Check for
Updates

The SA*P Framework: Sensing and Actuation as a Privilege

Piet De Vaere* Adrian Perrig Gene Tsudik
Felix Stoger* adrian.perrig@inf.ethz.ch gts@ics.uci.edu
piet@devae.re ETH Zurich University of California, Irvine
felix.stoeger@inf.ethz.com Switzerland USA
ETH Zurich
Switzerland
ABSTRACT computers (servers, desktops, laptops, tablets, and smartphones),

Popular consumer Internet of Things (IoT) devices provide increas-
ingly diverse sensing and actuation capabilities. Despite their bene-
fits, such devices prompt numerous security concerns. Typically,
security is attained at device-level granularity, which relies upon de-
vice trustworthiness. However, if a device is compromised (e.g., via
remote exploits), this approach fails. To this end, we construct SA*P:
Sensing and Actuation as a Privilege, a framework that decouples
IoT devices from their physical environment. In SA*P, whenever
any software on a device wants to access a sensing or actuation
peripheral, it must be authorized to do so. This is achieved by the
inclusion of an on-board component, Peripheral Guard (PEG), that
physically guards peripherals. Besides providing strong security
guarantees, SA*P motivates developers to consider sensing and
actuation as valuable resources. SA*P’ design is modular, light-
weight, and formally verified. It also does not require any hardware
modifications for trusted execution environment (TEE)-equipped
devices, while imposing only modest changes for other devices.

CCS CONCEPTS

« Security and privacy — Access control; Embedded systems
security; Distributed systems security.

KEYWORDS

Distributed Reference Monitor, IoT, sub-device level access control

ACM Reference Format:

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik. 2024. The SA*P
Framework: Sensing and Actuation as a Privilege. In ACM Asia Conference
on Computer and Communications Security (ASIA CCS °24), July 1-5, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3634737.3657006

1 INTRODUCTION

Specialized embedded devices of various sorts and purposes in-
creasingly permeate numerous aspects of everyday life. Commonly
referred to as IoT devices, these gadgets differ from general-purpose

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS °24, July 1-5, 2024, Singapore, Singapore

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07

https://doi.org/10.1145/3634737.3657006

883

since their primary purpose is to provide one or more service(s) that
involve sensing and/or controlling (via actuation) various aspects
of the physical (analog) world.

Depending on its type and purpose(s), an IoT device can pose
certain risks, e.g., privacy risks for leaked sensed data, security
risks for tampered sensed data, and safety risks for malicious ac-
tuation commands. These risks are not imagined or over-hyped;
they are quite real, as evidenced by a continuous stream of real-
world incidents and research results [7, 19, 22, 29]. Some issues
are intuitive, e.g., privacy leaks from audio and video sampling
devices, or safety concerns with garage/gate/door-lock controllers.
Whereas, the situation with simpler gadgets is more subtle, e.g., a
compromised humidity sensor (or a motion-activated light fixture)
can leak information about room occupancy [20].

Aforementioned risks are caused by device interactions with
the physical environment, i.e., sensing and/or actuation. Hence,
by controlling (and minimizing) device’s access to the physical
environment, risks caused by that device can be also minimized.
Therefore, this work aims to achieve fine-grained control over all
device interactions with the physical world. In other words, the goal
is to turn a device’s sensing and actuation abilities into carefully
managed privileges. This is in contrast with the currently dominant
approach where access to sensors and actuators is enforced at
device-level granularity, meaning that the entire device is treated
as a monolithic entity access to which is controlled. This works as
long as the device is benign, i.e., fully trusted. However, if a device
is compromised (via an exploit or backdoor), this approach becomes
ineffective, since the adversary is now inside the device, free to
sense and actuate at will.

A more robust approach is to perform access control at the
device component level. Prior work includes SeCloak [30] and a
proposal by Brasser et al. [11]. These schemes enable/disable access
for extended periods of time and focus on powerful mobile devices,
such as smartphones. In contrast, we focus on fine-grained access
control, at the level of a single peripheral access. Also, since IoT
devices are often deployed as a system, access control policies can
be imposed and enforced collectively, rather than on each device
individually. One example of a system-based approach is Contex-
tlot [52], a context-aware access control system for apps on IoT
cloud platforms. Since ContextloT operates at the cloud-platform
level, its trusted computing base (TCB) includes IoT devices as well
as the entire cloud platform.

This paper constructs SA*P: Sensing and Actuation as a Privi-
lege, an IoT framework that allows deployment-wide access control
at the device component level. As illustrated in Fig. 1, SA*P places

https://orcid.org/0009-0004-2439-9770
https://orcid.org/0009-0005-6155-4861
https://orcid.org/0000-0002-5280-5412
https://orcid.org/0000-0002-8467-8614
https://doi.org/10.1145/3634737.3657006
https://doi.org/10.1145/3634737.3657006
https://doi.org/10.1145/3634737.3657006
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3634737.3657006&domain=pdf&date_stamp=2024-07-01

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

a Peripheral Guard (PEG) between each device’s software run-
time (Runtime) and its sensing and actuating peripherals, thereby
decoupling the former from the physical environment.

Each PEG is managed by the deployment manager, a trusted
entity that makes all access control decisions for a given IoT de-
ployment, e.g., a household or office. The deployment manager can
run on a remote or a local server, e.g., home router, controller, or
owner’s smartphone. Together with PEGs, the deployment man-
ager effectively constitutes a distributed reference monitor wherein
a centralized entity (deployment manager) controls all physical-
world interactions occurring across an entire IoT deployment.

By default, PEG disallows all sensor and actuator access. When-
ever any software on a device wants to interact with the physical
environment, it must first send a request to the deployment man-
ager. The main benefit of this approach is its preventative nature:
data that is not sampled cannot be leaked, and attempted (yet not
performed) actuation causes no harm. In addition to allowing the
deployment manager to make fine-grained access control decisions,
this approach also enables centralized, deployment-wide, logging
and auditing of all interactions with the physical world.

This centralized control enables security mechanisms, which are
currently limited to individual devices, to be consistently applied
on a deployment-wide scale. For example, 6thsense [52], which
monitors sensor access patterns to detect adversarial activity, could
be extended to observe cross-deployment sensor access activity.
SA?P also supports work on automated IoT privacy assistants [15],
by providing a robust and efficient mechanism to collect sensor
activity information and enforce user privacy policies.

To facilitate SA*P’s ease of deployment, PEG is lightweight and
modular. The former facilitates deployment in constrained envi-
ronments, while the latter allows PEG to be efficiently adapted to
individual settings. Moreover, its lightweight structure and modu-
larity facilitate formal verification.

On devices with TEE support (e.g., ARM TrustZone), PEG can be
instantiated with no additional hardware requirements. On simpler
devices, a stand-alone PEG component can be added. We provide
implementations for both device types. Combining SA*P with or-
thogonal mechanisms like traffic monitoring and remote attestation
can further increase the level of security.

The main contributions of this work are as follows:

e SA*P, an IoT security framework that includes a distributed
reference monitor, isolating computational resources from
the physical environment, thus turning sensing and actua-
tion into a privilege.

e Design and formal verification of Peripheral Guard (PEG),
the key building block in SA*P deployment.

o Implementation and evaluation of two PEG instantiations:
one using a dedicated microcontroller unit (MCU), and an-
other using ARM TrustZone on Cortex-M.

All verification and implementation code is available at: https://
github.com/SA4P.

2 PRELIMINARIES

Devices The term “IoT” refers to a wide variety of devices, ranging
from tiny sensors/actuators to powerful industrial controllers. In
this paper, we only consider devices that interact with the physical

884

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik

1
loT Device 1

1 1
1 1
1) i
I Sens\‘(})r or \J - ¥ : &
! PEG Runtime
| actuator :
1
------------------ & -4
- - Deployment
manager

| 1
1 loT Device n :
1
1) i
: Sen:)r or ‘7 o . : ﬁ
. PEG Runtime | |

actuator X
1

Figure 1: SA*P architecture. ﬁ indicates an untrusted component or link.

environment. We exclude purely computational or general-purpose
devices, e.g., smartphones. Also, although we aim for compatibility
with as many device classes as possible, some are too constrained
for our purposes. We use RFC 7228 [10] to define a set of minimum
requirements for targeted devices. RFC 7228 lists six types of con-
straints: code complexity (i.e., flash memory size), size of state (i.e.,
size of RAM), processing power, user interfaces, connectivity, and
available electrical energy. In this work, we consider all devices that
can: execute a simple state machine; store tens of bytes of persistent
state; perform basic cryptographic operations; capture user input
(e.g., through a button press); communicate with a central entity on
a regular basis; and have enough energy to support the demands
listed above. The required level of security and the available energy
dictate the frequency of communication with the central entity. We
expect frequencies of multiple times per second to once every few
days. Examples of targeted device include: smart speakers, motion
sensors, CO; sensors, door locks, and household appliances.

Deployment context Although IoT devices are deployed in many
diverse settings, we focus on private or semi-private ones, such
as: (i) private homes, (ii) office spaces, and (iii) hotel rooms and
short-term private rentals, e.g., AirBnB In such spaces, users have
expectations of personal security and privacy. For example, a home-
owner might want to be assured that security cameras are disabled
when they are home, or that an adversary cannot turn on the stove
when they are sleeping. Similarly, participants in a confidential
meeting in a hotel room want to ensure that the audio or video
system is not snooping.

Deployment manager We assume that each deployment has a
trusted deployment manager — a logical entity that runs on a local
or remote server, e.g., on an existing home gateway. Devices can
be paired with the deployment manager. Acting on behalf of the
primary user of the deployment space (e.g., homeowner, renter, or
hotel guest), the deployment manager evaluates access policies. The
details of the deployment manager are out of scope of this paper.
We refer to prior work on IoT policy management [48] and privacy
assistants [15, 28].

3 TRUST & ADVERSARY MODEL

Considering targeted deployment settings, the adversary’s goal is
to access a sensor or an actuator without the deployment manager’s
permission.

https://github.com/SA4P
https://github.com/SA4P

The SA*P Framework: Sensing and Actuation as a Privilege

The SA*P trust model considers IoT device manufacturers to be
trusted, while all code running on IoT devices is untrusted. We refer
to this code — which includes both application(s) and OS/hypervisor
- as software runtime or just Runtime. Its untrusted status is mo-
tivated by (i) a myriad of vulnerabilities seen in IoT devices [14, 49],
and (ii) widespread use of third-party software [64]. Nonetheless,
we assume that the manufacturer can introduce a (small) trusted
component into the device, either in the form of additional hard-
ware for TEE-less devices, or software for TEE-equipped devices.
Given its limited footprint, this component is assumed to be trusted.

We consider two types of adversaries:

Base adversary: Controls all network traffic to/from a device, on
all of its interfaces. It may be local and/or remote. It can
arbitrarily record, drop (including jam), modify, and insert
packets. Moreover, it has control over the device’s application
code, obtained either through an exploit, or through infection
at production or deployment/provisioning time. However, it
does not have physical access to the device.

Non-invasive physical adversary: Beyond capabilities of the base
adversary, this adversary has physical access to the device.
It can use the device’s standard interfaces, e.g., press but-
tons, turn it of/off, read any external markings, and use any
wired (e.g., USB) interfaces. This adversary models malicious
visitors to the private space. We do not consider physically
invasive adversaries, as they could simply install their own
malicious sensors or actuators.

Attacks against the TEEs (if present) or the code running therein
are out of scope. We also do not consider attacks against the deploy-
ment manager, since, we expect it to be secure and not resource-
constrained.

Our high-level security goals are:

SEC-1 A base adversary cannot access device sensing/actuation
peripherals unless when permitted by the deployment man-
ager.

SEC-2 A non-invasive physical adversary cannot access device
sensing/actuation peripherals without being detected.

4 SA'P OVERVIEW

A SA*P deployment consists of one or more SA*P-enabled IoT de-
vices and a deployment manager. When a device enrolls in a deploy-
ment, its Runtime is decoupled from the physical environment, i.e.,
by default, devices cannot access their sensors or actuators. Upon
request, the deployment manager may grant a device temporary
access to its sensing or actuation peripherals. The manager keeps a
log of all granted and denied access requests. For conciseness, we
refer to sensors and actuators collectively as interaction peripherals,
or, depending on context, simply as peripherals.

The key enabler of SA*P is the Peripheral Guard or PEG, an
architectural component that enables the deployment manager
to enforce peripheral access policies within a device, even if that
device is compromised. Concretely, PEGis placed between inter-
action peripherals and Runtime, as Fig. 1 depicts. PEG responds
to commands from the deployment manager, allowing the latter to
enforce access control policies. Although SA*P does not require
synchronized clocks, PEG needs to have a notion of elapsed time.

885

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

PAIR ' PAIR

y loT '
! Device) AUTH | AUTH

1
' PEC PERS & 1 PERS y
1 R ot T Deploym.
! untime |, manager
1 lENF !
1 (] I
| et O—— .
, | Resource 1

1

Figure 2: An overview of the PEG architecture.

To make SA*P widely applicable, the PEG design must be inclu-
sive, i.e., compatible with as many device classes as possible. This is
especially important for highly constrained devices. SA*P achieves
inclusiveness by applying two design strategies: complexity reduc-
tion and functional modularization.

Complexity reduction A central goal of the design is to mini-
mize complexity of PEG. This allows it to operate even in highly
challenging environments and on constrained hardware platforms.
Lower complexity also simplifies formal verification, and a small
TCB ensures auditability. This is especially important since IoT
devices, once deployed, might never experience a firmware update.

Functional Modularization Given the wide variety of IoT de-
vices, no single PEG design can cover all use-cases. Therefore, we
identify four core PEG system functions. By specifying the inter-
face between these functions, we can implement them in separate
and independent modules which can be individually tailored to the
requirements of a specific deployment scenario.

5 %PEG DESIGN

We now overview four PEG modules, their functionalities, and
interactions. We then discuss them in more detail and provide
concrete designs. Fig. 2 illustrates the high-level architecture of a
PEG-enabled device, and the functionality of four PEG modules.

First and foremost, we need a mechanism to associate PEG (and
its host device) with the deployment manager. This mechanism
is implemented by the pairing module (PAIR, Section 5.1), which
sets up an association in the form of shared cryptographic keying
material.

Then, the deployment manager can receive access requests from
a PEG-enabled device, and grant or deny access based on its poli-
cies. The format and behavior of access requests and access grants
are defined by the authorization module (AUTH, Section 5.2). As
shown in Fig. 2, communication between PEG and the deployment
manager is proxied by Runtime, reducing PEG complexity and
TCB size. However, since PEG traffic is exposed to both the un-
trusted Runtime and the network, it must provide integrity and
origin authenticity. For that, AUTH relies on the keys earlier estab-
lished by PAIR.

An access grant tells PEG about allowing access to protected
peripherals. It is then the enforcement module’s (ENF, Section 5.3)
responsibility to enforce this policy.

Finally, the persistence module (PERS, Section 5.4) ensures that
devices cannot be stealthily removed from SA*P deployment. As
discussed in Section 5.4, PERS is especially important with respect
to physical adversaries.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

{Sgub’ PSK} ¥ Manager

Out-of-band (barcode)

’ Button pressed

E4 Generated { EP, MACpsk (Egub)}

Key Exchange I
e 1 22

En Generated

Key Exchange II

(kg—m, km—g) < HKDF (DH (Sg, En) , DH (Eg, Er) , PSK) ‘

{‘Keyfconf’, MACk_,m (‘Keyfconf’)}

Key Confirmation

Figure 3: The SIPA handshake.

5.1 Pairing Module

PAIR is responsible for establishing shared keying material between
PEG and its the deployment manager.

Because of the wide variety of IoT devices, no single pairing
scheme can satisfy the requirements of each deployment setting.
Nonetheless, for the sake of completeness, we design and imple-
ment semi-identified, PSK-aided authentication (SIPA), a 3-message
pairing protocol inspired by the Noise framework [46]. Since SIPA
is applicable to even highly constrained settings, it is applicable to
most deployment scenarios. We present SIPA below, and assume
its use for the remainder of this paper.

SIPA is illustrated in Fig. 3. In order to participate in a SIPA
pairing, each PEG must be provisioned with (i) a static public-
private key-pair, and (ii) a pre-shared key (PSK) at the time of
manufacturing. These keys must be stored in non-volatile, read-
only memory (ROM). Each device containing a #EG, must have
both the public and pre-shared keys of its PEG printed or etched
on the outside of the device, e.g., using a 2D barcode. Additionally,
each device must have a button or similar interface that can be used
to instruct the £ EG to enter the pairing mode.

A SIPA handshake is executed as follows:

(1) The user, acting on behalf of the deployment manager scans

(e.g., via QR code) public and pre-shared keys of the device.

(2) The user pushes the PEG button of the device. This enables
the PEG pairing mode.
(3) The PEG and the deployment manager perform a Noise
protocol-inspired handshake as follows:
(4) (a) Both PEG and the deployment manager generate ephem-
eral key-pairs and exchange public keys.

(b) They perform a Diffie-Hellman key exchange for each
of the two key-pairs (static and ephemeral) of PEG, and
the ephemeral keys of the deployment manager.

(c) The result of these Diffie-Hellmann operations and PSK,
are used as input to the HKDF key derivation function [26],
which yields two uni-directional session keys.

(5) If the above succeeds, PEG erases all old pairing informa-
tion and adopts new keys. It then sends a key confirmation
message to the deployment manager.

886

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik

(6) Upon receipt of the key confirmation message, the deploy-
ment manager adopts new keys.

The SIPA pairing module provides the following properties:

PAIR-1: PEG authentication Whenever the deployment man-
ager believes to have established a session key with a PEG
G, PEG G established the same session key. Hence, PEG is
authenticated to the deployment manager and, by extension,
to the user. This ensures, even while pairing over wireless
interfaces, that PEG which performed the pairing is, in fact,
sam PEG in the scanned device.

PAIR-2: Weak manager authentication Whenever PEG G es-
tablishes a key with the deployment manager M, the latter
(or its delegate) must have earlier scanned the data inscribed
on the device in which G is present. This is accomplished
by mixing PSK in the handshake, thereby verifying that the
party performing the pairing had, at some point, physical
access to the device.

PAIR-3: Key secrecy Whenever the deployment manager estab-
lishes a key with a benign PEG, that key is not known to
the adversary.

PAIR-4: Verification of intent No new keys can be established
without a time-adjacent physical interaction. This ensures
that an entity with current physical device access intends to
pair the device.

As its name suggests, SIPA does not fully authenticate both par-
ties involved in the pairing process: while PEG is strongly authen-
ticated using its long-term private key, the deployment manager
is only weakly authenticated using PSK. The motivation behind
this asymmetry is twofold. First, there is the practical information
limit on PEG: given its restricted user interfaces, providing PEG
with the identity of the deployment manager is cumbersome and
unnecessary. Second, there is no need for stronger authentication
since, at the end of a SIPA handshake, the deployment manager,
acting on behalf of the user, is assured about the identity of PEG.
Since PEG adopts the new keying material before sending out the
key confirmation message, it already established a session with
the deployment manager. This one-sided knowledge is sufficient to
satisfy required high-level security properties.

5.2 Authorization Module

After shared keying material is established, PEG must be able to
receive instructions from the deployment manager about when to
allow or restrict access to the protected peripheral. This functional-
ity is provided by the authorization module.

PEG uses a two-message challenge-response protocol illustrated
in Fig. 4. When access to a protected peripheral is requested by
Runtime, PEG generates an authenticated challenge consisting of
a counter, access type, and MAC computed using the session key
over the first two fields. The counter achieves replay protection,
while access type allows one PEG to protect multiple peripherals.
This challenge is then sent to Runtime, which forwards it to the
deployment manager.

Upon receipt, the deployment manager checks the counter value
against previous values, evaluates the request against its policy,
and, if access is granted, returns an authenticated response. The
latter consists of a random nonce, the original authentication tag of

The SA*P Framework: Sensing and Actuation as a Privilege

Chal « { ‘Auth_chal’, cntg, type}
’ ’ Runtime initiates access ‘

{Chal, MACry (Chal)}

Access request

?

cnty > cnty
cnty < cnty

’ cnty «— cnty +1 ‘

Resp «— {‘Respfchal’, nonce, MACr,_,, (Chal)}

{Resp, MACiiy g (Resp)}

Access grant v

Figure 4: The authorization protocol flow.

the challenge, and a new MAC computed using the session key over
the first two fields. The nonce prevents the manager from being
used as a MAC oracle.

When PEG receives a valid response within a fixed time Ty,
it grants access to the protected peripheral for T,,y,. Both oy, and
Tauth are configurable parameters. Top,) can be different for each
protected peripherals. Multiple access types can be associated with
the same peripheral, each with a different T, value.

The authorization module provides the following properties:

AUTH-1: Bounded-window authorization Itis guaranteed that
access to a protected peripheral is only granted within well-
defined time windows. Each time window starts when the
deployment manager transmits a grant and ends at most
Tehal + Tauth time units later.

AUTH-2: Bounded-duration authorization The protected pe-
ripheral can be accessed for at most T, time units per
granted access.

5.3 Enforcement Module

The enforcement module implements low-level access control to
peripherals. Because of the wide variety of peripheral interfaces,
different authorization modules must be used for different types of
interfaces. We provide implementation examples for three types:

Open collector (Fig. 5a) Communication over open collector-based
interfaces can be interrupted by pulling the signal lines to
ground potential using transistors. PEG forces all signal
lines to ground, unless peripheral access is granted.

Push-Pull (Fig. 5b) Unlike open collector type interfaces, forcing
signal lines of push-pull-based interfaces to ground may
cause physical damage. Instead, tri-state digital buffer ele-
ments can be used to decouple signal lines on both sides of
the interface.

Analog (Fig. 5c) Digital buffers cannot be used for analog inter-
faces. However, similar functionality can be achieved using
an operational amplifier in a non-inverting configuration.
A transistor in the feedback circuit can be used to clamp
the analog output to the positive supply bus voltage, inhibit-
ing communication. Alternatively, an analog buffer could be
used.

Regardless of the implementation, an enforcement module should
provide the following property:

¥ Manager

887

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

ENF-1: Peripheral isolation The enforcement module ensures
that PEG can isolate the protected peripheral from Runtime.
Specifically, the enforcement module can prevent Runtime
from interacting with the protected peripheral.

5.4 Persistence Module

Although the pairing module guarantees the pairing state of PEG
at the time of the pairing handshake, it does not prevent PEG from
being re-associated! with another the deployment manager at a
later time. However, when combined with the pairing module’s
verification of intent (i.e., the requirement for the user to press a
button), this suffices to meet our security goals for the base adver-
sary (SEC-1).

To contend with a non-invasive physical adversary, additional
guarantees are needed. Such an adversary could press the pairing
button and re-associate the device with a malicious the deployment
manager. The current the deployment manager would not learn
this, leading to a violation of security goal SEC-2.

The persistence module mitigates this attack by providing guar-
antees about the continued pairing state of a EG. For example, the
persistence module could require the current the deployment man-
ager’s approval before EG can be unpaired. Although desirable,
this approach is fragile since it hinges upon availability/reachability
of current PEG. We favor an approach based on liveness, shown
in Fig. 6. In it, the deployment manager periodically sends an au-
thenticated nonce to PEG, which re-authenticates to the former.
Although depicted as a stand-alone protocol in Fig. 6, its messages
can be piggybacked onto the messages of the authentication proto-
col.

The persistence protocol provides the following properties:

PERS-1: Retroactive proof of pairing state Whenever the de-
ployment manager M receives nonce N from PEG G, it is
confirmed that PEG G was paired with M when nonce N
was transmitted by M.

Thus, this protocol provides retroactive confirmation of pairing
state. Moreover, when this protocol is periodically repeated, lack
of response from PEG indicates that an un-pairing event occurred.
This means that devices that leave a given SA*P deployment are
detected within a bounded amount of time P — the protocol’s peri-
odicity. Furthermore, when PEG disallows un-pairing for a period
P’ > P after each received persistence challenge, the deployment
manager can detect an unresponsive device before any interactions
with the physical world can occur. Thus, even stronger properties
are attained, albeit at the cost of reduced usability.

6 SECURITY ANALYSIS

We leverage a combination of formal and circuit analysis methods
to analyze security of PEG modules. Formal methods are used to
analyze protocol-based modules, and circuit analysis is used to
evaluate enforcement modules. All Tamarin models are available
on GitHub [9]. We also evaluate SA*P against reference monitor
NIST criteria [36].

IFor clarity’s sake, we use the term re-associated rather than re-paired.

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Tx

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik

&

SDA E B

Runtime

&

Y

SCL
T Resource

'

Runtime

ol

(a) Open collector (e.g., 12C).

(b) Push-Pull (e.g., UART).

]
Resource

Sensor

Runtime

(c) Analog voltage (e.g., microphone).

Figure 5: Example enforcement module implementations for different signal types.

(ore)

nonce; €g N

{noncei, MACky, g (nonce,-)}

Persistence challenge

{noncei, MACky_,, (noncei)}

Persistence reponse v

Figure 6: The persistence protocol flow.

Due to PEG’s modular design, each module can be analyzed
independently: properties provided by authentication and persis-
tence modules are only dependent on session keys being correctly
established by the pairing module. The enforcement module has
no dependencies. Therefore, when individual modules are updated
or replaced, only those modules need to be re-verified.

6.1 Pairing Module

We analyze the pairing module using Tamarin [33]. We assume that
all long-term (i.e., static) public keys are known to the adversary. We
model the scanning of the public and pre-shared keys inscribed on
the device using two rules: (1) Scan_device rule, which generates a
fact representing the deployment manager’s knowledge of inscribed
keys, and (2) Scan_device_adversary rule which adds inscribed
keys to adversary’s knowledge. Also, the model includes a rule that
leaks PEG’s internal long-term secrets.

Further, the model does not limit the number of PEG or the
deployment managers in a trace and supports re-associating after
a completed handshake. The model also allows for an ongoing
pairing operation to be aborted when a new pairing operation
starts. Moreover, for each operation, the internal key management
of PEG is modeled.

Using the model described above, we validate properties PAIR-
1-PAIR-4 and find that all of them hold.

6.2 Authorization Module

We model the authorization protocol using Tamarin. Our model
accounts for re-association events, key disclosure, counter reveals,
timer expirations, and PEG reboots.

Because Tamarin’s discrete time system only models order, and
not elapsed time, properties AUTH-1 and AUTH-2 cannot be
proven directly. Instead, we use a hybrid approach” we prove base
statements using Tamarin, from which we then derive AUTH-1

888

Table 1: An overview of symbolic notation.

Symbol Description

T Name of a timer or duration

ty Time when event x occurs

potart) t;“d Time when timer x is started or expires, respectively
Sx, Ex Static and ephemeral key pairs of entity x, respectively

SE“b,Eiub Static and ephemeral public key of entity x, respectively

and AUTH-2 using conventional logic. To this end, we instrument
the model with action facts that indicate when the Ty, and T, 1,
timers are started or when they expire. We then prove the following
properties, referring to Table 1 for notation.

T-1 A T, timer cannot start after its associated Ty, timer ex-

. pstart end
pired: £2 58" < 100,

T-2 A T, timer must be started before the deployment manager
can issue a corresponding access grant: t;tf;rlt < tgrant-

T-3 A T,y timer can only start after the deployment manager
issued the corresponding access grant: t;ﬁqt > tgrant-

T-4 A peripheral interaction can only occur between the start and

; : . pstart) . end
expiry of a Ty, timer: 1> ih < finteraction < Ly -

T-5 At most one T,y timer can be started per access grant.

From these properties, we show AUTH-1 as follows: From T-

. gstart end _ ,start end _
1,twte know thatt. t?uth <t = byt Tehal Therefore, toth =
tsu‘ﬁl + Tyuth < tsh‘;rl + Tehal + Tauth-

Combined T-2, this yields t;ggh < tgrant + Tchal + Tauth In other
words, Ty, expires at most Tepa + Touth after the deployment
manager issued the corresponding access grant. Similarly, T-3 states
that T, 4, must be started after the deployment manager’s access
grant. Combining these two results with T-4 yields thatAUTH-1
holds. O

We show AUTH-2 by combining T-5 and T-4. This directly
yields AUTH-2. O

6.3 Enforcement Module

Unlike other modules, the enforcement module is not protocol-
based, which rules out Tamarin. Instead, we verify ENF-1 using
circuit analysis.

Open Collector (Fig. 5a) When PEG pulls data lines to ground,
the drain source resistance Rz; of MOSFETs induces a small voltage
drop across each MOSFET. Assuming a common 2N7000 MOSFET [44]

The SA*P Framework: Sensing and Actuation as a Privilege

with Ry = 6.0, a system voltage Ve = 3.3V, and a data pull-up
resistor value of 2kQ, the resulting voltage on data lines will be

% -3.3V = 10 mV. Assuming that the line driver has perfect
switching capabilities, it could toggle data lines between 0 and
10 mV.2 When connected to a digital input, both values will be read
as low; thus, no communication is possible. However, care must be
taken to ensure that no other (more sensitive) sampling hardware
can be connected to the bus, e.g., by reassigning data pins to an
analog-to-digital converter (ADC).

Push-Pull (Fig. 5b) Digital buffers provide much better isolation
than the circuit in Fig. 5a. For example, the MC74VHC541 buffer [45]
lists a maximum tri-state leakage current of 0.25 pA. This makes it
extremely unlikely that signal could be recovered using IoT device
hardware.

Analog (Fig. 5¢) When PEG disables the signal, the feedback
R S
Rd5d+R :

MOSFET [44], and R = 10kQ this results in b ~ 6 - 10”4, Assum-
ing a LMV358 opamp [55] with a large signal differential volt-
age gain A,y = 10%, the closed loop gain becomes A = b~! -

-1
(1 + (Ayg - b)_l) ~ 1429 [23]. Assuming 0V and 3.3V supply

rails, this means that any input signal above 2.3 mV would be
clamped to the 3.3V rail, rendering the output meaningless.

factor of the opamp is b = Again, assuming the 2N7000

6.4 Persistence Module

We model the persistence protocol using Tamarin. Our model cov-
ers re-association events, key disclosure, multiple PEG transmis-
sions with the same nonce, and loss of nonce state on the guard,
e.g., caused by a reboot. We only model stand-alone persistence
messages and defer the formal verification of the piggyback-based
persistence module to future work due to current limitations in
formal verification tools. We find that property PERS-1 holds.

6.5 Reference Monitor Properties

We show that SA*P satisfies three defining properties of a refer-
ence monitor [36]: (i) non-bypassability, (ii) tamper proofness, and
(iii) verifiability. Non-bypassability prevents unauthenticated pe-
ripheral access, tamper proofness prevents manual or programatic
modifications of the reference monitor, and verifiability prescribes
a sufficiently small TCB that can be analyzed and proven correct.

Non-Bypassability Peripheral access is restricted by the enforce-
ment module (ENF-1), unless permitted by the authorization mod-
ule (AUTH-1 and AUTH-2). Access is only permitted by the au-
thorization module for T, seconds in response to a fresh and
authentic access grant from the deployment manager. Freshness
is ensured by the counter in each request and Ty, window, while
authenticity is ensured by the MAC tag. The deployment manager
only grants access to fresh and authentic requests permitted by its
policy.

Tamper-Proofness Trusted PEG is implemented either inside
ARM TrustZone or on a physically separate MCU. Recall that we
only consider software and non-invasive physical tampering, while
invasive physical tampering is out of scope. TrustZone, similar to a
physically separate MCU, provide strong isolation between secure

2Most components do not do this, e.g., standard-complying I12C implementations
interpret low bus voltage as an ongoing transmission and refrain from sending [42].

889

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

PEG and untrusted Runtime. By connecting any physical interface
directly to pins controlled by TrustZone’s Secure World®, or directly
to the separate MCU, Runtime cannot tamper with any physical
interactions. PERS-1 ensures attempts to re-associate a device are
detected.

Verifiability Authorization, pairing, and persistence modules are
formally verified, and can be implemented using simple primitives.
Circuit verification was used to verify the enforcement module. The
deployment manager is more complex as it also implements access
control policy. Prior work on policy analyzers, however, provides
powerful mechanisms for auditing access policies [37].

7 IMPLEMENTATION

To assess SA?P’s practicality, we implement two PEG variants. The
first uses a dedicated MCU to implement a stand-alone PEG and
the second uses a TrustZone-enabled Cortex-M MCU as Runtime,
placing PEG logic in the secure TrustZone partition on the same
MCU. Both are publicly available [9]. We instantiate them on an
ultra-low-power STM32L552ZE MCU. For the stand-alone PEG, we
fully disable TrustZone. STM32L552ZE runs at 110 MHz, has 256 kB
of SRAM, and 512 kB of flash. We set To,1 = 20 ms and Ty, = 10s.

7.1 Stand-alone Peripheral Guard

Stand-alone PEG is implemented on a dedicated MCU. Although
it is possible to independently connect this EG to the network,
we refrain from doing so, in favor of proxying all commands over
Runtime using a UART connection. This has two advantages: (i)
obviates the need for a (complex) networking stack on the PEG,
significantly reducing TCB size; and (ii) makes it easier for Runtime
to stay in sync with PEG, since Runtime can monitor all PEG
communication. Although this allows Runtime to perform denial-
of-service (DoS) attacks against PEG, doing so would be strictly
against its own interests.

Message Format To facilitate communication over the serial link,
we implement a serial message format to carry protocol messages
from Figs. 3, 4 and 6. For serial transmission, a 3 B header - consist-
ing of a 1B type field and a 2 B length field - prefixes each message.
To reduce the number of messages, we combine authorization and
persistence protocol messages.

Cryptography Asymmetric key exchanges are realized using
compact25519 library [27] on Curve25519. All symmetric keys are
256 bits. MACs are implemented using HMAC with SHA256. HMAC
and randomness generation are hardware-supported.

Counters and Persistent Memory The authorization protocol
uses a monotonic counter to prevent replays. It can be implemented
using either persistent memory or a secure clock. Since the latter
is expensive and persistent memory is already required to store
session keys, we opt for the former. However, counter update events
are expected to be frequent, unlike re-association events. Thus, care
must be taken not to wear out MCU’s memory prematurely via
excessive writes. For example, flash memory of STM32L552ZE MCU
is specified as being able to withstand at least 10 000 writecycles.
This number is unlikely to be reached via re-association events.

3See: https://developer.arm.com/documentation/100935/0100/The-TrustZone-
hardware-architecture-

https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-
https://developer.arm.com/documentation/100935/0100/The-TrustZone-hardware-architecture-

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

However, with only five counter updates per day, this number can
be reached in 5 years.

To avoid memory wear, we use a hybrid 8 B counter consisting
of two 4B sub-counters: upper and lower, referred to as reboot
and request counters, respectively. The latter functions as expected,
incremented each time a challenge is generated. However, instead
of persistent memory, it is stored in RAM and initialized to zero at
each device boot. Meanwhile,reboot counter is stored in persistent
memory, and incremented each time the device boots. Hence, the
combined counter remains strictly incremental, and only requires
a write to persistent memory once per device boot cycle, thus
mitigating memory write constraints. To ensure integrity of reboot
counter in case of boot interruptions, it is replicated three times
in memory. A corrupted value can thus always be recovered using
majority voting. Alternatively, we could use a specialized memory
type, e.g., ferroelectric RAM (FRAM), for counter storage, though
such memory types are much less common.

Timeouts Because the state of Ty ,jonly needs to be checked
when processing an incoming message, it is implemented using
system ticks. Conversely, T,1, uses a dedicated hardware timer
that triggers an interrupt when it expires. This ensures that access
to protected peripherals is always promptly removed.
Enforcement Module Our PEG implementation writes a binary
signal representing the current peripheral enforcement state to a
General Purpose Input/Output (GPIO) output pin. An external en-
forcement circuit (e.g., one of the circuits in Fig. 5) can be connected
to this pin.

7.2 TrustZone Peripheral Guard

Unlike the dedicated PEG, the TrustZone variant shares processing
hardware with the Runtime. Concretely, one TrustZone enabled
Cortex-M MCU is flashed with two binaries: secure and non-secure.
We use the former for PEG functionality, and the latter for Runtime
code. Isolation of PEG is ensured by TrustZone.

Implementing PEG using TrustZone has the primary advantage
of not requiring additional hardware. Also, TrustZone-based PEGs
should be applicable to current TrustZone-capable MCUs types.*

API Another advantage of a TrustZone-based PEG is that no
(slow) communication bus between PEG and Runtime is needed.
Instead, TrustZone-based PEG exposes a narrow API to Runtime,
consisting of one call per incoming message type. Messages are
passed as function arguments and return values.

Enforcement Module Contrary to dedicated PEG, TrustZone-
based PEG does not need external enforcement circuitry. Instead,
enforcement can dynamically modify the MCU’s TrustZone config-
uration to provide or revoke Runtime’s access to the interface to
which the protected peripheral is connected [53].

Preventing Interference Having Runtime and PEG share a
computation platform increases the risk of interference by Runtime
into PEG operations. Although default TrustZone behavior suffices
to protect PEG’s secrets, additional care must be taken so that
untrusted Runtime code cannot interfere with the PEG’s notion
of time. Most importantly, the PRIS bit in the Application Interrupt
and Reset Control Register (AIRCR) must be set to ensure that

4No general statements can be made about feasibility of this approach, since it is
largely dependent on the design of individual products.

890

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik

Table 2: Sizes of messages exchanged between the PEG and
Runtime, including 3 B serial encapsulation header.

Message Generated by Size [B]
Pairing
Key exchange | PEG 67
Key exchange Il Manager 67
Key confirmation PEG 35
Authorization & persistence
Access initialization Runtime 3
Access request PEG 61
Access grant Manager 51
Access confirmation PEG 6

Logic
3 3h analyzer
— 1 - Tt T S
: o | E | ' o
: PEG Runtime |1 Manager
1
1 T |
S I N
: ‘ ! ——= Ethernet
1
i) UART-Eth || st
: Button Bridge 1
1 : —— Logic
" loT Device 1

Figure 7: Schematic overview of the macro evaluation setup.

the code running in TrustZone’s Normal World (Runtime) cannot
prevent PEG code in Secure World from executing by masking its
interrupt service routines [31].

8 EVALUATION

To evaluate our PEG implementations, we appl;y a macro-scale
benchmark which measures overall system performance of a PEG-
enabled device. To gain further insights, we perform a series of
micro-scale benchmarks that evaluate performance of the £EGs in
isolation.

8.1 Macro-scale Evaluation

Modifying devices to adopt the SA*P philosophy will inevitably
have an impact on system operations. Concretely, the requirement
to obtain permission ahead of peripheral interactions introduces
both bandwidth overhead and access latency. Given that pairing
events are expected to be rare, we focus this evaluation on access
requests and grants.

Bandwidth Overhead (Access Event) The communication over-
head in terms of message sizes can be determined directly from the
protocol specification (Sections 5.1, 5.2 and 5.4) and the serial mes-
sage format (Section 7.1). The resulting message sizes are shown in
Table 2.

Latency Overhead (Access Event) To quantify the latency over-
head, we performed end-to-end system measurements using the
setup shown in Fig. 7. The setup consists of a proof-of-concept
PEG-enabled device that communicates with a deployment man-
ager over a standard Ethernet network. The PEG-enabled device

The SA*P Framework: Sensing and Actuation as a Privilege

Off-device r Init. (3 ps)

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Network (4.32 ms) + Deployment Manager (0.241 ms)’

Runtime I 82 s < Request encapsulation (15 ps) Grant decapsulation (16 ps) — 83 s 1
s | 1 I - 0 or1s ~ [
PEG I < Request generation (39 ps) Grant validation (49 ps) — I
Time [ms] + } } } } t t

0 1 2

3 4 5 6

Figure 8: Timeline of an access requests to a dedicated PEG. Averaged values, N = 468. ' Deployment manager processing times
were measured during a separate experiment with N = 100 and an independent time base.

consists of a button functioning as a rudimentary sensor, a STM32
as dedicated PEG, and a second, identical, MCU functioning as
Runtime. Communication between the PEG and Runtime uses
a UART bus running at 921 kbaud. Runtime is connected to the
Ethernet network using a WIZnet W7500S2E-R1 UART to Ethernet
bridge, running at 461 kbaud. The manager has a grant-all policy.
It is implemented in Golang and runs on a commodity laptop.

To extract timing information, #EG and Runtime are connected
to the same logic analyzer sampling at 16 MHz, each using a 3-bit
logic bus. The code running on both platforms is instrumented
to write code points to the bus, providing insight into internal
operations and timing.

We use the setup described above to measure the overall sys-
tem performance of an access request (including the piggy-backed
persistence exchange). The results are shown in Fig. 8.

As can be seen in Fig. 8, it takes, on average, 6.16 ms from the
point where Runtime initiates an access request to the point at
which Runtime is informed that peripheral access has been pro-
vided by the PEG. This duration is primarily dominated by serial
(1.47 ms) and network® (4.32 ms) delays, which sum up to 5.79 ms.
We attribute the majority of the network delays to the relatively
slow WIZnet module.

Processing times on the protocol endpoints (PEG and deploy-
ment manager) are an order of magnitude shorter, with a combined
processing time of 0.09 ms measured on the £EG, and 0.24 ms mea-
sured on the deployment manager. The latter being higher due to
the use of a general purpose operating system on the deployment
manager. The forwarding overhead on Runtime was measured to
sum up to 0.03 ms, which we consider to be negligible.

Pairing Events The sizes of pairing messages are shown in Table 2.
We informally measured a pairing event to take around 9 s. More
detailed measurements are given in the following section on micro
evaluation.

8.2 Micro-scale Evaluation

To gain further insight into PEG performance, we continue with a
set of micro benchmarks. Similar to the macro evaluation setup, we
connect the PEG to a logic analyzer using a 3-bit bus, and instru-
ment the PEG code to write code points to this bus at significant
points in its program.

Dedicated PEG (Access Event Timing) We start by taking a
more detailed measurement of the processing times required to
generate an access request and validate a grant on the dedicated

SNetwork delays include serial transmissions to the UART to Ethernet bridge.

891

Table 3: Processing times for access events. Values in ps.

Mean Std. Dev. Min Max
Dedicated PEG (N=288)
Request generation ~ 40.34 0.11 40.25 41.25
Grant validation 50.28 0.18 50.17 51.17
TrustZone PEG (N=324)
Request generation 33.52 0.34 32.62 34.63
Grant validation 49.98 0.54 48.63 52.87
Crypto State mgmt. EZ] Buffer mgmt. & TrustZone

Dedicated PEG (N=288)

777
71U 7777777777777777777777777
77777777777277777727227227777227277222277227777

Grant val.

TrustZone PEG (N=324)

77777777777777777777777777777
Y7707 777777777777777777777777
27777777722222222222222222227

Req gen.

T77 7 T T
Grantval. [0992222000025522522220000055522522220000555525555000F 1+
. LILLLL 7000707070000 777770700770707707070777777777

Cumulative execution time [us]

Figure 9: PEG load profiles for access-event messages.

PEG. The results of this measurement are shown in Table 3. As can
be seen from the table, the processing times are highly deterministic,
with low spread. The small discrepancy between the values in
Fig. 8 and Table 3 can be attributed to slight differences in code
instrumentation and compile-time optimization.

Dedicated PEG (Access Event Load Profile) To further break
down the numbers shown in Table 3, Fig. 9 shows relative load
profiles for the PEG. We see that for both messages, the workload
is dominated by the cryptographic tag verification, which is to be
expected.

TrustZone PEG (Access Event Timing) Next, we compare the
performance of the dedicated PEG to the TrustZone-based PEG.
Table 3 and Fig. 9 show the execution times of get_challenge()
and put_response () PEG API calls as observed by Runtime code.
These calls respectively initiate an access request, or supply the
PEG with a response from the manager. We see that the latencies

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Table 4: Dedicated PEG processing times for pairing message
processing and generation. Values in ms.

Outgoing message Mean Std. Dev. N
Key exchange | 2891 0.30 281
Key confirmation 5737 0.92 155

Table 5: Dedicated PEG processing times for pairing-related
cryptographic operations. Values in ms.

Operation Mean Std.Dev. N
Ephemeral key pair generation 2891 0.30 281
Diffie-Hellmann derivation 2868 0.46 155
HKDF computation 0.08 < 0.01 155

of the two implementations are similar. However, TrustZone num-
bers already include the PEG to Runtime communication, whereas
the dedicated PEG relies on time-intensive serial communication.
Therefore, the system performance of the TrustZone PEG is supe-
rior. That said, as is shown in Table 3, the response times of the
TrustZone PEG are less stable than those of the dedicated PEG.
This is to be expected, as the TrustZone implementation shares a
processor core with Runtime.

Dedicated PEG (Pairing Event Timing) Although pairing events
are expected to be rare, we performed measurements to get an un-
derstanding of their performance. Table 4 shows the time required
to process the pairing messages on the PEG. Table 5 lists the mea-
sured duration of individual cryptographic operations, providing
more insight in the composition of the delays shown in Table 4.
We see that (as expected) the processing times are dominated by
the cryptographic operations. We note that two Diffie-Hellmann
operations take place for each key confirmation message.

8.3 Memory Footprint

We measure the memory footprint of both £EG implementations.
The dedicated PEG has a binary size of 14.97 kB and a RAM foot-
print of 3.18 kB. The TrustZone-based PEG has a binary size of
6.62kB and a RAM footprint of 1.9kB.

9 DISCUSSION

9.1 Peripheral Access Latency

The results from Section 8§ confirm the feasibility of the SA*P ap-
proach. Although the newly introduced peripheral access latency
(< 6 ms) is non-negligible, it is not of a prohibitive nature for the
applications we envision; system response times below 100 ms are
generally perceived as instantaneous by users [39]. Moreover, sig-
nificant performance improvements are still achievable. Concretely,
we expect that when a TrustZone-based PEG is used, and our
proof-of-concept networking setup is replaced by a networking
stack running directly on Runtime, an access latency below 1 ms
is attainable. Additionally, PEG operations have shown to be both
fast and deterministic, which facilitates access request scheduling.

892

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik

9.2

The timer durations T.p, and T4 should be set based on the char-
acteristics of the deployment: T.p, should be set to sum of the
largest expected round trip time (RTT) from the PEG to the de-
ployment manager, and the highest expected deployment manager
response time. In most deployments this value will be on the order
of milliseconds or less.

Setting T, is more complicated, as it requires a trade-off be-
tween control and network overhead: setting T, high results in
coarse access control and low overhead, whereas a low T, pro-
vides fine-grained control at the cost of higher network overhead.
To quantify this overhead, consider a deployment with T, = 10,
and in which access requests are sent with a 100 ms overlap to
ensure access continuity. Assuming our SA*P instantiation, the
resulting network overhead during peripheral access events would
average ﬁreq/s X (61+51)B/req = 90 bps. Although we expect
this data rate to be acceptable in most application settings, this
might not hold for some highly constrained scenarios. Strategies to
reduce the network overhead include:

o Increasing T,1,. In some deployment scenarios significantly
longer values of T, can be considered. For example, in
wireless sensor networks where the primary goal of SA*P
deployment is to remove peripheral access when the deploy-
ment is compromised, values of T, up to multiple hours
may be appropriate.

e The length of the various protocol fields can be reduced,
albeit at the cost of weakened cryptographic properties.

e Multiple access types associated with the same peripheral,
but with different associated T}, values, can be used.

Tehals Tauth, and Network Overhead

9.3 High-Level Context

Although the low-level nature of the PEG makes the design in-
clusive and robust, it limits the amount of high-level contextual
information that is inherently available to base access decisions
on. This means that the deployment manager must actively collect
such information from across the deployment. How this collection
should be implement is beyond the scope of this paper. Addition-
ally, the SA*P design philosophy is not intended to replace existing
high-level access control mechanism, but rather to complement
them.

Example: Combining with Attestation One type of high-level
context that could be gathered, is the attestation state of the PEG-
enabled devices. By requiring Runtime to present an attestation
proof together with each access request, the deployment manager
can ensure that peripheral access is rapidly removed after a device
has been compromised. Doing so would remove significant adver-
sarial utility from compromised devices, effectively rendering them
to be generic network-connected computational nodes.

9.4 Post-Sampling Access Control

SA*P is designed to prevent unauthorized interactions between the
physical and virtual domain. It does not provide any mechanisms to
control or limit data dissemination in the virtual domain after data
has been sampled from the physical domain. If such mechanisms
are required, they can be deployed together with SA*P.

The SA*P Framework: Sensing and Actuation as a Privilege

&

Runtime

Ir
Setpoint latch

\%
PEG

Classical control loop

v

Controller Process

Figure 10: A SA*P design only requiring authorization for
setpoint adjustments. @ indicates untrusted components.

9.5 Non-Binary Enforcement Modules

In Section 6.3 we only considered binary enforcement modules, i.e.,
enforcement modules that either allow for full peripheral access or
non at all. However, it is also possible to design non-binary enforce-
ment modules, e.g., by integrating a low-pass filter into their design.
Doing so would allow the PEG to provide more fine-grained access
control. For example, it has been shown that the high frequency
components in a humidity signal can reveal information about hu-
man presence [20]. A low-pass filter enabled PEG could selective
provide access to the average room humidity while filtering out
sensitive room occupancy information.

9.6 Protecting Complex Actuators

For simple actuators, our PEG design is directly applicable. In fact,
as part of this research project we have created a demo that uses
our PEG design to control access to an electric strike plate, giving
the deployment manager control over when a door can be opened.

For other actuators (e.g., lights), a designer might opt to place a
latch or a flip flop behind the PEG, so that an access permission
is only required to toggle the actuator. More generally, a setpoint-
based control loop could be used, thus only requiring manager
authorization for setpoint adjustments. Such an architecture is
depicted in Fig. 10. The primary challenge associated with this
approach is that all components placed behind the PEG must be
trusted.

9.7 Information Leakage

The PEG design does not encrypt network traffic, since, unlike
data authenticity, data secrecy is not required for our security goals.
However, this means that passive network adversaries can observe
access requests in cleartext, including the access type field. This
exposure can be addressed by creating an encrypted tunnel between
Runtime and the deployment manager. However, encryption offers
limited protection: previous work has shown that even encrypted
IoT traffic leaks significant private information [2, 6, 57].

10 RELATED WORK

Remote attestation The use of remote attestation techniques to
secure IoT devices has been widely studied. In their most essential
form, attestation techniques provide integrity guarantees about
binaries. Such static techniques are not only widely used in research
(e.g., in the Sancus security architecture for IoT devices [40]), but
have also matured enough to see applications in industry, most
commonly in combination with secure boot [5, 8].

893

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

However, static attestation cannot provide guarantees about
control-flow integrity. C-FLAT [1] and LO-FAT [16] address this
issue by designing IoT-compatible control-flow attestation schemes.
C-FLAT does so by relying on TrustZone for Cortex-A, while LO-
FAT introduces custom hardware. SIMPLE [4] continues this line
of work by proposing a software-only remote attestation mecha-
nism that implicitly guarantees control flow integrity. In contrast,
OAT [54] maintains a dependency on TrustZone, but adds data
integrity guarantees.

Although all of these results provide strong guarantees about
the code being executed on an IoT device, they cannot prevent
a compromised device from accessing its interaction peripherals.
Therefore they provide only limited privacy guarantees. In sum-
mary, device attestation is an orthogonal research direction to ours,
and we discuss in Section 9.3 how device attestation and SA*P can
complement each other.

IoT recovery mechanisms A number of prior efforts studied
how IoT devices can be efficiently recovered after compromise. For
example, FIRE [51]) sends code update requests and blacklists de-
vices when a successful recovery cannot be confirmed. Cider [62]
presents a mechanism that guarantees that updates are installed
within a bounded time frame. Lazarus [21] provides similar proper-
ties as Cider, though it targets more constrained devices and uses
TrustZone on Cortex-M to eliminate some of Cider’s hardware
requirements. Verify&Revive [3] presents a pure-software-based
device healing scheme, albeit at the cost of weaker availability
guarantees.

This work is similar to ours in that they can be used to prevent an
adversary from sampling sensors after a breach has been detected.
However, they cannot be used to regulate sensor access during
normal deployment operations.

Managing Sensor Access, Notifications, and Logging Brasser
et al. use TrustZone on Cortex-A and remote memory writes to
restrict peripheral access [11]. Unlike this work, it targets feature-
rich devices (e.g., smartphones or laptops) and does not provide fine-
grained temporal control. Instead, the peripheral access policy can
only be updated during check-in and check-out events. SeCloak [30]
targets similar devices as Brasser et al. and also relies on TrustZone.
However, it is designed to provide on-device control, i.e., SeCloak
does not delegate access policy management to a remote server.

VERSA [41] uses a modified MCU to ensure that only attested
and explicitly authorized routines can access sensors, based on
remotely-issued authorization tokens. Although VERSA requires
the remote verifier to issue a new token for each invocation of
the sampling routine, it does not provide the same bounded-time
guarantees as our work. Moreover, VERSA requires custom hard-
ware and its reliance on attestation requires significantly closer
integration between the remote verifier and the VERSA-enabled
device.

Ditio [34] leverages TrustZone on Cortex-A to provide secure
logs of sensor activities to a remote server. Viola [35] uses OS-
or hypervisor-level checks to enforce a one-to-one relationship
between on-device sensor notifications (e.g., using a notification
LED) and sensor activity. Neither Ditio nor Viola target constrained
devices.

In the industrial setting, C? [32] monitors programmable logic
controller (PLC) control and sensor signals to verify that a preset

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

policy is followed. If a violation is detected, a safe fall-back system
is executed. M2Mon [24] implements a non-distributed peripheral
reference monitor for unmanned vehicles.

Camera Privacy Much research has focused on camera privacy,
typically by performing video anonymization by obfuscating sensi-
tive video regions [61]. Contributions in this area can be categorized
based on when the obfuscation is performed: before [47, 58, 63],
during [59]), or after [12, 60] capture time. The first two of these cat-
egories are of special interest, as, similar to our work, they perform
access regulation before Runtime. Zhang et al. [63] and Pittaluga et
al. [47] propose to place dynamic, privacy-preserving optics in front
of image sensors. CamShield [58] takes a different approach by fully
obscuring the view of the main image sensor, and instead expose it
to a pre-anonymized digital video stream. TurstEYE.M4 [59] pro-
poses a sensor unit with an integrated privacy filter, resulting in a
pre-filtered video stream being received by Runtime.

Contrary to our work, all of this work focus on image privacy and
none of them have provisions for interactions with a deployment
manager.

Device-Level IoT Access Management Many results consider
device-level IoT access control. This includes both research papers
(e.g., [17, 18, 25, 38, 43, 56]) and industry standards (e.g., [13, 50]).
Unlike the present work, these techniques operate at the device or
agent level. However, some of them, e.g., AoT’s [38] full-lifecycle
key management mechanism, could be used to instantiate a PEG
pairing module.

11 CONCLUSION

As IoT devices are becoming increasingly ubiquitous and inter-
twined with our daily life, their vulnerabilities are creating severe
security and privacy risks for their users. The SA*P framework in-
troduces a new approach to address this challenge: by controlling a
device’s ability to interact with the physical environment, SA*P can
significantly reduce the risks of rogue IoT devices. Our implemen-
tations demonstrate that SA*P is technically feasible and practical,
thus making it a promising approach for securing common types
of IoT devices.

REFERENCES

[1] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew
Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow
Attestation for Embedded Systems Software. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM. https:
//doi.org/10.1145/2976749.2978358

Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Kumar Sikder, Markus Mietti-
nen, Hidayet Aksu, Mauro Conti, Ahmad-Reza Sadeghi, and Selcuk Uluagac. 2020.
Peek-a-boo: I see your smart home activities, even encrypted!. In Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
ACM. https://doi.org/10.1145/3395351.3399421

Mahmoud Ammar and Bruno Crispo. 2020. Verify&Revive: Secure Detection
and Recovery of Compromised Low-end Embedded Devices. In Annual Computer
Security Applications Conference. ACM. https://doi.org/10.1145/3427228.3427253
Mahmoud Ammar, Bruno Crispo, and Gene Tsudik. 2020. SIMPLE: A Remote
Attestation Approach for Resource-constrained IoT devices. In 2020 ACM/IEEE
11th International Conference on Cyber-Physical Systems (ICCPS). IEEE. https:
//doi.org/10.1109/iccps48487.2020.00036

Analog Devices. [n.d.]. The Fundamentals of Secure Boot and Secure Download:
How to Protect Firmware and Data within Embedded Devices. Technical Report.
Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan, Arvind Narayanan, and
Nick Feamster. 2017. Spying on the Smart Home: Privacy Attacks and Defenses
on Encrypted IoT Traffic. https://doi.org/10.48550/ARXIV.1708.05044

Tonut Arghire. 2022. Nuki Smart Lock Vulnerabilities Allow Hackers to Open
Doors. https://www.securityweek.com/nuki-smart-lock-vulnerabilities-allow-

(2]

(3

=

894

[

[10

[11

=
&

[13

[14

[15

(17

[18

[19

[21

[22

[25

[26]

[27

[28

[29

[30

Piet De Vaere, Felix Stoger, Adrian Perrig, and Gene Tsudik

hackers-open-doors/.

ARM. 2009. ARM Security Technology: Building a Secure System using TrustZone
Technology. Technical Report.

SA4P Authors. 2023. GitHub repositories accompanying this paper. https://
github.com/SA4P.

Carsten Bormann, Mehmet Ersue, and Ari Kerdnen. 2014. Terminology for
Constrained-Node Networks. RFC 7228. https://doi.org/10.17487/RFC7228
Ferdinand Brasser, Daeyoung Kim, Christopher Liebchen, Vinod Ganapathy, Liviu
Iftode, and Ahmad-Reza Sadeghi. 2016. Regulating ARM TrustZone Devices in
Restricted Spaces. In Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services. ACM. https://doi.org/10.1145/2906388.
2906390

Ankur Chattopadhyay and T.E. Boult. 2007. PrivacyCam: a Privacy Preserving
Camera Using uCLinux on the Blackfin DSP. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE. https://doi.org/10.1109/cvpr.2007.383413
Connectivity Standards Alliance, Inc. 2022. Matter Specification Version 1.0. Tech-
nical Report.

Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A Large-Scale Analysis of the Security of Embedded Firmwares. In Proceedings of
the 23rd USENIX Security Symposium.

Anupam Das, Martin Degeling, Daniel Smullen, and Norman Sadeh. 2018.
Personalized Privacy Assistants for the Internet of Things: Providing Users
with Notice and Choice. IEEE Pervasive Computing 17, 3 (July 2018). https:
//doi.org/10.1109/mprv.2018.03367733

Ghada Dessouky, Shaza Zeitouni, Thomas Nyman, Andrew Paverd, Lucas Davi,
Patrick Koeberl, N. Asokan, and Ahmad-Reza Sadeghi. 2017. LO-FAT: Low-
Overhead Control Flow ATtestation in Hardware. In Proceedings of the 54th An-
nual Design Automation Conference 2017. ACM. https://doi.org/10.1145/3061639.
3062276

Sebastian Echeverria, Grace A. Lewis, Dan Klinedinst, and Ludwig Seitz. 2019.
Authentication and Authorization for IoT Devices in Disadvantaged Environ-
ments. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE.
https://doi.org/10.1109/wf-10t.2019.8767192

Geovane Fedrecheski, Laisa Caroline Costa De Biase, Pablo C. Calcina-Ccori,
Roseli de Deus Lopes, and Marcelo Knorich Zuffo. 2022. SmartABAC: En-
abling Constrained IoT Devices to Make Complex Policy-Based Access Con-
trol Decisions. IEEE Internet of Things Journal 9, 7 (apr 2022), 5040-5050.
https://doi.org/10.1109/jiot.2021.3110142

Eileen Guo. 2023. Roomba testers feel misled after intimate images ended up on
Facebook. https://www.technologyreview.com/2023/01/10/1066500/.

Jun Han, Abhishek Jain, Mark Luk, and Adrian Perrig. 2007. Don’t Sweat Your
Privacy: Using Humidity to Detect Human Presence. In Proceedings of the Inter-
national Workshop on Privacy in UbiComp (UbiPriv). /publications/papers/han_
jain_luk_perrig_privacy.pdf

Manuel Huber, Stefan Hristozov, Simon Ott, Vasil Sarafov, and Marcus Peinado.
2020. The Lazarus Effect: Healing Compromised Devices in the Internet of
Small Things. In Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security. ACM. https://doi.org/10.1145/3320269.3384723

Umar Igbal, Pouneh Nikkhah Bahrami, Rahmadi Trimananda, Hao Cui, Alexander
Gamero-Garrido, Daniel Dubois, David Choffnes, Athina Markopoulou, Franziska
Roesner, and Zubair Shafiq. 2022. Your Echos are Heard: Tracking, Profiling, and
Ad Targeting in the Amazon Smart Speaker Ecosystem. https://doi.org/10.48550/
ARXIV.2204.10920

Jim Karki. 2021. Application Report: Understanding Operational Amplifier Specifi-
cations. Technical Report. Texas Instruments.

Arslan Khan, Hyungsub Kim, Byoungyoung Lee, Dongyan Xu, Antonio Bianchi,
and Dave (Jing) Tian. 2021. M2MON: Building an MMIO-based Security Reference
Monitor for Unmanned Vehicles. In 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, 285-302. https://www.usenix.org/conference/
usenixsecurity21/presentation/khan-arslan

Jun Young Kim, Wen Hu, Dilip Sarkar, and Sanjay Jha. 2017. ESIoT: enabling
secure management of the internet of things. In Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks. ACM. https:
//doi.org/10.1145/3098243.3098252

Dr. Hugo Krawczyk and Pasi Eronen. 2010. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF). RFC 5869. https://doi.org/10.17487/RFC5869
Davy Landman. 2022. compact25519: A compact portable X25519 + Ed25519
implementation. https://github.com/DavyLandman/compact25519.

Marc Langheinrich. 2002. A Privacy Awareness System for Ubiquitous Computing
Environments. In ACM Conference on Ubiquitous Computing. https://doi.org/10.
1007/3-540-45809-3_19

Ralph Langner. 2011. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security
& Privacy Magazine 9, 3 (may 2011), 49-51. https://doi.org/10.1109/msp.2011.67
Matthew Lentz, Rijurekha Sen, Peter Druschel, and Bobby Bhattacharjee. 2018.
SeCloak: ARM Trustzone-based Mobile Peripheral Control. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services.
ACM. https://doi.org/10.1145/3210240.3210334

https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/3395351.3399421
https://doi.org/10.1145/3427228.3427253
https://doi.org/10.1109/iccps48487.2020.00036
https://doi.org/10.1109/iccps48487.2020.00036
https://doi.org/10.48550/ARXIV.1708.05044
https://www.securityweek.com/nuki-smart-lock-vulnerabilities-allow-hackers-open-doors/
https://www.securityweek.com/nuki-smart-lock-vulnerabilities-allow-hackers-open-doors/
https://github.com/SA4P
https://github.com/SA4P
https://doi.org/10.17487/RFC7228
https://doi.org/10.1145/2906388.2906390
https://doi.org/10.1145/2906388.2906390
https://doi.org/10.1109/cvpr.2007.383413
https://doi.org/10.1109/mprv.2018.03367733
https://doi.org/10.1109/mprv.2018.03367733
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1109/wf-iot.2019.8767192
https://doi.org/10.1109/jiot.2021.3110142
https://www.technologyreview.com/2023/01/10/1066500/
/publications/papers/han_jain_luk_perrig_privacy.pdf
/publications/papers/han_jain_luk_perrig_privacy.pdf
https://doi.org/10.1145/3320269.3384723
https://doi.org/10.48550/ARXIV.2204.10920
https://doi.org/10.48550/ARXIV.2204.10920
https://www.usenix.org/conference/usenixsecurity21/presentation/khan-arslan
https://www.usenix.org/conference/usenixsecurity21/presentation/khan-arslan
https://doi.org/10.1145/3098243.3098252
https://doi.org/10.1145/3098243.3098252
https://doi.org/10.17487/RFC5869
https://github.com/DavyLandman/compact25519
https://doi.org/10.1007/3-540-45809-3_19
https://doi.org/10.1007/3-540-45809-3_19
https://doi.org/10.1109/msp.2011.67
https://doi.org/10.1145/3210240.3210334

The SA*P Framework: Sensing and Actuation as a Privilege

[31]

[32]

[33]

[34]

[35]

[36

[37

[38]

[39]
[40]

[41

[42]

[43

[44]

[45]
[46]

[47]

[48]

[49

[50

[51]

[52]

[53

[54]

[55

ARM Ltd. 2020. ARM Cortex-M33 Devices Generic User Guide. https://developer.
arm.com/documentation/100235/0100. Version r1p0.

Stephen McLaughlin. 2013. CPS: Stateful Policy Enforcement for Control System
Device Usage. In Proceedings of the 29th Annual Computer Security Applications
Conference (New Orleans, Louisiana, USA) (ACSAC ’13). Association for Comput-
ing Machinery, New York, NY, USA, 109-118. https://doi.org/10.1145/2523649.
2523673

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In Computer
Aided Verification. Springer Berlin Heidelberg, 696-701. https://doi.org/10.1007/
978-3-642-39799-8_48

Saeed Mirzamohammadi, Justin A. Chen, Ardalan Amiri Sani, Sharad Mehrotra,
and Gene Tsudik. 2017. Ditio: Trustworthy Auditing of Sensor Activities in
Mobile & IoT Devices. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems. ACM. https://doi.org/10.1145/3131672.3131688

Saeed Mirzamohammadi and Ardalan Amiri Sani. 2016. Viola: Trustworthy
Sensor Notifications for Enhanced Privacy on Mobile Systems. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services. ACM. https://doi.org/10.1145/2906388.2906391

National Institute of Standards and Technology. 2020. Security and Privacy
Controls for Information Systems and Organizations. Technical Report. https:
//doi.org/10.6028/nist.sp.800-53r5

Timothy Nelson, Christopher Barratt, Daniel Dougherty, Kathi Fisler, and Shriram
Krishnamurthi. 2012. The Margrave Tool for Firewall Analysis. (05 2012).
Antonio L. Maia Neto, Artur L. F. Souza, Italo Cunha, Michele Nogueira,
Ivan Oliveira Nunes, Leonardo Cotta, Nicolas Gentille, Antonio A. F. Loureiro,
Diego F. Aranha, Harsh Kupwade Patil, and Leonardo B. Oliveira. 2016. AoT: Au-
thentication and Access Control for the Entire IoT Device Life-Cycle. In Proceed-
ings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM.
ACM. https://doi.org/10.1145/2994551.2994555

Jakob Nielsen. 1993. Usability Engineering. AP Professional.

Job Noorman, Jo Van Bulck, Jan Tobias Mithlberg, Frank Piessens, Pieter Maene,
Bart Preneel, Ingrid Verbauwhede, Johannes Gotzfried, Tilo Miiller, and Felix
Freiling. 2017. Sancus 2.0: A Low-Cost Security Architecture for IoT Devices.
ACM Transactions on Privacy and Security 20, 3 (jul 2017), 1-33. https://doi.org/
10.1145/3079763

Ivan De Oliveira Nunes, Seoyeon Hwang, Sashidhar Jakkamsetti, and Gene
Tsudik. 2022. Privacy-from-Birth: Protecting Sensed Data from Malicious Sensors
with VERSA. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE. https:
//doi.org/10.1109/sp46214.2022.9833737

NXP Semiconductors. 2021. UM10204: 12C-bus specification and user manual.
Technical Report.

Se-Ra Oh, Young-Gab Kim, and Sanghyun Cho. 2019. An Interoperable Access
Control Framework for Diverse IoT Platforms Based on OAuth and Role. Sensors
19, 8 (apr 2019), 1884. https://doi.org/10.3390/s19081884

ON Semiconductor. 2011. 2N7000G: Small Signal MOSFET 200 mApms, 60 Volts.
Technical Report.

ON Semiconductor. 2014. MC74VHC541: Octal Bus Buffer. Technical Report.
Trevor Perrin. 2018. The Noise Protocol Framework. https://noiseprotocol.org/
noise.pdf. Revision 34.

Francesco Pittaluga and Sanjeev Jagannatha Koppal. 2017. Pre-Capture Privacy
for Small Vision Sensors. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39, 11 (nov 2017), 2215-2226. https://doi.org/10.1109/tpami.2016.
2637354

Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. 2020. A
Survey on Access Control in the Age of Internet of Things. IEEE Internet of Things
Journal 7, 6 (jun 2020), 4682-4696. https://doi.org/10.1109/ji0t.2020.2969326

D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and S. Zanero.
2017. An Experimental Security Analysis of an Industrial Robot Controller. In
IEEE Symposium on Security and Privacy.

L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig. 2022. Au-
thentication and Authorization for Constrained Environments Using the OAuth 2.0
Framework (ACE-OAuth). Technical Report. https://doi.org/10.17487/rfc9200
Arvid Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. 2004. Using FIRE and ICE for Detectin and Recovering Compromised Nodes
in Sensor Networks. Technical Report. Carnegie Mellon University.

Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac. 2017. 6thSense: A
Context-aware Sensor-based Attack Detector for Smart Devices. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancouver,
BC, 397-414. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/sikder

Dimitrios Slamaris. 2022. Embedded Systems Security and TrustZone. https:
//embeddedsecurity.io. Accessed: 2023-02-07.

Zhichuang Sun, Bo Feng, Long Lu, and Somesh Jha. 2020. OAT: Attesting Oper-
ation Integrity of Embedded Devices. In 2020 IEEE Symposium on Security and
Privacy (SP). IEEE. https://doi.org/10.1109/sp40000.2020.00042

Texas Instruments. 1999. LMV3xx Low-Voltage Rail-to-Rail Output Operational
Amplifier. Technical Report.

895

(56

[57

(58]

o
20,

[60

[61

[62]

[63

[64

ASIA CCS 24, July 1-5, 2024, Singapore, Singapore

Piet De Vaere and Adrian Perrig. 2019. Liam: An Architectural Framework for
Decentralized IoT Networks. In 2019 IEEE 16th International Conference on Mobile
Ad Hoc and Sensor Systems (MASS). IEEE. https://doi.org/10.1109/mass.2019.00056
Yinxin Wan, Kuai Xu, Feng Wang, and Guoliang Xue. 2022. IoTAthena: Unveiling
IoT Device Activities From Network Traffic. IEEE Transactions on Wireless Com-
munications 21, 1 (jan 2022), 651-664. https://doi.org/10.1109/twc.2021.3098608
Zhiwei Wang, Yihui Yan, Yueli Yan, Huangxun Chen, and Zhice Yang. 2022.
CamShield: Securing Smart Cameras through Physical Replication and Isolation.
In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,
Boston, MA, 3467-3484. https://www.usenix.org/conference/usenixsecurity22/
presentation/wang- zhiwei

Thomas Winkler, Adam Erdelyi, and Bernhard Rinner. 2014. TrustEYE.M4: Pro-
tecting the sensor — Not the camera. In 2014 11th IEEE International Confer-
ence on Advanced Video and Signal Based Surveillance (AVSS). IEEE. https:
//doi.org/10.1109/avss.2014.6918661

Thomas Winkler and Bernhard Rinner. 2010. TrustCAM: Security and Privacy-
Protection for an Embedded Smart Camera Based on Trusted Computing. In 2010
7th IEEE International Conference on Advanced Video and Signal Based Surveillance.
IEEE. https://doi.org/10.1109/avss.2010.38

Thomas Winkler and Bernhard Rinner. 2014. Security and Privacy Protection
in Visual Sensor Networks. Comput. Surveys 47, 1 (may 2014), 1-42. https:
//doi.org/10.1145/2545883

Meng Xu, Manuel Huber, Zhichuang Sun, Paul England, Marcus Peinado, Sangho
Lee, Andrey Marochko, Dennis Mattoon, Rob Spiger, and Stefan Thom. 2019.
Dominance as a New Trusted Computing Primitive for the Internet of Things. In
2019 IEEE Symposium on Security and Privacy (SP). IEEE. https://doi.org/10.1109/
sp.2019.00084

Yupeng Zhang, Yuheng Lu, Hajime Nagahara, and Rin ichiro Taniguchi. 2014.
Anonymous Camera for Privacy Protection. In 2014 22nd International Conference
on Pattern Recognition. IEEE. https://doi.org/10.1109/icpr.2014.715

Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qiuyang Wei, Qinying Wang,
Chenyang Lyu, Xuhong Zhang, Changting Lin, Jingzheng Wu, and Raheem
Beyah. 2022. One Bad Apple Spoils the Barrel: Understanding the Security Risks
Introduced by Third-Party Components in IoT Firmware. https://doi.org/10.
48550/ARXIV.2212.13716

https://developer.arm.com/documentation/100235/0100
https://developer.arm.com/documentation/100235/0100
https://doi.org/10.1145/2523649.2523673
https://doi.org/10.1145/2523649.2523673
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1145/3131672.3131688
https://doi.org/10.1145/2906388.2906391
https://doi.org/10.6028/nist.sp.800-53r5
https://doi.org/10.6028/nist.sp.800-53r5
https://doi.org/10.1145/2994551.2994555
https://doi.org/10.1145/3079763
https://doi.org/10.1145/3079763
https://doi.org/10.1109/sp46214.2022.9833737
https://doi.org/10.1109/sp46214.2022.9833737
https://doi.org/10.3390/s19081884
https://noiseprotocol.org/noise.pdf
https://noiseprotocol.org/noise.pdf
https://doi.org/10.1109/tpami.2016.2637354
https://doi.org/10.1109/tpami.2016.2637354
https://doi.org/10.1109/jiot.2020.2969326
https://doi.org/10.17487/rfc9200
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sikder
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/sikder
https://embeddedsecurity.io
https://embeddedsecurity.io
https://doi.org/10.1109/sp40000.2020.00042
https://doi.org/10.1109/mass.2019.00056
https://doi.org/10.1109/twc.2021.3098608
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-zhiwei
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-zhiwei
https://doi.org/10.1109/avss.2014.6918661
https://doi.org/10.1109/avss.2014.6918661
https://doi.org/10.1109/avss.2010.38
https://doi.org/10.1145/2545883
https://doi.org/10.1145/2545883
https://doi.org/10.1109/sp.2019.00084
https://doi.org/10.1109/sp.2019.00084
https://doi.org/10.1109/icpr.2014.715
https://doi.org/10.48550/ARXIV.2212.13716
https://doi.org/10.48550/ARXIV.2212.13716

	Abstract
	1 Introduction
	2 Preliminaries
	3 Trust & Adversary Model
	4 SA4P Overview
	5 PEG Design
	5.1 Pairing Module
	5.2 Authorization Module
	5.3 Enforcement Module
	5.4 Persistence Module

	6 Security Analysis
	6.1 Pairing Module
	6.2 Authorization Module
	6.3 Enforcement Module
	6.4 Persistence Module
	6.5 Reference Monitor Properties

	7 Implementation
	7.1 Stand-alone Peripheral Guard
	7.2 TrustZone Peripheral Guard

	8 Evaluation
	8.1 Macro-scale Evaluation
	8.2 Micro-scale Evaluation
	8.3 Memory Footprint

	9 Discussion
	9.1 Peripheral Access Latency
	9.2 Tchal, Tauth, and Network Overhead
	9.3 High-Level Context
	9.4 Post-Sampling Access Control
	9.5 Non-Binary Enforcement Modules
	9.6 Protecting Complex Actuators
	9.7 Information Leakage

	10 Related Work
	11 Conclusion
	References

