INTERNET OF THINGS

Toward Remotely Verifiable Software Integrity
in Resource-Constrained IoT Devices

Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and Gene Tsudik

The authors provide a holistic
and systematic treatment of this
family of architectures.

Digital Object dentifier: 10.1109/MCOM.0012300514

ABSTRACT

Lower-end loT devices typically have strict cost
constraints that rule out usual security mechanisms
available in general-purpose computers or high-
er-end devices. To secure low-end devices, various
low-cost security architectures have been proposed
for remote verification of their software state via
integrity proofs. These proofs vary in terms of
expressiveness, with simpler ones confirming cor-
rect binary presence, while more expressive ones
support verification of arbitrary code execution.
This article provides a holistic and systematic treat-
ment of this family of architectures. It also com-
pares (qualitatively and quantitatively) the types of
software integrity proofs, respective architectural
support, and associated costs. Finally, we outline
some research directions and emerging challenges.

INTRODUCTION

Micro-Controller Units (MCUs) that perform actu-
ation and/or sensing are the de facto interfaces
between the analog and digital worlds. On actua-
tors, digital commands are converted into physical
actions, while sensors convert analog ambient quanti-
ties into digital form. They represent the point where
data is “born” and first processed. At the same time,
since MCUs are programmable, their software can
be compromised and subsequently corrupt data,
e.g., by modifying software to forge/spoof a sensed
values or “lie” about having performed actuation
commands. One naive defense strategy is to make
all software non-writable, e.g. by housing it in ROM.
While this obviates software compromise, it also pre-
cludes legitimate software updates.

In the last decade, the research community
has actively identified and examined this issue [1].
Earlier results proposed methods to allow a trust-
ed party called Verifier to remotely check if the
correct binary is currently installed on a remote
and untrusted Prover. This security service is com-
monly known as Remote Attestation (RA) [2-5].

A related notion is Proofs of Execution (PoX)
[6] which extends RA to prove correct execution
of the attested binary or parts thereof, i.e., func-
tions within the binary. In line with PoX, Control
Flow Attestation (CFA) allows Verifier to also ver-
ify the sequence of executed instructions. This
detects software exploits that corrupt execution
path by changing the program control flow with-
out modifying the actual binary (aka code-reuse

attacks [7]). Data-Flow Attestation (DFA) further

extends CFA with detection of data-only attacks

that exploit vulnerabilities to corrupt data without
modifying the program control flow.

This article overviews a series of recent low-
cost techniques, based on HW/SW co-design,
that create unforgeable proofs of software integ-
rity (encompassing aforementioned services) for
the MCUs commonly used in low-end loT devic-
es. Each of these technique tackles one of the
following questions:

1. How to prove that an MCU of interest is cur-
rently installed with the correct software/firm-
ware binary?

2. How to extend this proof with historical context,
i.e., how to determine “since when” the expect-
ed software has been installed on the device?

3. Upon receiving a result from a remote MCU
(e.g., a sensed value), how to ensure that it was
indeed obtained through the proper execution
of expected software on the expected device?

4. Can we verify that instructions were exe-
cuted in the intended/legal order? In other
words, how to ensure the absence of control
flow attacks during the execution?

5. In addition, how to ensure the absence of
(non-control) data-only attacks during execution?
Naturally, approaches that provide more expres-
sive evidence (thereby detecting stealthier attacks)
also incur higher hardware and run-time overhead.

Folklorically and historically, the common wis-
dom holds that the typical/usual low-end MCUs
(such as TI MSP430 or AVR ATMega) are inca-
pable of supporting software integrity verifica-
tion. While this is true for unmodified MCUs,
recent research results show that it can indeed
be achieved with minimal hardware overhead,
low overall cost, and strong security guarantees.
This article overviews and compares (qualitatively
and quantitatively) a sequence of five techniques,
each incrementally addressing one of the above
questions. We also identify several outstanding
challenges that need to be tackled by future work.

BACKGROUND
RESOURCE-CONSTRAINED/Low-EnD MCUS

This article focuses on resource-constrained embed-
ded/smart/loT sensors and actuators (or hybrids
thereof). These are some of the simplest and

Ivan De Oliveira Nunes is with Rochester Institute of Technology, USA; Sashidhar Jakkamsetti is with Robert Bosch LLC, USA; Norrathep
Rattanavipanon (corresponding author) is with College of Computing, Prince of Songkla University, Phuket, Thailand; Gene Tsudik is with
the University of California Irvine, USA.

58

0163-6804/24/$25.00 © 2024 IEEE

IEEE Communications Magazine ¢ July 2024

smallest computing devices, based on low-power
single-core MCUs with only a few KBytes of mem-
ory. Figure 1 illustrates a typical MCU architecture,
featuring a CPU core, an Interrupt Control Logic
module, and a Direct Memory Access (DMA) con-
troller connected to main memory via a bus. The
MCU includes four memory types:

1. Program memory (PMEM)

2. Read-only memory (ROM)

3. Data memory (DMEM)

4. Peripheral memory

Application software is stored in PMEM, usually
realized as non-volatile physical memory such as
Flash or FRAM. Runtime data is stored in volatile
DMEM, implemented using RAM. ROM contains
the bootloader and any software fixed at the time
of manufacturing or provisioning, and remains
immutable thereafter. DMA can read and write
memory in parallel with the core. Generally, low-
end MCUs run software atop “bare metal,” i.e.,
execute software directly from PMEM, without
relying on memory management units (MMU)
and often not even memory protection units
(MPU). Examples of such MCUs include Atmel
AVR ATmega, Tl MSP430, and ARM Cortex-M,
featuring 8/16/32-bit single-core CPUs, running
at clock frequencies of 1-48MHz, with up to 128
KB of addressable memory.

ATTACK VIECTORS & THREAT MoDEL

To reason about software integrity one must
consider that all modifiable memory could be
tampered with by the adversary (Adv), unless
explicitly protected by the hardware architecture.
Therefore, Adv is assumed to control the entire
software state of Prover. This allows Adv to read
and write any memory that is not explicitly pro-
tected by hardware, program DMA controllers,
and trigger interrupts at any given moment.

While Adv may reprogram Prover software in
PMEM via a wired interface (e.g., USB or]-TAG),
we consider invasive attacks physically altering
hardware and ROM code to be out of scope.
Protection against these attacks can be obtained
through orthogonal tamper-resistance techniques,
e.g., employing internal power regulators, imple-
menting anomaly detection for the MCU’s behav-
ior, enclosing the MCU with additional metal layers
or enforcing physical access control to the devices.

VERIFYING SOFTWARE/ FIRMWARE INTEGRITY WITH 7R A

Completely preventing illegal code modifications
in low-end devices is a challenging task due to
the need to perform code updates. As an alter-
native, RA is an inexpensive and effective tech-
nique which detects attacks that modify Prover
code. RA allows Verifier to remotely assess soft-
ware integrity of Prover, in an on-demand fashion.

This is typically realized as a Verifier-initiated chal-

lenge-response protocol where:

1. Verifier sends an attestation request contain-
ing a cryptographic challenge to Prover.

2. Prover performs an authenticated integrity
check based on the received challenge over
its own PMEM.

3. Prover returns the result to Verifier.

4. Verifier validates whether the result matches
a valid PMEM state by comparing it to the
expected (benign) value.

The purpose of the challenge in step 1 is to ensure

MCU

Memory

Interrupt Control
Logic

!

CORE

Interrupt Vector
Table

PMEM (FLASH)

BUS
l\ DMEM (RAM)
DMA Peripheral
Memory
T ____________________________
v
\ [DMA Peripherals] [

FIGURE 1, Architecture of low-end loT devices.

that Prover’s response is fresh, i.e., reflects its cur-
rent software state (rather than an old replayed
response). The authenticated integrity check in
step 2 can be implemented as a Message Authen-
tication Code (MAC) or signature. We refer to
the function that implements the authenticated
integrity check as the integrity-ensuring function
(IEF). To implement IEF, Prover must maintain
a secret key (K), confidentiality of which must
be preserved even if Prover software is compro-
mised. Consequently, main challenges in design-
ing secure RA revolve around:
+ Secure storage of K
+ Establishment of an immutable secure run-
time environment that accesses K to com-
pute the IEF without leaking K to any other
software in the Prover.

SANCUS [8] protects the IEF and K by imple-
menting them entirely in hardware inaccessible to
untrusted software. This eliminates the need for
any software component of the trusted comput-
ing base (TCB). However, this approach incurs a
significant hardware cost, which may be prohibi-
tive for budget-coscious low-end MCUs. SMART
[2] is designed to minimize hardware overhead by
using a hybrid (HW/SW co-design) RA approach.
SMART implements its IEF in software, while a
small amount of hardware is used to detect any
violation that attempts to leak /C or tamper with IEF
execution. The main trade-off between SMART and
SANCUS is speed vs. cost — being all hardware,
the latter is faster, while the former is cheaper.

Building upon SMART design principles in a
less ad hoc fashion, recently proposed VRASED
[3] technique is a formally verified hardware/soft-
ware RA co-design. Figure 2 shows its hardware
and software components. The trusted software
module (SW-Att) contains IEF code and K stored
in ROM. This way, neither SW-Att nor K values
can be modified after manufacturing or provision-
ing. VRASED also includes a hardware monitor
that tracks several MCU signals to determine:

1. PC value, i.e., address of currently executing
instruction.

IEEE Communications Magazine e July 2024

SW Address Space

SW-Att
ROM
< MCU CORE
Chall
ORpas
. HW Modules
ERpmax
PMEM) |
VRASED
DMEM PC, MemAccess, irq
APEX,
Tiny-CFA,
DIALED
e | RAT A irTC;

VRASED-specific
architectural support

RAT A-specific

=

architectural support

APEX-specific architectural support
(also required by Tiny-CFA and DIALED)

177 RAT A-exclusive architectural support:
- real-time clock (RTC)

FIGURE 2. Architectural requirements of various integrity proofs.

2. MemAccess, memory address currently being
read or written by either MCU Core or DMA.

3. irq, a one-bit signal indicating whether an
interrupt is currently being triggered.

Using these signals, VRASED hardware monitor

detects violations that try to violate secrecy of I

or SW-Att execution integrity through:

+ lllegal accesses to K by any software other
than sw-Att.

+ Any incomplete or interrupted SW-Att exe-
cution that could lead to forgery of an attes-
tation result.

Upon detecting a violation, VRASED triggers an

immediate MCU reset, promptly preventing the

violation.

To facilitate formal verification, VRASED avoids
state explosion problems by structuring its imple-
mentation as a collection of sub-modules, each
guaranteeing a specific set of formal sub-prop-
erties. Each sub-module undergoes individual
verification, and the combination of all sub-mod-
ules is then verified for end-to-end notions of RA
soundness and security. Informally, RA sound-
ness ensures correct IEF computation over cur-
rent PMEM, while RA security guarantees that
IEF execution produces an unforgeable authenti-
cated PMEM measurement and prevents K leak-
age before, during, or after RA. Further details on
VRASED formal verification can be found in [3].

TOCTOU-SEcURITY & EFFICIENT TRA

Recall that each RA instance is initiated by Veri-
fier. An authentic RA result received from Prover
reflects Prover code only at the time when it is
computed. In particular, it provides no informa-
tion about Prover software before RA execution
or between successive RA instances. This issue
is commonly termed as Time-of-Check Time-of-
Use (TOCTOU). In the context of RA, TOCTOU

means that transient malware can not be detect-

ed by RA. Concretely, if malware infects Prover,

performs its malicious tasks, and erases itself prior
to the next RA instance, its ephemeral presence
would remain unnoticed.

RATA [9] is another recent technique to
address the TOCTOU problem. It extends
VRASED with a minimal and formally verified
hardware component that additionally provides
historical context about the state of PMEM. RATA
consists of two alternative designs. Shown as
yellow components in Fig. 2, the first version —
RATA, — is a verified hardware module that oper-
ates as follows:

+ It monitors MCU PC and MemAccess signals
and uses this information to detect whether
PMEM is currently being modified.

* When a PMEM modification is detected,
RATA, retrieves the current time from a real-
time clock (RTC) and stores it in a designated
and secure memory area, called the Latest
Modification Time (LMT) region.

+ LMT region is always covered by IEF (i.e., includ-
ed in each attestation result, along with PMEM)
and read-only to all software and DMA.

To verify the attestation result, Verifier compares

the received LMT value with the time of the last

authorized PMEM modification (usually, time of
latest legitimate code update) to check whether
any unauthorized activity occurred since then.

In practice, RTCs are usually unavailable on
resource-constrained devices and secure clock syn-
chronization in distributed systems poses a signifi-
cant challenge, particularly for such devices. RATA4
is thus useful only to demonstrate the general
approach. To make it practical, the second version
(RATAp) eliminates the RTC requirement. RATAg
relies on Verifier's own notion of time by associ-
ating each attestation challenge to the time of its
issuance by Verifier. Prover logs the latest received
challenge to LMT. For this to work, each Verifier's
challenge must be unique for each RA instance,
to prevent replay attacks. This allows RATAp to
uniquely associate each challenge to Verifier's
notion of time. RATAg hardware component is sim-
ilar RATA,, except that LMT is now updated with
the current challenge if and only if a PMEM mod-
ification occurred since the previous RA instance.

An important side benefit of RATA is its abili-
ty to significantly reduce RA execution time on
Prover since it is no longer necessary to compute
the IEF over the entire PMEM most of the time.
Assuming that Verifier already knows PMEM con-
tents from a previous RA result, it is adequate to
demonstrate that no changes have occurred since
then. This can be achieved by attesting only LMT
as opposed to the entire PMEM, resulting in a sub-
stantial reduction of computation time. In fact, this
time is constant in size of LMT, instead of increas-
ing linearly with PMEM size. For instance, on an
MSP430 MCU running at 8MHz with 8 kBytes
PMEM, RATA takes roughly 50ms on Prover, as
opposed to Tsec in VRASED. (See[9] for details).

FROM 7R A 0 PROOFS OF EXECUTION

RA yields an indication of whether Prover PMEM
contains expected code. However, it does not
guarantee that any operation (i.e., sensing/actu-
ation functions in that code) was executed cor-
rectly. Also, it does not bind results (e.g., sensor

60

IEEE Communications Magazine ¢ July 2024

o) o) = o s [
Diata-flow log
Code
sre.c CFA + DFA -
Instrumentation
enabled src.c ngxrir:nm} *
Compiler
Device (Prover) Signed Proof
LS . J L ‘_ J L - J
Compile time Runtime QOutput and Proot

FIGURE 3. Phases in embedded software execution integrity.

readings) to the correct execution of appropriate
code. In other words, RA gives no secure asso-
ciation between data received by Verifier from
the Prover and Prover’s execution of a specific
application-dependent operation. Thus, Adv can
tamper with or spoof data even if Prover PMEM
contains correct code.

For this reason, APEX [6] proposes the concept
of “Proofs of Execution” (PoX) by augmenting RA
to prove to Verifier that:

1. The function of interest exists within a specif-
ic region of PMEM,;

2. This function was indeed executed in a timely
manner, upon Verifier's request; and

3. Any claimed output was indeed produced by
this timely execution of the desired function
on Prover.

Hence, PoX enables authentication of data from

its “birth,” i.e., at the point when it becomes dig-

ital, through the interaction of code with sensing

ports (e.g., general purpose 1/0).

APEX [6] structure is shown in green in Fig. 2.
It is built atop a secure RA technique, such as
VRASED, by introducing an additional hardware
module that controls a 1-bit flag, called EXEC, that
can not be modified by any software. The key is
to use the high value of EXEC to inform Verifier
that the intended portion of attested code (a Veri-
fier-defined code section in PMEM) was executed
successfully between the time when Verifier chal-
lenge was issued and the time when IEF on Prover
executed. Similarly, a value of 0 for EXEC indicates
that execution of that code section did not occur,
or that it was tampered with.

APEX IEF covers: EXEC flag itself; the region
where output must be saved (called output region
or OR); and code stored in a Verifier-defined
section of PMEM (called executable region or
ER). Security of the RA architecture guarantees
the contents of these memory regions (including
EXEC) can not be spoofed. Therefore, as long as
APEX hardware properly controls EXEC, the RA
result constitutes unforgeable proof that code in
ER was executed and produced the results stored
in OR. APEX considers that code section executed
properly (setting EXEC to 1) if and only if:

1. Execution of ER-resident code is atomic (i.e.,
uninterrupted), from ER's first, to its last,
instruction.

2. Neither code in ER, nor its output in OR is
modified between execution and the next IEF
computation.

3. During execution, DMEM is not modified by
DMA or by other software functions except ER.

These conditions ensures that when EXEC is 1,
both ER and OR remain consistent between ER
code execution and subsequent IEF computation,
plus execution itself is not tampered with. ER and
OR locations and sizes are configured using val-
ues of ERpiny ERmaxy ORmin and OR oy in DMEM,
as shown in Fig. 2. This allows APEX to support
PoX of arbitrary code and output sizes.

APEX hardware is verified to conform to for-
mal specifications of the abovementioned EXEC
behavior. These specifications, along with the
underlying verified guarantees of VRASED, are
proven to guarantee a security definition for
unforgeable PoX, as discussed in [6].

CFA on ResouRce-CONSTRAINED MCUS:
AUGMENTING PoX T0 VERIFY CONTROL FLOW PATHS

PoX assumes that the code for which execution is
being proven (i.e., the code in ER) is free of mem-
ory-safety vulnerabilities, such as those leading to
buffer overflows and similar attacks. However,
when these vulnerabilities (unintentionally) exist
in the executable, they can be exploited at the
time of execution to launch well-known control
flow attacks (such as return- and jump-oriented
programming) that change the order in which the
instructions are executed to cause unintended
behavior, without modifying the program'’s code.
As a consequence, these attacks would remain
oblivious to RA or PoX.

Control Flow Attestation (CFA) aims to detect
control flow attacks by also providing Verifier
with a report that shows the exact order in which
the instructions that form a software operation
of interest have executed on Prover. This can be
accomplished by securely recording the desti-
nation of every control flow altering instruction,
such as jumps, branches, and returns, during the
program’s execution.

A number of CFA techniques have been pro-
posed in recent years (e.g., C-FLAT [10] and
LitetHAX [11]). However, they target higher-end
embedded devices (e.g., those featuring applica-
tion CPUs, such as Raspberry Pi). Unfortunately,
these techniques are prohibitively expensive for
resource-constrained MCUs.

Tiny-CFA [12] was recently developed to
address the CFA problem in the context of
resource-constrained MCUs by leveraging inex-
pensive PoX as its only hardware requirement. As
shown in Fig. 3, Tiny-CFA introduces an addition-
al compilation-time phase where the code to be
executed by Prover is instrumented with addition-

This can be accomplished
by securely recording the
destination of every control

flow altering instruction,

such as jumps, branches,
and returns, during the
program’s execution.

IEEE Communications Magazine e July 2024

b1

Scheme Baseline = VRASED APEX Tiny-CFA DIALED RATA
MCU [3] [6] [12] [13] [9]
Detection of
v v
Modified Code * v v v
Provaple « « v v v «
Execution
Detection of
Control Flow Attack x * i’ v *
Detection of Data < < < < v <
Flow Attack
TOCTOU Security x x X x X v

TABLE 1. Qualitative comparison.

al instructions that generate a log (referred to as
CF-Log), containing the control flow path taken
during execution.

During a PoX of the instrumented code, execu-
tion yields CF-Log, in addition to its regular result/
output. Tiny-CFA ensures authentication and integ-
rity of CF-Log by making CF-Log a part of the PoX
output, which is located within APEX’s output region
OR and covered by the IEF. As a result, Verifier can
use this new evidence (CF-Log) to determine the
validity of the execution control flow path and verify
the absence of control flow hijacking attacks.

In more detail, Tiny-CFA instruments the exe-
cutable to ensure that CF-Log contains all informa-
tion required by Verifier to reconstruct the control
flow path by:

* Securely logging control flow instructions: all
control flow altering instructions are prepend-
ed with additional instructions to log their
destinations to CF-Log.
Ensuring append-only CF-Log: direct writes to
CF-Log are replaced at compile time while indi-
rect writes are instrumented to check whether
their destination is within CF-Log at runtime.
Upon detecting an illegal write to CF-Log, the
PoX is halted, implying an invalid control flow.
Due to the resource-constrained nature of
MCUs, CFA schemes should have minimal hard-
ware and runtime overheads. Tiny-CFA minimizes
hardware requirements by requiring no hardware
support other than PoX from APEX. It also imple-
ments several optimizations to keep the runtime
overhead and CF-Log size within practical limits. We
discuss these overheads later and revisit opportuni-
ties for future work on reducing CFA runtime costs.

MCU DATA FLow INTEGRITY ATOP CFA

Aside from control flow attacks (detected by CFA),
stealthier attacks known as “data-only” attacks can
still originate from memory safety vulnerabilities.
Specific vulnerabilities (see example in [13]) allow
attacks to corrupt intermediate data variables in
DMEM without even altering the control flow of
the program (hence “data-only”).

Detection of such data-only attacks still
remains elusive and requires verifying the data-
flow integrity during execution — a service known
as Data-Flow Attestation (DFA). Prior work in DFA
such as OAT [14] requires user annotations and
relatively expensive trusted hardware support.

DIALED [13] presents the first DFA architec-
ture aimed at resource-constrained MCUs by fol-
lowing an approach similar to Tiny-CFA. As shown

in Fig. 3, at compile time, DIALED uses Tiny-CFA
for CFA-related instrumentation. Additionally, it
adds its own instrumentation to log all data inputs
to a dedicated memory region, called I-Log.
DIALED's instrumenter defines any non-local vari-
ables as data inputs, i.e., any value located outside
of the attested program’s current stack.

Following this definition, any instructions that
access data from arguments, peripherals, net-
work, or general-purpose /O are considered
data inputs and recorded to I-Log. Conversely,
reads occurring during regular computation, e.g.,
instructions that make use of local variables are
excluded from I-Log, as they are not inputs to this
program. This approach helps keep the size of
I-Log relatively small.

Recall that Tiny-CFA instruments the execut-
able to produce CF-Log. In the context of DIALED,
both CF-Log and I-Log are included in APEX’s
authenticated output region OR. As OR is cov-
ered by the IEF, Verifier is assured of the integrity
of these logs. With the code, its execution’s con-
trol flow path, and all inputs, Verifier can locally
emulate execution and its data flow. Therefore, it
can verify all steps in this computation, and detect
data-only and control flow attacks.

As illustrated in Fig. 2 and similar to Tiny-CFA,
DIALED requires no hardware support other than
PoX. DIALED’s instrumentation overhead includes
logging inputs (which are typically small in number).
Similarly, I-Log size depends on the number of argu-
ments the application receives when it is invoked
and the inputs it processes during its execution.

A COMPARISON OF SOFTWARE
INTEGRITY VERIFICATION METHODS

This section compares the architectures discussed
thus far. Table 1 presents a qualitative compar-
ison, highlighting the type of security service
offered by each architecture. Meanwhile, Fig. 4
reports a quantitative comparison, depicting hard-
ware and software overheads.

As we target low-cost/low-power MCUs, we
compare these architectures by instantiating them
on OpenMSP430, an open-source version of the
TI MSP430 MCUs. Therefore, the unmodified
MSP430 is used as a reference baseline for com-
parison. Although our evaluation is conducted
on MSP430, we emphasize that the suitability of
these architectures extends to other MCUs with-
in the same class, e.g., AVR ATMega and ARM
Cortex-M MCUs. However, the proprietary nature
of these designs precludes direct evaluation. Fol-
lowing the common practice in this space [2, 11],
the hardware overhead is reported in terms of
additional Look-Up Tables (LUTs) and registers.
Added LUTs represent increase in combinatorial
logic, whereas added registers are due to sequen-
tial logic required in each case.

Figure 4a depicts percentage increase in hard-
ware relative to the CPU core cost. VRASED
hybrid RA architecture offers the simplest type of
integrity evidence, i.e., whether Prover is current-
ly loaded with the correct software image. Atop
the baseline MCU, it incurs around 2% additional
LUTs and 4.5% additional registers. APEX, which is
a superset of VRASED’s hardware support, offers
both RA and PoX and requires 16% extra LUTs
and 6% extra registers.

62

IEEE Communications Magazine ¢ July 2024

-
~
o

VRASED+APEX+RATA

-
u
=]

-
N
a

VRASED+APEX

% Increase
=
o
o

VRASED+RATA

~
o

o
=]

B Look-up Tables
[Registers

N
a

00 25 50 75 100 125 150 175

% Increase

(a) LUT and Registers

B Tiny-CFA

Code Size Runtime [DIALED

0
SyringePump

FireSensor UltrasonicRanger SyringePump FireSensor UltrasonicRanger

(b) Code Size and Runtime

FIGURE 4. Hardware and software overhead of different architectures.

Tiny-CFA and DIALED add support for CFA
and DFA. Since they rely on APEX hardware sup-
port for PoX “as is,” they do not incur additional
hardware costs. However, they lead to notable
code size and runtime overhead as a result of the
instrumentation phase. While the exact overhead
is application-dependent (due to the variable
number of branch instructions in different applica-
tions), we report Tiny-CFA and DIALED overheads
on three real-world open-source MCU applica-
tions: Open Syringe Pump, Fire Sensor, and Ultra-
sonic Ranger. Details of these applications can be
found in [13].

Figure 4b shows the percentage code size
and runtime increase caused by instrumentation.
On average, Tiny-CFA increases the code size by
85% and DIALED by 130%. Whereas, the runtime
increase is approximately between 2-65% over
their non-instrumented counterparts.

RATA can be viewed as an add-on to any
of the aforementioned architectures to provide
TOCTOU-security and reduced RA computation
time. When added to VRASED alone it adds 4%
LUTs and 6% registers.

When considered in conjunction (as depicted
in Fig. 2), all discussed features add up to 18%
LUTs and 7% registers to the baseline MCU.
Together they provide TOCTOU-Secure and fast-
er RA, PoX, as well as hardware support required
by instrumentation-based CFA and DFA.

OPEN PROBLEMS AND OPPORTUNITIES

This section outlines open challenges and future

research directions in this area.

1. Formal Verification & Provable Security: The
trustworthiness of software integrity proofs
also heavily depends on the correct imple-
mentation of the underlying architectures.
Formal verification is a common approach to
prove the correctness of the system imple-
mentation with respect to formal design spec-
ifications. VRASED, APEX, and RATA already
employed this approach to ensure security/
correctness in their hardware and software
implementations. Nonetheless, there are no
formally verified architectures for CFA or DFA.
The main challenge in verifying Tiny-CFA and
DIALED lies in how to verify security and cor-
rectness of the instrumentation phase. Given
the absence of this phase in VRASED/APEX/
RATA, the verification methods employed by
these architectures cannot be directly applied
here. Addressing this presents an interesting
avenue for future research.

w

. Higher-End Devices: This article examines

software integrity techniques in resource-con-
strained MCUs. One avenue for future
research involves extending these guaran-
tees to higher-end devices. General-purpose
CPUs (e.g., those featured in smartphones
or desktops) are not as cost-prohibitive and
thus often come equipped with more sophis-
ticated hardware (e.g.,, MMUs or Trusted Exe-
cution Environments) or software modules
(e.g., micro-kernels or monolithic operating
systems). A promising opportunity for future
research is to leverage the added hardware
and software support to obtain similar guar-
antees to those considered in this article.

. Efficiency of CFA and DFA: While Tiny-CFA

and DIALED provide relatively low-cost
CFA and DFA, the code size and run-time
increases are still significant. Furthermore,
as attested operations increase in size and
complexity, the generated evidence traces
(CF-Log and I-Log) also increase according-
ly. As a consequence, CFA and DFA are still
limited to simple self-contained operations in
which associated evidence can be stored and
transmitted by a resource-constrained MCU.
An interesting direction for future work lies in
the management and reduction of CFA and
DFA associated costs.

. Attesting vs. Auditing Software Integrity: Cur-

rent architectures enable only detection of
software compromises. They cannot guarantee
that Verifier ever receives the produced evi-
dence, in case of software attacks. While this
suffices to detect if the Prover is compromised
in a yes/no manner (in general, the absence
of a signed report from the Prover indicates
that something is wrong), it precludes auditing
the generated evidence to pinpoint the source

of compromises (i.e., to determine what is

wrong with the Prover’s software). Auditing
is non-trivial because a compromised Prover
might ignore the protocol and simply refuse
to send back evidence that indicates a com-
promise. Resolving this issue remains an open
problem for future work.

. Multi-Device Settings: This article focuses of

software integrity techniques in a single-Prov-
er setting. However, many loT systems rely
on a large group (“swarm”) of interconnect-
ed devices. Simply applying single-Prover
solutions to the swarm setting faces scalabil-
ity issues. To address this, in the context of
RA, several “swarm/collective RA” tech-
niques have been proposed to efficiently

This article focuses of soft-
ware integrity techniques in

a single-Prover setting. How-

ever, many loT systems rely
on a large group (“swarm")
of interconnected devices.

IEEE Communications Magazine e July 2024

63

perform RA across a multitude of devices.
These techniques vary in their target settings,
considering different factors, e.g., swarm
topologies, swarm dynamics, and software/
hardware heterogeneity. We refer to [15] for
an in-depth overview of swarm RA. Nota-
bly, RATA holds the potential to enhance
existing swarm attestation schemes. With its
advantages of constant runtime and TOC-
TOU security, RATA can serve as a building
block in swarm RA schemes, yielding fast-
er overall swarm attestation while ensuring
synchronized TOCTOU security across the
swarm. Although swarm RA has been exten-
sively studied, the extension of other integrity
services, i.e., PoX/CFA/DFA, to a swarm of
devices remains largely unexplored, present-
ing an opportunity for future work.

CONCLUSIONS

This article overviews a series of techniques for
remote verification of software integrity on
resource-constrained loT devices. Services pro-
vided by each technique vary, starting from sim-
ply verifying code installed on a remote device,
to detection of transient malware, and detection
of runtime attacks that arise due to vulnerabili-
ties in installed code. Not surprisingly, techniques
that provide more sophisticated service are also
accompanied by increased complexity and costs.
To assess these trade-offs, we compare them qual-
itatively and quantitatively, considering the security
services provided in each case, additional hardware
cost, and runtime overhead. Finally, we present
new research directions and open problems.

ACKNOWLEDGMENT

We thank IEEE Communications’ reviewers for con-
structive feedback. Gene Tsudik was supported in
part by funding from NSF Award SATC-1956393,
NSA Awards H98230-20-1-0345 and H98230-
22-1-0308, as well as a subcontract from Peraton
Labs. Ivan De Oliveira Nunes was supported by
NSF Award SaTC- 2245531. Norrathep Rattanav-
ipanon was supported by the National Science,
Research and Innovation Fund (NSRF) and Prince
of Songkla University (Grant No. COC6701016S).

REFERENCES
[1] B. Kuang et al., “A Survey of Remote Attestation in Internet
of Things: Attacks, Countermeasures, and Prospects,” Com-
puters & Security, vol. 112, 2022, p. 102498.

[2] K. Eldefrawy et al., “SMART: Secure and Minimal Architec-
ture for (Establishing Dynamic) Root of Trust,” NDSS, 2012.

[3] I. De Oliveira Nunes et al., “VRASED: A Verified Hardware/
Software Co-Design for Remote Attestation,” USENIX Secu-
rity, 2019.

[4] M. Grisafi et al., “PISTIS: Trusted Computing Architecture for
Low-End Embedded Systems,” USENIX Security, 2022.

[5] P. Koeberl et al., “Trustlite: A Security Architecture for Tiny
Embedded Devices,” EuroSys, 2014.

[6] I. De Oliveira Nunes et al., “APEX: A Verified Architecture
for Proofs of Execution on Remote Devices Under Full Soft-
ware Compromise,” USENIX Security, 2020.

[71 L. Szekeres et al., “Sok: Eternal War in Memory,” IEEE S&P,
2013.

[8] J. Noorman et al., “Sancus 2.0: A Low-Cost Security Archi-
tecture for loT Devices,” ACM TOPS, vol. 20, no. 3, 2017,
pp. 1-33.

[9] I. De Oliveira Nunes et al., “On the TOCTOU Problem in
Remote Attestation,” ACM CCS, 2021.

[10] T. Abera et al., “C-FLAT: Control-Flow Attestation for
Embedded Systems Software,” ACM CCS, 2016.

[11] G. Dessouky et al., “LiteHAX: Lightweight Hardware-Assist-
ed attestation of Program Execution,” ICCAD, 2018.

[12] I. De Oliveira Nunes, S. Jakkamsetti, and G. Tsudik, “Tiny-
CFA: Minimalistic Control-Flow Attestation Using Verified
Proofs of Execution,” DATE, 2021.

[13] I. De Oliveira Nunes, S. Jakkamsetti, and G. Tsudik,
“DIALED: Data Integrity Attestation for Low-End Embedded
Devices,” DAC, 2021.

[14] Z. Sun et al,, “OAT: Attesting Operation Integrity of Embed-
ded Devices,” IEEE S&P, 2020.

[15] M. Ambrosin et al., “Collective Remote Attestation at the
Internet of Things Scale: State-of-the-Art and Future Chal-
lenges,” IEEE Commun. Surveys & Tutorials, vol. 22, no. 4,
2020, pp. 2447-61.

BIOGRAPHIES

IVAN DE OLIVEIRA NUNES (ivanoliv@mail.rit.edu) is an Assistant
Professor at the Rochester Institute of Technology (RIT). Before
RIT, he received a Ph.D. from the University of California Irvine.
His research interests span the fields of Security & Privacy, Com-
puter Networking, Computing Systems, and especially their
intersection.

SASHIDHAR JAKKAMSETTI (sashidhar.jakkamsetti@us.bosch.com) is
a Research Scientist at Robert Bosch LLC - Research and Tech-
nology Center. He obtained his Ph.D. from the University of Cal-
ifornia, Irvine. Engineer at Microsoft in India (2016-2018). His
research focuses on loT Security/Privacy, Applied Cryptography,
and Privacy-Preserving Technologies.

NORRATHEP RATTANAVIPANON (norrathep.r@phuket.psu.ac.th)
received a Ph.D. from the University of California, Irvine. He
is an Assistant Professor at College of Computing, Prince of
Songkla University, Phuket, Thailand. His research interests
include 10T security as well as software and binary analysis.

GENE TsuDIK (gene.tsudik@uci.edu) received all his degrees
eons ago. He’s a fellow of all the usual societies. He dabbles in
numerous security/privacy and applied crypto topics. He also
occasionally composes atrocious crypto-poetry.

64

IEEE Communications Magazine ¢ July 2024

