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Abstract
Lower-end IoT devices typically have strict cost 

constraints that rule out usual security mechanisms 
available in general-purpose computers or high-
er-end devices. To secure low-end devices, various 
low-cost security architectures have been proposed 
for remote verification of their software state via 
integrity proofs. These proofs vary in terms of 
expressiveness, with simpler ones confirming cor-
rect binary presence, while more expressive ones 
support verification of arbitrary code execution. 
This article provides a holistic and systematic treat-
ment of this family of architectures. It also com-
pares (qualitatively and quantitatively) the types of 
software integrity proofs, respective architectural 
support, and associated costs. Finally, we outline 
some research directions and emerging challenges.

Introduction
Micro-Controller Units (MCUs) that perform actu-
ation and/or sensing are the de facto interfaces 
between the analog and digital worlds. On actua-
tors, digital commands are converted into physical 
actions, while sensors convert analog ambient quanti-
ties into digital form. They represent the point where 
data is “born” and first processed. At the same time, 
since MCUs are programmable, their software can 
be compromised and subsequently corrupt data, 
e.g., by modifying software to forge/spoof a sensed 
values or “lie” about having performed actuation 
commands. One naïve defense strategy is to make 
all software non-writable, e.g. by housing it in ROM. 
While this obviates software compromise, it also pre-
cludes legitimate software updates.

In the last decade, the research community 
has actively identified and examined this issue [1]. 
Earlier results proposed methods to allow a trust-
ed party called Verifier to remotely check if the 
correct binary is currently installed on a remote 
and untrusted Prover. This security service is com-
monly known as Remote Attestation (RA) [2–5].

A related notion is Proofs of Execution (PoX) 
[6] which extends RA to prove correct execution 
of the attested binary or parts thereof, i.e., func-
tions within the binary. In line with PoX, Control 
Flow Attestation (CFA) allows Verifier to also ver-
ify the sequence of executed instructions. This 
detects software exploits that corrupt execution 
path by changing the program control flow with-
out modifying the actual binary (aka code-reuse 

attacks [7]). Data-Flow Attestation (DFA) further 
extends CFA with detection of data-only attacks 
that exploit vulnerabilities to corrupt data without 
modifying the program control flow.

This article overviews a series of recent low-
cost techniques, based on HW/SW co-design, 
that create unforgeable proofs of software integ-
rity (encompassing aforementioned services) for 
the MCUs commonly used in low-end IoT devic-
es. Each of these technique tackles one of the 
following questions:
1. How to prove that an MCU of interest is cur-

rently installed with the correct software/firm-
ware binary?

2. How to extend this proof with historical context, 
i.e., how to determine “since when” the expect-
ed software has been installed on the device?

3. Upon receiving a result from a remote MCU 
(e.g., a sensed value), how to ensure that it was 
indeed obtained through the proper execution 
of expected software on the expected device?

4. Can we verify that instructions were exe-
cuted in the intended/legal order? In other 
words, how to ensure the absence of control 
flow attacks during the execution?

5. In addition, how to ensure the absence of 
(non-control) data-only attacks during execution?

Naturally, approaches that provide more expres-
sive evidence (thereby detecting stealthier attacks) 
also incur higher hardware and run-time overhead.

Folklorically and historically, the common wis-
dom holds that the typical/usual low-end MCUs 
(such as TI MSP430 or AVR ATMega) are inca-
pable of supporting software integrity verifica-
tion. While this is true for unmodified MCUs, 
recent research results show that it can indeed 
be achieved with minimal hardware overhead, 
low overall cost, and strong security guarantees. 
This article overviews and compares (qualitatively 
and quantitatively) a sequence of five techniques, 
each incrementally addressing one of the above 
questions. We also identify several outstanding 
challenges that need to be tackled by future work.

Background
Resource-Constrained/Low-End MCUs

This article focuses on resource-constrained embed-
ded/smart/IoT sensors and actuators (or hybrids 
thereof). These are some of the simplest and 
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smallest computing devices, based on low-power 
single-core MCUs with only a few KBytes of mem-
ory. Figure 1 illustrates a typical MCU architecture, 
featuring a CPU core, an Interrupt Control Logic 
module, and a Direct Memory Access (DMA) con-
troller connected to main memory via a bus. The 
MCU includes four memory types:
1. Program memory (PMEM)
2. Read-only memory (ROM)
3. Data memory (DMEM)
4. Peripheral memory
Application software is stored in PMEM, usually 
realized as non-volatile physical memory such as 
Flash or FRAM. Runtime data is stored in volatile 
DMEM, implemented using RAM. ROM contains 
the bootloader and any software fi xed at the time 
of manufacturing or provisioning, and remains 
immutable thereafter. DMA can read and write 
memory in parallel with the core. Generally, low-
end MCUs run software atop “bare metal,” i.e., 
execute software directly from PMEM, without 
relying on memory management units (MMU) 
and often not even memory protection units 
(MPU). Examples of such MCUs include Atmel 
AVR ATmega, TI MSP430, and ARM Cortex-M, 
featuring 8/16/32-bit single-core CPUs, running 
at clock frequencies of 1–48MHz, with up to 128 
KB of addressable memory.

AttAck Vectors & threAt ModeL
To reason about software integrity one must 
consider that all modifiable memory could be 
tampered with by the adversary (dv), unless 
explicitly protected by the hardware architecture. 
Therefore, dv is assumed to control the entire 
software state of Prover. This allows dv to read 
and write any memory that is not explicitly pro-
tected by hardware, program DMA controllers, 
and trigger interrupts at any given moment.

While dv may reprogram Prover software in 
PMEM via a wired interface (e.g., USB or J-TAG), 
we consider invasive attacks physically altering 
hardware and ROM code to be out of scope. 
Protection against these attacks can be obtained 
through orthogonal tamper-resistance techniques, 
e.g., employing internal power regulators, imple-
menting anomaly detection for the MCU’s behav-
ior, enclosing the MCU with additional metal layers 
or enforcing physical access control to the devices.

VerIFyIng soFtwAre/FIrMwAre IntegrIty wIth RA
Completely preventing illegal code modifi cations 
in low-end devices is a challenging task due to 
the need to perform code updates. As an alter-
native, RA is an inexpensive and effective tech-
nique which detects attacks that modify Prover
code. RA allows Verifi er to remotely assess soft-
ware integrity of Prover, in an on-demand fashion. 
This is typically realized as a Verifi er-initiated chal-
lenge-response protocol where:
1. Verifi er sends an attestation request contain-

ing a cryptographic challenge to Prover.
2. Prover performs an authenticated integrity 

check based on the received challenge over 
its own PMEM.

3. Prover returns the result to Verifi er.
4. Verifi er validates whether the result matches 

a valid PMEM state by comparing it to the 
expected (benign) value. 

The purpose of the challenge in step 1 is to ensure 

that Prover’s response is fresh, i.e., refl ects its cur-
rent software state (rather than an old replayed 
response). The authenticated integrity check in 
step 2 can be implemented as a Message Authen-
tication Code (MAC) or signature. We refer to 
the function that implements the authenticated 
integrity check as the integrity-ensuring function 
(IEF). To implement IEF, Prover must maintain 
a secret key (), confidentiality of which must 
be preserved even if Prover software is compro-
mised. Consequently, main challenges in design-
ing secure RA revolve around: 
• Secure storage of 
• Establishment of an immutable secure run-

time environment that accesses  to com-
pute the IEF without leaking  to any other 
software in the Prover.
SANCUS [8] protects the IEF and  by imple-

menting them entirely in hardware inaccessible to 
untrusted software. This eliminates the need for 
any software component of the trusted comput-
ing base (TCB). However, this approach incurs a 
significant hardware cost, which may be prohibi-
tive for budget-coscious low-end MCUs. SMART 
[2] is designed to minimize hardware overhead by 
using a hybrid (HW/SW co-design) RA approach. 
SMART implements its IEF in software, while a 
small amount of hardware is used to detect any 
violation that attempts to leak  or tamper with IEF 
execution. The main trade-off  between SMART and 
SANCUS is speed vs. cost — being all hardware, 
the latter is faster, while the former is cheaper.

Building upon SMART design principles in a 
less ad hoc fashion, recently proposed VRASED
[3] technique is a formally verifi ed hardware/soft-
ware RA co-design. Figure 2 shows its hardware 
and software components. The trusted software 
module (SW-Att) contains IEF code and  stored 
in ROM. This way, neither SW-Att nor  values 
can be modifi ed after manufacturing or provision-
ing. VRASED also includes a hardware monitor 
that tracks several MCU signals to determine:
1. PC value, i.e., address of currently executing 

instruction.

FIGURE 1. Architecture of low-end IoT devices.Fig. 1: Architecture of Low-end IoT Devices
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and a Direct Memory Access (DMA) controller connected to
main memory via a bus. The MCU includes four memory
types: (1) program memory (PMEM), (2) read-only memory
(ROM), (3) data memory (DMEM), and (4) peripheral mem-
ory. Application software is stored in PMEM, usually realized
as non-volatile physical memory such as Flash or FRAM.
Runtime data is stored in volatile DMEM, implemented using
RAM. ROM contains the bootloader and any software fixed
at the time of manufacturing or provisioning, and remains
immutable thereafter. DMA can read and write memory in
parallel with the core. Generally, low-end MCUs run software
atop “bare metal”, i.e., execute software directly from PMEM,
without relying on memory management units (MMU) and
often not even memory protection units (MPU). Examples
of such MCUs include Atmel AVR ATmega, TI MSP430,
and ARM Cortex-M, featuring 8/16/32-bit single-core CPUs,
running at clock frequencies of 1-48MHz, with up to 128 KB
of addressable memory.

B. Attack Vectors & Threat Model

To reason about software integrity one must consider that all
modifiable memory could be tampered with by the adversary
(Adv), unless explicitly protected by the hardware architec-
ture. Therefore, Adv is assumed to control the entire software
state of Prover. This allows Adv to read and write any memory
that is not explicitly protected by hardware, program DMA
controllers, and trigger interrupts at any given moment.
While Adv may reprogram Prover software in PMEM via

a wired interface (e.g., USB or J-TAG), we consider invasive
attacks physically altering hardware and ROM code to be
out of scope. Protection against these attacks can be ob-
tained through orthogonal tamper-resistance techniques, e.g.,
employing internal power regulators, implementing anomaly
detection for the MCU’s behavior, enclosing the MCU with
additional metal layers or enforcing physical access control to
the devices.
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III. VERIFYING SOFTWARE/FIRMWARE INTEGRITY WITH
RA

Completely preventing illegal code modifications in low-
end devices is a challenging task due to the need to perform
code updates. As an alternative, RA is an inexpensive and
effective technique which detects attacks that modify Prover
code. RA allows Verifier to remotely assess software integrity
of Prover, in an on-demand fashion. This is typically realized
as a Verifier-initiated challenge-response protocol where:
1) Verifier sends an attestation request containing a crypto-

graphic challenge to Prover.
2) Prover performs an authenticated integrity check based

on the received challenge over its own PMEM.
3) Prover returns the result to Verifier.
4) Verifier validates whether the result matches a valid

PMEM state by comparing it to the expected (benign)
value.

The purpose of the challenge in step 1 is to ensure that
Prover’s response is fresh, i.e., reflects its current software
state (rather than an old replayed response). The authenticated
integrity check in step 2 can be implemented as a Message
Authentication Code (MAC) or signature. We refer to the
function that implements the authenticated integrity check
as the integrity-ensuring function (IEF). To implement IEF,
Provermust maintain a secret key (K), confidentiality of which
must be preserved even if Prover software is compromised.
Consequently, main challenges in designing secureRA revolve
around: (i) secure storage of K, and (ii) establishment of an
immutable secure run-time environment that accesses K to
compute the IEF without leaking K to any other software in
the Prover.
SANCUS [8] protects the IEF and K by implementing

them entirely in hardware inaccessible to untrusted software.
This eliminates the need for any software component of the
trusted computing base (TCB). However, this approach incurs
a significant hardware cost, which may be prohibitive for
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2. MemAccess, memory address currently being 
read or written by either MCU Core or DMA.

3. irq, a one-bit signal indicating whether an 
interrupt is currently being triggered.

Using these signals, VRASED hardware monitor 
detects violations that try to violate secrecy of 
or SW-Att execution integrity through:
• Illegal accesses to  by any software other 

than SW-Att. 
• Any incomplete or interrupted SW-Att exe-

cution that could lead to forgery of an attes-
tation result. 

Upon detecting a violation, VRASED triggers an 
immediate MCU reset, promptly preventing the 
violation.

To facilitate formal verifi cation, VRASED avoids 
state explosion problems by structuring its imple-
mentation as a collection of sub-modules, each 
guaranteeing a specific set of formal sub-prop-
erties. Each sub-module undergoes individual 
verifi cation, and the combination of all sub-mod-
ules is then verifi ed for end-to-end notions of RA 
soundness and security. Informally, RA sound-
ness ensures correct IEF computation over cur-
rent PMEM, while RA security guarantees that 
IEF execution produces an unforgeable authenti-
cated PMEM measurement and prevents  leak-
age before, during, or after RA. Further details on 
VRASED formal verifi cation can be found in [3].

toctou-securIty & eFFIcIent RA
Recall that each RA instance is initiated by Veri-
fi er. An authentic RA result received from Prover
reflects Prover code only at the time when it is 
computed. In particular, it provides no informa-
tion about Prover software before RA execution 
or between successive RA instances. This issue 
is commonly termed as Time-of-Check Time-of-
Use (TOCTOU). In the context of RA, TOCTOU 

means that transient malware can not be detect-
ed by RA. Concretely, if malware infects Prover, 
performs its malicious tasks, and erases itself prior 
to the next RA instance, its ephemeral presence 
would remain unnoticed.

RATA [9] is another recent technique to 
address the TOCTOU problem. It extends 
VRASED with a minimal and formally verified 
hardware component that additionally provides 
historical context about the state of PMEM. RATA 
consists of two alternative designs. Shown as 
yellow components in Fig. 2, the first version — 
RATAA — is a verifi ed hardware module that oper-
ates as follows:
• It monitors MCU PC and MemAccess signals 

and uses this information to detect whether 
PMEM is currently being modifi ed. 

• When a PMEM modification is detected, 
RATAA retrieves the current time from a real-
time clock (RTC) and stores it in a designated 
and secure memory area, called the Latest 
Modifi cation Time (LMT) region.

• LMT region is always covered by IEF (i.e., includ-
ed in each attestation result, along with PMEM) 
and read-only to all software and DMA.

To verify the attestation result, Verifi er compares 
the received LMT value with the time of the last 
authorized PMEM modification (usually, time of 
latest legitimate code update) to check whether 
any unauthorized activity occurred since then.

In practice, RTCs are usually unavailable on 
resource-constrained devices and secure clock syn-
chronization in distributed systems poses a signifi -
cant challenge, particularly for such devices. RATAA
is thus useful only to demonstrate the general 
approach. To make it practical, the second version 
(RATAB) eliminates the RTC requirement. RATAB
relies on Verifier’s own notion of time by associ-
ating each attestation challenge to the time of its 
issuance by Verifi er. Prover logs the latest received 
challenge to LMT. For this to work, each Verifi er’s 
challenge must be unique for each RA instance, 
to prevent replay attacks. This allows RATAB to 
uniquely associate each challenge to Verifier’s 
notion of time. RATAB hardware component is sim-
ilar RATAA, except that LMT is now updated with 
the current challenge if and only if a PMEM mod-
ifi cation occurred since the previous RA instance.

An important side benefit of RATA is its abili-
ty to significantly reduce RA execution time on 
Prover since it is no longer necessary to compute 
the IEF over the entire PMEM most of the time. 
Assuming that Verifi er already knows PMEM con-
tents from a previous RA result, it is adequate to 
demonstrate that no changes have occurred since 
then. This can be achieved by attesting only LMT 
as opposed to the entire PMEM, resulting in a sub-
stantial reduction of computation time. In fact, this 
time is constant in size of LMT, instead of increas-
ing linearly with PMEM size. For instance, on an 
MSP430 MCU running at 8MHz with 8 kBytes 
PMEM, RATA takes roughly 50ms on Prover, as 
opposed to 1sec in VRASED. (See[9] for details).

FroM A to prooFs oF eXecutIon
RA yields an indication of whether Prover PMEM 
contains expected code. However, it does not 
guarantee that any operation (i.e., sensing/actu-
ation functions in that code) was executed cor-
rectly. Also, it does not bind results (e.g., sensor 
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Prover’s response is fresh, i.e., reflects its current software
state (rather than an old replayed response). The authenticated
integrity check in step 2 can be implemented as a Message
Authentication Code (MAC) or signature. We refer to the
function that implements the authenticated integrity check
as the integrity-ensuring function (IEF). To implement IEF,
Provermust maintain a secret key (K), confidentiality of which
must be preserved even if Prover software is compromised.
Consequently, main challenges in designing secureRA revolve
around: (i) secure storage of K, and (ii) establishment of an
immutable secure run-time environment that accesses K to
compute the IEF without leaking K to any other software in
the Prover.
SANCUS [8] protects the IEF and K by implementing

them entirely in hardware inaccessible to untrusted software.
This eliminates the need for any software component of the
trusted computing base (TCB). However, this approach incurs
a significant hardware cost, which may be prohibitive for
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readings) to the correct execution of appropriate 
code. In other words, RA gives no secure asso-
ciation between data received by Verifier from 
the Prover and Prover’s execution of a specific 
application-dependent operation. Thus, dv can 
tamper with or spoof data even if Prover PMEM 
contains correct code.

For this reason, APEX [6] proposes the concept 
of “Proofs of Execution” (PoX) by augmenting RA 
to prove to Verifi er that:
1. The function of interest exists within a specif-

ic region of PMEM;
2. This function was indeed executed in a timely 

manner, upon Verifi er’s request; and
3. Any claimed output was indeed produced by 

this timely execution of the desired function 
on Prover.

Hence, PoX enables authentication of data from 
its “birth,” i.e., at the point when it becomes dig-
ital, through the interaction of code with sensing 
ports (e.g., general purpose I/O).

APEX [6] structure is shown in green in Fig. 2. 
It is built atop a secure RA technique, such as 
VRASED, by introducing an additional hardware 
module that controls a 1-bit fl ag, called EXEC, that 
can not be modifi ed by any software. The key is 
to use the high value of EXEC to inform Verifier
that the intended portion of attested code (a Veri-
fi er-defi ned code section in PMEM) was executed 
successfully between the time when Verifi er chal-
lenge was issued and the time when IEF on Prover
executed. Similarly, a value of 0 for EXEC indicates 
that execution of that code section did not occur, 
or that it was tampered with.

APEX IEF covers: EXEC flag itself; the region 
where output must be saved (called output region 
or OR); and code stored in a Verifier-defined 
section of PMEM (called executable region or 
ER). Security of the RA architecture guarantees 
the contents of these memory regions (including 
EXEC) can not be spoofed. Therefore, as long as 
APEX hardware properly controls EXEC, the RA 
result constitutes unforgeable proof that code in 
ER was executed and produced the results stored 
in OR. APEX considers that code section executed 
properly (setting EXEC to 1) if and only if:
1. Execution of ER-resident code is atomic (i.e., 

uninterrupted), from ER’s first, to its last, 
instruction.

2. Neither code in ER, nor its output in OR is 
modifi ed between execution and the next IEF 
computation.

3. During execution, DMEM is not modified by 
DMA or by other software functions except ER.

These conditions ensures that when EXEC is 1, 
both ER and OR remain consistent between ER
code execution and subsequent IEF computation, 
plus execution itself is not tampered with. ER and 
OR locations and sizes are confi gured using val-
ues of ERmin, ERmax, ORmin and ORmax in DMEM, 
as shown in Fig. 2. This allows APEX to support 
PoX of arbitrary code and output sizes.

APEX hardware is verified to conform to for-
mal specifications of the abovementioned EXEC
behavior. These specifications, along with the 
underlying verified guarantees of VRASED, are 
proven to guarantee a security definition for 
unforgeable PoX, as discussed in [6].

CFA on resource-constrAIned Mcus:
AugMentIng poX to VerIFy controL FLow pAths

PoX assumes that the code for which execution is 
being proven (i.e., the code in ER) is free of mem-
ory-safety vulnerabilities, such as those leading to 
buffer overflows and similar attacks. However, 
when these vulnerabilities (unintentionally) exist 
in the executable, they can be exploited at the 
time of execution to launch well-known control 
flow attacks (such as return- and jump-oriented 
programming) that change the order in which the 
instructions are executed to cause unintended 
behavior, without modifying the program’s code. 
As a consequence, these attacks would remain 
oblivious to RA or PoX. 

Control Flow Attestation (CFA) aims to detect 
control flow attacks by also providing Verifier
with a report that shows the exact order in which 
the instructions that form a software operation 
of interest have executed on Prover. This can be 
accomplished by securely recording the desti-
nation of every control flow altering instruction, 
such as jumps, branches, and returns, during the 
program’s execution.

A number of CFA techniques have been pro-
posed in recent years (e.g., C-FLAT [10] and 
LiteHAX [11]). However, they target higher-end 
embedded devices (e.g., those featuring applica-
tion CPUs, such as Raspberry Pi). Unfortunately, 
these techniques are prohibitively expensive for 
resource-constrained MCUs. 

Tiny-CFA [12] was recently developed to 
address the CFA problem in the context of 
resource-constrained MCUs by leveraging inex-
pensive PoX as its only hardware requirement. As 
shown in Fig. 3, Tiny-CFA introduces an addition-
al compilation-time phase where the code to be 
executed by Prover is instrumented with addition-

FIGURE 3. Phases in embedded software execution integrity.Fig. 3: Phases in Embedded Software Execution Integrity

example in [13]) allow attacks to corrupt intermediate data
variables in DMEM without even altering the control flow of
the program (hence “data-only”).

Detection of such data-only attacks still remains elusive and
requires verifying the data-flow integrity during execution – a
service known as Data-Flow Attestation (DFA). Prior work in
DFA such as OAT [14] requires user annotations and relatively
expensive trusted hardware support.

DIALED [13] presents the first DFA architecture aimed at
resource-constrained MCUs by following an approach similar
to Tiny-CFA. As shown in Figure 3, at compile time, DIALED
uses Tiny-CFA for CFA-related instrumentation. Additionally,
it adds its own instrumentation to log all data inputs to a ded-
icated memory region, called I-Log. DIALED’s instrumenter
defines any non-local variables as data inputs, i.e., any value
located outside of the attested program’s current stack.

Following this definition, any instructions that access data
from arguments, peripherals, network, or general-purpose I/O
are considered data inputs and recorded to I-Log. Conversely,
reads occurring during regular computation, e.g., instructions
that make use of local variables are excluded from I-Log, as
they are not inputs to this program. This approach helps keep
the size of I-Log relatively small.

Recall that Tiny-CFA instruments the executable to produce
CF-Log. In the context of DIALED, both CF-Log and I-Log are
included in APEX’s authenticated output region OR. As OR
is covered by the IEF, Verifier is assured of the integrity of
these logs. With the code, its execution’s control flow path,
and all inputs, Verifier can locally emulate execution and its
data flow. Therefore, it can verify all steps in this computation,
and detect data-only and control flow attacks.

As illustrated in Figure 2 and similar to Tiny-CFA, DIALED
requires no hardware support other than PoX. DIALED’s
instrumentation overhead includes logging inputs (which are
typically small in number). Similarly, I-Log size depends on
the number of arguments the application receives when it is
invoked and the inputs it processes during its execution.

TABLE I: Qualitative comparison

Scheme Baseline
MCU

VRASED
[3]

APEX
[6]

Tiny-CFA
[12]

DIALED
[13]

RATA
[9]

Detection of
Modified Code ✗ ✓ ✓ ✓ ✓ ✓

Provable
Execution ✗ ✗ ✓ ✓ ✓ ✗

Detection of Control
Flow Attack ✗ ✗ ✗ ✓ ✓ ✗

Detection of Data
Flow Attack ✗ ✗ ✗ ✗ ✓ ✗
TOCTOU
Security ✗ ✗ ✗ ✗ ✗ ✓

VIII. A COMPARISON OF SOFTWARE INTEGRITY
VERIFICATION METHODS

This section compares the architectures discussed thus far.
Table I presents a qualitative comparison, highlighting the type
of security service offered by each architecture. Meanwhile,
Figure 4 reports a quantitative comparison, depicting hardware
and software overheads.
As we target low-cost/low-power MCUs, we compare these

architectures by instantiating them on OpenMSP430, an open-
source version of the TI MSP430 MCUs. Therefore, the
unmodified MSP430 is used as a reference baseline for com-
parison. Although our evaluation is conducted on MSP430, we
emphasize that the suitability of these architectures extends
to other MCUs within the same class (recall Section II-A),
e.g., AVR ATMega and ARM Cortex-M MCUs. However, the
proprietary nature of these designs precludes direct evaluation.
Following the common practice in this space [2, 11], the
hardware overhead is reported in terms of additional Look-Up
Tables (LUTs) and registers. Added LUTs represent increase
in combinatorial logic, whereas added registers are due to
sequential logic required in each case.
Figure 4(a) depicts percentage increase in hardware relative

to the CPU core cost. VRASED hybrid RA architecture offers
the simplest type of integrity evidence, i.e., whether Prover
is currently loaded with the correct software image. Atop the
baseline MCU, it incurs around 2% additional LUTs and 4.5%
additional registers. APEX, which is a superset of VRASED’s
hardware support, offers both RA and PoX and requires 16%
extra LUTs and 6% extra registers.
Tiny-CFA and DIALED add support for CFA and DFA.

5
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al instructions that generate a log (referred to as 
CF-Log), containing the control flow path taken 
during execution.

During a PoX of the instrumented code, execu-
tion yields CF-Log, in addition to its regular result/
output. Tiny-CFA ensures authentication and integ-
rity of CF-Log by making CF-Log a part of the PoX 
output, which is located within APEX’s output region 
OR and covered by the IEF. As a result, Verifier can 
use this new evidence (CF-Log) to determine the 
validity of the execution control flow path and verify 
the absence of control flow hijacking attacks.

In more detail, Tiny-CFA instruments the exe-
cutable to ensure that CF-Log contains all informa-
tion required by Verifier to reconstruct the control 
flow path by:
•	 Securely logging control flow instructions: all 

control flow altering instructions are prepend-
ed with additional instructions to log their 
destinations to CF-Log. 

•	 Ensuring append-only CF-Log: direct writes to 
CF-Log are replaced at compile time while indi-
rect writes are instrumented to check whether 
their destination is within CF-Log at runtime. 
Upon detecting an illegal write to CF-Log, the 
PoX is halted, implying an invalid control flow. 
Due to the resource-constrained nature of 

MCUs, CFA schemes should have minimal hard-
ware and runtime overheads. Tiny-CFA minimizes 
hardware requirements by requiring no hardware 
support other than PoX from APEX. It also imple-
ments several optimizations to keep the runtime 
overhead and CF-Log size within practical limits. We 
discuss these overheads later and revisit opportuni-
ties for future work on reducing CFA runtime costs.

MCU Data Flow Integrity atop CFA
Aside from control flow attacks (detected by CFA), 
stealthier attacks known as “data-only” attacks can 
still originate from memory safety vulnerabilities. 
Specific vulnerabilities (see example in [13]) allow 
attacks to corrupt intermediate data variables in 
DMEM without even altering the control flow of 
the program (hence “data-only”). 

Detection of such data-only attacks still 
remains elusive and requires verifying the data-
flow integrity during execution — a service known 
as Data-Flow Attestation (DFA). Prior work in DFA 
such as OAT [14] requires user annotations and 
relatively expensive trusted hardware support.

DIALED [13] presents the first DFA architec-
ture aimed at resource-constrained MCUs by fol-
lowing an approach similar to Tiny-CFA. As shown 

in Fig. 3, at compile time, DIALED uses Tiny-CFA 
for CFA-related instrumentation. Additionally, it 
adds its own instrumentation to log all data inputs 
to a dedicated memory region, called I-Log. 
DIALED’s instrumenter defines any non-local vari-
ables as data inputs, i.e., any value located outside 
of the attested program’s current stack. 

Following this definition, any instructions that 
access data from arguments, peripherals, net-
work, or general-purpose I/O are considered 
data inputs and recorded to I-Log. Conversely, 
reads occurring during regular computation, e.g., 
instructions that make use of local variables are 
excluded from I-Log, as they are not inputs to this 
program. This approach helps keep the size of 
I-Log relatively small.

Recall that Tiny-CFA instruments the execut-
able to produce CF-Log. In the context of DIALED, 
both CF-Log and I-Log are included in APEX’s 
authenticated output region OR. As OR is cov-
ered by the IEF, Verifier is assured of the integrity 
of these logs. With the code, its execution’s con-
trol flow path, and all inputs, Verifier can locally 
emulate execution and its data flow. Therefore, it 
can verify all steps in this computation, and detect 
data-only and control flow attacks.

As illustrated in Fig. 2 and similar to Tiny-CFA, 
DIALED requires no hardware support other than 
PoX. DIALED’s instrumentation overhead includes 
logging inputs (which are typically small in number). 
Similarly, I-Log size depends on the number of argu-
ments the application receives when it is invoked 
and the inputs it processes during its execution.

A Comparison of Software 
Integrity Verification Methods

This section compares the architectures discussed 
thus far. Table 1 presents a qualitative compar-
ison, highlighting the type of security service 
offered by each architecture. Meanwhile, Fig. 4 
reports a quantitative comparison, depicting hard-
ware and software overheads.

As we target low-cost/low-power MCUs, we 
compare these architectures by instantiating them 
on OpenMSP430, an open-source version of the 
TI MSP430 MCUs. Therefore, the unmodified 
MSP430 is used as a reference baseline for com-
parison. Although our evaluation is conducted 
on MSP430, we emphasize that the suitability of 
these architectures extends to other MCUs with-
in the same class, e.g., AVR ATMega and ARM 
Cortex-M MCUs. However, the proprietary nature 
of these designs precludes direct evaluation. Fol-
lowing the common practice in this space [2, 11], 
the hardware overhead is reported in terms of 
additional Look-Up Tables (LUTs) and registers. 
Added LUTs represent increase in combinatorial 
logic, whereas added registers are due to sequen-
tial logic required in each case. 

Figure 4a depicts percentage increase in hard-
ware relative to the CPU core cost. VRASED 
hybrid RA architecture offers the simplest type of 
integrity evidence, i.e., whether Prover is current-
ly loaded with the correct software image. Atop 
the baseline MCU, it incurs around 2% additional 
LUTs and 4.5% additional registers. APEX, which is 
a superset of VRASED’s hardware support, offers 
both RA and PoX and requires 16% extra LUTs 
and 6% extra registers. 

TABLE 1. Qualitative comparison.

Scheme Baseline 
MCU

VRASED 
[3]

APEX 
[6]

Tiny-CFA 
[12]

DIALED 
[13]

RATA 
[9]

Detection of  
Modified Code      

Provable 
Execution      

Detection of 
Control Flow Attack      

Detection of Data 
Flow Attack      

TOCTOU Security      
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Tiny-CFA and DIALED add support for CFA 
and DFA. Since they rely on APEX hardware sup-
port for PoX “as is,” they do not incur additional 
hardware costs. However, they lead to notable 
code size and runtime overhead as a result of the 
instrumentation phase. While the exact overhead 
is application-dependent (due to the variable 
number of branch instructions in diff erent applica-
tions), we report Tiny-CFA and DIALED overheads 
on three real-world open-source MCU applica-
tions: Open Syringe Pump, Fire Sensor, and Ultra-
sonic Ranger. Details of these applications can be 
found in [13].

Figure 4b shows the percentage code size 
and runtime increase caused by instrumentation. 
On average, Tiny-CFA increases the code size by 
85% and DIALED by 130%. Whereas, the runtime 
increase is approximately between 2–65% over 
their non-instrumented counterparts.

RATA can be viewed as an add-on to any 
of the aforementioned architectures to provide 
TOCTOU-security and reduced RA computation 
time. When added to VRASED alone it adds 4% 
LUTs and 6% registers.

When considered in conjunction (as depicted 
in Fig. 2), all discussed features add up to 18% 
LUTs and 7% registers to the baseline MCU. 
Together they provide TOCTOU-Secure and fast-
er RA, PoX, as well as hardware support required 
by instrumentation-based CFA and DFA. 

open probLeMs And opportunItIes
This section outlines open challenges and future 
research directions in this area.
1. Formal Verification & Provable Security: The 

trustworthiness of software integrity proofs 
also heavily depends on the correct imple-
mentation of the underlying architectures. 
Formal verifi cation is a common approach to 
prove the correctness of the system imple-
mentation with respect to formal design spec-
ifications. VRASED, APEX, and RATA already 
employed this approach to ensure security/
correctness in their hardware and software 
implementations. Nonetheless, there are no 
formally verifi ed architectures for CFA or DFA. 
The main challenge in verifying Tiny-CFA and 
DIALED lies in how to verify security and cor-
rectness of the instrumentation phase. Given 
the absence of this phase in VRASED/APEX/
RATA, the verifi cation methods employed by 
these architectures cannot be directly applied 
here. Addressing this presents an interesting 
avenue for future research.

2. Higher-End Devices: This article examines 
software integrity techniques in resource-con-
strained MCUs. One avenue for future 
research involves extending these guaran-
tees to higher-end devices. General-purpose 
CPUs (e.g., those featured in smartphones 
or desktops) are not as cost-prohibitive and 
thus often come equipped with more sophis-
ticated hardware (e.g., MMUs or Trusted Exe-
cution Environments) or software modules 
(e.g., micro-kernels or monolithic operating 
systems). A promising opportunity for future 
research is to leverage the added hardware 
and software support to obtain similar guar-
antees to those considered in this article.

3. Efficiency of CFA and DFA: While Tiny-CFA
and DIALED provide relatively low-cost 
CFA and DFA, the code size and run-time 
increases are still significant. Furthermore, 
as attested operations increase in size and 
complexity, the generated evidence traces 
(CF-Log and I-Log) also increase according-
ly. As a consequence, CFA and DFA are still 
limited to simple self-contained operations in 
which associated evidence can be stored and 
transmitted by a resource-constrained MCU. 
An interesting direction for future work lies in 
the management and reduction of CFA and 
DFA associated costs.

4. Attesting vs. Auditing Software Integrity: Cur-
rent architectures enable only detection of 
software compromises. They cannot guarantee 
that Verifier ever receives the produced evi-
dence, in case of software attacks. While this 
suffi  ces to detect if the Prover is compromised 
in a yes/no manner (in general, the absence 
of a signed report from the Prover indicates 
that something is wrong), it precludes auditing
the generated evidence to pinpoint the source 
of compromises (i.e., to determine what is 
wrong with the Prover’s software). Auditing 
is non-trivial because a compromised Prover
might ignore the protocol and simply refuse 
to send back evidence that indicates a com-
promise. Resolving this issue remains an open 
problem for future work.

5. Multi-Device Settings: This article focuses of 
software integrity techniques in a single-Prov-
er setting. However, many IoT systems rely 
on a large group (“swarm”) of interconnect-
ed devices. Simply applying single-Prover
solutions to the swarm setting faces scalabil-
ity issues. To address this, in the context of 
RA, several “swarm/collective RA” tech-
niques have been proposed to efficiently 

FIGURE 4. Hardware and software overhead of diff erent architectures.Fig. 4: Hardware and software overhead of different architectures.

Since they rely on APEX hardware support for PoX “as is”,
they do not incur additional hardware costs. However, they
lead to notable code size and runtime overhead as a result
of the instrumentation phase. While the exact overhead is
application-dependent (due to the variable number of branch
instructions in different applications), we report Tiny-CFA and
DIALED overheads on three real-world open-source MCU
applications: Open Syringe Pump, Fire Sensor, and Ultrasonic
Ranger. Details of these applications can be found in [13].

Figure 4(b) shows the percentage code size and runtime
increase caused by instrumentation. On average, Tiny-CFA in-
creases the code size by 85% and DIALED by 130%. Whereas,
the runtime increase is approximately between 2− 65% over
their non-instrumented counterparts.

RATA can be viewed as an add-on to any of the aforemen-
tioned architectures to provide TOCTOU-security and reduced
RA computation time. When added to VRASED alone it adds
4% LUTs and 6% registers.

When considered in conjunction (as depicted in Figure 2),
all discussed features add up to 18% LUTs and 7% registers
to the baseline MCU. Together they provide TOCTOU-Secure
and faster RA, PoX, as well as hardware support required by
instrumentation-based CFA and DFA.

IX. OPEN PROBLEMS AND OPPORTUNITIES

This section outlines open challenges and future research
directions in this area.

1) Formal Verification & Provable Security: The trustwor-
thiness of software integrity proofs also heavily depends on the
correct implementation of the underlying architectures. Formal
verification is a common approach to prove the correctness
of the system implementation with respect to formal design
specifications. VRASED, APEX, and RATA already employed
this approach to ensure security/correctness in their hard-
ware and software implementations. Nonetheless, there are no
formally verified architectures for CFA or DFA. The main
challenge in verifying Tiny-CFA and DIALED lies in how to
verify security and correctness of the instrumentation phase.
Given the absence of this phase in VRASED/APEX/RATA, the
verification methods employed by these architectures cannot
be directly applied here. Addressing this presents an interesting
avenue for future research.

2) Higher-End Devices: This article examines software in-
tegrity techniques in resource-constrained MCUs. One avenue
for future research involves extending these guarantees to
higher-end devices. General-purpose CPUs (e.g., those fea-
tured in smartphones or desktops) are not as cost-prohibitive
and thus often come equipped with more sophisticated hard-
ware (e.g., MMUs or Trusted Execution Environments) or
software modules (e.g., micro-kernels or monolithic operating
systems). A promising opportunity for future research is to
leverage the added hardware and software support to obtain
similar guarantees to those considered in this article.

3) Efficiency of CFA and DFA: While Tiny-CFA and DI-
ALED provide relatively low-cost CFA and DFA, the code size
and run-time increases are still significant. Furthermore, as at-
tested operations increase in size and complexity, the generated
evidence traces (CF-Log and I-Log) also increase accordingly.
As a consequence, CFA and DFA are still limited to simple
self-contained operations in which associated evidence can be
stored and transmitted by a resource-constrained MCU. An
interesting direction for future work lies in the management
and reduction of CFA and DFA associated costs.

4) Attesting vs. Auditing Software Integrity: Current ar-
chitectures enable only detection of software compromises.
They cannot guarantee that Verifier ever receives the produced
evidence, in case of software attacks. While this suffices
to detect if the Prover is compromised in a yes/no manner
(in general, the absence of a signed report from the Prover
indicates that something is wrong), it precludes auditing the
generated evidence to pinpoint the source of compromises
(i.e., to determine what is wrong with the Prover’s software).
Auditing is non-trivial because a compromised Prover might
ignore the protocol and simply refuse to send back evidence
that indicates a compromise. Resolving this issue remains an
open problem for future work.

5) Multi-Device Settings: This article focuses of software
integrity techniques in a single-Prover setting. However, many
IoT systems rely on a large group (“swarm”) of intercon-
nected devices. Simply applying single-Prover solutions to
the swarm setting faces scalability issues. To address this,
in the context of RA, several “swarm/collective RA” tech-
niques have been proposed to efficiently perform RA across
a multitude of devices. These techniques vary in their target
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perform RA across a multitude of devices. 
These techniques vary in their target settings, 
considering different factors, e.g., swarm 
topologies, swarm dynamics, and software/
hardware heterogeneity. We refer to [15] for 
an in-depth overview of swarm RA. Nota-
bly, RATA holds the potential to enhance 
existing swarm attestation schemes. With its 
advantages of constant runtime and TOC-
TOU security, RATA can serve as a building 
block in swarm RA schemes, yielding fast-
er overall swarm attestation while ensuring 
synchronized TOCTOU security across the 
swarm. Although swarm RA has been exten-
sively studied, the extension of other integrity 
services, i.e., PoX/CFA/DFA, to a swarm of 
devices remains largely unexplored, present-
ing an opportunity for future work.

Conclusions
This article overviews a series of techniques for 
remote verification of software integrity on 
resource-constrained IoT devices. Services pro-
vided by each technique vary, starting from sim-
ply verifying code installed on a remote device, 
to detection of transient malware, and detection 
of runtime attacks that arise due to vulnerabili-
ties in installed code. Not surprisingly, techniques 
that provide more sophisticated service are also 
accompanied by increased complexity and costs. 
To assess these trade-offs, we compare them qual-
itatively and quantitatively, considering the security 
services provided in each case, additional hardware 
cost, and runtime overhead. Finally, we present 
new research directions and open problems. 
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