

=K

|h—p] 1 2
e 500 d‘u<‘%| ||C]|| % ||QHE20%

Jy = ﬁ{ — 2560 3" |u(5¢) |*u(50)q — 15360k 032 | u (k) [*u(k)a(s¢)

+ 2560i1412|u(/-@)|6}.

Combining the estimates (6.23)—(6.27), (6.29), (6.30), (6.33)), (6.35]) gives us
(6.36) / ’Im Jdi;ll J — 2} ¥ da

Slal2y 147 hallg

e_ﬁ‘h_m du

+ i lally |-

5o
To estimate J1, we write
—485°|u(0)Pqu(s2) = =35 |q*qu(30)' — 35| q|*u(50)"u(50)" — 125¢"u(30)" G (s u(3)’
= —3:%aPqu()' + *m|f, f, . s
where m € S(4). Similarly, we have

85 qii(3¢)u(3) = %%2|Q|2§U(%)/ +°m {.ﬂ f, 4,{2]07_@2’ 4%57_32};

8 (o) Pa(2)d =~ 521aPqu) + 5P f, kg, kg ]
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+%2m{f,fyﬁ,ﬁ},
—192x%322 |u(k) |2 () u(k) = —48k8|u(k)*qu(r) — 48k°|u(k)[*a(s) u(k)’

= =3k%gqu(x)’ + km|f. f. f. cbs]

6 f f f/ "
+rm [452782 7 4k2—027 4k2—02 4322 —-0? ] ’
384k u() Pa(r)u(r) = 652lq*qu(r)’ + km £, . f. b5 .

where each m € S(4). Applying (6.3] , m and (6.5) we then have

J |7 - ez o

[l el

e zoo‘h “|d’u

< llal?

20,

2
Thon + allaly, |-
For the remaining term in J;, we compute that

ﬁ2u(ﬁ)’—%2u(%)' "

K2 —3c2 == (4rk2—02) (422 —-92)>

and applying (6.5) gives us

/ \ [ e 2 gyt da| e e S Pl Nl
Collecting these bounds gives us
a1 | ‘ [ nvitas] B g < fal ) [l el + lals]

Finally, we consider J. Arguing as for J; we have
=256 lu() a()q = iz lal*luG) P + m 1, 1, . g 5k e |

153611052 u() *u(w)a(2) = —6inla| u(e)? + 52m [, 1. f. 5t 5t 5]

10 ! f f f f "
+K"m {452762’ Ar2—02)9 Ar2—02 Ar2—02 ) Ar2—02> 4%2,32]a
2560in"2 u(x)|° = 10iK*|g|* u() |2 + K2m | £, /. f, 5t 55 5

where each m € S(6). Applying , (6.7), and gives us

o4 2 A0050)12
/‘/[J2 4w |u(n~)L7%2 |u(s0)] ]|q|4} ,(/}Z4 dr

S lalizzlal?y | [l el
(h)

e~ 300 h—nl du

2
o+ rrsallalld; ).
For the remaining term we compute that

) 2= fuGal* _ 2 g > g’
p—— = —K U(K) =g ma—omy — ¥ () @E—on @ oy

and can then apply to conclude that

[ | ettt g 2 g

[ S A
¢ 2o lh—nl dugl—}{‘HqHQ |\q||E«||qHE

20%
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Together these, yield
(6.38)

/ ‘ [ it + ariallaly ]
The estimate (6.14)) now follows from comblnmg -, -, and (6.38). O

Proof of Proposition[6.1. Recall (6.2). Using Lemma [1.2] and (2.4), we estimate

[ Jm [ oo suq||%goEg[1+||q||%foLz].

Turning to LHS- and recalling that u(k) = =5z, we use and -
to write

1 1ph—
e S allgg lal2y [|x| Ylgl%

20,3¢

(6.39)

e~ zo|h—l dp dse
1

T j i (3, ) = Re { 1652 22 (k) + 252 ()" }

11

1 /
_ RG{SKJ? 47;4(;_)82 fL(K))/ + 4u(2fi) - U(Iﬁ:)//}

’ ’ "
(6.40) — 8K? Re{4ﬁ§'i)82 ﬂ(n)’} + 4k2 Re{4%§ )62 u(/{)} .

Integrating by parts and then applying (2.13) we may bound the contribution of
the last three summands as follows:

/{8/{2 u(n)62u( )+ 41(;)82 (k) } ¢24da?
S et )|y M@ )|y 42 )|y IR0 u(s)”l

<o Mallg,

/{8 2 w0k )/}//1/)/34d$

SEt @l gy 1@ u(w)ll g S w7 allg, s
1

3

1
Ef

1,

1,5

/{4 2_ulr)’ ﬂ(/@)}m 24
43¢2—02 "

S /fz%’lIIU(H)IIE% H(wi“)'”U(H)IIE% Sk allgg, -
1,3 1 ’

1

For the remaining term, we write
/{16I€ u(k ); ( ) +24 (2 )'(;’2 ( )”/}1/}24d1'

(wlz )// (1/124 /! (w12 )/// (wlz q)///
:/{16H (1::2—02)(4r2—02) 4n2 52 +2(4%2 02)(4r2—0?) 4;52,32 }d{E

o2 (24 g)""
+/{16K} I:wu ) (32— 62)(452782)]6‘1' 4/§/§782 }d.’E

12 63 (wlﬁ q)///
+/{2[¢u N O T - Rl v }dx

w(r)’ _ wlr)"’ 3 _
+/{16’f24%(2_)azq' (V12 )0+ 20l - Wﬁzumgi_aa]q} v d.
Using that
[0, =] = — 1 (1200,2)0 + (02)"} e
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12 ot _ " 1
[ 1% ’4:@2—82] - 4;@2 32 {2 }452—82’
12 ol 12 fé) o 12
[wu ’4&2782] = /{2 82 {2 w 1/} )H}4f{2762 T 4r2—02 (1/}# )/’
we may again use ) to bound
32 (w24 q)//
/{16“ [wu ) (42=02)(4 52782)](1 Tni—pr [ dv
1 —1||1.,12 (W' a)
< K’ {%H u ' A2 62] (k)" Bt + H[ m 74&2 62 q‘ 1 }‘ pyesr; | G
—1,3¢ 1 1,3¢
<o lallB, s
12 a3 W29
’/{2[% ’(4%2782)(4;{2762)](1' Trr—gr (AT
—1|1.,12 (W2t a)”
1 + H[wu ,4K2 32 q‘ 1% }‘ 4;;2_62 EE%

3 {%H 2 g u)” |

<o g, s

‘/ 16.%2 41;(2“)32(]

1,5

2 —
(02, a2 o

2 —
el wamla] o als,

< K2 Hu(k) £}
" 3
‘/ 4u(;) a2 ;1;’ 4,126 premr 17 }1/’;2 dx
H7/112 ;1}, m QH S %71||Q||2Egaﬂ%-

< s Hu(k)
Combining these estimates gives us
of| ik |7 < . [2] 24

(641) n H\/ﬁ E% ~ Im Jdiﬁ‘(%, :‘i) T)/J# dx
Collecting (6.39)), (]6 41), (6.14), and using (2.5, we have

gl -

1
- e~ 705 |h—ul du
L} E

w12
/ | A

+ HQHLO"E“

Im]dlff 7, K) wmdxe 200 1= “ld,ud%dt

S gl [1 +llal ez + lal ]

Estimating
P (¥,°9) Psa(y,%q)
T HL2H + H \/>1,€2iaqz HLEH%

|z et S JW
2
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~

)
2 p2
LYES
2
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we then get
(lallEe g + 572 (1 + lallZ e 2)-

2 2 2
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Using (|1.19) to absorb the first term on the right-hand side into the left-hand side,
(6.1)) then follows from the conservation of the L? norm. O

7. CONVERGENCE OF THE DIFFERENCE FLOW

Our main goal in this section is to prove that as k — oo, the flow determined by
the difference of the Hamiltonians HY = H — H, converges to the identity, locally
in spacetime, uniformly over L2-bounded and equicontinuous sets.

Theorem 7.1 (Difference flow converges to the identity). Let @ C S(R) be an
L?-bounded and equicontinuous set such that

Q. = {etJVHqu tqEeQ, |t <1, and k > 2}
is a 6-good set for a sufficiently small § > 0. Then
12 tJVHIT

lim sup sup sup H?/) q-— ,1L2q||L2 =0
R0 geQ peR |t|<1 v

Proof. The L?-boundedness and equicontinuity of the set Q. extends readily to the
set

{Wg:qe Q. 1<|j| <12, pe R}
In view of this equicontinuity property and employing the fundamental theorem of
calculus, the proof of the theorem reduces to showing that

diff
12,tIVH ) —0.

7.1 li
(7.1) i sup sup|| g (4,

A quick computation reveals that

(P

Zdt (wlz tJVHI ) _ w}lﬁ [Fﬁ(etJVHg”fq)}’

where
Fo(q) = —d' — ila)*q + 26[VEg12(k) — V—=kg1a(—r)].
Thus, (7.1) will follow from

(7.2) i S;g) f;gg”w Eel@ o mimzy

Employing (3.32)) and (| , we decompose
3 " ’ ’
F(q) = ﬁQ+m[f»f7ﬁ] +m(f, 35, 5]
+26[Vigis" (k) = V=rgp5" (—k)]

where f satisfies (3.26]) and each paraproduct m lies in S(3).
The contribution of the linear term is easily estimated via

=0.

132 gz all s S 520002 sl e 12

which converges to 0 as kK — oo, uniformly for all ¢ € @, and all u € R, in view of
the conservation of the L? norm.

To estimate the contribution of the cubic and higher order terms in F,;(q), we
rely on the consequences of the local smoothing estimates proved in Proposition[6.1]
To simplify our bounds, we introduce

lgllonws, = llallzzzz +lall 4
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and note that L?-conservation and Proposition |6.1] yield

diff
(7.3) le”Y <" gllpaes, < llallz2

uniformly for k > 2 and ¢q € Q.
Lemma 7.2 (Local smoothing estimates). For f satisfying (3.26), we have

(¥, f) L
i aup | 058, S el
1
(75) Al < el
pHER t,x

Moreover, the following estimate holds uniformly for k > 2, ¢ € Qx, and p € R :

1
(7.6) / A5, b S 57 [ el 110 e el s,

Proof. Decomposing into low and high frequencies and using Bernstein’s inequality
for frequencies < n%, and Proposition for frequencies > n%, we may bound

3 1 . 1
(7.7) ||¢,§f||L?H% S KE Hf||L;>°L§ + K3 H \/4,11{)}2762||L%H§ S k3 |lgllpNes,. -
A parallel argument yields
Wi f) 1
|, < w Hlalows,.

Using this latter bound, Sobolev embedding, and interpolation, we obtain

awin ||? < [l1op 2ei) Wi )
2k+0 L%L‘* 2k+0 2k+0

VYl
2k+0

_1
L2 Sk 3||‘]||2DNLSN,
t,x

3
2 ‘ 2772
Lt,z Lth

which settles (7.4]).
Arguing similarly and using (7.7)), we may bound

[ty as [ ot win]l, as i

We now turn to the proof of (|7.6| - By the Bernstein inequality and Lemma

vt 1nAIl7: S wtlales,

\/FHQHLQ for Ny < K3
A Zs VNg for k3 < Ny <
Z || N ||op SRS ||q||L2 + - ||q>né ||L2 or k3 < Ng < K
N<Ny ﬁHQHLZ for Ny > k.

Employing this estimate and Lemma we may bound

4
1@, = - IAlwwom ], A [ [, | 32 (AW,

N1~N2 N3<N2
N2
S Y @ el () ez llal e
KE>NI~N,
_ 10 N2 4
Y H@om el @l [k el + 5 @)l

1 2
K3 <N1~N2<Kk3

(Yuq)
D DS (F

2
K3 <N1~N2<k

(w;LQ)N2
Vak2—-02

el + 3R ) ]

3
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1 N3 (Yug) N (Yug)N 4
+ D K2N§1°g(4+75) H\/ﬁ i || vae=oz || 3 lalize

Ni~No>k

11

_ 12 _ 11 2
S [ Flalle ¥ ), ) Dol ol + | e

2 :|
3| -
H?2

The estimate ([7.6) now follows by interpolation between this bound and

1
[A(Wu@)ll5, S K2 lallre.
This completes the proof of the lemma. O

Returning to the contribution of the cubic terms in Fi (q) to LHS([7.2]), we employ
Lemmas and as well as (2.32)) to estimate
12 f//
Hdﬁt ml[f, f, 7h==] HL}/([fl,l];H;‘l)
< s =zl S 1W0afls,

[0 mlf, %’ 2;«%&] HL%([fl,l];H;“)

< limlf, sl sy, S W fllee oz |55 s < 57 llaliBaes, -

1" l 7l
e S kPR lalbs,

In view of (7.3]), the contribution of these cubic terms is acceptable.
To estimate the contribution of the quintic and higher order terms in Fy(q), we
argue by duality. To this end, fix w € H}. Using Lemma and (|7.6), we estimate

/.

where we used Corollary [2.7] combined with the fact that Q. is d-good in order
to sum in ¢ > 2. By (7.3) and equicontinuity, the contribution of these terms to
LHS(7.2) is also acceptable. O

dt < kAW3, (VAEIA@lop) ™ IA@ET) llop

>2

/ Vi3 9157 (k) w da

_1
S lwllzs [k lallzz + [|aa). g || Nalbnes,

8. PROOFS OF THE MAIN THEOREMS

All the main difficulties have already been addressed in previous sections, albeit
under the assumption that the solutions remain in a d-good set for some universally
small 6 and only for the time interval [—1, 1]. In this section, we put all the pieces
together and show how to circumvent these illusory restrictions.

Proof of Theorem[I.1. The fundamental question to settle is this: Given an L*-
Cauchy sequence of initial data ¢,(0) € S and a Cauchy sequence of times t,, € R,
show that their evolutions ¢, (¢,) under form an L2?-Cauchy sequence.

Evidently, the set {g,(0)} is L?-precompact. Thus by Corollary there is a
uniform rescaling parameter A so that not only are the rescaled initial data d-good,
but so are their evolutions under as well as any other dynamics preserving
A(52;q). This rescaling does not meaningfully alter our original ambition — we just
replace the original sequences of solutions and times by their rescaled values (for
which we reuse the original names).

It suffices to treat the case where |t,| < 1, because larger values can be treated
by iterating the argument. For example, if ¢, — %, then we first run the argument
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with ¢, = 1 and then use ¢, (1), which we now know to be convergent, as initial
data to extend up to the chosen t, — %

Assuming now that [t,| < 1, Theorem guarantees that {g,(t,)} is equicon-
tinuous and Proposition [5.1|guarantees that it is tight. Thus every subsequence has
an L%-convergent subsequence; we just need to verify that all such subsequential
limits agree. For this purpose, it suffices to test against some fixed w € C°(R).

It is at this moment that we employ the commutativity of and the H,
flows. Using , our task is reduced to verifying the following two claims:

(8.1) sup limsup ’<w,et"JVH“qn(0) — ethVH’“qm(O)H =0

k>1 m,n—o0

(8.2) limsup sup sup ‘<w, [et‘]v(H_H“) - Id] (q0)>| =0
K—=00  go€Qx [t|<1
where @, is defined via with the choice @ = {¢,(0) : n € N}.

The first of these two claims follows from the L?-wellposedness of the H, flow
shown already in [27, Cor. 5.4]. The second was addressed by Theorem [7.1 (]
Proof of Corollary[I.2. Recall that local well-posedness for s > % was proved al-
ready by Takaoka in [45]. This result is rendered global by the a priori bounds
shown in [2] [3].

Consider now 0 < s < % Evidently, the existence of solutions follows immedi-
ately from Theorem as does continuous dependence in the L? metric. Contin-
uous dependence in the H® metric follows from this and H®-equicontinuity, which
was shown in [27, Th. 5.6] contingent on the equicontinuity conjecture that was
subsequently resolved in [17]. O

Proof of Theorem[1.5. By Corollary there is a uniform rescaling of the set of
initial data @ so that not only are the rescaled initial data d-good, but so are their
entire (DNLS|) evolutions. This allows us to invoke from Proposition to
obtain the local smoothing estimate (over any unit time interval) for the rescaled
solutions. The estimate for the unrescaled solutions follows by a simple cover-
ing argument. Naturally the resulting constant depends on the rescaling parameter;
however, this is dictated solely by Q. O

Proof of Corollary[I.6. Given initial data ¢(0) € L?, we choose Schwartz-class ini-
tial data ¢, (0) that converge to it in L?. By Theorem the solutions gy, (t)
converge to q(t) in C([=T,T]; L*(R)). To deduce that g(t) is a distributional solu-
tion, we need another form of convergence to handle the nonlinearity. This can be
obtained with the aid of Theorem and a Gagliardo—Nirenberg inequality:

||'¢8[Qn - Q]Hi?m S ||Qn - QHLSCLEE{H'(/)H(]nHQLle/z + mequleﬂ} — 0 asn — oo.

Here all norms are taken over the spacetime slab [-T,T] x R. O
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