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Abstract: FTIR spectroscopy accompanied by quantum chemical simulations can reveal important
information about molecular structure and intermolecular interactions in the condensed phase.
Simulations typically account for the solvent either through cluster quantum mechanical (QM)
models, polarizable continuum models (PCM), or hybrid quantum mechanical /molecular mechanical
(QM/MM) models. Recently, we studied the effect of aqueous solvent interactions on the vibrational
frequencies of lumiflavin, a minimal flavin model, using cluster QM and PCM models. Those models
successfully reproduced the relative frequencies of four prominent stretching modes of flavin’s

isoalloxazine ring in the diagnostic 1450-1750 cm ™!

range but poorly reproduced the relative band
intensities. Here, we extend our studies on this system and account for solvation through a series of
increasingly sophisticated models. Only by combining elements of QM clusters, QM /MM, and PCM
approaches do we obtain an improved agreement with the experiment. The study sheds light more

generally on factors that can impact the computed frequencies and intensities of IR bands in solution.

Keywords: flavin; FMN; FAD; riboflavin; vitamin B2; infrared spectroscopy; FTIR; solvent models;
PCM; QM /MM

1. Introduction

FTIR spectroscopy measurements are typically carried out in the condensed phase,
where intermolecular interactions like hydrogen bonding impact the frequencies and
broadening of spectral bands [1]. To simulate condensed-phase FTIR spectra, computational
models must account for the effect of intermolecular interactions on molecular vibrations.
Understanding how to best model FTIR spectra in the condensed phase can be especially
useful for developing suitable protocols to simulate FTIR spectra of biomolecules, where
shifts in IR frequencies (often measured using difference spectroscopy) encode important
information about changes in local interactions or macromolecular structure [2-4]. For
instance, FTIR spectroscopies have been used to probe intermediates formed following the
photoexcitation of several flavin-binding photoreceptors [5-17]. FTIR spectra of protein-
bound flavin have also been simulated using hybrid quantum mechanical/molecular
mechanical (QM/MM) methods to accompany such experiments [4,18-22].

Here, we focus on flavin in solution, a benchmark system for which vibrational
frequencies have been reported experimentally [7,22-29] and computationally [28-34].
The accurate simulation of vibrational frequencies and intensities is important not only to
reproduce FTIR difference signals, but also to compute Franck—-Condon factors for electronic
transitions [30,32,35-40]. Several methods are available for simulating condensed-phase
FTIR spectra, but they typically fall into one of two categories. The first involves running
molecular dynamics (MD) simulations and extracting the vibrational frequencies from
the Fourier transform of the autocorrelation functions [41,42]. The second approach is the
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direct calculation of vibrational frequencies and intensities using normal mode analysis.
The latter assigns IR bands to specific vibrational modes, which is useful for understanding
the effect of local interactions [4,43]. We will use the normal mode analysis approach.

Lumiflavin is a reduced model system that contains the tricyclic isoalloxazine ring
common to biomolecules like riboflavin (vitamin B2), flavin mononucleotide (FMN), and
flavin adenine dinucleotide (FAD), but where the ribose side chains are replaced by a methyl
group (see insets in Figure 1). Recently, we used the polarizable continuum model (PCM)
and gas-phase quantum chemical solute—solvent cluster models (QM clusters) to simulate
the vibrational spectrum of lumiflavin in solution [34]. These calculations were compared
to the FTIR spectrum of FMN in D,0 in the 1450-1750 cm~! range where prominent C=N
and C=O0 stretching frequencies appear. The goal was to understand the effect of hydrogen
bonding on those stretching frequencies and to determine whether simple computational
models could reproduce the aqueous-phase FTIR spectra. As in that study, we will focus
here on four bands: two carbonyl stretches (C,=0 and C4=0) and two modes previously
assigned to coupled in-plane and out-of-plane C=N stretches (C=Nj, and C=Nyyt). It has
been shown through local mode analysis that the ribose and phosphate moieties do not
contribute to the IR spectrum in this energy range [4], so only the isoalloxazine group in
FMN contributes to those stretching frequencies. As noted in our previous study [34] and
again towards the end of this manuscript, those modes are mixed, especially in the case of
C=Nyut where C=C modes are coupled, but we will keep the labels for consistency with
earlier assignments [14].
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Figure 1. (A) Experimental FTIR spectrum for FMN in D,O in the 1450-1750 cm~! region from
Ref. [24]. (B,C) Calculated infrared spectra for lumiflavin obtained using a QM cluster (B) and PCM
(C) solvent model from Ref. [34]. The constant scaling factor used to match the experimental C=Noyt
frequency is shown for each calculation. Dashed lines indicate peak positions in the experimental
spectra. The insets (right side) are schemes of the molecular model used in calculations. Carbon,
nitrogen, oxygen, and hydrogen atoms are represented using grey, blue, red, and white, respectively.

While the PCM and QM cluster models successfully reproduce the relative frequen-
cies of the prominent stretching modes, there are a few notable differences between the
computed and experimental spectra. Experimentally, the C=Ngy; to C=Nj,, intensity ratio
is around 5:1. The QM cluster models incorrectly predict similar intensities for the two
peaks, while the PCM model predicts a ratio that is more in line with the experiment
(Figure 1). However, the PCM calculations predict a prominent peak near 1530 cm™!
that is not observed experimentally [34]. These differences are also reflected in the litera-
ture [4,18-22,28-34], where different models can report different relative frequencies and
intensities of flavin’s IR bands.
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Here, we revisit the effect of solvation on the double-bond stretching vibrational
frequencies and intensities of flavin using QM /MM [44—46] simulations of lumiflavin in
water, using the ONIOM approach [47,48]. The goal is to compare the solvent models and
systematically understand which factors influence the band frequencies and intensities.
This work will provide guidelines for suitable computational protocols aimed at simulating
FTIR difference spectra of flavin-binding proteins.

2. Results and Discussion

Molecular dynamics simulations were carried out for lumiflavin in solution. Snap-
shots from the MD simulation then served as starting points for B3LYP/6-31+G**/TIP3P
QM /MM ONIOM calculations [47]. Vibrational frequencies were computed at the same
level of theory after hydrogen atoms were replaced with deuterium for all water molecules
and for the exchangeable proton on flavin’s N3. This is done for consistency with the ex-
periments, which were also performed in D,O to avoid bands from intense water-bending
vibrations that can overwhelm the flavin bands of interest [34].

It is known that hybrid DFT methods slightly overestimate computed frequencies
relative to experiments [49]. To correct for this, the computed spectra were adjusted using
a constant scaling factor that was chosen for each model to match the computed vc_n(out)
vibrational frequency with the experimental one (1548 cm~!). The scaling factor used for
each model is indicated in each of the figures in Section 2. QM /MM vibrational frequencies
were computed using several different protocols represented in Figure 2.
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Figure 2. QM /MM protocols used. (A) Protocol M1: Only the lumiflavin is treated at the QM level
of theory. Water molecules are all treated at the MM level and kept frozen in the structure obtained
from MD. (B) Protocol M2: Water molecules that are within 3.5 A of the lumiflavin carbonyl oxygen
atoms are included in the QM region and optimized. The remaining water molecules are treated at
the MM level. (C) Protocol M3: The ONIOM-PCM/X approach is also used to solvate the QM /MM
system implicitly. See text for more details.

In protocol M1, only the lumiflavin is treated at the QM level of theory while all water
molecules are treated at the MM level (Figure 2A). We test the effect of using a larger
solvent box size such that there is at least 12 A from any lumiflavin atom to the edge of
the box, instead of the 3 A used by default (protocol M1-Large). We also tested a charge
equilibration method (QEq) for the water molecules [50], which is a variable-charge model,
instead of using the fixed-charge TIP3P model (protocol M1-QEq).

In protocol M2, we included some of the water molecules in the QM subsystem
(Figure 2B). Since carbonyl peaks are the most sensitive to hydrogen bonding, we included
water molecules that are close to the carbonyl oxygen atoms. Specifically, any water
molecule with an atom that is within 3.5 A of the lumiflavin carbonyl oxygen atoms was
selected using VMD and included in the QM region [51]. Using this criterion, between
5 and 13 water molecules were treated quantum mechanically in each snapshot. These QM
waters are optimized along with the lumiflavin during the ONIOM QM/MM
optimization step.

In protocol M3, we account for the long-range effects of solvation implicitly through
the ONIOM-PCM approach [50,52]. We used the ONIOM-PCM /X approximation, where
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the PCM cavity is constructed around the entire QM /MM system and used for both the low-
level and high-level calculations (Figure 2C). QM water molecules are also are optimized
along with the lumiflavin, just as in M2.

Initially, QM/MM frequency calculations were performed for only a few select
QM/MM snapshots obtained from the MD simulations. Figure 3 shows ten simulated
FTIR spectra obtained from different snapshots of an MD simulation of lumiflavin in water.
“Stick” spectra were calculated using the B3LYP/6-31 + G* ONIOM method and broadened
by convolution with 8 cm~! wide (FWHM) Gaussian functions. There are significant
variations between the different snapshots, especially for the carbonyl (C=O) stretching
bands that show a strong sensitivity to variations in the water micro-environment. This
indicates that a single QM /MM calculation is unlikely to be representative of the average
environment. Therefore, the remainder of this work will present and discuss the ensemble
result from 100 QM /MM calculations for each protocol.
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Figure 3. (Top) Experimental FTIR spectrum for FMN in D,0O, in the 1450-1750 cm~! region (re-
produced from Figure 1A) [24]. (Bottom) Overlay of ten IR spectra computed for lumiflavin using
protocol M1. The ten spectra, shown using different colors, are obtained starting from different
snapshots of an MD simulation. Each spectrum shown here is normalized using a constant scaling
factor to match the experimental C=Nyy; frequency. Dashed lines indicate peak positions in the
experimental spectra.

The sum of 100 QM/MM calculations carried out using protocol M1 is shown in
Figure 4B. The vibrational frequencies coming from different calculations merge into just a
few prominent broad bands. The relative frequencies of the C=N bands in the composite
spectrum appear to match well with the experimental data, but the relative intensities are
not in line with that observed experimentally. In the case of the C=0O bands, neither the
calculated frequencies nor intensities appear to match well with the experiment.

Increasing the solvent box size such that the lumiflavin is 12 A from the edge of
the box, instead of 3 A, had a limited effect on the quality of the calculations (compare
panels B and C in Figure 4). Although the spectra in Figure 4B,C are obtained from
different MD simulations and therefore different QM /MM structures, the two sets of
calculations are highly consistent. This indicates that the disagreement between calculated
and experimental spectra is due to a deficiency in the computational approach/model
rather than being due to insufficient sampling.

We tested using a charge equilibration method (QEq), which estimates the charge
on each of water’s oxygen and hydrogen atoms based on their coordinates. We reasoned
that a more flexible charge model may be able to better capture the interactions between
lumiflavin and nearby water molecules. While this approach did alter the calculated
spectra (compare panels B and D in Figure 4), it arguably made the agreement with the
experiment worse.
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Figure 4. (A) Experimental FTIR spectrum for FMN in D50, in the 1450-1750 cm ™! region (repro-
duced from Figure 1A) [24]. Panels (B-F) show the combination of 100 FTIR spectra computed for
lumiflavin using protocols M1, M1-Large, M1-QEq, M2, and M3, respectively. The 100 spectra are
obtained starting from different snapshots of an MD simulation. Frequencies and intensities from
individual calculations are indicated as impulse lines in green. These lines are convolved with an
8 cm~! wide (FWHM) Gaussian function and then summed to give the final computed spectrum
(purple). Frequency scaling factors are indicated for each model. Dashed lines indicate peak positions
in the experimental spectra.

To improve the description of the hydrogen bonding with lumiflavin’s carbonyl groups,
we included a few water molecules in the QM subsystem of the ONIOM calculations. The
results are shown in Figure 4E. This did result in some improvement in the agreement
between the calculated and experimental spectra, but the experimental C,=0 and C4=0
bands remain poorly reproduced in the calculation while the C=N stretch band relative
intensities still do not match the experiment.

Using a simple QM /MM approach that treats water using point charges did not yield a
quantitatively accurate FTIR spectrum for flavin in solution. Even treating water molecules
close to the lumiflavin quantum mechanically seems to have only a small effect. Therefore,
we decided to consider a hybrid QM cluster/MM/PCM approach using ONIOM-PCM /X
(protocol M3). The spectrum calculated using this hybrid method is shown in Figure 4F
and is a significant improvement compared to the other models used in this work. Protocol
M3 combines favorable features of both the QM cluster and PCM calculations from Figure 1
and captures the relative frequencies and intensities of the four prominent bands more
accurately than other protocols tested so far. We note that the broad band labeled as C;=O
likely contains two underlying vibrational frequencies (a mix of C;=0 and C=Ny;) that
contribute to the non-Gaussian shape of the band [31,34]. This broadening appears to be
reproduced well in Figure 4F. Finally, we find that the prominent band that appears in
the PCM calculation in Figure 1 at 1530 cm ! is now less prominent in the ONIOM-PCM
calculations due to being broadened and partially merged with the C=Ngy band.

In PCM, the solvent dielectric responds to the presence of the solute with mutual
polarization (i.e., the continuum solvent dipoles respond to the electric field of the solute
while the solute wave function is updated self-consistently) [53]. Since the PCM cavity is
constructed around the entire QM /MM (solute and explicit solvent) system, it introduces
a long-range dielectric response. This response has a direct effect on the solute’s wave
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function but may also affect the solute’s interaction with the QM solvent. Indeed, it appears
that the latter may be important; the average O---O distance over 100 snapshots between
the closest water molecule to the C,=O carbonyl oxygen is 2.85 A in protocol M2 but is
reduced to 2.77 A with the introduction of PCM solvation in protocol M3. Similarly, for the
C4=0 oxygen, the average O-—-O distance is 2.97 A in protocol M2 and decreases to 2.90 A
in protocol M3.

To understand why the PCM or ONIOM /PCM results differ from those obtained in
cluster or regular ONIOM calculations, we reoptimized the structure and computed vibra-
tional frequencies using PCM solvation with varying dielectric constant . We then carried
out Potential Energy Distribution (PED) calculations using Vibrational Energy Distribution
Analysis (VEDA) version 4.0 [54]. VEDA indicates the extent to which stretching, bending,
and torsional motions contribute to specific normal modes.

First, in Figure 5B,C, we show unscaled IR spectra in the gas phase and in PCM water
(e =78.355), respectively. Without scaling, the vibrational frequencies of all the prominent
bands in the 1450~1750 cm ! range downshift upon solvation. We also see that the band
near 1580 cm ! (yellow square, previously labeled C=N,y;) becomes significantly more
intense in the PCM-calculated spectrum. A nearby band (red x), also near 1580 cm ™!
and not visible in the gas-phase-calculated spectrum due to a low intensity, appears as a
prominent band in the PCM-calculated spectrum. A third band (blue circle), just above
1600 cm™~!, is also downshifted but has a similar intensity in both the gas-phase- and
PCM-calculated spectra. In Figure 5D,E, we plot the frequency and intensity, respectively,
of those three bands as a function of varying the solvent dielectric constant. To produce
this result, we varied the dielectric constant for water from 2 to 100 while keeping all other
PCM parameters the same.
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Figure 5. (A) Experimental FTIR spectrum of FMN in D,0 [24]. (B,C) Computed FTIR spectra for
lumiflavin in the gas phase (B) and in PCM (C). No scaling is used for the calculated frequencies,
so the PCM- and gas-phase-calculated spectra can be compared directly. (D,E) A plot of how the
frequencies (D) and intensities (E) of the three modes labeled as a blue circle, yellow square, and red
x in panel (B) change as a function of the solvent dielectric constant. (F-I) VEDA-calculated fractional
contributions of specific bond stretching coordinates to the three normal modes, as a function of
solvent dielectric. The stretching bonds involved are colored in magenta in the insets.

Figure 5F-I show the contribution of C=Nyyut, C=Nj,, C=C, and C:Npolar bonds to
those vibrations, respectively. The molecular groups are shown in magenta in the lumiflavin
molecules in the inset. Here, C=Ny is an out-of-phase combination of N1=Cj¢, and C4,=N5
stretching, while C=Nj, is the corresponding in-phase combination. C=C is primarily a
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C5a=Co, stretch, while C=Nj,,|o, is @ combination of stretching modes involving the Ny
and N3 atoms. We find that there is a strong correlation between the band intensities and
their vibrational character. Specifically, the strong increase in the intensity of the band
labeled with a yellow square in Figure 5B correlates with an increasing contribution of
C=Npolar bonds to the vibration (Figure 5I). The reason for the associated increase in the
intensity of the band labeled with a red x in Figure 5B is not clear, but it may be due to
some small contribution (<10%) of the same C=Npolar bonds to that normal mode. VEDA
4.0 does not print data on molecular groups that make smaller than a 10% contribution to a
normal mode.

In summary, band intensities are related to the mixing of the wave function character
of the normal modes (e.g., as in Fermi resonances). This mixing is altered upon solvation,
leading to both frequency and intensity changes, which alters the Fermi resonances formed
by each band. An increasing dielectric environment mostly downshifts normal modes, but
the extent of the downshift is slightly different for each band (Figure 5D). In a lower dielec-
tric environment, normal mode intensities are closer together (Figure 5E). Experimental
support for this predicted result may have been obtained from FTIR experiments on several
flavin derivatives in KBr disks, where it was found that the two C=N mode intensities were
more closely matched [55]. Further FTIR experiments on flavin in different polar solvents
(e.g., compare lumiflavin in deuterated water [24], lumiflavin in sucrose [7], and riboflavin
in deuterated acetonitrile [56]) also indicate significant intensity variations of the two C=N
modes, again supporting our calculated prediction.

Computations by Tavan and co-workers similarly found notable differences in the
intensities of the C=N normal modes when comparing lumiflavin in the gas and solvent
phases [31]. They were able to reproduce the relative intensities of those bands using
QM/MM calculations similar to our M1 protocol, but with a number of variations in
the method used. We tested our M1 protocol using the same functional and basis set as
they used (BP86/TZVP) but could not reproduce the relative intensities of those bands.
Therefore, we attribute the difference in our results to other differences in our protocols.

Here, we looked more closely at the factors that affect the relative intensities of the IR
bands in solution. We found that to reproduce the experimental relative intensities, what is
needed is a solvent model that correctly reproduces the absolute differences in frequencies
of both intense and non-intense bands in the IR spectrum so that Fermi resonances are
captured accurately. In our case, the ONIOM QM/MM model was inadequate, unless
PCM solvation was also included. This can also be understood directly from the scaling
factors: models that reproduced the relative intensities of the two bands (Figure 1 bottom
and Figure 4F) had a different scaling factor (0.987-0.988) compared to models that did not
reproduce the correct relative intensities (scaling factor 0.975).

3. Materials and Methods

MD simulations were carried out using the AMBER 20 software package [57,58].
Lumiflavin parameters were obtained using GAFF [59] and the Antechamber package [60],
which is part of AmberTools. Lumiflavin’s charges were determined using the AM1-BCC
method [61]. Those charges and GAFF parameters are only relevant to the initial molecular
dynamics since lumiflavin’s structure is later refined at the quantum chemical level of
theory. Lumiflavin was solvated in a cubic water box described using the TIP3P force
field [62]. The cubic solvent box size was selected such that there was at least 3 A from
any atom of lumiflavin to the edge of the box. The effect of changing this solvent shell size
from 3 A to 12 A was tested, and it was found that changing the box size did not greatly
alter the results. Therefore, calculations discussed in this work were carried out for the 3 A
solvent box model unless specified otherwise. The distance cutoff for electrostatics during
the simulations was set at 6 A for the 3 A solvent shell and 10 A for the 12 A solvent shell.

The solvated system was geometry-optimized using the molecular mechanical force
field in two steps; first, only the solvent molecules were optimized, keeping lumiflavin
fixed, and then the entire system was optimized. The minimized system was used as a
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starting point for MD simulations. The system was thermalized to 300 K in the canonical
(NVT) ensemble over 2 ns. Then, a 5 ns equilibration was carried out with the isothermal-
isobaric (NPT) ensemble at a standard pressure of 1 bar. This was followed by a longer
40 ns NPT simulation used to determine the average volume for the simulation. Finally, a
production simulation was carried out for 500 ns using the NVT ensemble. The temperature
was kept at 300 K, and the volume was kept at the average determined in the NPT step.
The distance cutoff for interactions was reduced by 1 A during the production simulation
stage to speed up the calculations.

Snapshots from the MD simulation served as starting points for QM /MM calculations
carried out in Gaussian 16 [63] using ONIOM [49]. Electrostatic embedding was used. Since
no periodic boundary conditions were used in the QM calculation, all water molecules
were initially kept frozen in their MM positions for each snapshot. However, in each
snapshot, flavin was optimized at the DFT level of theory using the B3LYP functional and
6-31 + G** basis set. Generally, the B3LYP hybrid functional theory is a popular, well-tested,
and cost-effective method for the calculation of ground-state frequencies when scaled
using a constant factor [64—68]. The size of the basis set was tested in a previous study on
lumiflavin, and B3LYP/6-31 + G** was found to be reasonable for this system, with limited
benefit to using a larger basis set [34].

To reduce the computational cost associated with optimizing hundreds of QM /MM
geometries, optimizations were terminated after a maximum of 10 optimization steps.
The maximum RMS gradient for all calculations reported in this work is 0.00702 atomic
units, compared to Gaussian’s default threshold of 0.000450. Vibrational frequencies were
computed at the same level of theory after hydrogen atoms were replaced with deuterium
for all water molecules and for the exchangeable proton on flavin’s N3. Computed spectra
were adjusted using a constant scaling factor that was chosen for each model to match
the computed vc_n(out) Vibrational frequency with the experimental one (1548 cm™1). The
scaling factor used for each model is indicated in each of the figures in Section 2.

For each computational protocol, 100 snapshots were selected from the last 50 ns of
the simulation (at 500 ps intervals). Each of those 100 snapshots was used as a starting
point for optimization and frequency calculations with QM /MM. This was done using
several different protocols that are represented in Figure 2 and the associated text.

4. Conclusions

To more accurately simulate the main features of an IR spectrum of flavin, including
broadening and the correct relative frequencies and intensities, a series of increasingly
sophisticated molecular models and computational methods were employed.

In QM/MM calculations for lumiflavin in water, we find that calculations using a
single flavin moiety cannot properly represent the ensemble of molecules and solvent
configurations around the molecule. Through sampling, we simulated the inhomogeneous
broadening of the spectra and provided insights into the intensity changes of specific vibra-
tional modes of lumiflavin due to solvation. Reproducing the relative intensities of bands
requires a method and solvation model that correctly reproduce the absolute differences
in frequencies of both intense and non-intense bands in the IR spectrum such that Fermi
resonances are captured correctly. In our models, a simple point charge description of the
solvent is inadequate. We found that for lumiflavin in solution, using a few quantum me-
chanically treated water molecules nearby as well as a hybrid ONIOM/PCM approach to
treat long-range electrostatic effects of the solvent is necessary to simulate the experimental
FTIR spectrum. We note also the importance of long-range interactions for simulating other
properties in the condensed phase, such as UV-visible spectra and redox or ionization
potentials [35,69-75].

The next step would be to test the computational protocols developed in this study to
simulate the FTIR spectrum of flavin embedded in a protein cavity. We expect, however,
that due to the lower dielectric environment of a protein, PCM may no longer be necessary
to properly capture the relative intensities of IR bands; only a few vibrational frequencies
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will be affected by specific interactions (e.g., hydrogen bonding) with the protein, compared
to a solvent where many frequencies are shifted by a strong dielectric environment. Indeed,
ONIOM QM /MM calculations have successfully been shown to reproduce both the relative
vibrational frequencies and intensities of quinones in protein binding sites [76].
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