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Abstract—The increasing adoption of rooftop photovoltaic (PV)
power generation systems in residential areas necessitates accu-
rate monitoring and disaggregation of behind-the-meter (BTM)
load and PV power. Despite recent advancements, existing BTM
disaggregation approaches suffer from three major drawbacks:
neglecting task-relevant spatiotemporal features, overfitting, and
lack of a sparse neural architecture which leads to high sample
complexity. This paper addresses them by introducing a deep
sparse attention graph recurrent framework. This framework
conceptualizes a set of neighboring residential units as a graph
where the nodes are the net load values of the units and the
edges show the mutual information (MI) of these measurements.
We develop an Attention Gated Recurrent Unit (AGRU) to
capture enhanced temporal characteristics of the net load. We
employ a novel low-rank Dictionary Learning (DL) method
to discern spatiotemporal features of these measurements and
further utilize a Rectified Linear Unit (ReLU) neural network
that incorporates an MI-based dropout to provide a sparse model
for the estimation of the BTM load and PV. Experimental results
validate the effectiveness of our proposed model, exhibiting
superior performance on the Ausgrid dataset in BTM load and
PV power estimation compared to state-of-the-art methods.

Index Terms—BTM load and PV disaggregation, Graph GRU,
Attention, Deep Learning

I. INTRODUCTION

Rooftop Photovoltaic (PV) power installations, commonly
positioned behind the meter, limit visibility for the distribution
system operator resulting in inaccurate load forecasting and
nodal voltage fluctuations [1], [2]. To enhance the reliabil-
ity of the distribution system, two approaches—model-based
and data-driven—are employed for the disaggregation of PV
generation from net demand. Model-based techniques use
the physical characteristics of the resources to separate PV
generation. The Linear Regression Strategy (LRS) structure in
[1] employed linear regression for this task based on substation
and solar irradiance measurements. However, these approaches
face challenges due to uncertainties in model parameters and
the risk of overestimation during PV power generation failure
[1].

Artificial Intelligence (AI) and data-driven methods are
divided into supervised and unsupervised approaches. Un-
supervised methods employ net demand and environmental

metrics, as demonstrated by the probabilistic Bayesian Struc-
tural Time Series (BSTS) [4] introduced at the feeder level.
In contrast, when providing information on BTM generation,
supervised techniques involve the analysis of labeled data. For
instance, studies presented in [5], [6] focus on the mapping
of the original feature space to a representative sparse latent
space through constrained optimization problems. Specifically,
the authors of [6] capture the device contributions through
learned temporal features and dictionary learning. Expanding
on supervised methodologies, the authors of [1] introduced
the Repeated Game Theory with Vector Payoff (RGVP) struc-
ture, integrating data clustering and game-theoretic learning.
This structure serves as a semi-supervised source separator,
utilizing a repository of candidate load and solar exemplars.
Moreover, the authors in [2] apply a dense graph learning
method that considers space-dependent and time-dependent
features of net load measurements of residential units to
estimate their behind-the-meter PV power and load. However,
the captured features are not necessarily task-relevant and the
model requires large amounts of data due to its large parameter
space and dense structure.

The existing works in BTM disaggregation [1], [2], [4]–[6]
have three major drawbacks: 1) They do not study capturing
task-relevant spatiotemporal features from the input data. That
is, the contribution of each feature to the task is not taken
into account in the feature extraction process. 2) They merely
capture dense deep learning features, hence, they are prone to
overfitting issues; and 3) They do not provide a sparse neural
architecture, hence, they require large amounts of data samples
to train their models.

Motivated by these drawbacks, this paper develops a novel
deep sparse attention graph recurrent framework for spatiotem-
poral BTM load and PV disaggregation. First, the net load of
residential units is modeled using a dynamic graph where the
nodes show the net load measurements of the units and edges
show the correlations between these measurements. Then, a
novel attention graph GRU is designed to capture the attention-
enhanced space-time features of the input dynamic graph.
The proposed attention mechanism helps the GRU to find



task-relevant features in the feature extraction process. The
spatiotemporal features are then used in a novel low-rank DL
structure to capture a sparse feature vector. The sparse features
help the model overcome overfitting challenges and enhance
the generalization capacity of the proposed framework. Finally,
a novel deep ReLU neural network with a mutual information
(MI)-based dropout mechanism is developed and trained to
estimate the BTM load and PV measurements of the residential
units. The proposed dropout technique uses the MI between
the activations of the hidden units of the deep ReLU neural
network to find a feature mask that removes units that have
high MI (i.e., less informative units). This method prevents
the neural network from relying too much on specific neurons
and encourages the learning of more robust and generalized
features. It also helps the proposed method to break up the co-
adaptation of neurons. That is, the neurons will not rely on the
presence of specific neuron activations to produce meaningful
features, which encourages more independent feature learning
in the neural architecture.

II. PROBLEM FORMULATION

Consider a set of N local residential units with rooftop PV
panels. Each unit, sit, consumes load Li

t and generates PV
power PV i

t . A smart meter measures the BTM net electricity
demand which is a combination of these values computed
by Ri

t = Li
t − PV i

t . Given the net loads {Ri
t}Ni=1 in a

time window [t, t + m] of length m + 1, the goal of this
study is to find the values of Li

t as well as PV i
t for all

time instances in the range [t, t + m]. In this formulation,
the net loads of the units are assumed to have spatiotemporal
correlations since the units have correlated weather factors
(e.g., temperature, cloud cover, etc.). Thus, we seek to find
the spatiotemporal correlations between the nodes and use
such relationships to enhance the disaggregation performance.
For this problem, one can consider a dataset {St}t∈[1,M ] with
M samples. For each sample St, we have a set of net load
values {Ri

t̄}1≤i≤N, t≤t̄≤t+m as well as a set of ground truth
BTM load and PV values denoted by {Li

t̄}1≤i≤N, t≤t̄≤t+m

and {PV i
t̄}1≤i≤N, t≤t̄≤t+m, respectively. In this formulation,

we denote the model’s estimation of Li
t̄ and PV i

t̄ by L̂i
t̄ and

P̂ V
i

t̄, respectively, and the objective is to train a data-driven
model that accurately estimates the BTM load and PV for each
sample in the dataset.

III. PROPOSED METHOD

Fig. 1 shows the overview of the proposed deep sparse
attention graph GRU framework for spatiotemporal BTM
load disaggregation. First, we model each sample St using a
spatiotemporal graph Gt̄ = (Vt̄, Et̄) t ≤ t̄ ≤ t + m where
Vt̄ is the set of N nodes that represent the net loads of
residential units, and Et̄ is the set of edges ei,jt̄ connecting
two units i and j that represent the mutual information (MI)
of R̃i

t = [Ri
t, R

i
t+1, ..., R

i
t+m] with R̃j

t . An attention graph
GRU is developed to find the spatiotemporal features of the
input graph. Then, a low-rank DL method is devised to capture
the sparse features of the spatiotemporal data representation.
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Fig. 1. Proposed deep sparse attention recurrent model for BTM load and
PV disaggregation

Finally, a novel deep ReLU network with MI-based dropout
is trained to estimate the BTM load and PV values of the
residential units.

A. Attention Graph GRU

For each sample St, we define an attention graph GRU
model that observes each graph snapshot Gt̄ t̄ ∈ [t, t + m]
and generates a spatiotemporal feature vector ht̄. As shown in
Fig. 1, in this space-time recurrent model, first, each Gt̄ is fed
to an attention graph convolution model defined by:

At̄ = softmax(Ut ∗ ϕ ∗ U⊤
t̄ )

h′
t̄ = At̄ ∗ (Ut̄ ∗ θ ∗ U⊤

t̄ ∗Xt̄)
(1)

where h′
t̄ is the updated feature representation after the graph

convolution, Ut̄ is the matrix of eigenvectors of the Laplacian
matrix of Gt̄, θ is the filter weight matrix, Xt̄ is the input
node feature, and ϕ is the learnable weight matrix for the
attention mechanism. Here, At̄ is the attention matrix obtained
by applying the softmax function to the element-wise product
of Ut̄∗ϕ∗U⊤

t̄ . The attention mechanism allows the convolution
to focus on different parts of the graph and adaptively weigh
the contributions of neighboring nodes during the convolution
process. The computed h′

t̄ is then fed to the GRU to compute
the spatiotemporal features ht̄ corresponding to each graph Gt̄

at each time step t̄ using:

xt̄ = h′
t̄

rt̄ = σ(Wr ∗ [ht̄−1, xt̄])

zt̄ = σ(Wz ∗ [ht̄−1, xt̄])

h̃t̄ = tanh(Wh ∗ [rt̄ ∗ ht̄−1, xt])

ht̄ = (1− zt̄) ∗ ht̄−1 + zt̄ ∗ h̃t̄

(2)

where xt̄ is the input at time step t̄. Here, rt̄, zt̄, and ht̄

are the reset gate, update gate, and hidden state at time
step t̄. The h̃t̄ is the candidate hidden state at time step t̄.
Wr, Wz , and Wh are weight matrices for the reset gate,
update gate, and candidate hidden state, respectively. σ denotes
the sigmoid activation function while tanh is the hyperbolic



tangent activation function. The reset gate decides what to
forget from the previous hidden state, and the update gate
determines how much of the candidate hidden state should
influence the current state. The candidate hidden state is a
temporary value that combines information from the reset gate
and the current input to calculate a potential new hidden state.
We define ht as the concatenation of ht̄ for all time steps
t̄ ∈ [t, t+m] for a sample Gt.

B. Low-Rank Dictionary Learning (DL)

We define a low-rank sparse coding scheme to learn a sparse
feature vector αt for each spatiotemporal feature ht by:

min
D,Z

||H −DZ||2F + λ||Z||2,1

s.t. rank(D) = r
(3)

where H = [h1, h2, ..., hM ] ∈ Rdh×M is the matrix of
spatiotemporal features of the dataset, D is a dictionary
matrix that stores patterns of samples in H while Z =
[z1, z2, ..., zM ] ∈ Rdz×M is the matrix of sparse codes (sparse
features). We set rank r for D. In this formulation, the sparsity
term λ||Z||2,1 with coefficient λ ensures that the captured
features in Z are sparse. This term uses the L2,1 norm of

Z defined by ||Z||2,1 =
∑dz

i=1

√∑M
j=1 Zi,j

2 where Zi,j is
the (i, j)-th element in Z. The constraint in (3) may be
expressed by multiplying two dictionary matrices Ψ ∈ Rdh×r

and Φ ∈ Rr×dh with rank r. By applying spectral analysis
[7] in (3), we take into account the local sample structure and
rewrite the optimization for extracting sparse features as:

min
Ψ,Φ,Z

J = ||H −ΨΦZ||2F + λ1tr(ZΛZ⊺) + λ2||Z||2,1 (4)

where λ1 and λ2 are the coefficients of the objective. Here, Λ
is the Laplacian matrix corresponding to a radial basis function
kernel SΛ

i,j = exp(
−||hi−hj ||22

σ2 ) defined in the space of H . By
defining D = ΨΦ, the feature correlation is considered in a
low-rank space. To obtain the optimal Z denoted by Z∗, we
propose the a two-stage update procedure:

1) Optimizing Dictionaries: we assume Z is fixed, and
set ∂J

∂Ψ = 0 which results in the optimal primary dictionary
Ψ∗ = HZ⊺Φ⊺(ΦQwΦ

⊺)−1 with Qw = ZZ⊺. Using Ψ∗, the
optimization is expressed as maxΦ tr((ΦQwΦ

⊺)−1ΦQbΦ
⊺)

with Qb = ZH⊺HZ⊺. Thus, the optimal secondary dictio-
nary Φ∗ is computed by the eigenvector matrix of Qw

−1Qb

corresponding to the top r eigenvalues.
2) Optimizing Sparse Codes: We compute the optimal

sparse codes Z∗ using:

min
Z

J3 = ||H −Ψ||2F + λ1tr(ZΛZ⊺) + λ2||Z||2,1 (5)

Here, we set the derivative of the objective w.r.t Z to zero,
which leads to ((ΨΦ)⊺ΨΦ+λΩ)Z+Z(αΛ) = (ΨΦ)⊺H with
a dz×dz dimensional diagonal square matrix Ω with diagonal
entries Ωi,i = (2||Z:,i||2 + ϵ)−1 where ϵ is considered a small
positive constant. This equality is a Sylvester equation, hence,
can be solved using the Bartels–Stewart method [8] to obtain
Z∗.

C. Deep ReLU Discriminator with Dropout Mechanism

Our objective is to compute L̂i
t̄ ≃ Li

t̄ as well as P̂ V
i

t̄ ≃
PV t̄

i for i = 1, 2, ..., N and t̄ ∈ [t, t + m] in a graph Gt.
Therefore, in this section, we define a deep neural network
with ReLU activation functions accompanied by a total of L
latent computational layers, each indexed by l within the set
1, 2, ..., L to map each ht 1 ≤ t ≤ M corresponding to Gt

to its BTM load and PV values. The layers of the proposed
neural network are intrinsically defined by tunable parameters
in the form of weights and biases, designated as Wl and bl.
Each layer l receives an input vector hl and yields an output
represented as Ol. The feed-forward propagation process for i-
th hidden unit in this deep ReLU neural architecture is written
as:

hl+1
i = W l+1

i Ol
i + bl+1

i (6)

Ol+1
i = ReLU(hl+1

i ) (7)

While each dimension of the latent space hl provides some
information to the output layer, not all of this information
is necessary for accurately predicting the labels Y . Some of
the dimensions in the latent space may not be relevant to
the target variable and could lead to inaccurate predictions.
To avoid wasting computational resources and ensure that the
relevant features are captured in the latent space, we propose a
new dropout technique that enhances the sparsity of the latent
representation in our deep ReLU neural network. Using mutual
information, we developed a dropout layer to evaluate the
relationship between two random variables U and V from an
entropy perspective. Entropy serves as a metric for quantifying
the level of uncertainty within a random variable. A high
value of entropy indicates that each event within the variable
has approximately equal chances of occurring, whereas a low
value implies varying probabilities of occurrence for different
events. The MI metric between two random variables U and
V is calculated as:

I(U, V ) =

∫ +∞

−∞

∫ +∞

−∞
P(U, V ) log

(
P(U, V )

P(U)P(V )

)
du dv

(8)
Based on (8), two random variable U and V are independent
when I(U, V ) = 0. Within our deep ReLU neural network, we
identify the most critical set of neurons based on their capacity
to convey valuable and task-relevant information using the
defined mutual information measure. To this end, we introduce
a two-part mask function fM . The initial component of fM
calculates the MI between the activations of a hidden unit,
considering a batch of input data, and the corresponding target
vector for that same batch. The second part of the mask
evaluates the hidden unit’s significance by quantifying the MI
between the activation function of the current hidden neuron
and the set of units that are currently selected. Mathematically,
this function can be formally expressed as:

fM (Ol
i,Y, S) = I(Ol

i,Y)− 1

k

∑
Ol

j∈S

I(Ol
i, O

l
j) (9)



where Ol
i denotes the output activation vector of i-th neuron

of l-th layer for a batch of input samples {hi}Bi=1 and Y is
the actual label corresponding to the same batch of training
data. Here, B is the batch size. Also, S is the set of already
selected neurons, and k is the cardinality of the set S. When
a neuron has a higher MI value with its activation and target
vectors and a lower value of MI with the selected neurons, it
is more likely to be chosen through the MI dropout. In simpler
terms, this results in a decreased probability of removal from
the network. In our approach, we incorporate the mask layer
defined in (9) after each hidden layer within our proposed
deep sparse ReLU neural network to retain the most crucial
hidden neurons and drop the remaining neurons in each layer
throughout the model’s training process.

D. Training Process

Algorithm 1 shows the training procedure of the proposed
attention graph GRU, dictionary matrices Ψ and Φ, and the
dropout-enhanced deep ReLU neural network. The presented
algorithm first computes the sparse spatiotemporal features
of the net load values of all nodes for a batch of samples
randomly selected from the dataset. Then, the dictionary
matrices as well as the sparse codes are trained to represent
the spatiotemporal features using sparse feature extraction.
Next, the sparse codes are used to compute the BTM loads
and PV values of the residential units. Finally, the loss
functions of the BTM load and PV values are propagated
to train the framework in an end-to-end fashion. Here, the
loss for BTM load estimation of a sample St̄ is computed
by 1

N
1

m+1

∑N
i=1

∑t̄+m
t=t̄ ||L̂i

t −Li
t||22. Similarly, the loss corre-

sponding to BTM PV estimation for the sample is written by
1
N

1
m+1

∑N
i=1

∑t̄+m
t=t̄ ||P̂ V

i

t − PV i
t||22.

Algorithm 1 Training Algorithm
while Parameters not converged

- Randomly select a batch B = {S̄k}Kk=1 from N samples
- For each sample S̄k, compute the attention Graph GRU
feature denoted by hk

- Create a dictionary dataset HB = {hk}Kk=1 with K
feature vectors (columns).
- Compute Ψ∗ = HZ⊺Φ⊺(ΦQwΦ

⊺)−1

- Compute Z∗ in (5) using Bartels–Stewart method [8]
- Compute the BTM loads {L̂i

t̄ ≃ Li
t̄}1≤i≤N

- Compute the BTM PV values {P̂ V
i

t̄ ≃ PV i
t̄}1≤i≤N

- Backpropagate the BTM load and PV loss to train the
framework in an end-to-end fashion

IV. NUMERICAL RESULTS

A. Dataset

In this research, we use the Ausgrid dataset [9] to train,
validate, and test our proposed model and compare it with
recent benchmarks. The Ausgrid dataset contains rooftop solar
power measurements of 300 residential units near Sydney from
July 1 in 2010 to June 30 in 2013. The dataset contains 30-
minute time intervals between its measurements. We use the

Fig. 2. Hyperparameter selection using the average validation RMSE of load
and PV measurements for the residential units in the Ausgrid dataset.

measured loads and PV power of the residential units from
the first day of July 2010 up to the end of June in 2012. We
employ 70% of the collected data for training the model, 15%
for validation, and 15% for test. In this study, we consider
the Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE) as our performance metrics. In this
dataset, we consider the time window length m+1 to be equal
to 48.

B. Hyperparameter Selection

The proposed model has various hyperparameters including
the objective coefficients (i.e., λ1 and λ2), the number of dic-
tionary atoms (i.e., columns) of Ψ and Φ, denoted by dΨ and
dΦ, respectively, as well as the dimension of the GRU’s hidden
feature dh, number of deep ReLU network’s hidden layers L
and number of neurons in hidden layers Q. We use grid search
with the following domains defined for these hyperparameters:
dΨ, dΦ ∈ [40, 120], dh ∈ [30, 150], L ∈ [2, 5], Q ∈ [40, 120],
λ1 ∈ [0, 10] and λ2 ∈ [0, 10]. We compute the average
validation RMSE of load and PV estimations for all residential
units in the validation dataset to find the optimal configuration
with the minimum validation error. Fig. 2 shows the relations
of three hyperparameters dh, dΨ, and dΦ using the average
validation RMSE of load and PV of the Ausgrid residential
units. In this grid search, the following configuration is the
optimal set of hyperparameters with the lower validation error:
λ1 = 3, λ2 = 5, dh = 90, dΨ = 70, dΦ = 90, L = 3, and
Q = 60. In the optimal neural architecture, the dimension
of the GRU’s latent feature layer is 90, and the deep ReLU
neural network has three layers where each layer contains 60
neurons.

As shown in Fig. 2, the moderate numbers for the temporal
feature dimension dh as well as number of dictionary atoms dΨ
and dΦ give the optimal validation RMSE. Decreasing these
values would lead to a reduction of the generalization capacity
of the model due to having a limited number of tunable
parameters. Also, increasing the values of these dimensions
would lead to overfitting issues and, hence, would increase
the validation RMSE.

C. Experimental Settings

In this study, we train and test the proposed method and
the benchmarks on a computer with one Intel Core i7-11700



processor and one NVIDIA GeForce RTX 3090 GPU. The
presented model is developed, trained, and evaluated using
Python 3 and Tensorflow with GPU support [10]. The offline
training process of the proposed neural architecture takes
25.41 minutes and the running time for each test sample
is 15.03 milliseconds in the test process. The feed-forward
algorithm in the neural network has a low time complexity,
which accounts for the short test running time of the proposed
method.

D. Results and Comparison

We compare the proposed framework with recent BTM
load and PV disaggregation benchmarks including the linear
regression strategy (LRS) [3], Bayesian structural time series
(BSTS) model [4], dictionary-based energy disaggregation [5],
repeated game theory with vector payoff (RGVP) [1], Graph
Dictionary Learning (GDL) [11], and graph capsule network
(GraphCaps) [2]. As shown in this table, LRS obtains the
greatest values in RMSE and MAPE for both load and PV esti-
mates. LRS uses the least square (LS) approach to separate the
BTM load and PV from the total demand. The reason for this
model’s low accuracy is that complex nonlinear correlations
found in the load time series cannot be well captured by linear
models. The BSTS uses Bayesian rules to provide probabilistic
features for the disaggregation task, hence, it captures more
complex data patterns compared to the LSR as it learns
probabilistic features from the data. As a result, as shown in
the table, BSTS improves the results of the LSR. Moreover,
the DED method improved BSTS since it leverages DL and
can capture sparse features from the load data which better
models the variations in load. The RVGP improves the results
of DED due to applying a closed-loop game-theoric approach
that can more efficiently learn the temporal dependencies
between load and PV time series considering limited and noisy
data samples. The GDL and GCaps define a graph neural
network and capsule network for BTM load and PV disaggre-
gation, respectively. Although these models learn the space-
time relations between load and PV measurements, they do
not provide data sample efficiency since they need to see many
examples to tune their large number of parameters. Moreover,
these methods do not explicitly capture task-relevant features
while the proposed technique solves both of these issues by
providing feature sparsity and attention-enhanced features. As
shown in the table, the proposed framework leads to lower
error functions in both PV and load estimations compared to
all other benchmarks with 3.02% and 3.40% load RMSE and
PV RMSE, respectively. As shown in Fig. 3, the proposed
model can better capture the patterns of load and PV compared
to the best benchmark, i.e., the GCaps method that employs
capsule networks to capture robust features. The main reasons
for this superiority are: 1) finding better sparse features due
to the low-rank sparse coding and MI-based dropout, and
2) attention-enhanced spatiotemporal feature extraction that
captures task-relevant recurrent features of the net load.

Fig. 3. BTM Load and PV estimation results of the proposed framework and
the state-of-the-art benchmark, GCaps, for 48 samples showing one test day.

TABLE I
RESULTS OF BTM LOAD AND PV DISAGGREGATION USING RECENT

BENCHMARKS AND THE PROPOSED METHOD.

Model Load PV
RMSE MAPE(%) RMSE MAPE(%)

LSR [3] 0.2801 10.6322 0.3249 10.874
BSTS [4] 0.2561 9.8045 0.2812 9.7052
DED [5] 0.2012 8.7651 0.2168 8.6403
RGVP [1] 0.1804 8.0451 0.1872 7.8309
GDL [11] 0.1621 5.6403 0.1751 6.0491
GCaps [2] 0.1525 5.1977 0.1563 5.5320
Proposed 0.1104 3.0208 0.1183 3.4087



V. CONCLUSION

This paper develops a novel sparse attention graph GRU
method for BTM disaggregation of load and PV measure-
ments in residential units in a wide area. First, the power
grid is modeled as a graph where the nodes show the net
load measurements of the units, and the edges represent the
MI of these measurements. Then, to capture the attention-
enhanced space-time properties of the input dynamic graph,
a new attention GRU is devised. During feature extraction,
the proposed attention mechanism aids the GRU in identifying
features that are significant to the BTM disaggregation task.
Then, a novel low-rank DL structure makes use of the spa-
tiotemporal characteristics to extract a sparse feature vector.
The sparse features improve the proposed framework’s ability
to generalize and assist the model in overcoming overfitting
issues. To estimate the BTM load and PV measurements of
the residential units, a new deep ReLU neural network with
an MI-based dropout mechanism is created and trained. By
using the MI between the activations of the deep ReLU neural
network’s hidden units, the suggested dropout strategy finds a
feature mask that eliminates units with high MI (i.e., units that
are less informative). By doing this, the neural network is kept
from becoming overly dependent on certain neurons. Thus,
learning more resilient and universal properties is promoted.
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