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Abstract—Electricity load forecasting plays a crucial role
in the management of electricity power grids, enhancing op-
erational efficiency, ensuring network reliability, facilitating
infrastructure planning, and promoting energy sustainability.
As the complexity of energy consumption patterns increases,
traditional forecasting techniques struggle to accommodate
the intricate and nonlinear temporal dynamics characteristics
present within the data. This paper introduces a novel hybrid
model called RLIDT that merges reinforcement learning (RL)
with the deep transformer architecture to address the com-
plicated challenges associated with load forecasting effectively.
The integration of RL for hyperparameter optimization within
the transformer framework not only utilizes their respective
advantages but also provides a dynamic, adaptive model that ex-
hibits versatility, robustness, and enhanced predictive accuracy
through continuous learning. The experimental investigations
conducted on real-world datasets have clearly demonstrated
the remarkable advantage of the proposed RLIDT model when
compared to traditional methods.

Index Terms—Electricity load forecasting, Deep Transformer
Neural Network, Reinforcement learning, Time series forecast-
ing, Hyperparameter tuning

I. INTRODUCTION

Electricity load forecasting is one of the most critical
tasks for power system management, as it has wide-ranging
involvement in the efficiency of operations, economic fea-
sibility, and long-term sustainability of energy systems [1],
[2]. The accuracy of these forecasts is critical for grid
reliability, facilitating the integration of sustainable energy
sources, and optimising generation and distribution strategies
[3]. Traditional forecasting techniques, mainly dependent on
statistical time series models, have played a fundamental role
but often face challenges in capturing the complex, non-linear
patterns which is inherent in electricity consumption patterns
[4], [5].

Recent advancements in the field of machine learning
have sparked a new era of forecasting methodologies [6],
[7]. Transformer-based models, notably, have demonstrated
promise in addressing the complexities of load forecasting
due to their capability to capture long-term dependencies
within time series data [8]. The work by Ran et al. utilises
the transformer architecture in conjunction with the Complete
Ensemble Empirical Mode Decomposition with Adaptive
Noise (CEEMDAN) technique for the purpose of short-
term load forecasting. This study effectively showcased the

model’s ability to capture intricate temporal dependencies ac-
curately. [9]. Zhang et al. [10] , in a similar manner, improve
the transformer’s capabilities by utilising a time augmentation
approach. This particular methodology serves to enrich the
input data, as a result leading to more accurate short-term
forecasts. In the domain of load forecasting for end-user
transformers, Chen et al. [11] apply deep learning techniques
to address the fluctuations introduced by electric heating
loads effectively. This study demonstrates a novel perspective
on the application of transformer models in a more granular
setting. By utilising the transformers-based approach, Wang
et al. expand the scope of applications to include multi-energy
load forecasting within an integrated energy system. Through
this study, they illustrate the flexibility and resilience of the
architecture, especially when confronted with complex multi-
dimensional data [12].

In [13], the authors examined the challenges related to
day-ahead load forecasting and introduced a novel network
architecture, Forwardformer. This innovative architecture is
an extension of the traditional transformer model. The For-
wardformer is designed with the intention of enhancing
computational efficiency and improving prediction accuracy.
This is achieved through the utilisation of a multi-scale
forward self-attention mechanism, accompanied by a unique
correction structure consisting of an encoder and dual de-
coders. The effectiveness of the Forwardformer method was
validated by conducting experiments on datasets sourced
from both China and America. These experiments demon-
strated a notable reduction in runtime and improved level of
accuracy in the domain of forecasting, specifically noticeable
during weekends and holidays, providing a new and effective
solution to the DALF challenge.

In addition to these transformer-centric approaches, Rein-
forcement Learning (RL) presents a decision-making frame-
work that dynamically adjusts to variations in electricity
demand by learning optimal actions through interactions with
the environment [14]. This study delves into the intersection
of Reinforcement Learning and transformer models, termed
RLIDT, aiming to tackle the challenges in load forecasting
through an innovative methodological fusion. While the lit-
erature shows individual progress made by each approach in
forecasting, the full potential of integrating RL for hyperpa-
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rameter optimization within the transformer architecture has
not yet been fully realized.

This study contributes significantly to the existing body of
knowledge, with key innovations including:

- The introduction of RLIDT, a novel RL algorithm that
targets the distinctive features of time series data in electricity
load forecasting, integrating deep transformer models. This
method enhances the model’s ability to effectively manage
temporal dynamics in load patterns. Notably, the RL com-
ponent in RLIDT is specifically tasked with optimizing the
hyperparameters of the transformer, enabling it to adapt more
effectively to the evolving nature of time series data.

- Our study demonstrates innovation through the inte-
gration of the deep transformer model with an RL-based
approach to advance the process of sequential decision-
making in time series forecasting. This unique combination
facilitates the management of time-dependent information
through an enhanced strategy that progressively refines pre-
diction accuracy, particularly by optimizing the transformer’s
configuration for better adaptability to changing patterns in
the data.

RLIDT poses a unique capability to proficiently handle
multivariate time series data, crucial for electricity load fore-
casting. Its architectural design allows for efficient processing
and analysis of numerous correlated time-dependent variables
simultaneously. This capability enables RLIDT to capture
intricate interrelationships among diverse factors, thereby
enhancing its forecasting accuracy. The proficiency of the
model in effectively handling multivariate inputs represents
a crucial advancement, offering a more comprehensive and
authentic methodology for predicting electricity load in sce-
narios where various factors impact the load. The integration
of RL for hyperparameter optimization within the transformer
framework represents a significant step forward in developing
more dynamic and responsive forecasting models for complex
time series data.

The rest of the paper is organized as follows: Section II
presents our methodology, including data preprocessing, the
RL algorithm, and the transformer model adaptation. Sec-
tion III describes our experimental setup and presents the
results, highlighting the model’s performance, interprets these
findings, discusses their broader implications, and considers
potential limitations. Finally, the conclusion in Section IV
reflects on the impact of our work and proposes directions
for future research.

II. PROBLEM FORMULATION OF THE PROPOSED MODEL

This study addresses the electricity load forecasting prob-
lem by proposing a hybrid model, RLIDT, which synergizes
Reinforcement Learning (RL) with deep transformer archi-
tectures. This model aims to harness temporal pattern recog-
nition and sequential decision-making to enhance forecasting
accuracy.

A. Data Description

Let us assume a time series xt 1 ≤ t ≤ T where each
time step measurement xt at time t is a 5-dimensional vector
that includes the electricity load and four additional mea-
surements such as temperature, humidity, precipitation, and
wind speed. Given a historical time window of measurements

< xt−m, xt−m+1, ..., xt > at each time t, the objective is to
estimate the one hour ahead load value corresponding to time
t + 1, denoted by yt (i.e., the output of load forecast at t).
In this problem setting, we consider the input historical time
window to be the hourly measurements of one week, hence,
the input measurements length is equal to m = 7×24 = 168.
The dataset is segmented into training Dtrain, validation
Dval, and testing Dtest subsets.

B. Hybrid RLIDT Model

Our hybrid RLIDT model integrates a transformer net-
work with a RL framework to optimize the transformer’s
hyperparameters. The model is characterized by the tuple
(S,A, T ,R, γ), encompassing:

• State Space S: Each state st includes an encoded con-
text from the transformer model, aggregating historical
data across a window of m+ 1 steps, from t−m to t.

• Action Space A: Actions at consist of possible hyperpa-
rameter settings for the transformer model, influencing
its forecasting performance.

• Transition Dynamics T : The state transition function,
encapsulated by the transformer model, processes the
current state to predict the next hour’s load.

• Reward Function R: The reward rt is calculated as
the negative Mean Squared Error (MSE) between the
transformer’s predictions and the actual load values,
encouraging hyperparameter choices that reduce fore-
casting errors.

• Discount Factor γ: The discount factor γ underscores
the importance of immediate forecasting accuracy.

C. Transformer Network for Load Forecasting

The transformer model in our hybrid approach is essential
for predicting future electricity load values. Its structure
comprises an encoder and a decoder, each with specific
functions:

• Encoder: The encoder function Enc takes the input
sequence X and transforms it into a set of contextual
representations Z. This is formally expressed as:

Z = Enc(X)

where X = [xt−m, . . . , xt] spans the historical window
of m+ 1 time steps.

• Decoder: The decoder function Dec uses the contextual
representations Z to forecast the load for the next hour
t+ 1. The forecasted load ŷt+1 is given by:

ŷt+1 = Dec(Z)

Self-Attention Mechanism: The self-attention mechanism
in the encoder allows the model to weigh different parts of the
input sequence while generating the encoded representations.
This is mathematically represented as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V

where Q,K,V are query, key, and value matrices, respec-
tively, and dk is the dimension of the keys.



D. DRL for Hyperparameter Optimization

The deep reinforcement learning (DRL) component is
tasked with optimizing the hyperparameters of the trans-
former to enhance forecast accuracy. This process involves
adjusting hyperparameters such as the learning rate, the
number of layers, the size of the attention heads, and the
dropout rate. The optimization process can be described as
follows:

• Policy Learning: The policy π(a|s; θ) represents the
probability of choosing action a (a hyperparameter
configuration) given state s (the current model state),
parameterized by θ. The policy is learned by maximizing
the expected reward:

θ∗ = argmax
θ

Eπ(a|s;θ)[R(s, a)]

where R(s, a) is the reward function.

• Hyperparameter Actions: The action space A includes
possible configurations of hyperparameters such as:

– Learning Rate (lr)
– Number of transformer Layers (nlayers)
– Size of Attention Heads (nheads)
– Dropout Rate (dropout)

• Reward Function: The reward function is the negative
MSE between the predicted and actual load values:

R(s, a) = −MSE(ŷt+1, yt+1) = − 1

N

N∑
i=1

(ŷ
(i)
t+1−y

(i)
t+1)

2

where N is the number of predictions, and ŷ
(i)
t+1, y

(i)
t+1

are the predicted and actual loads, respectively.
• Policy Gradient Update: The parameters of the policy

network are updated using the policy gradient method:

θnew = θold + α∇θEπ(a|s;θ)[R(s, a)]

where α is the learning rate.
This approach enables the DRL agent to iteratively learn

the optimal configuration of the transformer’s hyperparame-
ters, thereby improving the model’s ability to forecast elec-
tricity load accurately. The policy gradient update ensures
that the hyperparameter adjustments are made in the direction
of increasing the expected reward, which is tied to forecasting
accuracy.

E. Training Procedure

The training of the RLIDT model involves the simultane-
ous learning of both the transformer network and the deep re-
inforcement learning (DRL) agent, aimed at optimizing load
forecasting. This training process is iterative and adaptive,
responding to the evolving dynamics of the data:

• Transformer Training: The transformer is trained to
minimize the forecasting error. The parameters θTrans
of the transformer are updated based on the gradient
of the loss function L, which measures the discrepancy
between the predicted and actual load values. The update
rule for the transformer parameters is:

θ(new)
Trans = θ(old)

Trans − ηTrans∇θTransL(θTrans)

where ηTrans is the learning rate for the transformer, and
the loss function L is typically the Mean Squared Error
(MSE):

L =
1

N

N∑
i=1

(ŷ
(i)
t+1 − y

(i)
t+1)

2

• DRL Agent Training: The DRL agent updates the
policy network parameters θπ to optimize the selection
of hyperparameters for the transformer. The update
follows the policy gradient method, where the expected
reward guides the learning:

θ(new)
π = θ(old)

π + ηπ∇θπE [rt∇θπ log π(at | st; θπ)]

where ηπ is the learning rate for the policy network, rt
is the reward at time t, at is the action (hyperparameter
configuration) chosen at time t, and st represents the
current state of the transformer model.

This iterative approach ensures that the transformer model
is continually refined based on the prediction error, while the
DRL agent adjusts its policy based on the reward feedback.
This dual learning mechanism allows the hybrid RLIDT
model to adapt and improve its forecasting accuracy over
time, effectively responding to changes and trends in elec-
tricity load data.

F. Evaluation Metrics

The evaluation of performance is conducted through em-
ploying of established forecasting metrics as follows:

• Mean Absolute Error (MAE): MAE = 1
T

∑T
t=1 |ŷt−yt|.

• Root Mean Squared Error (RMSE): RMSE =√
1
T

∑T
t=1(ŷt − yt)2.

• Mean Absolute Percentage Error (MAPE): MAPE =
100%
T

∑T
t=1

∣∣∣ ŷt−yt

yt

∣∣∣.
III. NUMERICAL RESULTS

Our study aimed to compare the performance of our
proposed RLIDT model with various state-of-the-art neural
network models for time-series forecasting. To facilitate this
comparison, we utilized a dataset acquired from Kaggle [15],
specifically focusing on the city of Tocumen in Panama City.
This dataset comprises 8760 hourly samples, reflecting a
full year’s data. We also performed a normalization process
in order to ensure the comparability and uniformity of the
dataset. We also transformed the normalized dataset into
sequences, each consisting of 168 consecutive hours (one
week), to predict the electricity demand for the subsequent
hour.

In the next step, we divide the dataset into training, valida-
tion, and test sets, maintaining an 80-10-10 split, respectively.
The comparison involved the following models: multi-layer
perceptron (MLP), recurrent neural network (RNN), long
short-term memory (LSTM) network, gated recurrent unit
(GRU), temporal convolutional network (TCN), deep trans-
former and proposed RLIDT. It should be also mentioned that
to accommodate the input requirements of the neural network
models, especially the transformer, the data was reshaped into
a format suitable for each model. This involved adjusting the
shape to fit the dimensions of batch size, sequence length,
and the number of features.



In the experimental configuration for evaluating the RLIDT
model, a variety of cutting-edge Python libraries were utilised
to facilitate the development and examination of our proposed
RLIDT model alongside other deep neural network models.
Among the libraries that played a crucial role in this context,
Pytorch stood out as it served as the principal framework for
the implementation and training of both the deep transformer
model and the components related to reinforcement learning.
The dynamic computation graph and extensive ecosystem
of PyTorch positioned it as a highly suitable option for
this investigation. We conducted a comparison between our
proposed model and the baseline models, namely MLP,
RNN, LSTM, GRU, and TCN. The best combination of
hyperparameters that we selected for the models rather than
our proposed model is are selected based on trail and
error as well as performing a greedy search in order to
obtain the best possible accuracy from them. Furthermore,
PyTorch was utilised to ensure a uniform platform through-
out all experiments. Our experiments were executed on a
high-capacity computing system equipped with cutting-edge
graphics processing unit (GPU) acceleration to manage the
computationally intensive tasks of training and assessing deep
learning models. This configuration guaranteed the effective
processing of large datasets and complex neural network
architectures, thus allowing us to carry out comprehensive
and reliable assessments of the RLIDT model’s performance
in electricity load forecasting. The following table presents
the results of our proposed RLIDT framework in comparison
to alternative contenders with respect to diverse assessment
criteria.

TABLE I
COMPARISON OF DIFFERENT MODELS ON TEST SET USING MAE, RMSE,

AND MAPE.

Model MAE RMSE MAPE
MLP 0.8279 0.9924 1.0366
RNN 0.1939 0.2801 0.9549
LSTM 0.2421 0.3462 1.0673
GRU 0.2066 0.3054 0.9571
TCN 0.2706 0.3532 0.8929
Transformer 0.2267 0.3319 1.0571
Proposed RLIDT 0.1081 0.1772 0.5588

The performance metrics displayed in the table deliver a
thorough and comprehensive examination of the forecasting
precision and effectiveness of different machine learning and
deep learning algorithms. The combination of the reinforce-
ment learning and transformer model, as proposed (RLIDT),
showcases a remarkably higher level of efficacy in contrast
to conventional and profound learning models such as MLP,
RNN, LSTM, GRU, TCN, and the standard transformer
model. This is apparent from the considerably reduced MAE
value of 0.1081, RMSE value of 0.1772, and MAPE value of
55.8%. The significant decrease in these measures of error
suggests an enhanced level of precision in forecasting and
an enhanced understanding of the underlying patterns in the
data.

The capability of the RLIDT to acquire intricate temporal
interconnections and generate more precise forecasts is poten-
tially an outcome of its sophisticated structure, which brings
together the advantages of transformer models with the prin-
ciples of reinforcement learning. In comparison, conventional

machine learning algorithms such as the MLP, despite their
straightforwardness and simplicity of execution, demonstrate
noticeably elevated levels of inaccuracies, as evidenced by the
utmost MAE, RMSE, and especially MAPE, which stands
at more than 103%.This implies an inadequate match for
intricate time series forecasting undertakings. The other deep
learning models such as RNN, LSTM, GRU, and TCN,
demonstrate diverse levels of effectiveness. The RNN and
GRU models perform comparatively better than LSTM and
TCN within this particular framework. The divergence in
results can be attributed to the contrasting methodologies
employed in processing sequential data and the varying
capabilities to capture temporal association. The standard
transformer model, despite surpassing the MLP, falls behind
in comparison to the proposed RLIDT. This suggests that the
integration of reinforcement learning substantially improves
the forecasting capability. Overall, the above-mentioned find-
ings emphasize the significance of selecting suitable method-
ologies for the prediction of time series, specifically in
situations that require the highest level of precision and
accuracy.

Fig. 1. The last 100 samples of test set for actual vs. predicted load values
generated by our proposed RLIDT

Fig. 1 depicts the predicted values adhering closely to
the pattern and fluctuations of the actual data. This close
correspondence indicates the effectiveness of the model in
capturing both the inherent underlying pattern and the sea-
sonal fluctuations within the dataset. The precision of our
suggested framework is further underscored during periods of
sudden changes or fluctuations in the data, as the anticipated
trajectory demonstrates an ability to conform and react to
these fluctuations with minimal delay. However, there may
be certain regions in which the anticipated values deviate
marginally from the real values, a phenomenon frequently
observed in the field of time series load forecasting. These
inconsistencies could be attributed to inherent fluctuations
present within the dataset, unforeseen and sudden shifts in
the trend, or limitations in the model’s capacity to capture
periods characterised by high volatility accurately.

IV. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this study, we introduced RLIDT, an innovative model
that integrates deep transformer architecture with reinforce-
ment learning techniques, specifically tailored for electricity
load forecasting. Our approach leverages the advanced ca-
pabilities of transformer architectures in capturing complex



temporal relationships within electricity consumption data.
Additionally, the incorporation of RL not only adjusts to
evolving patterns in the data but also optimizes the hyper-
parameters of the transformer model, thereby significantly
enhancing prediction accuracy. The superiority of RLIDT
over traditional neural network models, such as MLP, RNN,
LSTM, GRU, TCN, and a standard transformer, is demon-
strated by the experimental results, which have been validated
on a dataset consisting of 8760 hourly samples. The adapt-
ability and precision of our model are particularly remarkable
when it comes to handling fluctuating loads, which are a vital
element of modern energy systems.

Future research endeavours may be directed towards vari-
ous areas in order to enhance and broaden the functionalities
of RLIDT. One possible approach involves investigating
the incorporation of external variables, such as economic
indicators, energy policies like electrification measures, and
the growth of behind-the-meter solar power, which possesses
the ability to exert a substantial impact on the demand for
electricity. Additionally, adapting the model for real-time
forecasting in smart grid environments could yield significant
knowledge for regulating demand-side management. Simi-
larly, exploring the scalability of RLIDT for larger, more
diverse datasets as well as its utilisation in diverse geo-
graphical areas, would also prove advantageous. Furthermore,
the expansion of the model to not only predict load but
also forecast prices and renewable energy production has
the potential to transform it into a more all-encompassing
instrument for the management of energy. Finally, examining
the interpretability of the model and providing insights into
the decision-making process of the reinforcement learning
component may potentially enhance trustworthiness and reli-
ability in practical applications. Since the computational time
for using the RL algorithm in the training process of deep
transformers is a bit high, it is highly suggested to explore
different techniques such as experience replay, batch training,
parallelization, and parameter sharing to expedite the training
process.
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