REMARKS ON COUNTABLE SUBADDITIVITY
LOUKAS GRAFAKOS AND MONICA VISAN

ABSTRACT. We discuss how countable subadditivity of operators
can be derived from subadditivity under mild forms of continuity,
and provide examples manifesting such circumstances.

1. INTRODUCTION

A central theorem in modern analysis is Hunt’s interpolation theo-
rem, [7, §]. Arising as the culmination of earlier studies, e.g. [2, [3]
10} (111 [12] 15 [16], Hunt’s theorem provides the definitive formulation
of the celebrated Marcinkiewicz interpolation theorem in the setting
of Lorentz spaces. It is well known that Lorentz spaces constitute a
natural scale of spaces that contain both LP and weak LP spaces.

There are elegant and well-documented treatments of these inter-
polation results centered around simple functions; for textbook pre-
sentations see, for example, [5], [I7]. The interpolation results are then
extended from simple functions to those Lorentz spaces in which simple
functions are dense. However, simple functions are not dense in some
of the most conspicuous Lorentz spaces arising in analysis, namely, the
weak LP spaces.

Due to the reliance on the density of simple functions, standard
proofs of interpolation theorems often offer incomplete treatments in
the case of weak LP spaces. Inevitably, interpolation results in these
spaces require different ad-hoc arguments tailored to the particular
operators appearing in each application. This shortcoming somewhat
compromises a universal formulation in the elegant theory of interpo-
lation.

In this note, we advocate that the property of countable subadditiv-
ity offers an effective and universal remedy to this problem. Countable
subadditivity provides a streamlined approach to proving these inter-
polation theorems, obviating the need for various limiting procedures
imposed by the consideration of simple functions, thus allowing the
uniform treatment of all Lorentz spaces. Accordingly, we believe that
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in addition to its scientific value, this approach has a significant expos-
itory and pedagogical merit.

In Proposition we prove that the hypotheses of the Hunt in-
terpolation theorem already guarantee countable subadditivity of the
operator. Indeed, we show that a subadditive operator satisfying the
hypotheses of Hunt’s theorem is automatically countably subadditive
on the interpolated spaces.

More generally, the question we explore in this paper is under what
reasonable conditions a subadditive mapping may actually be count-
ably subadditive. Recall that a mapping 7" defined on a normed vector
space (W,| - |w) and taking values in another normed vector space
(V|- |v) is called subadditive if

(1) T(f+9)|, <|TN]|, + T,

for every f,g € W. We say that T is countably subadditive if whenever
a series ZjeZ fj converges in the norm of W, we have

@) (X 5)], < 21Tl

Many examples indicate that in general, a subadditive operator need
not be countably subadditive. For instance, we may define T from
LY([0,1]) to R via

1
T(f) = min{l,limsup n/n |f(z)] dm}.
n—00 0
The functional T is certainly subadditive but not countably subadditive
on L*([0,1]), as the sequence f; = X(-L 1) j € Z%, violates (2)).

A positive answer to the questiOIjl of when subadditivity implies
countable subadditivity can be given if the (not necessarily linear) op-
erator T is assumed to be “continuous at zero” in the sense that given

€ > 0 there exists 6 > 0 such that
(3) few, Iflw<dé = |T(f)lv<e

This property implies that the action of T on the tail of a convergent
series tends to zero in norm, and countable subadditivity may be easily
deduced from this and the subadditivity property.

Although continuity implies countable subadditivity, it should be
noted that the reverse implication is not valid. For instance, the linear
operator L(f)(z) = g(x) Jg f(t)dt is countably subadditive on L'(R),
but it is not continuous from L'(R) to any reasonable space, if ¢ is a
measurable function that exhibits bad behavior everywhere.
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In many situations arising in analysis, V' and W are not normed
spaces but rather quasi-normed spaces, which means that the triangle
inequality in holds with the appearance of a multiplicative constant
on the right-hand side. Quasi-normed spaces are ubiquitous in analysis:
for instance, Hardy spaces, LP spaces, and Lorentz spaces with indices
less than 1 are all examples of such spaces.

When V' and W are quasi-normed spaces, it is reasonable to replace
by the quasi-additivity condition

(4) T(f+9), < K(T(N], +[T)],)

for all f,¢g in W and some fixed constant K > 1. Then under the as-
sumptions and , T enjoys the countable a-quasi-additivity prop-
erty

(5) (X 8)|, <aX @l

for all series ) ez f;j that converge in the quasi-norm of W. Here « is
the positive constant that satisfies (2K)* = 2.

Assertion ([5) can be derived as follows: by the Aoki-Rolewicz theo-
rem |1 9, [13] one has

© T a) el +r( X 6))
JEZ ljI<N l3[>N

for any N € Z*. Then given ¢ > 0, the last term on the right-hand
side in @ can be made smaller than 4%, provided N is large enough
such that [ > ;. fjlw < d. Letting N — oo we obtain

(7) O INESY SAIETES

and, as ¢ > 0 was arbitrary, we deduce (J)).

In this note, we consider the issue of countable subadditivity and
countable a-quasi-additivity in the situation when the underlying spaces
W and V are Lorentz spaces over o-finite measure spaces. Our main
observation is that the continuity assertion (3) can be derived from
weak-type, or even restricted weak-type estimates. This is encapsu-
lated in Proposition [2.7, which guarantees that a subadditive operator
satisfying the hypotheses of Hunt’s interpolation theorem is countably
subadditive on the interpolated spaces. As observed earlier, this allows
one to prove the Hunt theorem directly (without resorting to simple
functions) and uniformly on all Lorentz spaces, even those in which
simple functions are not dense.
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Further applications are discussed in Section |3; these include exten-
sions of the Yano extrapolation theorem and the Calderén—Zygmund
theorem, as well as a result concerning 0-local operators.

1.1. Acknowledgements. L.G. is supported by the Simons Founda-
tion Grant 624733. M.V. was supported by NSF grant DMS-2054194.

2. COUNTABLE SUBADDITIVITY AND a-QUASI-ADDITIVITITY FOR
OPERATORS BETWEEN LORENTZ SPACES

In this section, we show that mild boundedness assumptions imply
countable subadditivity and countable a-quasi-additivitity.

To fix notation, we let (X, u) and (Y,v) be two o-finite measure
spaces. We denote by S(X) the space of complex-valued simple func-
tions on X and by .Z(X) the space of complex-valued measurable
functions on X. We analogously define S(Y') and .Z (Y').

Following [5], we denote by So(X) the subset of S(X) of functions of
the form f; — fo +ifs —ifs, where each f; has the form >} 27y,
where m < n are integers and Ay are subsets of X of finite measure.

Definition 2.1. The decreasing rearrangement of a function f € . (X)
is defined as follows: for any ¢ € [0, 00),

(8) fr(t) =inf{s > 0: p({|f[>s}) <t}
For 0 < p,q < oo, the Lorentz space LP4(X) is the space of all complex-
valued measurable functions f on X for which the quasi-norm

(/000 (t%f*(t))q %); it ¢ < o0,

sup tv f*(t) if ¢ =00
>0

HfHLM(X) -

is finite.

Note that LPP(X) = LP(X) for all 0 < p < oo, while LP>®(X)
coincides with the weak LP(X) space for 0 < p < oo.

Lorentz spaces satisfy a nesting property; specifically, L»9(X) C
LP7(X) whenever 0 < p < oo and 0 < ¢ < r < co. Indeed, there exists
a constant C'(p, ¢,r) depending only on p, g, so that

(9) HfHLw(X) < Clp.q, T)”f”LP*q(X)'

That the space of simple functions S(X) is dense in LP9(X) for all
0 < p,q < oo was observed already in [8]. For a proof that Sy(X)
is dense in LP9(X) for 0 < p,q < oo see Proposition 1.4.21 in [5].
However, S(X) is not dense in LP*(X) for any 0 < p < oo if p has
infinite support; see Exercise 1.4.4. in [5].
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Definition 2.2. Let 7" be a mapping defined on a Lorentz space LP?(X)
and taking values in the space .Z(Y"). We say that

(a) T is subadditive on LP?(X) if for all f,g € LP9(X) we have
T+l < TN+ T v-ae.
If in addition 7T satisfies
(10) ITAf)] =IM|T(f)] forall A € Cand f e LP(X),

then T'is called sublinear.
(b) T is countably subadditive on LP*(X) if whenever >, f; con-
verges in LP9(X), we have

(X 5)| <2 ITH) vae

(c) T is quasi-additive on LP9(X) if there is a constant K > 1 such
that for all f,g € LP9(X) we have

T(f +9)l < K(T(HI+T(9))  v-ae.

If in addition T satisfies , then T' is called quasi-linear.
(d) T is countably a-quasi-additive on LP7(X) for some 0 < o <
1 if there is a constant K’ > 1 such that whenever ZjeZ fi

converges in L»4(X), we have
(X 5)| sx X Irwr v
jeZ jez

Next, we recall the restricted weak-type and weak-type conditions.

Definition 2.3. We say that a mapping 7" defined on a subset of .Z (X))
containing S(X) and taking values in .Z (Y) is of restricted weak-type
(p,q) for 0 < p < 0o and 0 < g < oo if there is a constant C' > 0
so that

(11) 1T )| oo vy < C (A7

for all measurable subsets A of X with finite measure.
We say that T is of weak-type (p, q) if there is a constant C' > 0 such
that

(12) 1T ey < C N lrixy
for all f € LP(X).

We recall that a sublinear operator T' is of restricted weak-type (p, q)
with 0 < p < oo and 1 < ¢ < oo if and only if it admits a bounded
extension from L' (X)) to L+ (Y'); see, for example, [5, Exercise 1.4.7].
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As observed in the introduction, countable subadditivity and count-
able a-quasi-additivity are consequences of continuity. We first observe
that the weak-type condition provides a strong form of continuity.

Proposition 2.4. Fiz 0 < p < o0 and 0 < ¢ < 0.

(i) A subadditive operator T of weak-type (p,q) is countably subadditive
on LP(X).

(i1) A quasi-additive operator T of weak-type (p,q) is countably a-quasi-
additive on LP(X).

Proof. We prove (ii) as the proof of (i) is easier.
Let > ez f; be a series converging in LP(X). By the Aoki-Rolewicz
theorem (with (2K)* = 2), we obtain

() <1 S (5 0)f

l71<N lj|>N

for any N € Z™.
To conclude the proof, it thus suffices to show that T’ (Z| JI>N fj)
converges to zero v-a.e. as N — oco. As T is of weak-type (p,q), we

have
AP NEL DIg/

71>
for some fixed C' > 0. As the right-hand side converges to zero
as N — oo, we conclude that T(E‘ >N fj) converges in measure
to zero. Consequently, there is a subsequence N, — oo such that
T(Z|j|>Nk f]) — 0 v-a.e. Setting N = Ny in and letting £ — oo
we obtain that 7" is countably a-quasi-additive on LP(X). O

Lr(X)

Next we discuss a weaker form of continuity that is still sufficient to
imply countable subadditivity in the setting of Lorentz spaces.

Proposition 2.5. Let 0 < p < 00, 0 < ¢ < 00, and 0 < r < min{1, ¢}.
Let T be a subadditive operator defined on So(X) with values in A (Y)
which is of restricted weak-type (p,q). Then |T'| has a unique countably
subadditive extension on LP"(X).

Proof. By Lemma 1.4.20 in [5] there is a constant C' > 0 such that

(14) IT(P)[Laery < Cllpllorx)
for all functions ¢ in the subspace Sp(X) of LP"(X).
Next, we use the density of Sy(X) in LP"(X) together with to

define an extension of |T| on LP"(X). Given a sequence {p;}; C So(X)
converging to a given f € LP"(X) in the norm of this space, we claim
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that |T'(p;)| converges to |T'(f)| in L#*(Y"). To see this, we note that
in view of subadditivity we have

1T = 1T ()| < 1T (05 = ¢5)-
Invoking (14)), this yields that that sequence {|T'(¢;)|}; is Cauchy in
the complete metric space L2>°(Y") and thus it has a limit in this space,
which we denote by |T'(f)|*. Moreover,

T Nlzaseqry = Jim [IT(p5)l[zoe )
(15) < € lim lgjllzorcey = Cllf e co-

Next we observe that the object |T'(f)|* does not depend on the
particular sequence {¢,}; used to approximate f. Indeed, if {¢;}; is
another sequence in Sp(X) converging to f, then

T ()| = IT(e)l| < IT (5 — 5)]-
Together with this shows that |7'(1);)| has the same limit as |T'(p;)|
in L2°(Y'). Therefore, |T'(f)|* is well defined for each f € LP"(X).
This allows us to define an extension |T'|* of |T'| on LP"(X) by setting
IT)*(f) = |T(f)|*. Moreover, in view of (15), this extension satisfies

(16) T N paeery < Cllfllzerx)-

This bound provides the required continuity needed to show that the
extension |T'|* is a countably subadditive operator on LP"(X). Indeed,
arguing as in the proof of Proposition [2.4] to derive countable subad-
ditivity we need to control |T'(3° ;. f;)|* whenever >- ., f; — 0
in LP"(X). The estimate implies that [[[T(32 ;5 fi)["llzasv)
tends to zero as N — 00, so there is a subsequence Ny — oo such
that [T'(32 =, fi)|" tends to zero v-a.e. as k — oo. This yields the
countable subadditivity of the extension |T'|*. U

Remark 2.6. Proposition [2.5 has a natural extension in the case T is
a quasi-additive operator defined on So(X) with values in A (Y') which
is of restricted weak-type (p,q) for 0 <p < oo and 0 < g < oo. In this
setting, Lemma 1.4.20 in [5] establishes the estimate provided

0<r< min{(L 10?(%?{)}

where K denotes the quasi-additivity constant of T'. The arguments
in Proposition then show that |T'| has a unique countably a-quasi-
additive extension on LP"(X) where « is chosen such that (2K)* = 2.

Proposition [2.5]shows that operators that are well-behaved on simple
functions have extensions that are likewise well-behaved. However, the
extension provided by Proposition need not be the only extension
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of the operator, as the following example demonstrates: Let B denote
a vector space basis of Sy(X) and let B’ denote an extension of B to a
basis of LP"(X). Given a function h # 0, that may or may not belong
to L2>°(Y), we define

0, if feB
T(f>_{h, if fe B\ B,

and extend T to Sy(X) and LP"(X) as a linear operator. Then the
extension provided by Proposition is the zero operator on LP"(X)
and so does not coincide with 7" on LP"(X).

In fact, the restricted weak-type property is most useful when it is
additionally known that the operator is also bounded on some other
space, in which case there is no ambiguity over the extension.

Our main result in this section demonstrates that if two estimates
are known (such as in the setting of the Hunt or Marcinkiewicz in-
terpolation theorems, for example), then subadditivity (respectively,
quasi-additivity) properties of the operator necessarily imply countable
subadditivity (respectively, countable a-quasi-additivity) on interpola-
tion spaces.

Proposition 2.7. Let 0 < pg < p < p;1 < o0 and 0 < qp,q1 < 00.
Let T be a quasi-additive (respectively, subadditive) operator defined on
LPoY(X) + LPY (X)) with values in A (Y'). Assume that T satisfies

(17) 1T () lzoory < Coll fllrr(x),s
(18) [T zoeevy < Collfllprai ),

for fized constants positive Cy, Cy. ThenT is countably a-quasi-additive
(respectively, countably subadditive) on LP"(X) for any 0 < r < oo,
where « is related to the quasi-addivity constant K via (2K)* = 2.

Proof. We prove the claim in the case T' is quasi-additive, as the sub-
additive case is included.
Given f € LP"(X), we may decompose it as
f=Jo+ fi with fo = fxgssry
Then
1), ift<1
(1) < fr(t t d () <
fO()—f()X(O,l)() a1l fl()_{f*(t), lftzl

which yields
(19) N follzeor + Lf1llzea < C(p,po, p)I| fllzree < C(p,pos p)IIf || 2o
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The last inequality above follows from the nesting property @ of
Lorentz spaces.

As shows, the space LP"(X) is contained in LPOH (X)) + LPr1H(X).
Therefore, given a sequence f; in LP"(X), we may decompose each
fi = g; + by with g; € LP1(X) and h; € LPV'(X). If the series ), f;
converges in LP"(X), then shows that ) g; converges in L*'(X)
and > h; converges in LP'(X).

The quasi-additivity of T" yields

(20) ‘T( > fj)‘ < K‘T( > gj)‘ +K’T( > k)

liI>N lij|>N lj|>N

By (17), (18), and the convergence of >, 9 in LPH(X) and that of
>, hy in LPYH(X), we have that T( DN gj) tends to zero in L%>(Y")
and T'( DN h;) tends to zero in L7°°(Y'). Passing to a subsequence
N, — oo, we may thus guarantee that T(Z‘ijk gj) tends to zero
v-a.e. and T( Z|j|>Nk hj) tends to zero v-a.e. as k — oo. By , this

shows that T( Z\ijk fj) tends to zero v-a.e. as k — oo.
To continue, we employ the Aoki-Rolewicz theorem to deduce

@) [T )] <4 X [T AT 5)

l71< Ny, |71< Nk |7]>Ng,

«

Sending k — oo, this yields the countable a-quasi-additivity of 1. [

Note that the boundedness properties and of T are the
standard hypotheses in Hunt’s interpolation theorem [7, [§]. Moreover,
by the nesting property (9), if 7" is of weak-type (po, ¢o) and of weak-
type (p1,q1), then it also satisfies and ([18); weak-type bounds are
the standard hypotheses in the Marcinkiewicz interpolation theorem.

Proposition shows that the colloquial formulation of the Hunt
interpolation theorem holds true — there is no need to discuss simple
functions. Indeed, Proposition guarantees that, under the tradi-
tional hypotheses of the Hunt interpolation theorem, the operator T’
extends naturally to the entirety of LP"(X), even when r = co. By
comparison, traditional treatments guarantee only that the interpola-
tion bounds hold for simple functions and consequently, that the opera-
tor T extends to a bounded operator on LP" only when simple functions
are dense therein. As discussed in the introduction, this excludes the
weak LP spaces.
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3. APPLICATIONS

In this section, we look at three examples where countable subaddi-
tivity plays a critical role.

3.1. Yano’s extrapolation. For our first application we prove a slight
extension of Yano’s extrapolation theorem [18]; see also [4, Theorem
4.1] for a different approach to this result.

Theorem 3.1. Let (X, pu) and (Y,v) be finite measure spaces and fix
1 < p. < 00 and positive constants A, «. Let T' be a sublinear operator
that maps LPY(X) to LP>(Y) for every 1 < p < p, with norm bounded
by A(p — 1)=®. Then for all f € Ui<pep, LP*(X) we have

/|T |du<ACy[/|f] logg [ F)® dit + Cxap. |

where Cx q.p, and Cy are constants depending on the indicated param-
eters.

Proof. By Proposition , T is countably subadditive on LP!'(X) for
all 1 <p < p..
Given f € LP1(X) for some 1 < p < p,, we decompose

F=Yfxs.,
k=0

where Sy = {|f| < 2} and S, = {2F < |f| < 2¥"'} for & > 1. That
the series representation of f converges in LP''(X) follows from the
dominated convergence theorem.

Let £y > 1 be such that 1+% < py for all k > ky. Let pp. = kl
whenever k > k.

By the countable subadditivity property of T" and Holder’s inequality
in Lorentz spaces, we may estimate

| nay

< [ sl

k>0
<O ITUxs o Ul ragy + Y HT(szk)HLPWmHl\!Lp;,l(y)
0<k<ko E>ko
A L 1
<o 2o sl or (V)7 + 30 T s oY)
p 0<k<ko E>ko
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< ACy [Cxap. + 3 2 u(S)7T .

k>ko

Claim follows from this and an application of Young’s inequality:

(ST < B Au(Si) + £y 478 < 4u(Sy) + 47,

Summing over k > kg yields the claimed assertion. U

3.2. The Calder6n—Zygmund theorem. Our next application con-
cerns singular integral operators of Calderon-Zygmund type. One of
the central themes in the treatment of such operators is that knowledge
of the boundedness of the operator from L"(R") to L"(R") for some
1 < r < oo, together with further regularity conditions satisfied by the
kernel, guarantee that the operator is of weak-type (1,1). An appli-
cation of the Marcinkiewicz interpolation theorem then allows one to
conclude that the operator admits a bounded extension from LP(R")
to LP(R™) for all 1 < p < r; see [5, [14]. Below we discuss an analo-
gous statement under the milder assumption that 7" is bounded from
LY R™) to L»°(R") for some fixed 1 < r < co. In view of Propo-
sition [2.7, boundedness on LP(R") for 1 < p < r will follow once the
operator 7' is shown to also be of weak-type (1,1).

Theorem 3.2. Suppose that the singular integral operator T is asso-
ciated with a kernel K(x,y) in the sense that

(23) T(f)(x) = - K(z,y)f(y) dy for x ¢ supp f,

whenever f € L*(R™) is compactly supported. Assume that there exists
two constants A, A" >0 and 1 <r < oo so that
(1) |[K(x,y)| < Alz —y|™" uniformly for x # y,
(1) Jioymayy 1K (@,y) — K(z,y)| dz < A" uniformly for y,y' € R4,
(iii) T is bounded from L™*(R™) to L™*°(R™).

Then T admits an extension that is of weak-type (1,1) with a bound
proportional to A" + ||T'|| pra o -

Proof. Fix f € L'N L™, which is a dense subset of L'. For \ >
0 fixed and a constant v > 0 to be specified shortly, we perform a
Calderon—Zygmund decomposition of f at level v\, thereby writing

f=9g+ Zjez b; where
(24) gl < Ifllr and  |g] <2%9A  ae.
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and each b; is supported in a dyadic cube @); such that

25) bl <2970, and /bj<y>dy=o.

Qj
Moreover, the dyadic cubes ); have pairwise disjoint interiors and
satisfy

(26) 21Qs < (Nl
jez
For each cube @), let y; denote its center. Let () denote the dilate
of Q; with the same center y; and side £(Q}) = 2\/n{(Q;). Note that
in view of the hypothesis (i), T'(b;) admits the representation for
x ¢ QF. Moreover, as

|z —y;] > 2|y — ] for all y € Q; and = ¢ @,
hypotheses (i) and (ii) together with yield
[ome@iars [ 1K) - Kl dyds
R"\Q; RM\Q: JQ;
(27) < 2" AN Q.

By and interpolation, we conclude that ¢ € L™!. Indeed,

1 _1
(28) lgllzrs S NFIZ (A
Consequently, the series > jezbi=I—9g¢€ L™! and converges a.e. By
the dominated convergence theorem, it follows that the series converges

in L™'. As by hypotheses (iii) we have
DI B PO
li|>N

lil>N
for some fixed C' > 0, and the right-hand side converges to zero as
N — oo, we conclude that |T'(3_ ;. b;)| converges to zero in L"*
(and so also in measure) as N — oco. Thus, there exists a subsequence
Ny — oo such that |T(Z|j|>Nk b;)| — 0 a.e. as k — co. Together with
the linearity of T', this yields

(29) T(f) =T(g) + Z T(b,) a.e.

Ll (Rn)

J
To continue, we use hypothesis (iii), (24), ([26), (27), (28), and

to derive the bound

{z: [T(f)(2)] > A}
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<|{w: 7@ @) > 3|+ 1@+ [{x ¢ UQ; - o ITG) @) > 3}

JEZ JEZ
S D@ ]+ N Al A7 [ S T ) e
R™MUQ] ez

l r — —
T e oo £l 7]+ )M o+ AT f| e
AHA + 1T praspre) | f ] 21

S
S

having chosen v = 1/||T||zr1ree. All the implicit constants depend
only on the dimension (and not on A, f, \).

This proves that T satisfies weak-type (1,1) bounds on f € LN L™
Using the density of L' N L™ in L', we may therefore extend T to a
bounded operator from L'(R™) to LM (R"). O

3.3. Subadditive 0-local operators. Finally, we consider an appli-
cation concerning subadditive operators that preserve the supports of
functions with vanishing integral; we call such operators 0-local.

Theorem 3.3. Let 1 < r < oo. Suppose S is a subadditive operator de-
fined on LY (R™) + L™Y(R™) that is bounded from L™'(R™) to L">°(R").
Assume that S is 0-local in the sense that whenever h is supported in
a dyadic cube Q) and has vanishing integral, then S(h) is supported in
a fized multiple Q* of Q. Then S is of weak-type (1,1).

Proof. Assume initially that f lies in L' N L™!, which is dense in L.
For A > 0 fixed and a constant v > 0 to be chosen shortly, we apply the
Calderéon—Zygmund decomposition to f at height yA. In this way, we
may write f = g+b so that and are satisfied. As g € L*'NL>,
we have g € L™ and it satisfies the bound . By hypothesis, this

implies

(30) IS () zree S N1S1raspree LF I (YA) 7

Asb = f—g € L™ and S is bounded from L™ to L™, we may
deduce the countable subadditivity property

1S()] < Z 1S()] ae.

As each b; is supported in ); and has mean value zero, our hypotheses
guarantee that S(b;) is supported in @;. Hence, > .[S(b;)| is sup-
ported in U;Q)%, which has measure bounded by a constant multiple of

G2 Vi1V
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Using that [S(f)| < [S(g)| + |S(b)| together with and choosing
v = 1/||S||zr1—pres, we may bound
AISHI> A < AH{IS(9)l > 31+ A{IS@)] > 3}
S A=) AN T
Ss
where all implicit constants are independent of A. This proves the

weak-type (1,1) bounds for functions f € L* N L. Since S is already
defined on L', a density argument yields

IS pree S NS zramspree [ £l
for all f € L. O

Lv',I*}Lr',oo ||f||L1 y

Note that by an application of Hunt’s interpolation theorem, the
operator S in Theorem 3.3 maps L (R") to LP(R™) for every 1 < p < r.

If the operator S were only defined on L™! and not on L', then we can
deduce that it has a unique bounded subadditive extension on L! which
is of weak-type (1,1) and a unique bounded subadditive extension on
LPfor 1 <p<r.

Examples of 0-local subadditive operators in the sense of Theo-
rem can be constructed as follows: Let h; be the Haar functions,
where I ranges over all dyadic intervals. These are equal to |I|7*/? on
the left half of I and —|I|~'/2 on the right half. Let D, be the set
of all dyadic intervals of length 2=*. The dyadic martingale difference
operator is

(31) Di(f)= > _(f.hidh,  f €L (R).

1€Dy

For a bounded and compactly supported sequence {ay ;}x jez, define

(32) = sup ’ Z ap; Di(f ‘
JEZ

whenever f € L} (R). Then S is 0-local; indeed, if f is supported
in a dyadic interval I, of length 27%° and has vanishing integral, then
for any k < ko and any J of length 27% containing I, we have that
f is supported in the left or right half of J on either of which h; is
constant. But if f has mean value zero, it follows that Dy(f) = 0 when
k < ko. Therefore the smallest k£ that appears in the sum in is k.
Also, the sum in for k = kg contains only one term, namely the
one corresponding to I = Iy. Finally, the part of the sum in with
k > ko contains only terms which are supported in Iy. Thus, S(f) is
supported in Ij.
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Such examples of operators S are inspired by maximal combinations
of martingale difference operators on probability spaces equipped with
dyadic filtrations [6].
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