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Abstract. We address two pressing questions in the theory of the Korteweg–
de Vries (KdV) equation. First, we show the uniqueness of solutions to KdV
that are merely bounded, without any further decay, regularity, periodicity,
or almost periodicity assumptions. The second question, emphasized by Deift
[17, 18], regards whether almost periodic initial data leads to almost periodic
solutions to KdV. Building on the new observation that this is false for the
Airy equation, we construct an example of almost periodic initial data whose
KdV evolution remains bounded, but fails to be almost periodic at a later
time. Our uniqueness result ensures that the solution constructed is the unique
development of this initial data.

1. Introduction

We study solutions to the Korteweg–de Vries equation (KdV)

d

dt
q = �q000 + 3(q2)0, (KdV)

which describes the evolution of a real-valued function defined on the line R. Here
primes denote spatial derivatives.

We are interested in studying solutions to (KdV) that are merely bounded, with-
out further regularity or decay assumptions. This class includes a multitude of
di↵erent spatial profiles of enduring interest, including step-like solutions [1, 8, 12,
19, 24, 29, 34, 36, 37], quasi- and almost periodic solutions [5, 15, 17, 18, 23, 25, 46],
as well as soliton gases [21, 22, 26, 28, 39, 48].

Our first objective is to show that such bounded solutions are uniquely deter-
mined by their initial data, without auxiliary conditions. This is known as uncon-
ditional uniqueness. This term was coined by Kato in the paper [31], which studied
nonlinear Schrödinger equations in Hs(R) spaces. The unconditionality of Kato’s
results meant precisely that he could prove that the solutions were unique in the
space CtHs

x
. By comparison, Kato explains, solutions that are constructed via con-

traction mapping in Strichartz spaces, are only guaranteed to be unique amongst
competitors that also have finite Strichartz norm.

For initial data with more interesting spatial asymptotics, solutions are con-
structed, perforce, under the presumption that they will maintain the same spatial
asymptotics. Indeed, even for periodic initial data, solutions are constructed within
the class of functions with the same spatial period and unconditional uniqueness
has traditionally been interpreted in this sense too. Is it really necessary to enforce
this restriction? Or does it follow directly from (KdV)? Similarly, on the basis of
physical intuition, we expect initial data decaying at infinity (say, in the sense of
belonging to an Hs(R) space) to yield only solutions that likewise decay at infinity.
But can we prove this? What assumptions are necessary?
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Without examples of wild behaviour, the questions of the previous paragraph
may seem foolish. However, such examples do exist! Both [10] and [13] construct
nonzero solutions to (KdV) with zero initial data. In the case of [13], the solutions
are infinitely smooth and defined on a narrow spacetime region around the set t ⌘ 0.
Their jumping-o↵ point for this construction is the existence of a globally defined
smooth nonzero solution to the Airy equation, @tq = �q000, that vanishes for all
t  0.

By contrast, the solutions constructed in [10] are very irregular, namely, CtHs

with s < 0; correspondingly, the definition of solution employed in that paper is
rather subtle. These solutions are also periodic in space. As the zero function is
periodic with any period one chooses, Christ’s solutions provide an example where
the period of the solution does not coincide with that of the initial data. They
may also be regarded as solutions that are initially rapidly decreasing, but then
suddenly, are not.

Before turning to our principal uniqueness result, namely, Theorem 1.2, we must
first pause to make the notion of a bounded solution precise.

Given an open interval I ✓ R, a bounded measurable function q : I ⇥ R ! R is
said to be a distributional solution to (KdV) if

ZZ ⇥
@t�(t, x) + �000(t, x)

⇤
q(t, x) dx dt = 3

ZZ
�0(t, x)q(t, x)2 dt dx, (1.1)

for every � 2 C1
c
(I ⇥ R). Evidently, such a solution can be modified on any

spacetime null set without a↵ecting its status as a distributional solution; this
includes any fixed-time slice!

To remove this ambiguity, we may demand that q(t, x) agrees with its spacetime
Lebesgue values (where they exist); this only a↵ects the values on a spacetime null
set. With this change, (1.1) guarantees that

Z
s2

s1

Z
q(t, x) 000(x)� 3q(t, x)2 0(x) dx dt =

Z
[q(s2, x)� q(s1, x)] (x) dx

for every choice of  2 C1
c
(R) and all s1 < s2 belonging to the time interval I.

This in turn demonstrates that

t 7!
Z
 (x)q(t, x) dx is continuous for all  2 C1

c
(R). (1.2)

As q is already assumed to be bounded, (1.2) is equivalent to the statement that
t 7! q(t, x) is continuous into L1 endowed with the weak-⇤ topology. This line of
reasoning justifies our preferred notion of solution:

Definition 1.1. Given an open interval I ✓ R, a bounded measurable function
q : I ⇥ R ! R is a bounded solution to (KdV) if it is a distributional solution and
weak-⇤ continuous, which is to say (1.1) and (1.2) hold.

One should resist the temptation to adopt the norm topology on L1 here. First,
it would lead to a more restrictive notion of solution and so weaken our uniqueness
claim. Secondly, it is also rather unnatural for PDE problems. For example, the
time-dependent characteristic function �[t,1) (which solves the simple transport
equation @tq + q0 = 0) is weak-⇤ continuous, but not norm continuous.

For the consideration of bounded solutions, we need only consider the weak-⇤
topology on closed balls in L1. These topological spaces are completely metrizable
and compact, which is a very comfortable setting in which to do analysis.
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Continuity ensures a meaningful connection between the solution and its initial
data. The question of unconditional uniqueness is whether each initial data admits
at most one continuous development. This we answer in the a�rmative for bounded
solutions to (KdV):

Theorem 1.2. Let q1 and q2 be bounded solutions to (KdV), both defined on some

open interval I ✓ R. If q1(t0) = q2(t0) as elements of L1(R) for a single t0 2 I,
then q1(t) = q2(t) for all t 2 I.

We know of no prior unconditional well-posedness results for (KdV) under mere
boundedness constraints, no matter how many space or time derivatives are as-
sumed bounded.

The uniqueness questions that have received the most attention are those re-
lated to C

t
Hs

x
solutions on the line R and on the circle R/Z. (Working on the

circle is equivalent to studying periodic solutions with an enforced period.) After
reviewing this, we will discuss recent results of [5, 38], which provide the only other
unconditional uniqueness results that we know of. These consider certain classes
of almost periodic initial data, motivated by questions posed by Deift [17, 18] on
the spacetime almost periodicity of solutions to (KdV) with almost periodic initial
data. This discussion will lead naturally to the second main contribution of this
paper, namely, Theorem 1.3, which demonstrates the existence of solutions whose
initial data is almost periodic but whose later evolution is not.

Early results on the well-posedness problem for (KdV) focused on initial data in
Hs spaces. All employ the same uniqueness argument, which we will now explain:
For any pair of classical solutions q1 and q2 to (KdV), we have

@t(q1 � q2)
2 =� @3

x
(q1 � q2)

2 + 3@x
�
(q01 � q02)

2
 
+ 3(q01 + q02)(q1 � q2)

2

+ 3@x
�
(q1 + q2)(q1 � q2)

2
 
. (1.3)

By integrating over the whole space, we find that

@t

Z
(q1 � q2)

2 dx  3
h
kq01kL1 + kq02kL1

i Z
(q1 � q2)

2 dx. (1.4)

This type of inequality allows one to deduce uniqueness via Gronwall’s inequality.
In this case, it would require that both solutions belong to C

t
L2
x
and that q01 and

q02 belong to L1
t
L1
x
. Consequently, this argument shows unconditional uniqueness

in CtHs(R) and CtHs(R/Z) for any s > 3/2.
The proof of Theorem 1.2 will also, ultimately, employ a Gronwall-type argu-

ment. The fundamental di�culty in such an argument is finding an e↵ective notion
of the ‘distance’ between two solutions. It is crucial that one can control the in-
crement of the distance in terms of itself, as in (1.4). This is a daunting task even
for Schwartz-class solutions; the elegant simplicity of (1.3) belies essential alge-
braic miracles. Nevertheless, we have found another notion of distance with this
miraculous property; this can be seen by setting  ⌘ 1 and F̃1 ⌘ F̃2 ⌘ 0 in (3.2).
Moreover, the rate of exponential growth of this distance is controlled for solutions
that are merely bounded.

There is a second obstacle that we must also overcome: As we wish to treat
solutions without spatial decay, we must adopt some localized notion of distance.
This is in direct conflict with the fact that we are considering a dispersive equation:
high-frequency waves travel fast and so may lead to rapid inflation of the di↵erence
in localized norms. The concomitant loss of derivatives is evident already from
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the second term in RHS(1.3). This phenomenon likewise manifests in the second
spacetime integral in RHS(3.2). In Section 3 we present a means of overcoming this
loss by exploiting the fact that one derivative falls on the localizing weight.

It is now known that solutions of (KdV) are unconditionally unique in C
t
L2
x

both on the line and on the circle. In the line case, this was shown by Zhou in
[49]. The first observation is that C

t
L2
x
solutions automatically belong to certain

Xs,b spaces. The Duhamel formula is then used to show that the Xs,b norm of
a di↵erence of solutions does not exceed a small multiple of itself; this guarantees
uniqueness.

Unconditional uniqueness in C
t
L2
x
(R/Z) was proved in [2]. By making a bijective

change of unknown in the spirit of Birkho↵ normal form, the authors reduce (KdV)
to an integral equation that can be solved by contraction mapping in C

t
L2
x
(R/Z)

without any auxiliary norms. Naturally, this yields C
t
L2
x
(R/Z) uniqueness.

Any attempt to prove unconditional uniqueness in C
t
Hs

x
for s < 0 must address

a very real question: What does it mean for such a distribution to be a solution
of (KdV)? One cannot simply square such distributions! Christ’s work [10] gives
one answer to this question and shows that it leads to nonuniqueness. A competing
notion, named green solutions, was introduced in [32] specifically to give meaning
to the unconditional uniqueness question for the white-noise solutions constructed
therein, as well as the C

t
H�1

x
solutions constructed in [30, 33]. These questions

remain open.
Let us turn now to the case of quasi- and almost periodic initial data. Recall

that a function f : R ! R is called quasiperiodic if there is a finite dimensional
torus Rn/Zn, a vector ! 2 Rn, and a continuous function F : Rn/Zn ! R so that
f may be represented as

f(x) = F (x! + Zn) for all x 2 R. (1.5)

Conventionally, one chooses ! so that its entries are linearly independent over Q,
for otherwise, one may just use a lower-dimensional torus.

The notion of an almost periodic function may be regarded as the n = 1 case
of the above. We prefer to present the original definition (cf. [6, §44]). A number
` 2 R is called an " almost period of the function f : R ! R if

��f(x+ `)� f(x)
��
L1(R) < ". (1.6)

A function f : R ! R is said to be almost periodic if it is continuous and for every
" > 0 there is an L" > 0 so that every interval of length L" in R contains at least one
" almost period. An equivalent characterization is given by Bohr’s Fundamental
Theorem of Almost Periodic Functions (cf. [6, §44]): a function f : R ! R is almost
periodic if and only if it can written as the uniform limit of finite trigonometric sums
(with unrestricted frequencies).

A great deal of work has been devoted to the study of (KdV) with quasi- and al-
most periodic initial data, both as an end unto itself and through its connection, via
the Lax-pair formulation, to the quantum mechanics of one-dimensional quasicrys-
tals. Naturally, the uniqueness of such solutions was investigated as an integral
part of this program. Nevertheless, we know of very few uniqueness results that
may reasonably be categorized as unconditional. The paper [5] constructs solutions
for almost periodic initial data under certain restrictions on the Schrödinger opera-
tor with this potential: the spectrum must be absolutely continuous, reflectionless,
and satisfy Craig-type conditions. The authors prove that there is only one solution
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with this initial data for which q, q0, and @tq remain bounded. (By virtue of the
equation, q000 and q00 also remain bounded.) Central to this achievement is the proof
(building on ideas from [43]) that under these assumptions, all such solutions must
retain the spectral properties imposed on the initial data.

The subsequent paper [38] extends [5] in two ways: it reduces the regularity re-
quirements to boundedness of two spatial derivatives and it extends the uniqueness
result to higher order flows in the (KdV) hierarchy (under stronger Craig-type con-
ditions). The authors of [38] also observe that these techniques yield a new result
for the case of periodic initial data, namely, classical solutions with periodic initial
data for which q and q00 remain bounded must remain periodic.

While we contend that Theorem 1.2 provides a definitive resolution of the unique-
ness question for almost periodic initial data, a great deal remains to be done re-
garding the existence question. It is indicative of the di�culty of this problem that
there are no known robust methods for obtaining a priori bounds on the solution.
The well-known conservation laws associated to KdV, including momentum and
energy, are simply useless because they are all infinite. The fundamental enemy is
that the infinite momentum, for example, may all pile up in one place! In Section 6
we give an example of almost periodic initial data for which precisely this happens,
even under the simpler Airy dynamics:

d

dt
q = �q000. (1.7)

Going beyond well-posedness, it is natural to ask about the long time behaviour
of solutions. The numerical investigations [47] of the periodic case by Kruskal and
Zabusky, which first thrust (KdV) into the limelight, already showed almost recur-
rence of the initial state after a short time. Subsequent numerics and investigation
of finite-gap solutions (cf. [20, 35]) further solidified the following prediction about
the long time behavior: periodic solutions evolve almost periodically in time. For
smooth solutions, this was proved by McKean and Trubowitz in [40], with subse-
quent extension to L2 in [7] and then to H�1 in [30].

In [17], and again in [18], Deift made the conjecture that initial data that is
almost periodic in space also leads to solutions that are almost periodic in time.
We know of several rigorous results that support this thesis: In [23], Egorova proves
that this is true for certain limit periodic initial data; it is required that the initial
data may be extremely well approximated by periodic functions (faster than any
exponential of the period).

The more recent work [5] demonstrates almost periodicity of the solution for a
disjoint class of initial conditions. Theorem 1 of that paper resolves the conjec-
ture for small real analytic quasiperiodic initial data with Diophantine frequency
vector. Their second theorem covers a broader class of initial data determined by
the spectral theory of the Schrödinger operator associated to the initial data. At
least currently, these spectral assumptions can only be verified for similarly nar-
row classes of initial data. These spectral conditions were further relaxed in [25].
The analogue of the Deift conjecture for higher flows in the integrable hierarchy is
treated in [25, 38].

Setting aside the formidable analytical di�culties that must be overcome, the
approach pursued in these papers gives rise to an intuitive appreciation of why the
Deift conjecture ought to be true: The magic of complete integrability suggests that
for almost periodic initial data, (KdV) together will all its commuting flows can be
conjugated to commuting (Dubrovin) translations on a compact Abelian group (a
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product of tori indexed by the spectral gaps). The conjugation mapping provides a
function that maps each point on the group to the value of the corresponding q at
the spatial origin. By exploiting the fact that translation is one of the commuting
flows, this sampling function allows one to reconstruct q at all spatial points.

Taking this line of reasoning to its natural conclusion leads one to predict that
the solution to (KdV) with almost periodic initial data is in fact an almost periodic
function of spacetime. In particular, this promises that t 7! q(t, x) is almost periodic
for every x and likewise, x 7! q(t, x) is almost periodic for every t. This strong
formulation of the Deift conjecture is shown to hold in each of the papers [5, 23,
25, 38]. It is a great triumph and demonstrates the thorough understanding they
have achieved for their classes of initial data. However, as we will argue, it appears
not to be the whole truth.

In doubting the unconditional veracity of the Deift conjecture, we are preceded by
[16], which outlined an extensive program for potentially building a counterexample.
We will take a very di↵erent (and much simpler) approach; nevertheless, it was
Damanik’s lecture [14] that stimulated our consideration of this problem. There,
it is also highlighted that continuity of the mapping conjugating (KdV) to group
translations is pivotal to the reasoning laid out above; correspondingly, a keystone
in their program is the construction of a regime in which there is such a conjugation,
but it is not continuous.

Our own investigations began with a seemingly innocuous question: Is the ana-
logue of the Deift conjecture true for the Airy equation (1.7)? This is something of
an ill-posed problem: no definitive class of initial data has been specified nor has a
metric been agreed upon. What we will demonstrate is this: an originalist interpre-
tation leads to the conclusion that it is false. Building on this, we will demonstrate
that the strong formulation of the Deift conjecture for (KdV) is likewise false:

Theorem 1.3. There is a bounded solution q : [�T, T ] ⇥ R ! R of (KdV) with

almost periodic initial data for which x 7! q(t0, x) is not almost periodic at some

time t0 2 [�T, T ]. Indeed, x 7! q(t0, x) is devoid of non-trivial almost periods.

Here bounded solution means in the sense of Definition 1.1. By Theorem 1.2,
there can be no better-behaved solution with this same initial data.

Let us first consider the Airy equation (1.7). When the initial data is a trigono-
metric sum with `1 coe�cients (and unrestricted frequencies), it is elementary to
see that the corresponding solution is an almost periodic function of spacetime.
Evidently, we must go beyond this class.

The coe�cients of our example will be weak-`1. This class includes discontinuous
functions, for example, the 2⇡-periodic square wave

sq(x) = sgn
�
sin(x)

�
=

X

⇠2Z odd

2
⇡i⇠

ei⇠x. (1.8)

Although this function is periodic, it is not almost periodic because it is not contin-
uous. While we would never dream of demanding continuity of a periodic function,
Bohr insisted on this condition for almost periodic functions with good reason. It is
obvious that approximation by trigonometric polynomials would fail if one omitted
continuity. Bohr saw deeper: without continuity, the sum of two almost periodic
functions need not be almost periodic! Consider

f(x) = sq(x) + sq(↵x) with ↵ 2 R \Q. (1.9)
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Evidently, each summand is periodic. However, the sum fails to be almost periodic
in the following profound sense: it is devoid of almost periods! Concretely, if "  1
then (1.6) holds if and only if ` = 0.

We may disprove the Deift conjecture (as formulated above) for the Airy equation
by exhibiting almost periodic initial data whose later evolution coincides with (1.9).
For expository reasons, it will be better to use (1.9) as initial data and then verify
that at some other time this solution is almost periodic in space. Note that both
Airy and (KdV) are time translation invariant; they also admit the same time-
reversal symmetry: q(t, x) 7! q(�t,�x).

As a linear equation, the Airy evolution satisfies the principle of superposition.
Correspondingly, to understand the solution q(t, x) with initial data (1.9), we need
only study the evolution w of a single periodic square wave:

@tw = �w000 with w(0, x) = sq(x), (1.10)

for then q(t, x) = w(t, x) + w(↵3t,↵x). As it is periodic, the solution w may be
understood through the highly-developed theory of exponential sums over Z with
polynomial phases. The fine estimates that we will need are already known; they
(and indeed much more) were proved by Oskolkov in [42]; see Theorem 5.1.

Oskolkov proves that x 7! w(t, x) is continuous whenever t/2⇡ is irrational.
Thus, if both t/2⇡ and ↵t/2⇡ are irrational, then q(t, x) is the sum of two continuous
periodic functions and consequently almost periodic (it is even quasiperiodic!). This
proves the analogue of Theorem 1.3 for the Airy equation.

To prove Theorem 1.3, we wish to consider the solution of (KdV) with the initial
data (1.9). But does such a solution even exist? It is indicative of the subtlety of
almost periodic initial data that this is a nontrivial problem. By developing a
variant of the Xs,b theory adapted to quasiperiodic (in the Stepanov, not Bohr,
sense) initial data, Tsugawa constructs local-in-time solutions to (KdV) for certain
types of initial data. This result does apply to the initial data (1.9); however, it
does not automatically guarantee that the solution is bounded, neither in the naive
sense, nor in the more precise sense of Definition 1.1. This we will need to prove
ourselves.

In order to prove Theorem 1.3 by building on our observations for the Airy equa-
tion, the key step is to show that the solution with initial data (1.9) is continuous
at some later (or earlier) time t1. To do this, we demonstrate a suitable nonlinear
smoothing e↵ect. This is a broadly observed phenomenon that the di↵erence be-
tween a solution to a nonlinear dispersive equation and the linear evolution with the
same initial data is smoother than either of the two solutions individually. When
solutions are constructed by the traditional combination of contraction mapping
and the Duhamel formula, this di↵erence is shown to be smaller than either solu-
tion. To exhibit nonlinear smoothing one must also exhibit a little extra smoothing
from the spacetime integral.

This nonlinear smoothing e↵ect is thoroughly discussed in the periodic setting in
[27]. Evidently, we need to demonstrate nonlinear smoothing in the quasiperiodic
setting, which we do not believe has been done previously. This is the principal
topic of Section 4, where we show that the di↵erence between the (KdV) and Airy
solutions is a continuous function in spacetime. This is all that is needed to prove
Theorem 1.3. Given this specific goal, we strive for simplicity over generality and
impose a Diophantine condition on the wavenumber ↵ appearing in (1.9).
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Theorem 1.3 focuses on just two times: one where the solution is almost periodic
and another when it is not. It is natural to ask how it behaves for every time in
[�T, T ]. This we can answer. Our nonlinear smoothing result guarantees that
x 7! q(t, x) is almost periodic for a given time t if and only if the corresponding
linear solution is almost periodic. This question in turn can be answered from the
work of Oskolkov [42]: For the function w defined in (1.10), the mapping x 7! w(t, x)
is continuous if and only if t/2⇡ is irrational. When t/2⇡ is rational, x 7! w(t, x)
has jump discontinuities — indeed, it is piecewise constant!

This recurrence of discontinuities is evidently quite remarkable. Indeed, a closer
analysis shows that it is, in fact, the whole initial data that is being revisited!
This phenomenon was first observed by Talbot [45] in optical experiments and so
is known as the Talbot e↵ect. These experiments are better modeled by the linear
Schrödinger equation, rather than the Airy equation; nevertheless, this does not
significantly alter the underlying mathematics. For a further, fuller discussion of
the Talbot e↵ect from both mathematical and physical points of view, see [3, 4, 9,
27, 41].

At this moment, we do not know whether the solution to (KdV) with initial
data (1.9) exists globally in time. However, this does not entirely preclude us
from asking whether t 7! q(t, 0) is almost periodic. For if the solution truly blows
up, then this function is definitely not almost periodic. On the other hand, our
nonlinear smoothing estimate remains valid for as long as the solution persists in
the function spaces of Theorem 4.2. In this way, we are lead to ask if t 7! q(t, 0)
is almost periodic when q is the solution to the Airy equation with initial data
(1.9). It is not; see [42, p. 390], where it is further explained that the answer would
reverse if one considered the linear Schrödinger instead!

Given the nature of the loss of almost periodicity we exhibit to prove Theo-
rem 1.3, it is natural to imagine that the veracity of the Deift conjecture might be
restored if one simply relaxed the notion of almost periodicity so as to include the
function (1.9). This relaxation comes at a cost: it enlarges the class of solutions
that need to be understood.

In Section 6, we argue that relaxing the definition of almost periodicity is the
wrong direction. Concretely, we show that there is a Bohr almost periodic function
whose Airy evolution undergoes an infinite concentration of L2

x
norm in finite time.

Throughout the paper we use the symbol . to indicate inequalities with implicit
constants, which are either absolute constants or depend only on the irrational
number ↵ appearing in (1.9). When the implicit constant must be small, we use ⌧
in place of ..

Acknowledgements. R.K. was supported by NSF grant DMS–2154022 and M.V.
by NSF grants DMS–1763074 and DMS–2054194.

2. The Green’s function

This section is dedicated to the analysis of the Green’s function associated to
the Schrödinger operator

L := �@2
x
+ q (2.1)

for potentials q 2 L1(R).
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When q ⌘ 0, the resolvent R0() = (�@2
x
+ 2)�1 has integral kernel

G0(x, y;) =
1
2e

�|x�y| for all  > 0.

The Kato–Rellich Theorem guarantees that there exists a unique self-adjoint
operator L for q 2 L1(R). For 2 � 4kqkL1(R), the resolvent R() = (L + 2)�1

is given by the norm-convergent series expansion

R() =
1X

`=0

(�1)`
�
R0()q

�`
R0().

For our purposes, it is more convenient to eschew operator-theoretic consider-
ations and work directly with the corresponding series expansion of the Green’s
function, whose terms take the form

⌦
�x, (R0q)

`R0�y
↵
=

Z
G0(x, x1)

✓ `�1Y

j=1

q(xj)G0(xj , xj+1)

◆
q(x`)G0(x`, y) dx1 · · · dx`.

(2.2)

Proposition 2.1. Let q 2 L1(R) and 2 � 4kqkL1 . The resolvent R admits a

continuous integral kernel defined by the absolutely convergent series

G(x, y;, q) =
1X

`=0

(�1)`
⌦
�x,

�
R0()q

�`
R0()�y

↵
, (2.3)

which satisfies G(x, y) = G(y, x) and

|G(x, y)|  3
4e

�
2 |x�y|. (2.4)

Moreover, the diagonal Green’s function g(x;, q) := G(x, x;, q) satisfies

1
4  g(x)  3

4 for all x 2 R. (2.5)

Finally, if qn 2 L1(R) satisfy

kqnkL1  kqkL1 and qn *
⇤ q in L1(R) as n ! 1, (2.6)

then the corresponding Green’s functions converge pointwise.

Proof. For each ` � 0, the kernel h�x, (R0q)`R0�yi of the operator (R0q)`R0 is
continuous in (x, y). This follows easily from the continuity of G0(x, y). Also, for
` � 1, we may bound
��⌦�x, (R0q)

`R0�y
↵��

=

����
Z

G0(x, x1)

✓ `�1Y

j=1

q(xj)G0(xj , xj+1)

◆
q(x`)G0(x`, y) dx1 · · · dx`

����

 1

2

✓
kqkL1

2

◆` Z
e�|x�x1|�|x1�x2|�···�|x`�1�x`|�|x`�y| dx1 · · · dx`

 1

2

✓
kqkL1

2

◆`
e�


2 |x�y|

Z
e�


2 |x�x1|�

2 |x1�x2|�···�
2 |x`�1�x`|�

2 |x`�y| dx1 · · · dx`

 1

4

✓
2kqkL1

2

◆`
e�


2 |x�y|, (2.7)
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where in the last step we used the Cauchy–Schwarz inequality in the x1 variable
and integrated in the remaining variables. Therefore, the series (2.3) converges
absolutely and uniformly in (x, y) and

��G(x, y)�G0(x, y)
��  1

4e
�

2 |x�y|

whenever 2 � 4kqkL1 . This proves the continuity of G(x, y), (2.4), and (2.5).
The x $ y symmetry of G is inherited directly from the symmetry of the indi-

vidual terms in the series, which in turn follows from the corresponding symmetry
of G0.

We turn now to the behavior of the Green’s function under the conditions (2.6).
Let us first observe that for any ` � 1,

qn(x1)qn(x2)qn(x3) · · · qn(x`)*⇤ q(x1)q(x2)q(x3) · · · q(x`) in L1(R`).

This is a direct consequence of the fact that any function in L1(R`) may be approx-
imated by a finite linear combination of indicator functions of rectangles.

Looking to the expression (2.2), we see that the weak-⇤ convergence just observed
guarantees that

⌦
�x, (R0qn)`R0�y

↵
converges to the corresponding term for q for

each fixed x, y 2 R. Pointwise convergence of the full series then follows from this
and the bound (2.7), which controls the tail of the series. ⇤

Using the maximum principle, one can obtain sharp upper and lower pointwise
bounds on the Green’s function in terms of the L1 norm of q. However, these
bounds are more cumbersome than (2.4) and (2.5) and provide no advantage for
the arguments we will be presenting.

Lemma 2.2. Let q 2 L1(R) and 2 � 4kqkL1 . Then G(x, y) is an absolutely

continuous function of x; moreover, for x 6= y,
��� d

dx
G(x, y)

���  3
4e

�
2 |x�y|. (2.8)

The diagonal Green’s function g is di↵erentiable and

|g0(x)|  1
2 . (2.9)

Finally, if qn 2 L1(R) satisfy (2.6), then

d

dx
G(x, y; qn) ! d

dx
G(x, y; q) pointwise a.e. and g0

n
! g0 pointwise as n ! 1.

(2.10)

Here and below, gn(x) = g(x; qn).

Proof. Although G0(x, y) is only classically di↵erentiable where x 6= y, it is Lips-
chitz and so absolutely continuous with distributional derivative

d

dx
G0(x, y) = � 1

2 sgn(x� y)e�|x�y|. (2.11)

By comparison, G0(x, x) ⌘ 1
2 and so di↵erentiable in the classical sense.

One easily sees (via dominated convergence) that for each ` � 1, the term (2.2)
is di↵erentiable (in the classical sense) with respect to x. Moreover,

d

dx

⌦
�x, (R0q)

`R0�y
↵
=

Z
@G0
@x

(x, x1)

✓ `�1Y

j=1

q(xj)G0(xj , xj+1)

◆
q(x`)G0(x`, y) dx1 · · · dx`.
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Mimicking (2.7), we find that

��� d

dx

⌦
�x, (R0q)

`R0�y
↵��� 

1

4

✓
2kqkL1

2

◆`
e�


2 |x�y|. (2.12)

This bound can be summed in `, showing that G(x, y)�G0(x, y) is everywhere
classically di↵erentiable and that

��� d

dx

⇥
G(x, y)�G0(x, y)

⇤���  1
4e

�
2 |x�y| and

��� d

dx

⇥
G(x, x)�G0(x, x)

⇤���  1
2

whenever 2 � 4kqkL1 . The claims (2.8) and (2.9) follow from this and our obser-
vations about G0.

The claims (2.10) follow easily via the model laid out in the proof of Proposi-
tion 2.1: one observes convergence for each individual term in the series and then
exploits (2.12) in order to sum. ⇤

3. Uniqueness

In this section, we prove Theorem 1.2. Our argument will ultimately reduce to an
application of the Gronwall inequality based on a subtle choice of distance function.
Our first task is to derive the integral identity to which we will apply the Gronwall
inequality. For smooth solutions, this is a direct but lengthy computation. As our
solutions are merely bounded, the derivation requires an approximation argument
and hence the consideration of a forced KdV equation.

By analogy with Definition 1.1, we define solutions to the forced KdV equation
d

dt
q = �q000 + 6qq0 + F (3.1)

with forcing F 2 L1(R2) to be any weak-⇤ continuous distributional solution.

Proposition 3.1. Let q1, q2 2 L1((�T, T )⇥R) be solutions to (3.1) with q1(0) =
q2(0) and smooth and bounded spacetime forcing terms F1, F2, respectively. Sup-

pose 2 � 4max{kq1kL1
t,x

, kq2kL1
t,x

} and let g1(t, x) = g(x;, q1(t)) and g2(t, x) =
g(x;, q2(t)). Then for all �T < t0 < T and every  2 S(R), we have that

 Z

R

(g1 � g2)2

2g1g2
 dx

�
(t0)

=

Z
t0

0

Z

R

(g1 � g2)2

2g1g2
 

⇢
�  000

2 
+

3

2

 00

 
A2 �

3

2

 0

 
A1 +

3

2
A0

�
dx dt

+
3

2

Z
t0

0

Z

R
 0 g1 � g2

g1g2


2q1g1 � 2q2g2 +

(g01)
2

2g1
� (g02)

2

2g2

�
dx dt

�
Z

t0

0

Z

R
 
g21 � g22
2g1g2

✓ eF1

g1
�

eF2

g2

◆
dx dt, (3.2)

where the spacetime functions eFj , A0, A1, A2 are given by

eFj(t, x) :=

Z
G(x, y;, qj(t))Fj(t, y)G(y, x;, qj(t)) dy,

A2 := �
✓
g01
g2

+
g02
g1

◆
+ 2

✓
g01
g1

+
g02
g2

◆
,

A1 :=
5

2

✓
g01
g1

+
g02
g2

◆2

� 7
g01g

0
2

g1g2
� 122 +

3

2

(g01 � g02)
2

g1g2
+

✓
1

2
� 2g01g

0
2

◆✓
1

g1
� 1

g2

◆2
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+ 2q1
g1
g2

+ 2q2
g2
g1

+ 22
✓
g1
g2

+
g2
g1

◆
� 2(q1 + q2),

A0 := �
✓
g01
g31

+
g02
g32

◆
�
✓
22 � g01g

0
2

2g1g2

◆✓
g01
g1

+
g02
g2

◆
� 2

✓
q1g02
g2

+
q2g01
g1

◆

+
1

2g1g2

✓
g01
g2

+
g02
g1

◆
.

In addition, for every fixed �T < t0 < T ,
Z

R
(q1 � q2)(t0) dx

=
1

4

Z

R
(g1 � g2) 

⇢
 00

 

✓
1

g1
+

1

g2

◆
+

1

2

 0

 


3

✓
1

g1
+

1

g2

◆0
+

g01 + g02
g1g2

�

� 1

2

✓
1

g1
+

1

g2

◆
2(q1 + q2) + 42 � 1

2

✓
1

g1
+

1

g2

◆2

+
3

g1g2

�

+
3

4

✓
(g01)

2

g31
+

(g02)
2

g32

◆
� 1

4g1g2

✓
(g01)

2

g1
+

(g02)
2

g2

◆�
dx. (3.3)

We will first establish Proposition 3.1 for Schwartz solutions and then employ an
approximation argument to treat the case of merely bounded solutions. We start
by recalling some known results regarding the diagonal Green’s function; see [32,
Lemma 2.14] and [33, Lemma 2.6]:

Lemma 3.2. Fix q 2 S(R) and 2 � 4kqkL1 . Then g(x) � 1
2 2 S(R) and the

following equations hold:

q =
h g0

2g

i0
+
h g0

2g

i2
+

1

4g2
� 2, (3.4)

g00 = 2[q + 2]g +
(g0)2

2g
� 1

2g
, (3.5)

g000 = 2[qg]0 + 2qg0 + 42g0. (3.6)

Also, if f 2 S(R), then
Z

G(x, y; q)[�f 000+2qf 0+2(qf)0+42f 0](y)G(y, x; q) dy = 2f 0(x)g(x)�2f(x)g0(x).

(3.7)

Next we extend known formulas for the dynamics of the diagonal Green’s func-
tion to the case of forced KdV.

Lemma 3.3. Let q(t) 2 S(R) be a Schwartz solution of the forced KdV equation

(3.1) with smooth spacetime forcing F 2 L1(R2) and fix 2 � 4kqkL1
t,x

. Then the

following hold:

d

dt
g =

n
� g00 +

3(g0)2

2g
� 3

2g
� 62g + 6

o0
� eF , (3.8)

d

dt

1

2g
=
n
�
⇣ 1

2g

⌘00
+

3(g0)2

4g3
+

1

4g3
� 32

g
+ 43

o0
+

eF
2g2

, (3.9)

where the modified forcing eF is defined by

eF (t, x) :=

Z
G(x, y;, q(t))F (t, y)G(y, x;, q(t)) dy
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and belongs to L1(R2).

Proof. The convergence of the integral defining eF and the fact that eF 2 L1(R2)
follow immediately from (2.4).

From the resolvent identity

R(; q(t+ h))�R(; q(t)) = R(; q(t+ h))
⇥
q(t)� q(t+ h)

⇤
R(; q(t))

and (3.7) we get

d

dt
g(x; q(t)) = �

Z
G(x, y; q(t))

d

dt
q(t, y)G(y, x; q(t)) dy

= �
Z

G(x, y; q(t))
⇥
� q000 + 6qq0 + F

⇤
(t, y)G(y, x; q(t)) dy

= 2q(t, x)g0(x; q(t))� 2q0(t, x)g(x; q(t))� 42g0(x; q(t))� eF (t, x).

From this we deduce that

d

dt

1

2g(x; q(t))
=

⇢
q(t, x)

g(x; q(t))
� 22

g(x; q(t))

�0
+

eF (t, x)

2g(x; q(t))2

and also, with the aid of (3.6), that

d

dt
g(x; q(t)) = �g000(x; q(t)) + 6q(t, x)g0(x; q(t))� eF (t, x).

The representations (3.9) and (3.8) follow by using (3.4) to eliminate q(t, x). ⇤
The additive constants 6 and 43 included in the braces of (3.8) and (3.9) are

each annihilated by the outermost derivative. They are included in these formulas so
that each term in braces converges to zero at spatial infinity. Recall from Lemma 3.2
that g(x)� 1

2 2 S(R).

Proof of Proposition 3.1 for Schwartz solutions. For notational simplicity, we forgo
writing the time and space dependence for the Schwartz solutions q1, q2, their
Green’s functions g1, g2, and their forcing terms.

In order to establish (3.2), we must compute the evolution of the quantity

(g1 � g2)2

2g1g2
=
⇣ g1
2g2

+
g2
2g1

� 1
⌘
.

From (3.8) and (3.9), we have

d

dt

⇣ g1
2g2

� 1

2

⌘
=

1

2g2

n
� g001 +

3(g01)
2

2g1
� 3

2g1
� 62g1

o0
�

fF1

2g2

+ g1
n
�
h 1

2g2

i00
+

3(g02)
2

4g32
+

1

4g32
� 32

g2

o0
+

g1fF2

2g22
.

After considerable rearrangement this yields

d

dt

(g1 � g2)2

2g1g2

=
1

2

✓
(g1 � g2)2

2g1g2

◆000
+

3

2

⇢
(g1 � g2)2

2g1g2


� g01

g2
� g02

g1
+ 2

g01
g1

+ 2
g02
g2

��00

+
3

2

⇢
(g1 � g2)2

2g1g2


3
(g01)

2

g21
+ 3

(g02)
2

g22
� 42 +

1

g1g2
+

g01g
0
2

g1g2
+

(g01 � g02)
2

g1g2
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� 2g01g
0
2

✓
1

g21
+

1

g22

◆
+

g001
g2

+
g002
g1

� g001
g1

� g002
g2

��0

� 3

2

(g1 � g2)2

2g1g2

⇢
g01
g31

+
g02
g32

� g01g
0
2

g1g2


g01
g1

+
g02
g2

�
+

g001 g
0
2 + g01g

00
2

g1g2

�

� 3

2

⇢
(g1 � g2)(g001 � g002 )

g1g2

�0
� g21 � g22

2g1g2

✓fF1

g1
�
fF2

g2

◆
. (3.10)

Using (3.5) to eliminate g001 and g002 , we obtain

d

dt

(g1 � g2)2

2g1g2

=
1

2

✓
(g1 � g2)2

2g1g2

◆000
+

3

2

✓
(g1 � g2)2

2g1g2
A2

◆00
+

3

2

✓
(g1 � g2)2

2g1g2
A1

◆0
+

3

2

(g1 � g2)2

2g1g2
A0

� 3

2

⇢
g1 � g2
g1g2


2q1g1 � 2q2g2 +

(g01)
2

2g1
� (g02)

2

2g1

��0
� g21 � g22

2g1g2

✓ eF1

g1
�

eF2

g2

◆

with A0, A1, A2 as given in Proposition 3.1. The equation (3.2) follows from inte-
grating against a test function  2 C1

c
(R) and then integrating by parts.

We now prove (3.3). From (3.4) we have

q1 � q2 =

✓
g01
2g1

� g02
2g2

◆0
+

✓
g01
2g1

◆2

�
✓

g02
2g2

◆2

+
1

4g21
� 1

4g22
,

which we rewrite as follows

q1� q2 =
1

4

⇢
(g1� g2)

✓
1

g1
+

1

g2

◆�00
+

1

8

⇢
(g1� g2)


�3

✓
1

g1
+

1

g2

◆0
� g01 + g02

g1g2

��0

+
1

8
(g1 � g2)

⇢
�
✓

1

g1
+

1

g2

◆✓
g001
g1

+
g002
g2

+
2

g1g2

◆
+ 2

✓
(g01)

2

g31
+

(g02)
2

g32

◆�
.

Using (3.5) to eliminate g001 and g002 , we find that

q1 � q2 =
1

4

⇢
(g1 � g2)

✓
1

g1
+

1

g2

◆�00
+

1

8

⇢
(g1 � g2)


� 3

✓
1

g1
+

1

g2

◆0
� g01 + g02

g1g2

��0

+
1

8
(g1 � g2)

⇢
�
✓

1

g1
+

1

g2

◆
2(q1 + q2) + 42 � 1

2

✓
1

g1
+

1

g2

◆2

+
3

g1g2

�

+
3

2

✓
(g01)

2

g31
+

(g02)
2

g32

◆
� 1

2g1g2

✓
(g01)

2

g1
+

(g02)
2

g2

◆�
,

from which (3.3) follows by integrating against the Schwartz function  and then
integrating by parts. ⇤

Proof of Proposition 3.1 for bounded solutions. Our argument will be to mollify the
solutions q1, q2 2 L1((�T, T )⇥R) so that they are smooth functions of spacetime
and of Schwartz class at each fixed time. Inevitably, this will lead to changes in the
forcing terms. Ultimately, we will show that our mollified sequences of solutions,
their diagonal Green’s functions, and the forcing terms converge su�ciently well to
ensure that (3.2) and (3.3) carry over from Schwartz solutions to the case of merely
bounded solutions.
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Let us now explain how we mollify a bounded solution q to (3.1) with smooth
and bounded forcing term F ; the procedure is applied equally to q1 and q2. Given
a non-negative � 2 C1

c
(R) with supp� ⇢ [�1, 1] and

R
�(x) dx = 1, we define

�n(x) = n�(nx), 'n(t, x) = �n(t)�n(x),  n(x) = sech
⇣ x

n3

⌘
,

qn(t, x) =  n(x)('n ⇤t,x q)(t, x) =  n(x)

Z

R⇥R
�n(t� ⌧)�n(x� y)q(⌧, y) d⌧ dy.

By direct computation, we see that qn solves the following forced KdV equation

d

dt
qn = � n('

000
n
⇤t,x q) + 3 n('

0
n
⇤t,x q2) +  n('n ⇤t,x F )

= �q000
n
+ 6qnq

0
n
+ E1,n + E2,n + 3E0

3,n (3.11)

where

E1,n =  n('n ⇤t,x F ),

E2,n =  000
n
('n ⇤t,x q) + 3 00

n
('0

n
⇤t,x q) + 3 0

n

⇥
'00
n
⇤t,x q � 'n ⇤t,x q2

⇤
,

E3,n =  n('n ⇤t,x q2)� q2
n
.

Regarding the convergence of qn to q, it will su�ce for us show that

kqnkL1
t,x

 kqkL1
t,x

and qn(t)*
⇤ q(t) in L1(R) for each t 2 (�T, T ). (3.12)

The former claim is elementary; it guarantees that the diagonal Green’s functions
of qn are defined for the same range of  as we would employ for q. It will also
allow us to apply the dominated convergence theorem later because

qn(t, x) ! q(t, x) pointwise a.e. on (�T, T )⇥ R as n ! 1. (3.13)

The second claim in (3.12) warrants a little explanation. Given t 2 (�T, T ) and
f 2 L1(R), we have

⌦
qn(t), f

↵
=
⌦
[�n ⇤t q](t),�n ⇤x ( nf)

↵
.

As the solution q is weak-⇤ continuous, it follows that [�n ⇤t q](t)*⇤ q(t) in L1(R).
The claim then follows from this and the fact that �n ⇤x ( nf) ! f in L1(R).

By Proposition 2.1 and Lemma 2.2, (3.12) guarantees the convergence of the
diagonal Green’s functions gn(t, x) = gn(x;, qn(t)) and their derivatives. Specifi-
cally, for t 2 (�T, T ) we have

gn(t) ! g(t) and g0
n
(t) ! g0(t) pointwise as n ! 1. (3.14)

Moreover, by (2.5) and (2.9), we have the uniform bounds

1
4  gn(t, x)  3

4 and |g0
n
(t, x)|  1

2 . (3.15)

As F is bounded and continuous, we have that

kE1,nkL1
t,x

 kFkL1
t,x

and E1,n(t, x) ! F (t, x) pointwise as n ! 1. (3.16)

Regarding the error term E2,n, we note that for ` = 0, 1, 2,

k'(`)
n

⇤t,x qkL1
t,x

. n`kqkL1
t,x

, k'n ⇤t,x q2kL1
t,x

. kqk2
L

1
t,x

,

and that k (`)
n kL1 . n�3` for ` = 1, 2, 3. From this, it follows easily that

kE2,nkL1
t,x

. kqkL1
t,x

+ kqk2
L

1
t,x

and E2,n(t, x) ! 0 pointwise as n ! 1. (3.17)
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The same arguments also yield that

kE3,nkL1
t,x

. kqk2
L

1
t,x

and E3,n(t, x) ! 0 pointwise as n ! 1. (3.18)

We caution the reader that this last error term appears di↵erentiated in (3.11).
The error terms E1,n, E2,n, and E3,n do not contribute directly to the identities

(3.2) and (3.3), but only through

eFn(t, x) =

Z

R
Gn(x, y)

⇥
E1,n + E2,n + 3E0

3,n

⇤
(t, y)Gn(y, x) dy.

Here Gn(x, y) = G(x, y;, qn(t)). Our next lemma shows that eFn(t, x) converges
pointwise to

eF (t, x) =

Z

R
G(x, y)F (t, y)G(y, x) dy.

Lemma 3.4. The functions eFn are bounded uniformly in n, t, x and

eFn(t, x) ! eF (t, x) pointwise as n ! 1.

Proof. To handle the derivative appearing on E3,n, we integrate by parts:
Z

Gn(x, y)E
0
3,n(y)Gn(y, x) dy = �2

Z h @
@y

Gn(y, x)
i
E3,n(y)Gn(x, y) dy. (3.19)

Here, we implicitly used the x $ y symmetry of the Green’s function and the fact
the E3,n converges to zero at spatial infinity due to the presence of  n factors.

From the bounds (2.4) and (2.8), we have

|Gn(x, y)|  3
4e

�
2 |x�y| and

��� d

dx
Gn(x, y)

���  3
4e

�
2 |x�y|. (3.20)

These bounds hold for all n 2 N because of (3.12).
The uniform boundedness of eFn follows from (3.19), (3.20), and the uniform

boundedness of the error terms E1,n, E2,n, and E3,n observed in (3.16), (3.17), and
(3.18), respectively.

The fact that eFn converges pointwise to eF follows from the dominated conver-
gence theorem, (3.16), (3.17), (3.18), and (3.20). ⇤

Having gathered all the necessary convergence results, we are now ready to
complete the proof of Proposition 3.1. We do this by sending n ! 1 in the
identities (3.2) and (3.3) satisfied by the Schwartz solutions qn to the forced KdV
(3.11). For all terms in (3.2), we may apply the dominated convergence theorem
using (3.13), (3.14), (3.15), and Lemma 3.4.

This argument also applies to the terms appearing on the right-hand side of (3.3).
It does not apply to the left-hand side of (3.3) because we are not guaranteed that
qj,n(t) converges pointwise a.e. to qj(t) for every t. This is remedied by (3.12). ⇤

We are now ready to prove our uniqueness result.

Proof of Theorem 1.2. Due to time-translation invariance, it su�ces to prove unique-
ness of solutions on intervals of the form (�T, T ).

Consider two solutions q1, q2 : (�T, T ) ! L1(R) to (KdV) in the sense of Defini-
tion 1.1 with the same initial data q1(0) = q2(0). Due to the time-reversal symmetry
q(t, x) 7! q(�t,�x) of the equation, it su�ces to show uniqueness forward in time.
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Let us fix 2 � 4max{kq1kL1
t,x

, kq2kL1
t,x

}. We first prove that the corresponding
diagonal Green’s functions g1 and g2 agree at any fixed time t0 2 (0, T ). We will
then deduce the equality of q1(t0) and q2(t0).

From Proposition 3.1, the identity (3.2) holds for q1, q2 with F1 = F2 = eF1 =
eF2 = 0, and  R(x) := sech( x

R
) with R � 1. Moreover, from (2.5) and (2.9), we

have the following estimates for the quantities appearing in (3.2):

�� 000
R
 R

��
L

1
t,x

. 1
R3 ,

�� 00
R

 R
A2

��
L

1
t,x

. 

R2 ,
�� 0

R
 R

A1

��
L

1
t,x

.

2+kq1kL1

t,x
+kq2kL1

t,x

R
. 

2

R
,

kA0kL1
t,x

. 3 + 
⇥
kq1kL1

t,x
+ kq2kL1

t,x

⇤
. 3.

Using | 0
R
| . R�1 R and the Cauchy–Schwarz inequality, we may bound

����
Z

t0

0

Z

R
 0
R

g1 � g2
g1g2


2q1g1 � 2q2g2 +

(g01)
2

2g1
� (g02)

2

2g2

�
dx dt

����

. 1

R

Z
t0

0

Z

R
 R

1

g1g2


1

2"
(g1 � g2)

2 +
"

2

✓
2q1g1 � 2q2g2 +

(g01)
2

2g1
� (g02)

2

2g2

◆2�
dx dt

. 1

"R

Z
t0

0

Z

R
 R

(g1 � g2)2

2g1g2
dx dt+

"

2R

⇥
kq1kL1

T,x
+ kq2kL1

T,x
+ 2

⇤2
Z

t0

0

Z
 R dx dt

. 1

"R

Z
t0

0

Z

R
 R

(g1 � g2)2

2g1g2
dx dt+ "4T,

for any choice of " > 0.
Combining the estimates above, we obtain

Z

R
 R

(g1 � g2)2

2g1g2
(t0) dx .


1

R3
+



R2
+
2

R
+ 3 +

1

"R

� Z
t0

0

Z

R
 R

(g1 � g2)2

2g1g2
dx dt

+ "4T.

Choosing " = R� 1
2 , recalling that R � 1, and applying Gronwall’s inequality, we

conclude that
Z

R
 R

(g1 � g2)2

2g1g2
(t0) dx . 4Tp

R
eCT (1+3),

for some constant C > 0 independent of R and .
As R1  R2 implies  R1(x)   R2(x) for all x 2 R, we deduce that

Z

R
 R

(g1 � g2)2

2g1g2
(t0) dx  lim

eR!1

Z

R
 eR

(g1 � g2)2

2g1g2
(t0) dx = 0,

for all R � 1. Recalling (2.5), we conclude that g1(t0) ⌘ g2(t0). Finally, using the
identity (3.3) we deduce that q1(t0) = q2(t0) as elements of L1(R). ⇤

4. Quasiperiodic solutions to KdV

In this section, we discuss the solution to (KdV) with initial data

q0(x) = sq(↵1x) + sq(↵2x), (4.1)

where sq denotes the square wave (1.8) of period 2⇡. We can rewrite q0 as

q0(x) =
X

⇠2Ż2

2
⇡i(↵·⇠)

�
↵1�{⇠1 odd, ⇠2=0} + ↵2�{⇠1=0, ⇠2 odd}

�
ei(↵·⇠)x, (4.2)
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where ⇠ = (⇠1, ⇠2) 2 Ż2 = Z2 \ {(0, 0)} and ↵ = (↵1,↵2). Under the assumption
that ↵ is rationally independent, that is,

↵ · ⇠ 6= 0 for all ⇠ 2 Ż2, (4.3)

the data q0 is not periodic, but merely quasiperiodic.
We shall only consider parameters ↵ satisfying a quantitative version of (4.3),

namely, the following diophantine condition: there exists � > 1 and C0 > 0 such
that

|↵ · ⇠| � C0|⇠|�� for all ⇠ 2 Ż2. (4.4)

Local well-posedness of KdV for a class of quasiperiodic initial data that includes
our choice (4.1) was proved by Tsugawa in [46]. Let us recall the version of the
spaces he employed that are most relevant to the case considered here.

Definition 4.1 ([46]). For ✓ 2 R, the Banach space G✓ is defined by

G✓ :=

⇢
f(x) =

X

⇠2Ż2

bf⇠ ei(↵·⇠)x
��� bf : Ż2 ! C, kfkG✓ < 1

�

where

kfkG✓ := k bfk bG✓ =

����
h⇠1i✓h⇠2i✓

|↵ · ⇠| 12
bf⇠
����
`
2
⇠(Ż2)

.

We will also employ the Xs,b-type space defined via the norm

kqk
X

✓, 1
2
:=

��h⌧ � (↵ · ⇠)3i 1
2Ft,xq(⌧, ⇠)

�� bG✓L2
⌧
.

We observe that the initial data in (4.1) satisfies

q0 2 G✓ for ✓ < 1.

Tsugawa’s solutions automatically have vanishing Fourier coe�cient at zero fre-
quency; indeed, they are constructed via a contraction mapping argument in the
spaces just reproduced, as well as an additional space Y ✓,0 that we do not need to
discuss here. The vanishing of the zero Fourier coe�cient may be viewed as the
quasiperiodic analogue of the well-known conservation of

R
q and may ultimately

be traced to the fact that the right-hand side of (KdV) is a complete derivative.
As with earlier works proving local well-posedness using Xs,b technology, Tsug-

awa employs a truncated Duhamel formulation of the problem:

q(t) = ⌘(t)e�t@
3
xq0 + 3⌘(t)

Z
t

0
e�(t�s)@3

x@x(⌘T q
2)(s) ds. (4.5)

Here ⌘(t) is a fixed smooth cuto↵ function at unit scale, while ⌘T (t) is a cuto↵ to
a narrower time window dictated by the size of the initial data. Evidently, fixed
points of (4.5) are solutions to (KdV) at least on the small time interval [�T, T ].
The big advantage of this formulation of the problem is that it allows q(t) to be
defined globally in time and so one may employ the standard spacetime Fourier
transform.

Theorem 4.2 ([46, Theorem 1.1]). The KdV equation (KdV) is locally well-posed

in G✓
with ✓ > 1

4 in the following sense: for each q0 2 G✓
, there exist T > 0 and a

unique solution q 2 C
�
R;G✓

�
\X✓,

1
2 of (4.5).
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The remainder of this section is devoted to demonstrating nonlinear smoothing
for the solution with initial data (4.1). By nonlinear smoothing, we mean that the
di↵erence between the linear and nonlinear evolutions of the initial data is smoother
than the linear evolution alone. This phenomenon has been much studied in the
periodic setting, measuring smoothness using the Hs scale of spaces; see [27] for a
thorough review. In this section, regularity will be expressed through `p decay of
the Fourier coe�cients. For NLS with periodic initial data, nonlinear smoothing in
such Fourier Lebesgue spaces was demonstrated in [11].

The precise form of smoothing that we will demonstrate for the solution with
initial data (4.1) is that Fourier coe�cients of the di↵erence between the linear
and nonlinear evolutions belongs to `1. By comparison, the Fourier coe�cients of
the initial data (and so those of its linear evolution) are merely weak-`1; see (4.2).
While this may be viewed as a minute di↵erence, it marks a phase transition in
terms of spatial continuity.

Theorem 4.3. Let q0 be as in (4.1) with ↵ satisfying the diophantine condition

(4.4). Let q 2 C
�
R;G✓

�
\X✓,

1
2 be the corresponding local solution of (KdV) given

by Theorem 4.2. If max{ 7
8 ,

�

2 } < ✓ < 1, then
��bq⇠(t)� eit(↵·⇠)

3

bq⇠(0)
��
L

1
t `

1
⇠([�T,T ]⇥Ż2)

. (1 + kqk
X

✓, 1
2
)kqk2

X
✓, 1

2
+ (1 + T )(1 + kqkL1

t G✓ )kqk2
L

1
t G✓ . (4.6)

Before proceeding to the proof of Theorem 4.3, we recall the following standard
result that allows us to handle the time cuto↵ appearing in (4.5).

Lemma 4.4 ([44, Corollary 3.7]). Let 0  b < 1
2 and fix T > 0. Then for every

f 2 Hb(R),
k�[�T,T ]fkHb . kfkHb .

Proof of Theorem 4.3. Theorem 4.2 guarantees the existence of a solution to (4.5)
and hence also to (KdV) for |t|  T . Thus for each ⇠ 2 Ż2 and |t|  T we can write

bq⇠(t)� eit(↵·⇠)
3

bq⇠(0) = 3i
X

⇠(1)+⇠(2)=⇠

Z
t

0
ei(t�s)(↵·⇠)3(↵ · ⇠)bq⇠(1)(s)bq⇠(2)(s) ds. (4.7)

The sum above runs over all decompositions of ⇠ with ⇠(1), ⇠(2) 2 Ż2.
To estimate (4.7), we divide the sum into several regions. By symmetry, it

su�ces to consider only the case when

|↵ · ⇠(1)| � |↵ · ⇠(2)| and |⇠(1)1 | � |⇠(1)2 |, (4.8)

where we use the notation ⇠(j) = (⇠(j)1 , ⇠(j)2 ) with j = 1, 2. This allows us to write

|↵ · ⇠| = |↵ · ⇠(1) + ↵ · ⇠(2)| . |↵ · ⇠(1)| . |⇠(1)1 |. (4.9)

Case 1: |⇠(1)1 | . |⇠(1)2 |+ |⇠(2)1 |+ |⇠(2)2 |. In view of the factorization

(↵ · ⇠)3 � (↵ · ⇠(1))3 � (↵ · ⇠(2))3 = 3(↵ · ⇠)(↵ · ⇠(1))(↵ · ⇠(2)) (4.10)

where ⇠ = ⇠(1) + ⇠(2), we have

2max
���(↵ · ⇠)3 � ⌧ � (↵ · ⇠(1))3

��,
��⌧ � (↵ · ⇠(2))3

�� � 3
��(↵ · ⇠)(↵ · ⇠(1))(↵ · ⇠(2))

��.
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We present the details in the case when

max
���(↵ · ⇠)3 � ⌧ � (↵ · ⇠(1))3

��,
��⌧ � (↵ · ⇠(2))3

�� =
��⌧ � (↵ · ⇠(2))3

��.

In the remaining case, one simply swaps the roles of bq⇠(1) and bq⇠(2) when estimating
the time integral, including which term �[0,t] gets grouped with. Here, �[0,t] denotes
the sharp cuto↵ to the interval [0, t].

To take advantage of the fact that q 2 X�,
1
2 , we rewrite RHS(4.7) as

RHS(4.7) = 3eit(↵·⇠)
3 X

⇠(1)+⇠(2)=⇠

i(↵ · ⇠)
Z

R
e�is(↵·⇠)3�[0,t](s)bq⇠(1)(s)bq⇠(2)(s) ds

= 3
p
2⇡ eit(↵·⇠)

3 X

⇠(1)+⇠(2)=⇠

i(↵ · ⇠)
Z

R
Ft

�
�[0,t]bq⇠(1)

��
(↵ · ⇠)3 � ⌧

�
Ftbq⇠(2)(⌧) d⌧.

Using Cauchy–Schwarz, we may estimate
����
Z

R
Ft

�
�[0,t]bq⇠(1)

��
(↵ · ⇠)3 � ⌧

�
Ftbq⇠(2)(⌧) d⌧

����

. 1

|↵ · ⇠| 12 |↵ · ⇠(1)| 12 |↵ · ⇠(2)| 12

Z

R

��Ft

�
�[0,t]bq⇠(1)

��
(↵ · ⇠)3 � ⌧

���⌦⌧ � (↵ · ⇠(2))3
↵ 1

2
��Ftbq⇠(2)(⌧)

�� d⌧

. 1

|↵ · ⇠| 12 |↵ · ⇠(1)| 12 |↵ · ⇠(2)| 12
��Ft

�
�[0,t]bq⇠(1)

�
(⌧)

��
L2

⌧

��⌦⌧ � (↵ · ⇠(2))3
↵ 1

2Ftbq⇠(2)(⌧)
��
L2

⌧

. 1

|↵ · ⇠| 12 |↵ · ⇠(1)| 12 |↵ · ⇠(2)| 12

2Y

j=1

��h⌧ � (↵ · ⇠(j))3i 1
2Ftbq⇠(j)(⌧)

��
L2

⌧
.

One more application of Cauchy–Schwarz shows that we may estimate the con-
tribution of Case 1 to LHS(4.6) by a constant multiple of

X

⇠

X

⇠=⇠(1)+⇠(2)

|↵ · ⇠| 12
|↵ · ⇠(1)| 12 |↵ · ⇠(2)| 12

2Y

j=1

��h⌧ � (↵ · ⇠(j))3i 1
2Ftbq⇠(j)(⌧)

��
L2

⌧

=
X

⇠

X

⇠=⇠(1)+⇠(2)

|↵ · ⇠| 12
2Q

j=1
h⇠(j)1 i✓h⇠(j)2 i✓

2Y

j=1

h⇠(j)1 i✓h⇠(j)2 i✓

|↵ · ⇠(j)| 12
��h⌧ � (↵ · ⇠(j))3i 1

2Ftbq⇠(j)(⌧)
��
L2

⌧

. A
1
2 kqk2

X
✓, 1

2
,

where

A :=
X

⇠

X

⇠=⇠(1)+⇠(2)

|↵ · ⇠|
h⇠(1)1 i2✓h⇠(1)2 i2✓h⇠(2)1 i2✓h⇠(2)2 i2✓

.

Using (4.9) and the description of Case 1, we may bound

|↵ · ⇠| . |⇠(1)1 | . h⇠(1)1 i 1
2 h⇠(1)2 i 1

2 h⇠(2)1 i 1
2 h⇠(2)2 i 1

2

and so

A .
X

⇠

X

⇠=⇠(1)+⇠(2)

1

h⇠(1)1 i2✓� 1
2 h⇠(1)2 i2✓� 1

2 h⇠(2)1 i2✓� 1
2 h⇠(2)2 i2✓� 1

2

. 1,

provided 2✓ � 1
2 > 1, or equivalently, ✓ > 3

4 .
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Case 2: |⇠(1)1 | � |⇠(1)2 |+ |⇠(2)1 |+ |⇠(2)2 |. Here, the symbol � indicates that the ratio
of the two sides must be larger than a certain absolute constant. Concretely, we

need to ensure that |↵ · ⇠(1)| ⇠ |⇠(1)1 | & |⇠(2)1 | + |⇠(2)2 |. This restriction clarifies the
implicit constant defining Case 1.

We write R for the set of decompositions of ⇠ comprising Case 2. To estimate
this contribution to (4.6) we employ the interaction representation u(t) = et@

3
xq(t)

in which (4.7) becomes

e�it(↵·⇠)3bq⇠(t)� bq⇠(0)

= 3

Z
t

0

X

⇠(1)+⇠(2)=⇠

e�3is(↵·⇠)(↵·⇠(1))(↵·⇠(2))i(↵ · ⇠)bu⇠(1)(s)bu⇠(2)(s) ds.

In view of Case 1, it su�ces to treat the contribution to the sum arising from
decompositions in the set R. We employ a normal form transformation to write

3

Z
t

0

X

R
e�3is(↵·⇠)(↵·⇠(1))(↵·⇠(2))i(↵ · ⇠)bu⇠(1)(s)bu⇠(2)(s) ds

= 3

Z
t

0

X

R

d

ds

⇣ �e�3is(↵·⇠)(↵·⇠(1))(↵·⇠(2))

3i(↵ · ⇠)(↵ · ⇠(1))(↵ · ⇠(2))

⌘
i(↵ · ⇠)bu⇠(1)(s)bu⇠(2)(s) ds

= B(t)� B(0) +N1(t) +N2(t), (4.11)

where

B(s) :=
X

R
e�3is(↵·⇠)(↵·⇠(1))(↵·⇠(2)) �1

(↵ · ⇠(1))(↵ · ⇠(2))
bu⇠(1)(s)bu⇠(2)(s),

N1(t) := 3i
X

R

X

⇠(3)+⇠(4)=⇠(1)

Z
t

0
e�is�234

1

(↵ · ⇠(2))
bu⇠(2)(s)bu⇠(3)(s)bu⇠(4)(s) ds,

N2(t) := 3i

Z
t

0

X

R

X

⇠(3)+⇠(4)=⇠(2)

e�is�134
1

(↵ · ⇠(1))
bu⇠(1)(s)bu⇠(3)(s)bu⇠(4)(s) ds,

with �jk` = 3[↵ · (⇠(j) + ⇠(k))][↵ · (⇠(j) + ⇠(`))][↵ · (⇠(k) + ⇠(`))]. We will start by
estimating the boundary term B and the nonlinear term N2. We will need further
case separation to estimate N1.

Estimating B. Applying the Cauchy–Schwarz inequality, we get

kB(s)k`1⇠ .
X

⇠

X

R

1

|↵ · ⇠(1)||↵ · ⇠(2)|
|bu⇠(1)(s)bu⇠(2)(s)| . B

1
2 kuk2

L1G�

where

B :=
X

⇠

X

⇠=⇠(1)+⇠(2)

1

|↵ · ⇠(1)||↵ · ⇠(2)|h⇠(1)1 i2✓h⇠(1)2 i2✓h⇠(2)1 i2✓h⇠(2)2 i2✓
.

Since kukL1G� = kqkL1G� , it only remains to show that B . 1. From (4.4) and

the fact that |↵ · ⇠(1)| ⇠ |⇠(1)1 | & |⇠(2)1 |+ |⇠(2)2 |, which follows from the restriction to
R, we have

B .
X

⇠

X

R

|⇠(2)|�

h⇠(1)1 i2✓+1h⇠(1)2 i2✓h⇠(2)1 i2✓h⇠(2)2 i2✓



22 ANDREIA CHAPOUTO, ROWAN KILLIP, AND MONICA VIŞAN

.
X

⇠(1),⇠(2)

1

h⇠(1)1 i2✓+1��h⇠(1)2 i2✓h⇠(2)1 i2✓h⇠(2)2 i2✓
. 1,

provided 2✓ + 1� � > 1, or equivalently, ✓ > �

2 .

Estimating N2. From the Cauchy–Schwarz inequality we have

��N2(t)
��
`
1
⇠
.
Z

t

0

X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(2)

1

|↵ · ⇠(1)|
|bu⇠(1)(s)bu⇠(3)(s)bu⇠(4)(s)| ds

. C
1
2Tkuk3

L1G� ,

where

C :=
X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(2)

|↵ · ⇠(3)||↵ · ⇠(4)|
|↵ · ⇠(1)|

Q
j2{1,3,4}

h⇠(j)1 i2✓h⇠(j)2 i2✓
.

.
X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(2)

1

h⇠(1)1 i2✓+1h⇠(1)2 i2✓h⇠(3)1 i2✓�1h⇠(4)1 i2✓�1h⇠(3)2 i2✓�1h⇠(4)2 i2✓�1
.

On the region of summation we have

h⇠(1)1 i � h⇠(2)i = h⇠(3) + ⇠(4)i & h⇠(3)1 + ⇠(4)1 i 1
2 h⇠(3)2 + ⇠(4)2 i 1

2 .

Combining this with the Hardy–Littlewood (weak-Young) inequality, we deduce
that

C .
X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(2)

1

h⇠(1)1 i2✓h⇠(1)2 i2✓

2Y

`=1

1

h⇠(3)
`

i2✓�1h⇠(3)
`

+ ⇠(4)
`

i 1
2 h⇠(4)

`
i2✓�1

. 1,

provided 2✓ > 1 and 4
3 (2✓ � 1) > 1, or equivalently, ✓ > 7

8 .

Estimating N1. The arguments used to estimate B and N2 are insu�cient to esti-

mate N1 due to the negative power of |↵ · ⇠(2)| which can be small. In this case, we
rewrite N1 in the variables q instead of u. This gives

N1(t) = 3i
X

R

X

⇠(3)+⇠(4)=⇠(1)

Z
t

0
e�is(↵·⇠)3 1

(↵ · ⇠(2))
bq⇠(2)(s)bq⇠(3)(s)bq⇠(4)(s) ds. (4.12)

From here, we argue in a manner closer to that used in Case 1. First, using the
factorization (4.10), under the assumption ⌧2 + ⌧3 + ⌧4 = (↵ · ⇠)3 we obtain

max
j=2,3,4

|⌧j � (↵ · ⇠(j))3| & |⌧2 � (↵ · ⇠(2))3 + ⌧3 � (↵ · ⇠(3))3 + ⌧4 � (↵ · ⇠(4))3|

= |(↵ · ⇠)3 � (↵ · ⇠(2))3 � (↵ · ⇠(3))3 � (↵ · ⇠(4))3|

= 3|↵ · (⇠(2) + ⇠(3))||↵ · (⇠(2) + ⇠(4))||↵ · (⇠(3) + ⇠(4))|
= |�234|.

We present the details in the case

max
j=2,3,4

|⌧j � (↵ · ⇠(j))3| = |⌧3 � (↵ · ⇠(3))3|.

When the maximum is |⌧j � (↵ · ⇠(j))3| for j = 2 or j = 4, one simply swaps the
roles of bq⇠(3) and bq⇠(j) when handling the time integral, including which term �[0,t]

gets grouped with.
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Focusing on the time integral in (4.12), we have
Z

t

0
e�is(↵·⇠)3bq⇠(2)(s)bq⇠(3)(s)bq⇠(4)(s) ds

=

Z

R
e�is(↵·⇠)3�[0,t](s)bq⇠(2)(s)bq⇠(3)(s)bq⇠(4)(s) ds

=

Z
�
�
(↵ · ⇠)3 � ⌧2 � ⌧3 � ⌧4

�
Ft

�
�[0,t]bq⇠(2)

�
(⌧2) · Ftbq⇠(3)(⌧3) · Ftbq⇠(4)(⌧4) d~⌧ .

With 0 < b < 1
2 , we use Cauchy–Schwarz and Lemma 4.4 to estimate

����
Z

t

0
e�is(↵·⇠)3bq⇠(2)(s)bq⇠(3)(s)bq⇠(4)(s) ds

����

. 1

h�234i
1
2

Z
�
�
(↵ · ⇠)3 � ⌧2 � ⌧3 � ⌧4

�

h⌧2 � (↵ · ⇠(2))3ibh⌧4 � (↵ · ⇠(4))3i 1
2

⇥ h⌧2 � (↵ · ⇠(2))3ib
��Ft

�
�[0,t]bq⇠(2)

�
(⌧2)

��
4Y

j=3

h⌧j � (↵ · ⇠(j))3i 1
2

��Ftbq⇠(j)(⌧j)
�� d~⌧

. 1

h�234i
1
2

 Z

R2

1

h(↵ · ⇠)3 � ⌧3 � ⌧4 � (↵ · ⇠(2))3i2bh⌧4 � (↵ · ⇠(4))3i

⇥
��h⌧3 � (↵ · ⇠(3))3i 1

2Ftbq⇠(3)(⌧3)
��2d⌧3 d⌧4

� 1
2

⇥
��h⌧ � (↵ · ⇠(2))3ibFt

�
�[0,t]bq⇠(2)

�
(⌧)

��
L2

⌧

��h⌧ � (↵ · ⇠(4))3i 1
2Ftbq⇠(4)(⌧)

��
L2

⌧

. 1

h�234i
1
2

4Y

j=2

��h⌧ � (↵ · ⇠(j))3i 1
2Ftbq⇠(j)(⌧)

��
L2

⌧
.

This yields

��N1(t)
��
`
1
⇠
.
X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(1)

1

|↵ · ⇠(2)|h�234i
1
2

4Y

j=2

��h⌧ � (↵ · ⇠(j))3i 1
2Ftbq⇠(j)(⌧)

��
L2

⌧

. D
1
2 kqk3

X
✓, 1

2

where

D :=
X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(1)

|↵ · ⇠(3)||↵ · ⇠(4)|
|↵ · ⇠(2)|h�234ih⇠(2)1 i2✓h⇠(2)2 i2✓h⇠(3)1 i2✓h⇠(3)2 i2✓h⇠(4)1 i2✓h⇠(4)2 i2✓

.

To complete the proof, it remains to show that D . 1. By symmetry, we merely
need to estimate the part of the sum where

|↵ · ⇠(3)| � |↵ · ⇠(4)|. (4.13)

We decompose into further regions depending on the size of |↵ · ⇠(2)|.

Case 2.1: |↵ · ⇠(2)| & |↵ · ⇠(4)| and max
j=1,2

|⇠(3)
j

| . min
j=1,2

|⇠(3)
j

|+ |⇠(2)1 |+ |⇠(2)2 |+ |⇠(4)1 |+

|⇠(4)2 |. In this case, we do not need to exploit the factor h�234i appearing in the
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denominator. Indeed, the contribution of this part of the sum to D is bounded by
a constant multiple of

X

⇠(2),⇠(3),⇠(4)

|↵ · ⇠(3)|
h⇠(2)1 i2✓h⇠(2)2 i2✓h⇠(3)1 i2✓h⇠(3)2 i2✓h⇠(4)1 i2✓h⇠(4)2 i2✓

.
X

⇠(2),⇠(3),⇠(4)

1

h⇠(2)1 i2✓� 1
2 h⇠(2)2 i2✓� 1

2 h⇠(3)1 i2✓� 1
2 h⇠(3)2 i2✓� 1

2 h⇠(4)1 i2✓� 1
2 h⇠(4)2 i2✓� 1

2

. 1,

provided 2✓ � 1
2 > 1, or equivalently, ✓ > 3

4 .

Case 2.2: |↵ · ⇠(2)| & |↵ · ⇠(4)| and max
j=1,2

|⇠(3)
j

| � min
j=1,2

|⇠(3)
j

|+ |⇠(2)1 |+ |⇠(2)2 |+ |⇠(4)1 |+

|⇠(4)2 |. Recalling (4.8), we see that |⇠(3)1 | � |⇠(3)2 |+ |⇠(2)|+ |⇠(4)| and

|�234| ⇠ |↵ · (⇠(2) + ⇠(3))||↵ · (⇠(2) + ⇠(4))||↵ · (⇠(3) + ⇠(4))|

⇠ |↵ · ⇠(3)|2|↵ · (⇠(2) + ⇠(4))|.

Using also the diophantine condition (4.4), we may bound the contribution of this
part of the sum to D by a constant multiple of

X

⇠(2),⇠(3),⇠(4)

1

|↵ · ⇠(3)||↵ · (⇠(2) + ⇠(4))|
4Q

j=2
h⇠(j)1 i2✓h⇠(j)2 i2✓

.
X

⇠(2),⇠(3),⇠(4)

|⇠(2) + ⇠(4)|�

h⇠(3)1 i2✓+1h⇠(3)2 i2✓h⇠(2)1 i2✓h⇠(2)2 i2✓h⇠(4)1 i2✓h⇠(4)2 i2✓

.
X

⇠(2),⇠(3),⇠(4)

1

h⇠(3)1 i2✓+1��h⇠(3)2 i2✓h⇠(2)1 i2✓h⇠(2)2 i2✓h⇠(4)1 i2✓h⇠(4)2 i2✓
. 1,

provided 2✓ + 1� � > 1, or equivalently, ✓ > �

2 .

Case 2.3: |↵ · ⇠(2)| ⌧ |↵ · ⇠(4)|. Recalling (4.13), on this region we have

|�234| ⇠ |↵ · ⇠(3)||↵ · ⇠(4)||↵ · (⇠(3) + ⇠(4))|.

As we are working in the region R, we have |↵ · (⇠(3) + ⇠(4))| = |↵ · ⇠(1)| � |⇠(2)| &
h⇠(2)1 i 1

2 h⇠(2)2 i 1
2 . Using also (4.4), we may bound the contribution of this part of the

sum to D by a constant multiple of
X

⇠

X

R

X

⇠(3)+⇠(4)=⇠(1)

1

|↵ · ⇠(2)||↵ · (⇠(3) + ⇠(4))|
4Q

j=2
h⇠(j)1 i2✓h⇠(j)2 i2✓

.
X

⇠(2),⇠(3),⇠(4)

1

|⇠(2)|1��
4Q

j=2
h⇠(j)1 i2✓h⇠(j)2 i2✓

.
X

⇠(2),⇠(3),⇠(4)

1

h⇠(2)1 i2✓+ 1
2�

�
2 h⇠(2)2 i2✓+ 1

2�
�
2

4Q
j=3

h⇠(j)1 i2✓h⇠(j)2 i2✓
. 1,

provided 2✓ + 1
2 � �

2 > 1, which is implied by ✓ > �

2 as � > 1.
This completes the treatment of N1 and so the proof of the proposition. ⇤
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5. A counter-example to the Deift conjecture

In this section we prove Theorem 1.3. We first recall the following special case
of results due to Oskolkov [42] on trigonometric sums with polynomial phases:

Theorem 5.1 ([42, Proposition 12]). Fix ↵ > 0 and let f be a periodic function

with period 2⇡↵�1
that is of bounded total variation over the period. Then the

solution

w(t, x) =
X

⇠2Z

bf(⇠)ei(↵⇠x+↵
3
⇠
3
t)

to the Airy equation (1.7) with initial data f has the following properties:

(i) w 2 L1
t,x

and kwkL1
t,x

. kfkL1 + var(f);

(ii) The set of discontinuities of w in (t, x) 2 R2
is countable;

(iii) For each t such that
↵t

2⇡ is irrational, w(t) is a continuous function of x.

It follows from Theorem 5.1 that the Deift Conjecture fails for the Airy equation.
Indeed, fix ↵ = (↵1,↵2) 2 R2 satisfying (4.3) and let f(x) = f1(x) + f2(x) where
f1(x) = sq(↵1x) and f2(x) = sq(↵2x), which are both periodic functions of bounded
total variation. The solution to the Airy equation (1.7) with initial data f can be
written as

w(t, x) =
X

⇠2Z

bf1(⇠)ei(↵1⇠x+↵
3
1⇠

3
t) +

X

⇠2Z

bf2(⇠)ei(↵2⇠x+↵
3
2⇠

3
t).

By Theorem 5.1, w is a bounded function of spacetime; moreover, w(t0, x) is a
continuous function of x for every time t0 such that ↵1t0

2⇡ and ↵2t0
2⇡ are both irrational.

For such times t0, w(t0) is the sum of two continuous periodic functions and so is
almost periodic. However, the initial data w(0) = f is not almost periodic: it is
not continuous and it does not have dense almost periods.

Building on this observation and the analysis in the previous section, we are
now ready to prove that the Deift Conjecture also fails for the Korteweg–de Vries
equation.

Proof of Theorem 1.3. Fix ↵ = (↵1,↵2) 2 R2 satisfying the Diophantine condition
(4.4) for some fixed C0 > 0 and � > 1, and let

f(x) = sq(↵1x) + sq(↵2x).

Clearly, f is bounded and of bounded total variation. As remarked above, f is not
almost periodic: it is not continuous and it does not have dense almost periods.

By Theorem 4.2, there exist T > 0 and a solution u of KdV on the interval
(�T, T ) with initial data f . According to Theorem 5.1(i), the solution w(t) =

e�t@
3
xf to the Airy equation with initial data f is bounded globally in spacetime.

On the other hand, Theorem 4.3 shows that the nonlinear part u(t, x) � w(t, x) is
bounded on (�T, T )⇥ R. Thus u(t, x) is bounded throughout (�T, T )⇥ R.

By Theorem 4.2, u : (�T, T ) ! G✓ is continuous and so t 7! h', u(t)i is contin-
uous on (�T, T ) for any Schwartz function '. Combining this with the fact that
u(t, x) is bounded on (�T, T ) ⇥ R, we see that u : (�T, T ) ! L1(R) is weak-⇤
continuous.

In view of Theorem 1.2, we therefore deduce that u is the unique solution of
KdV with initial data f consistent with Definition 1.1.
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By Theorem 4.3, the nonlinear part u(t)� w(t) is a continuous almost periodic
function of space for every t 2 (�T, T ). Moreover, Theorem 5.1(iii) guarantees that
w(t0) is also a continuous almost periodic function of space for any t0 2 (�T, T )
for which ↵1t0

2⇡ and ↵2t0
2⇡ are both irrational. For such t0 we conclude that u(t0) is

a continuous almost periodic function of space.
Fixing such t0 that is negative, we choose q0 := u(t0) as our almost periodic initial

data. The unique solution with this initial data is, of course, q : t 7! u(t + t0). In
this way, we see that the KdV evolution carries the initial data q0 that is almost
periodic to the state q(|t0|) = f that is not almost periodic. ⇤

6. The case against Stepanov almost periodicity

In the previous section, we considered a solution of (KdV) with almost periodic
initial data, whose evolution developed discontinuities and so left the class of almost
periodic functions. Although this breakdown of almost periodicity was very mild,
it allowed us to give a rather precise description of the evolution; it also allowed us
to guarantee the uniqueness of our solution.

Given the mild nature of this breakdown, it is tempting to believe that a wider
notion of almost periodicity, for example, Stepanov-almost periodicity, may change
the answer. Given 1  p < 1, the corresponding class is defined as the closure of
the set of trigonometric polynomials under the norm

kfkp
Sp = sup

y

Z 1

�1

��f(x+ y)
��p dx.

For p = 1, we recover the original notion of an almost periodic function.
The goal of this section is to argue that such remedies are illusory; they do not

even resolve the case of the Airy evolution

d

dt
q = �q000. (6.1)

Concretely, we will give an example of almost periodic initial data (in the sense
of Bohr and so also Stepanov), whose evolution under the Airy flow undergoes an
infinite concentration of L2 norm in finite time.

In the example below, the wave packets that come together are well-separated
in frequency. For this reason, we can expect their evolutions to interact only very
weakly under the full KdV evolution. Indeed, the frequency and spatial separations
of the wave packets can be increased tremendously, without compromising the anal-
ysis below in any way. However, given that the entire point of this section is to
demonstrate what we regard as a fatally flawed direction for further investigation,
we refrain from analyzing the full KdV evolution.

Proposition 6.1. There is a bounded almost periodic function u0 : R ! R whose

evolution through time t0 under (6.1) satisfies
Z

R
|u(t0, x)|2e�x

2

dx = 1. (6.2)

Proof. Let us fix t0 = 10�6 once and for all. For each frequency parameter ⌘ 2 R,
we consider the complex-valued solution �(t, x; ⌘) to the Airy equation (6.1) with
initial data

b�(0, ⇠; ⌘) = exp
�
�it0⌘

3 � 3it0⌘
2(⇠ � ⌘)� 3it0⌘(⇠ � ⌘)2 � 1

2 (⇠ � ⌘)2
 
. (6.3)
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Evidently,

�(0, x; ⌘) = (1 + 6it0⌘)
� 1

2 exp
�
�it0⌘

3 + i⌘x� 1
2 (1 + 6it0⌘)

�1[x� 3t0⌘
2]2

 
(6.4)

and

b�(t0, ⇠; ⌘) = exp
�
it0(⇠ � ⌘)3 � 1

2 (⇠ � ⌘)2
 
. (6.5)

It is clear that the functions presented in (6.4) and (6.5) are Schwartz; however,
we need additional quantitative information in order to assemble our initial data
u0. Direct computation shows that

⇥
1 + (x�3t0⌘

2)2

1+t
2
0⌘

2

⇤���(0, x; ⌘)
�� . (1 + t20⌘

2)�
1
4 (6.6)

uniformly in x and ⌘. Regarding the solutions at time t0, we have
⌦
�(t0, x; ⌘), e

�x
2

�(t0, x; ⌘)
↵
L2

x(R)
& 1 (6.7)

and
⌦
�(t0, x� y0; ⌘0), e�x

2

�(t0, x� y; ⌘)
↵
L2

x(R)
. hyi�2hy0i�2h⌘ � ⌘0i�2 (6.8)

uniformly for ⌘, ⌘0 2 R.
The parameter t0 was chosen so small precisely to make the verification of (6.7)

easy. Indeed, setting t0 = 0 in RHS(6.5) gives

b (⇠; ⌘) = exp
�
� 1

2 (⇠ � ⌘)2
 
, which implies  (x; ⌘) = exp

�
ix⌘ � 1

2x
2
 
.

For this function we may compute the inner product explicitly:
⌦
 (x; ⌘), e�x

2

 (x; ⌘)
↵
L2

x(R)
= 1

2

p
2⇡.

On the other-hand, by Cauchy–Schwarz and Plancherel we may estimate
���
⌦
�(t0, x; ⌘), e

�x
2

�(t0, x; ⌘)
↵
L2

x(R)
�
⌦
 (x; ⌘), e�x

2

 (x; ⌘)
↵
L2

x(R)

���

.
���(t0, x; ⌘)�  (x; ⌘)

��
L2

x(R)
. |t0|

��⇠3 exp
�
� 1

2⇠
2
 ��

L
2
⇠(R)

.

Thus taking t0 small guarantees (6.7).
The estimate (6.8) is also elementary. Decay in y and y0 is most easily seen

in physical variables; indeed, this yields decay at an arbitrary polynomial rate.
Likewise, Gaussian-type decay in ⌘ � ⌘0 can be exhibited by analyzing the inner
product in Fourier variables. The result follows by taking a geometric mean of these
two estimates.

Let us now define our initial data:

u0(x) =
X

n2N

X

k2Z

X

±
�(0, x� k2n;±2n). (6.9)

For fixed n, we see that the inner two sums yield a smooth real-valued 2n-periodic
function whose supremum norm is of size O(2�n/2); see (6.6). In this way, we see
that u0 is indeed almost periodic. In fact, because the periods are commensurate,
we see that u0 is a uniform limit of continuous periodic functions; such functions
are said to be limit periodic.

We now consider the corresponding solution to (6.1) at time t0. Our goal is
to show (6.2). Expanding u(t0, x) as in (6.9), we may consider two collections of
terms, namely, the diagonal terms

X

n2N

X

k2Z

X

±

⌦
�(t0, x� k2n;±2n), e�x

2

�(t0, x� k2n;±2n)
↵
L2

x(R)
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and the o↵-diagonal terms
X⌦

�(t0, x� y; ⌘), e�x
2

�(t0, x� y0; ⌘0)
↵
L2

x(R)
,

where the sum is over all choices
n
(y, ⌘, y0, ⌘0) : |⌘| 2 2N, |⌘0| 2 2N, y = k⌘, and y0 = k0⌘0, for some k, k0 2 Z

subject to ⌘ 6= ⌘0 or y 6= y0
o
.

The estimate (6.8) guarantees the contribution of these o↵-diagonal terms is ab-
solutely summable. The diagonal contribution clearly diverges by virtue of (6.7).
This proves (6.2). ⇤

References

[1] K. Andreiev, I. Egorova, T. L. Lange, G. Teschl, Rarefaction waves of the Korteweg–de
Vries equation via nonlinear steepest descent. J. Di↵erential Equations 261 (2016), no. 10,
5371–5410.

[2] A. V. Babin, A. A. Ilyin, E. S. Titi, On the regularization mechanism for the periodic
Korteweg-de Vries equation. Comm. Pure Appl. Math. 64 (2011), no. 5, 591–648.

[3] M. V. Berry, S. Klein, Integer, fractional and fractal Talbot e↵ects. J. Mod. Optics, 43 (1996),
no. 10, 2139–2164.

[4] M. V. Berry, I. Marzoli, W. Schleich, Quantum carpets, carpets of light. Physics World, 14
(2001), no. 6, 39–44.

[5] I. Binder, D. Damanik, M. Goldstein, M. Lukic, Almost periodicity in time of solutions of
the KdV equation. Duke Math. J. 167 (2018), no. 14, 2633–2678.

[6] H. Bohr, Almost Periodic Functions. Chelsea Publishing Co., New York, N.Y., 1947.
[7] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applica-

tions to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993),
no. 3, 209–262.

[8] V. Buslaev, V Fomin, An inverse scattering problem for the one-dimensional Schrödinger
equation on the entire axis. Vestnik Leningrad Univ. 17 (1962), no. 1, 56–64.

[9] G. Chen, P. J. Olver, Numerical simulation of nonlinear dispersive quantization. Discrete
Contin. Dyn. Syst. 34 (2014), no. 3, 991–1008.

[10] M. Christ, Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. Preprint
2005, arXiv:0503366.

[11] M. Christ, “Power series solution of a nonlinear Schrödinger equation” in Mathematical as-
pects of nonlinear dispersive equations, Ann. of Math. Stud., 163, Princeton Univ. Press,
Princeton, 2007, 131–155.

[12] A. Cohen, Solutions of the Korteweg-de Vries equation with steplike initial profile. Comm.
Partial Di↵erential Equations 9 (1984), no. 8, 751–806.

[13] A. Cohen, T. Kappeler, Nonuniqueness for solutions of the Korteweg-de Vries equation.
Trans. Amer. Math. Soc. 312 (1989), no. 2, 819–840.

[14] D. Damanik, Solutions to the KdV and related equations with almost periodic initial data.
Recorded lecture December 8, 2021, at the conference “Hamiltonian Methods and Asymptotic
Dynamics” hosted by ICERM.

[15] D. Damanik, M. Goldstein, On the existence and uniqueness of global solutions for the KdV
equation with quasi-periodic initial data. J. Amer. Math. Soc. 29 (2016), no. 3, 825–856.
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