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Abstract: We study gauge preheating following pseudoscalar-driven inflation in full general
relativity. We implement the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) scheme to solve
the full nonlinear evolution of the metric alongside the dynamics of the pseudoscalar and
gauge fields. The dynamics of the background and emission of gravitational waves are broadly
consistent with simulations in a Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime.
We find large, localized overdensities in the BSSN simulations of order ” = ”fl/fl ≥ 30, and
the dimensionless power spectrum of ” peaks above unity. These overdense regions are seeded
on length scales only slightly smaller than the horizon, and have a compactness C ≥ 0.1. The
scale of peak compactness is shorter than the Jeans length, which implies that pressure of
the matter fields plays an important role in the evolution of these objects.
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1 Introduction

The end of cosmic inflation [1–4] and the subsequent transition to the radiation-dominated
hot Big Bang remains one of the most poorly understood epochs in the evolution of the
Universe. During this reheating epoch, the accelerated expansion of inflation must end, and
the inflaton energy density must be eventually transferred to relativistic degrees of freedom to
begin the hot Big Bang. Because the scales involved are so small — smaller than the Hubble
radius at the end of inflation — information about the reheating epoch is either erased as
the resulting Standard Model plasma achieves thermal equilibrium or is inseparable from the
e�ects of the subsequent nonlinear gravitational evolution of structure formation.

While reheating may be facilitated by perturbative decays of the inflaton to other parti-
cles [5, 6], the homogeneous, oscillating inflaton background can source explosive production
of particles and rapid growth of matter inhomogeneities via preheating [7–10]. The col-
lective dynamics of the oscillating background has long been a fertile ground for model
building and searches for observable signatures of reheating [11–18] (for a review, see ref. [19]).
Possible gravitational relics, such as gravitational waves [20–28], collapsed structures like
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primordial black holes [14, 29–35], or compact mini halos [36, 37], o�er potential probes
into the reheating epoch.

Preheating into gauge fields — gauge preheating — is an extremely violent process.
In models of gauge preheating, e�ectively all of the energy stored in the inflaton can be
transferred into gauge field radiation within a single oscillation of the inflaton about the
minima of its potential [38–45]. This rapid energy transfer is facilitated by a tachyonic
instability in the gauge field sourced by the rolling inflaton field. The tachyonic enhancement
of gauge fields by rolling pseudoscalars (a long-appreciated phenomenon [46–48]) can also
realize strong backreaction on the homogeneous motion of the pseudoscalar inflaton [49, 50],
enabling models of inflation on steep potentials1 [57, 58] and warm inflation [59]. Away from
the regime of strong backreaction, perturbative backreaction of the gauge modes during and
after inflation may produce observable non-Gaussianity [60–64], chiral gravitational waves [64–
74], primordial black holes [75, 76], and primordial magnetic fields [41, 47, 48, 63, 77] and
the baryon asymmetry [73, 78–85].

The strongest e�ects of gauge field production occur when the inflaton rolls the fastest,
which typically occurs at the end of inflation. The large couplings required to produce e�ects
observable on scales accessible to the cosmic microwave background (CMB) or gravitational-
wave interferometers subsequently generate a high-frequency gravitational wave background
during preheating so large that existing bounds on the e�ective number of relativistic species
rules the regime out [86–88].2 The production of large metric perturbations calls into question
whether nonlinear gravitational e�ects can be safely neglected. Since gravitational wave
backgrounds from gauge preheating currently provide the strongest constraint on these models,
it is crucial to test the robustness of prior predictions [86–88] and whether nonlinear gravity
might enhance [96] or suppress [97] the production of gravitational waves. Further, the
production of large metric fluctuations indicates the presence of large inhomogeneities in the
matter sector which may undergo gravitational collapse under the influence of local gravity.
The purpose of this work is to push further the exploration of gravitational signatures of
preheating into the regime of local, nonlinear gravity. To that end, building on the results
of [98], we initiate a study of preheating into gauge fields using the full machinery of numerical
relativity [99–101] to follow the nonlinear evolution of the metric.

In this paper, we demonstrate that preheating probes regions where nonlinear gravitational
e�ects are expected to become important, and we explore the degree to which simulations
that include nonlinear gravity are required to accurately characterize this epoch. In particular,
we perform a careful study of gravitational e�ects during gauge preheating, focusing on the
development of large density inhomogeneities and gravitational wave production. We first
demonstrate that linearized gravity is quickly violated. Then, using numerical relativity,
we follow the evolution of the metric including the e�ects of dynamical gravity to show
that this breakdown of linearized gravity does not signal the formation of black holes. We

1
Recent work has further highlighted an instability in the strong backreaction regime of axion inflation

coupled to gauge fields [51–56], but without nontrivial, ad hoc model constructions such a scenario is

wholly precluded.
2
To avoid these e�ects, rolling spectator fields have been instead invoked to source e�ects on observable

scales today. These fields source transient e�ects and avoid spoiling the inflationary solution and overproducing

gravitational waves at the end of inflation [71, 89–95], but cannot realize reheating after inflation.
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demonstrate that, despite producing regions with very large density contrasts ”fl/fl ≥ 30,
there is nevertheless no evidence that black holes are formed — no horizons are formed in
our simulations. We show that the spatial extent of the regions of large density contrast
are smaller than the Jeans length, which indicates that pressure plays an important role in
their subsequent evolution. Furthermore, their compactness, which is a measure of whether a
region satisfies the so-called ‘hoop-conjecture’ [102], attains a maximum value of C ≥ 10≠1.

The paper is structured as follows. In section 2 we define the model and present the
equations that govern the evolution and amplification of gauge fields during and after inflation.
In section 3 we present results of numerical simulations, focusing on the dynamics of density
and gravitational wave fluctuations as a function of the axion-gauge coupling strength. Our
conclusions and proposed avenues for future work are presented in section 4. The details of
the decomposition of gauge fields in the BSSN formalism are relegated to appendix A, while
appendix B details how our initial conditions are set in perturbation theory in the BSSN
formalism, and finally appendix C describes robustness checks of our results.

We use natural units, which set ~ = c = 1, and define the reduced Planck mass
MPl = 1/

Ô
8fiG. Repeated/contracted Greek spacetime indices are summed via the Einstein

summation convention.

2 Gauge preheating and the BSSN formalism

We consider a pseudoscalar inflaton, Ï, minimally coupled to Einstein gravity, and coupled
to a U(1) gauge field, Aµ, described by the action

S =
⁄

d4
x

Ô
≠g

C
M

2
Pl

2 R ≠ 1
2ÒµÏÒµ

Ï ≠ V (Ï) ≠ 1
4Fµ‹F

µ‹ ≠ X(Ï)
4 Fµ‹F̃

µ‹

D

, (2.1)

where R is the Ricci scalar and Fµ‹ = ÒµA‹ ≠ Ò‹Aµ is the field strength tensor whose dual is

F̃
µ‹ = 1

2‘
µ‹–—

F–— . (2.2)

The Levi-Civita tensor is

‘µ1µ2···µn =
Ô

≠gÁµ1µ2···µn , (2.3)

which is written in terms of the permutation symbol (the Levi-Civita symbol), Áµ1µ2···µn .
We work with the convention that ‘

µ1µ2···µn © sign g Á
µ1µ2···µn/

Ô
≠g, such that Á

µ1µ2···µn ©
Áµ1µ2···µn . Here Òµ denotes the (µ component of) the four dimensional covariant derivative
compatible with the full metric gµ‹ .

We consider a simple toy model of inflation specified by the potential [2]

V = 1
2m

2
Ï

2
. (2.4)

Planck’s best-fit scalar spectral amplitude As ¥ 2.1 ◊ 10≠9 [103] sets m = 6.05 ◊ 10≠6
MPl.

Though inflation driven by a monomial potential is strongly disfavored [104, 105], we choose
a quadratic potential merely to provide a simple model for the inflaton’s dynamics during
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preheating. For further discussion of the e�ects of potential choice on gauge preheating,
see [87]. We consider the standard shift-symmetric, dimension-5 axial coupling between
the pseudoscalar and the gauge field

X(Ï) = –g

MPl
Ï. (2.5)

Numerical investigations of preheating typically employ a homogeneously expanding,
Friedmann-Lemaître-Robertson-Walker (FLRW) background spacetime with metric

g
FLRW
µ‹ = a(·)2

÷µ‹ = a(·)2 diag [≠1, 1, 1, 1] . (2.6)

Here · is conformal time, and the scale factor a(·) evolves according to the Friedmann
equations

H2 ©
3

a
Õ

a

42
= a

2

3M
2
Pl

fl̄ , (2.7)

and
HÕ + H2 = a

2

6M
2
Pl

1
fl̄ ≠ 3P̄

2
. (2.8)

Primes denote a derivative with respect to conformal time, · , and overbars generally indicate
averaged quantities on constant-· hypersurfaces. The (averaged) energy density and pressure
are fl̄ © ≠T̄

0
0 and P̄ © ”

j
i T̄

i
j/3, respectively.

In an FLRW spacetime, the equations of motion for the scalar field and gauge fields are

Ï
ÕÕ + 2HÏ

Õ ≠ ˆiˆiÏ + a
2

3dV

dÏ
+ 1

4
dX

dÏ
Fµ‹F̃

µ‹
4

= 0, (2.9a)

ˆiA
Õ
i ≠ ˆiˆiA0 ≠ ‘

ijk
ˆiX(Ï)ˆjAk = 0, (2.9b)

A
ÕÕ
i ≠ ˆjˆjAi ≠ ˆi

!
A

Õ
0 ≠ ˆjAj

"
≠ ˆµX(Ï)1

2Á
µifl‡

Ffl‡ = 0. (2.9c)

In these equations, repeated Latin (i.e., spatial) indices are implicitly contracted with the
Kronecker delta function. Fixing the (flat-space) Lorenz gauge ÷

µ‹
ˆµA‹ = 0, eq. (2.9b) and

eq. (2.9c) may both be recast into the second-order di�erential equations taking the form

A
ÕÕ
— ≠ ˆiˆiA— ≠ ˆµX(Ï)÷—‹

1
2Á

µ‹fl‡
Ffl‡ = 0. (2.10)

2.1 Numerical relativity
To implement nonlinear gravity, we use the BSSN decomposition [99, 100] where the metric
is decomposed as

g
BSSN
µ‹ =

A
≠–

2 + —l—
l

—j

—i “ij

B

. (2.11)

The lapse – and the shift —
i parameterize (nondynamical) gauge degrees of freedom. Three-

dimensional hypersurfaces are measured by the spatial metric3

“ij = e
4„

“̄ij , (2.12)
3
Note that the overbar in this expression does not refer to a spatial average. In keeping with the notation

in the BSSN community, an overbar here denotes the unit determinant part of the spatial metric.
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which is further decomposed into a conformal factor „ and a unit-determinant spatial metric
“̄ij . We denote spatial covariant derivatives (those compatible with the spatial metric “ij)
with Di, and indicate trace-removed quantities as

X
TF
ij © Xij ≠ 1

3“ij“
mn

Xmn. (2.13)

Three-dimensional hypersurfaces are defined relative to the temporal coordinate t with
normal vector

n
µ = 1

–

1
1, ≠—

i
2

. (2.14)

The evolution of the metric components is specified by the set of first-order di�erential
equations,

ˆt„ = ≠1
6–K + —

i
ˆi„ + 1

6ˆi—
i
, (2.15a)

ˆt“̄ij = ≠2–Ãij + —
k
ˆk“̄ij + “̄ikˆj—

k + “̄kjˆi—
k ≠ 2

3 “̄ijˆk—
k
, (2.15b)

ˆtK = “
ij

DjDi– + –

3
ÃijÃ

ij + 1
3K

2
4

+ –

2M
2
Pl

(fl + S) + —
i
ˆiK, (2.15c)

ˆtÃij = e
≠4„

Ë
≠DjDi– + –

1
Rij ≠ Sij/M

2
Pl

2ÈTF
+ –

1
KÃij ≠ 2ÃilÃ

l
j

2
+ —

k
ˆkÃij

+ Ãikˆj—
k + Ãkjˆi—

k ≠ 2
3Ãijˆk—

k
,

(2.15d)

where Di is the 3-dimensional covariant derivative, K is the trace of the extrinsic curvature
tensor, Ãij is the traceless part of the extrinsic curvature, see eqs. (A.7) and (A.8), and Rij is
the spatial projection of the Ricci tensor. The sources, fl, S, and Sij , are calculated from the
stress-energy tensor, see appendix A.1 for details. The BSSN system introduces new degrees
of freedom so that Einstein’s equations are computationally stable. Numerical solutions must
satisfy the Hamiltonian and momentum constraints,

H = “̄
ij

D̄iD̄je
„ ≠ e

„

8 R̄ + e
5„

8 ÃijÃ
ij ≠ e

5„

12 K
2 + 2fie

5„
fl = 0, (2.16)

and
Mi = D̄j(e6„

Ã
ji) ≠ 2

3e
6„

D̄
i
K ≠ 8fie

10„
S

i = 0, (2.17)

to su�cient precision throughout the simulations.4

Since the lapse – and shift —
i are purely gauge degrees of freedom, we are free to specify

them via convenient evolution equations. To allow for the formation of compact structures,
such as black holes, while also trying to stay near the FLRW background [106] we take a
Bona-Massó slicing condition for the lapse [101, 107],

1
ˆt ≠ —

i
ˆi

2
– = ≠–

2

3 K, (2.18)

4
While the conformal Hubble scale and the Hamiltonian constraint use the same symbol, H, they both are

standard. Throughout the text we will specify which quantity is being considered.
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as well as a hyperbolic gamma driver condition for the shift,

ˆt—
i = 3

4B
i
, (2.19)

ˆtB
i = ˆt�̄i ≠ ÷

2B
i
, (2.20)

where we set ÷ = 100 as a choice that minimizes the violation of the constraints eqs. (2.16)
and (2.17) at late times (see appendix C). In the homogeneous limit, this slicing reduces to

ˆt– = ≠–
2
K

3 = –
2
H, (2.21)

which is the normal conformal-time evolution equation for the scale factor when – æ a.
We track the scalar field Ï and its conjugate momentum, �, which is the component

of its (covariant) four-gradient normal to spatial hypersurfaces,

� © n
µÒµÏ = 1

–

1
Ò0Ï ≠ —

kÒkÏ

2
. (2.22)

We additionally promote the spatial derivatives of the scalar field to dynamical quantities,

Âi © DiÏ, (2.23)

and split the vector potential Aµ into its components along and orthogonal to spatial
hypersurfaces,

A = ≠n
‹
A‹ , (2.24)

and
Aµ = “

‹
µ A‹ , (2.25)

respectively, such that standard four-potential is simply reconstructed as Aµ © Aµ + nµA,
see appendix A.2.2. The electric and magnetic fields are then given by

E
µ = “

µ
‹n–F

‹–
, (2.26)

B
µ = ≠“

µ
‹n–F̃

‹–
. (2.27)

In practice, we can fully evolve the system by evolving A, Am, and the purely spatial vector
E

m. In terms of these variables, the scalar field’s Euler-Lagrange equation, eq. (A.10),
reduces to the first-order system

ˆtÏ = —
m

DmÏ + –�, (2.28a)
ˆtÂm = —

n
ˆnÂm + Ânˆm—

n + –Dm� + �Dm–, (2.28b)
ˆt� = —

m
Dm� + e

≠4„
“̄

mn (–ˆmÂn + Dm–Ân)

+ –

1
K� ≠ e

≠4„
“̄

mn�o
mnÂo

2
+ –

3
≠dV

dÏ
≠ dX

dÏ
EmB

m
4

.

(2.28c)

In the BSSN system, the metric in eq. (2.11) is not conformally related to ÷µ‹ — unlike
the FLRW metric eq. (2.6)—and it is more convenient to chose the covariant Lorenz gauge

Òµ
Aµ + Z = 0. (2.29)
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The auxiliary field Z is a dynamical constraint-damping degree of freedom that can increase
the computational stability of the system [108–111]. In practice, we do not find including Z

meaningfully improves the stability of our simulations, but we retain it below for completeness.
With this choice, the equations of motion for the gauge field sector are

ˆtE
m = —

o
ˆoE

m ≠ E
o
ˆo—

m + ‘
mno

Dn–Bo

+ – (KE
m + ‘

mno
DnBo ≠ J m + D

m
Z) ,

(2.30a)

ˆtAm = —
o
ˆoAm + Aoˆm—

o ≠ – (Em + DmA) ≠ ADm–, (2.30b)
ˆtA = —

o
DoA + – (KA ≠ D

mAm ≠ Z) ≠ Am
Dm–, (2.30c)

ˆtZ = —
o
DoZ ≠ –ŸZ + – (DmE

m ≠ J ) . (2.30d)

Here the “source vector” has components

J = X
Õ(Ï)Bm

DmÏ, (2.31a)
J m = ≠X

Õ(Ï) (�B
m + ‘

mno
DnÏEo) . (2.31b)

Gauss’s law requires the divergence of the electric field satisfy

G = DmE
m ≠ J = 0, (2.32)

which is an additional constraint on the system that must be satisfied throughout the
simulation, see appendix C. Finally the source-terms in eq. (2.15) evaluate to

fl = 1
2�2 + 1

2DmÏD
m

Ï + V (Ï) + 1
2 (EmE

m + BmB
m) , (2.33a)

Sm = ≠�DmÏ + ‘mnoE
n
B

o
, (2.33b)

Smn = DmÏDnÏ ≠ (EmEn + BmBn)

≠ “mn

5
≠1

2�2 + 1
2DiÏD

i
Ï + V (Ï) ≠ 1

2 (EoE
o + BoB

o)
6

,

(2.33c)

S = 3
2�2 ≠ 1

2DmÏD
m

Ï ≠ 3V (Ï) + 1
2 (EmE

m + BmB
m) , (2.33d)

which close the dynamical system.

3 Results

In this section we present the results of our simulations. We begin in section 3.1 by describing
our software and the computational choices we make in our simulations. We then compare the
evolution of the background, including the full e�ects of nonlinear gravity, with our previous
FLRW simulations. We then look for signs that gravity might lead to collapse in section 3.2,
and finally study the resulting gravitational wave spectra in section 3.3.

3.1 GABERel, initial conditions and background evolution

We extend GABERel [98, 112] to treat gauge fields in addition to scalar fields (as presented
in ref. [98]) in full numerical relativity using the BSSN formalism. Such an analysis is the

– 7 –
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only way to assess whether nonlinear gravitational physics is important and whether it leads
to the collapse of gravitationally bound objects.

The BSSN simulations we present here use grids with N
3 = 3843 points and a comoving

box length L = 7.5 m
≠1, with a = 1 at the end of inflation; therefore the initial, physical

box size is L0 = e
≠2

L at the beginning of the simulation. We use the standard fourth-order
Runge-Kutta method for time integration with steps of size �t = �x/10 = L0/(10N). The
spatial discretization uses fourth-order finite-di�erence stencils (with upwind variants for
advective derivatives and centered di�erences otherwise). We begin simulations two e-folds
before the end of inflation, which ensures that even the largest-scale modes in the simulation
begin with nearly Bunch-Davies initial conditions. Each mode has a uniform-random phase
and an amplitude sampled from the Rayleigh distribution with variance set by the Bunch-
Davies vacuum. The fields’ time derivatives are set in the Wentzel-Kramers-Brillouin (WKB)
approximation following the standard prescription [98, 113]. We filter out high-wavenumber
modes from the initial conditions as in ref. [98], setting the cuto� scale to kı = 1/12 · fi

Ô
3/L.

We can also compare the fully nonlinear system to the FLRW system from previous
work. To simulate the FLRW system, we use the same software described in refs. [87, 88],
which also uses a fourth-order spatial discretization and time evolution scheme. Because
FLRW simulations are less computationally expensive, we use grids with N

3 = 5123 points
and a larger box length of L = 15 m

≠1. The initial conditions are cut o� at a wavenumber
kı = 1/2 · fi

Ô
3/L. The FLRW simulations are therefore rather di�erent from the BSSN ones,

not just in the physical content and its representation but also in numerical implementation.
The only quantitative comparisons that can be made between the two are statistical, for which
reason the di�ering choices of simulation volumes and grids are relatively inconsequential.
Indeed, agreement between the two methods (in regimes where it is expected) provides a
robust test of the results’ independence of the numerical procedure.

The axion-gauge field coupling in eq. (2.9a) leads to a tachyonic instability in the gauge
fields whenever „̇0 ”= 0 for momenta that satisfy [46, 48, 57]

aH < k < –g
„̇

f
. (3.1)

During inflation, this tachyonic instability leads to the exponential enhancement of one
(helical) polarization of the gauge field relative to the other. Since the width of the instability
in eq. (3.1) is proportional to the axion velocity, the largest e�ects typically occur near the
end of inflation where the inflaton velocity is the largest. These dynamics complicate the
setting of initial conditions for preheating simulations. As detailed in refs. [87, 88], the initial
conditions are set by solving for the dynamics of the linearized equations of motion of the
background and field fluctuations during inflation, again until two e-folds before inflation
ends. At this time, the initial conditions for gauge field fluctuations hardly depart from
the Bunch-Davies vacuum on the scales present in the simulation (as noted above). The
dynamics of the homogeneous mode of the inflaton, however, are impacted by gauge-field
backreaction; in both FLRW and BSSN simulations we set „̄0 and „̄

Õ
0 using the full numerical

results. We consider values of –g between 8, the smallest for which preheating is e�cient, and
14, which is roughly the largest value currently allowed by �Ne� constraints on gravitational
wave production derived in refs. [86–88].

– 8 –
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Figure 1. Energy fraction in the gauge fields (top panels) and homogeneous component of the
inflaton (bottom panels) for FLRW simulations (left panels) and BSSN simulations (right panels).
Note that at early times (N . 0) the gauge field energy densities di�er between the two methods only
due to the di�ering choice of cuto�s in initial conditions, as the dominant contribution is from vacuum
modes (and unphysical).

The larger the axial coupling, the wider the instability — thereby increasing the e�ciency
by which energy is transferred from the homogeneous mode to the gauge fields. At low
couplings, –g . 9, the gauge fields never fully dominate the energy budget of the Universe
and we consider preheating to be incomplete. At couplings just above, with 9 . –g . 10, the
majority of the energy contained in the homogeneous mode of the inflation is transferred to
the gauge fields, but the process takes several oscillations. If 10 . –g . 12, the homogeneous
mode of the field breaks down during the first oscillation. In this regime, there is a substantial
amount of backreaction onto the modes of the inflaton, as well. For the highest couplings,
–g & 13, resonance is so strong that the homogeneous mode of the field never crosses zero
before it decays. In these cases, backreaction onto the inflaton field is suppressed. At the
highest coupling, the backreaction stalls the evolution of the inflaton on its potential, and
inflation briefly restarts. These four regimes can be seen in figure 1 for the FLRW case (left
panels) which show both the energy contained in the gauge field as a function of time and
the mean of the inflation. More details on this evolution can be found in [87, 88]. The right
panel of figure 1 shows the same quantities when implemented in the BSSN scheme. The
inclusion of nonlinear gravity has little to no e�ect on the qualitative structure of preheating
at the level of the background, for the wide range of parameters we have simulated.
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Figure 2. Statistics of the Newtonian potential calculated passively from FLRW simulations. The
left panel shows the absolute value of the minimum value of the Newtonian potential on each slice,
the right panel shows the square root of the variance of the Newtonian potential across the grid. The
solid horizontal lines denote the value � = 0.25, the point at which linearized gravity breaks down.
Curves are not smooth only because these quantities are calculated at relatively infrequent intervals.

Nonetheless, the system exhibits large density contrasts, especially for larger couplings.
As a first attempt, we can look for local gravitational e�ects using a linearized scheme. In
conformal Newtonian gauge, where the scalar part of the metric is

g
Newt
µ‹ = a(·)2 diag [≠ (1 + 2�) , (1 ≠ 2�) , (1 ≠ 2�) , (1 ≠ 2�)] , (3.2)

we can solve for the Newtonian potential � with the 00 component and the (divergence of)
the 0i components of the Einstein equations. These respectively are

ˆiˆi� ≠ 3H
!
�Õ + H�

"
= a

2

2M
2
Pl

”fl (3.3)

and
ˆiˆi

!
�Õ + H�

"
= ≠ a

2

2M
2
Pl

ˆiT0i, (3.4)

which we solve using the same method as described in [98]. Figure 2 shows the statistics of
the Newtonian potential calculated from our FLRW simulations in figure 1. In this work,
we calculate the Newtonian potential passively — with no feedback onto the evolution of
the fields — to show that the Newtonian potential becomes too large, � > 0.25, to be
able to treat gravity to linear order for the specific situations we consider. At this value,

≠gNewt = a
4 (1 ≠ 4�) locally changes sign and linearized gravity, in conformal Newtonian

gauge, necessarily breaks down.

3.2 Density contrast and gravitational collapse

While the main features of the preheating story remain unchanged in the presence of nonlinear
gravity, we now look to see if the additional nonlinear interactions provided by the gravitational
sector a�ect the modes and scales that participate. Specifically, we search for hints that
these interactions may lead to gravitational collapse.
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The first place we look is at the power spectrum of density fluctuations. In figure 3 we
plot the dimensionless power spectrum of ” © ”fl/fl̄,

�2
” = k

3

2fi2 P”(k), (3.5)

where the power spectrum is defined from the two point correlation function,
+
”(k)”(kÕ)

,
= (2fi)3

”
3(k ≠ kÕ)P”(k). (3.6)

When calculating �2
” we directly Fourier Transform the fl as calculated in eq. (2.33a) on the

hypersurfaces of the simulation and ignore spatial dependence of the conformal factor. This
measure is often cited as the litmus test for the need to incorporate nonlinear e�ects (see, for
example, ref. [114]) as well as a useful measure to determine whether primordial black holes
are produced. This statistic was first used as a way to diagnose potential primordial black
hole formation in ref. [115] and continues to be used, see, for example, refs. [31, 116].

Figure 3 shows that, in many cases, dimensionless power spectra are of order �2
”(k) ≥ 1

for large –g. This is reinforced by the fact that perturbation theory breaks down at these
times; more precisely, in cases where ”(k) approaches unity, the linearized Einstein’s equations
are violated as we saw in figure 2 [106].

As one would expect, the simulations with nonlinear gravity show more numerical e�ects
at high wavenumber; nonetheless, the physical parts of the power spectra are very consistent
with the FLRW counterparts. The only exception to this is, perhaps, the very highest values
of the self-coupling where there seems to be somewhat higher power at lower scales and
somewhat lower power at intermediate scales. We speculate that this is due to the fact that
local gravity can lead to some clumping in the nonlinear simulations.

In order for clumps to actually collapse into black holes, overdensities must overcome
their own internal pressure. In linear theory, the Jeans scale is used to determine whether
the scales of interest can collapse. Modes with wavelength longer than the Jeans length
undergo gravitational collapse, while those with shorter wavelength are pressure supported.
This scale defines to the (physical) Jeans scale,

k
phys
J = 2fi

⁄J
= 2fi

Û
flG

c2
s

=
Û

3H2

2fic2
s
, (3.7)

where c
2
s = ”P/”fl is the sound speed. The comoving Jeans scale is kJ = ak

phys
J . Since the

gauge fields are the main component of the universe, we estimate c
2
s = 1/3 to approximate the

sound speed for a radiation fluid. At the end of our simulations — where the power spectra
in figure 3 are evaluated — the Jeans scale kJ is much smaller than the peak frequency of the
dimensionless power spectrum of the density fluctuations. This indicates that the radiation
pressure of the gauge fields is playing an important role in the evolution of these structures.
To use –g = 13 and –g = 14 as examples, we can track the location peak of the dimensionless
power spectrum throughout simulation which we can compare to the Jeans scale and the
Hubble scale as can be seen in figure 4. The di�erences in the evolution of the comoving
scales is due to the fact that, for the largest coupling, the gauge field backreaction briefly
restarts inflation. Figure 4 shows us that Jeans-scale modes are excited near the end of
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Figure 3. Spectra of density fluctuations ” = ”fl/fl̄ in simulations with axial coupling – varying by
panel, comparing results from simulations implementing full general relativity via the BSSN scheme
(solid blue lines) and FLRW simulations (dashed red). All results are evaluated two e-folds after the
end of inflation. The smaller, higher-frequency peak in the FLRW simulations are a numerical artifact
that corresponds to the scale of the cuto� of the initial conditions.

inflation; however, these modes are still small. As the density contrast grows, the peak of the
power spectrum moves to slightly larger comoving wavenumber, while the comoving Jeans
scale shrinks. By the time we reach two e-folds after the end of inflation, the peak mode of
the power spectrum is approximately a factor of five larger than the Jeans scale.

A number of di�erent tools are used to identify the existence of black holes when
studying critical collapse in numerical relativity [101]. In 1 + log slicing, where (ˆt + —

i
ˆi)– =

≠2–K, the vanishing of the lapse – can sometimes be used as an indicator that black holes
have formed [117–123]. The same is true for our slicing condition, eq. (2.18), where the
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Figure 4. The comoving Jeans scale compared to the dimensionless power spectrum. The left panels
show the range of modes in the peak-most power-bin of the dimensionless power spectrum (blue,
shaded region) compared to the Jeans scale (red), the Hubble scale (green), and the longest resolvable
mode in the box (black). We only calculate the location of the peak of the dimensionless power
spectrum and the Jeans length after the end of inflation when the power spectrum raises above its
initialized shape and we can approximate the Universe as radiation dominated. The right panels show
the dimensionless power spectrum at the end of inflation (blue, dashed lines) and two e-folds after the
end of inflation (blue, solid lines) with vertical lines showing the Jeans corresponding jeans scale at
the end of inflation (red, dashed lines) and two e-folds after the end of inflation (red, solid lines). The
top panels correspond to –g = 13 and the bottom panels correspond to –g = 14.

only di�erence is the background clock which is constructed to mimic a conformal-time
FLRW solution in the homogeneous limit. In the weak gravity limit, we can compute the
inhomogeneity of – to measure how much our slices vary from the FLRW limit, with smaller
values of – corresponding to deeper gravitational wells. Figure 5 shows 2-dimensional slices of
three di�erent simulations evaluated two e-foldings after the end of inflation. In these figures
we can see spatial variation in the density contrast — which is often large, O(10). The lapse,
however, does not deviate much more than O

!
10≠1"

. We can extend this to a statistical
test by calculating the variance of the density contrast ” and the lapse – throughout the
simulation. As we can see in figure 6, the variance of the lapse increases with the size of the
axial coupling –g. However, the deviation from the average is never larger than O(0.3).

As a final metric, we look to determine whether regions in our simulations have passed
thresholds that one might consider su�cient to produce black holes. We begin by examining
just one of the more dramatic runs and calculating the compactness [124–127] generalized

– 13 –



J
C
A
P
0
3
(
2
0
2
4
)
0
1
7

10�1

100

�/
�̄

�g = 10 �g = 12 �g = 14

0.85

0.90

0.95

1.00

1.05

1.10

�
/
��

�
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to its average over all space; bottom panels), –/ È–Í. Columns display results for simulations with
axial coupling –g = 10, 12, and 14 from left to right. All results are evaluated two e-folds after the
end of inflation.

to an expanding spacetime [128]

C(R) = G”M

R
(3.8)

to calculate whether the overdensities on the final slice indicate that black holes might form.
In eq. (3.8) ”M is the instantaneous over-mass enclosed in some (proper) radius, R. That
is, we subtract o� the background density when computing the mass. Note that we use a
di�erent definition of compactness than that in ref. [129], where the authors measure the
total integrated fl within a (not necessarily spherical) region where fl/fl̄ > 5%, although both
definitions reduce to a statement of the hoop conjecture [102] about a spherically symmetric
overdensity and when fl/fl̄ ∫ 1.

To test this, we look at the final slice for the largest coupling we test, –g = 14, and
compute the compactness of the largest over-density in the box. Centering coordinates about
the location of maximum ”(x), we can calculate the enclosed over-mass

”M(R) = fl̄

⁄ R

0

Ô
“ (” ≠ 1) r

2
dr = fl̄�x

3 ÿ

i

Ô
“i (”(xi) ≠ 1) , (3.9)

and, following [129], we approximate the radius of this overdensity from V = 4R
3
/3fi,

R =
33fi

4

41/3 A⁄ R

0

Ô
“r

2
dr

B1/3
=

33fi

4

41/3 A

�x
3 ÿ

i

Ô
“i

B1/3
. (3.10)
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Figure 6. Dynamics of energy transfer and the metric lapse during preheating. Plotted is the fraction
of energy in the gauge fields, fl̄A/fl̄ (solid blue, with scale given by the left of each panel) and the
root-mean-squared and maximum deviation of the lapse from its average over space (solid green and
transparent, dashed green, respectively, with scale given by the right of each panel). Each panel
corresponds to a simulation with axial coupling strength indicated on the plot.

In both eq. (3.9) and eq. (3.10) the final sum is over all points inside a given radius r. Figure 7
shows the compactness as a function of distance away from the center — a measure that is
maximized around C ≥ 10≠1, yet is still smaller than the critical value of 1/2. In figure 7 we
also plot the FLRW approximation to the compactness where ”MFLRW = a

3
fl̄�x

3 q
i (”i ≠ 1)

and RFLRW = a�x where the scale factor is calculated in the FLRW limit, a
2 = ¯

e4„, see
appendix B.
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largest overdensity present in the final slice of the simulation with –g = 14 (black, solid). We also plot
the FLRW approximation to the compactness (red, dashed). The right panel shows the z = constant
slice through the center of the overdensity.

3.3 Gravitational waves
One of the most striking features of gauge preheating is the strength of the production of
gravitational radiation. During and after gauge preheating, gravitational wave production
can be so strong that the resulting radiation density stored in gravitational waves leads to a
shift in the e�ective number of relativistic species Ne� that is large enough to be measured
or constrained by current and future CMB experiments [86–88]. In some models, the shift
is large enough that the allowed values of the axial coupling are already constrained by
existing CMB measurements. These results were obtained using numerical simulations that
ignore the backreaction of these large metric fluctuations. In this section, we explore the
robustness of predictions of gravitational wave production during gauge preheating in the
regime where gravity is nonlinear.

Gravitational waves are the traceless part of the spatial metric, and are contained in
“̄ij . In FLRW simulations, the gravitational wave spectrum is computed passively — see,
e.g. [24], by calculating the transverse-traceless parts of the matter stress tensor,

T
TT
ij =

3
PilPjm ≠ 1

2PijPlm

4
Tlm, (3.11)

where P is the projection operator,

Pij = ”ij ≠ kikj

k2 . (3.12)

This sources the transverse-traceless part of the metric via Einstein’s equations

⇤hij = 16fiG T
TT
ij . (3.13)

We can then calculate the power in gravitational waves from the gravitational wave stress-
energy tensor [102]

T
GW
µ‹ = 8fiG

e
h

TT
ij,µh

ij
‹

TTf
(3.14)
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where

fl
FLRW
gw = 8fiG

---hTT
ij,0

---
2

. (3.15)

The energy density in gravitational waves at the time of emission is then given by

�FLRW
gw (k) © 1

fl

dflgw
d ln k

= 1
24fi2L3

k
3

H2
ÿ

i,j

---hÕ
ij(k, ·))

---
2

. (3.16)

Since the BSSN system evolves the entire metric by solving the full nonlinear Einstein
equations, the gravitational wave spectrum can be directly extracted by projecting out the
transverse-traceless part of the extrinsic curvature, h

Õ
ij ¥ ≠2Ãij [96]. The BSSN analog

to eq. (3.16) is then

�BSSN
gw (k) = 3

2fi2L3
k

3

ÈKÍ2
ÿ

i,j

---Ãij(k, t)
---
2

, (3.17)

which is analogous to the quantities used in refs. [97, 130].
The spectral energy density of gravitational waves today can be calculated using the

standard transfer functions [21, 22], assuming that the signal is evaluated during a radiation-
dominated period and remains radiation dominated until matter-radiation equality. The
spectral energy density today is given by

�GW,0h
2 = �rad,0h

2
3

gıS(a0)
gıS(ar)

41/3
�GW(a), (3.18)

and the frequency by

f = k/2fia

fl(a)1/4 flr(a0)1/4
3

gı(ar)
gı(a0)

41/4 3
gıS(ar)
gıS(a0)

4≠1/3
(3.19)

= 3.2 ◊ 1010 Hz k/a


H(a)MPl

3
gı(ar)/gı(a0)

100

4≠1/12
. (3.20)

In the preceding expressions gı is the number of ultra-relativistic degrees of freedom evaluated
at reheating (ar) or today (a0). For simplicity, we take gı(ar)/gı(a0) ¥ 100.

In figure 8 we show the gravitational wave spectra from simulations of gauge preheating
in both full nonlinear gravity, as well as in rigid FLRW spacetime. Despite the presence of
strong nonlinearities, we observe remarkably consistent outputs across the range of couplings
we considered. These results suggest that neglecting nonlinear gravity has at most an O(1)
e�ect on the resulting gravitational wave spectrum, even in regions where the metric is
highly nonlinear.

4 Conclusions

In this paper we have extended studies of gauge preheating after pseudoscalar-driven inflation
to include the e�ects of nonlinear gravitation. To facilitate this study, we implemented
numerical relativity using the BSSN formalism in our simulation software.
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Figure 8. Present-day gravitational wave spectra in simulations with axial coupling –g varying by
panel, comparing results from simulations implementing full general relativity via the BSSN scheme
(solid blue lines) and FLRW simulations (dashed red). All results are evaluated two e-folds after the
end of inflation.

The evolution of the energy density and fields was nearly indistinguishable from sim-
ulations done in a FLRW spacetime. Including the e�ects of nonlinear gravity made no
qualitative di�erence in the value or evolution of the averaged background quantities, such
as the expansion rate, the average value of the scalar field, or the energy densities of the
scalar and gauge fields.

In our FLRW simulations we observed the emergence of regions with very large fractional
overdensities ”fl/fl, which routinely exceeded unity. The existence of these regions leads to
the failure of linearized gravity, requiring software that properly treats evolution of the metric
into the nonlinear regime. In our BSSN simulations, we observe power being shifted from
large to small scales due to the gravitational interactions.
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In our highest-coupling BSSN runs, we found regions with fractional overdensities as
large as ”fl/fl ≥ 30. However, despite the development of these large density contrasts we
found no evidence for the formation of black holes such as the presence of horizons or the
vanishing of the lapse function. Closer examination of these simulations revealed that the
scales where the density power spectrum peaks are within the Jeans length. This suggests
that pressure of the radiation plays an important role in the evolution and stability or
instability of these very overdense regions. We also computed the compactness of these
regions, and found that it peaks at values C ≥ 10≠1, which is somewhat below the level
required to make a black hole of C ≥ 0.5.

We also studied the resulting spectrum of gravitational waves in these scenarios. A key
result of our earlier work was the prediction of a very large gravitational wave signal at the
strongest couplings. Our simulations in full nonlinear gravity revealed the robustness of our
original FLRW simulations of gravitational wave production.

Looking further ahead, our BSSN simulations of gauge preheating end sooner than would
be ideal, owing to the large increase in the volume of the box over the course of four e-foldings
of expansion and the movement of power to large wave number after this time. We plan to
investigate the dynamics of the large overdense regions to study their fate. In particular,
it would be interesting to investigate whether the large overdensities subsequently undergo
gravitational collapse, or whether they simply decay. Our simulations have so far focused on
the large density fluctuations that are generated on sub-horizon scales during reheating. These
are necessarily inside the Jeans length at production. It would be interesting to study the
horizon reentry of large curvature perturbations that are produced near the end of inflation
in these models to see if their collapse to black holes can be verified in full general relativity.
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A BSSN decomposition

In this appendix we present the details of our decomposition of the gauge fields in the BSSN
formalism. We begin by detailing the 3 + 1 decomposition of the metric and the foliation
of the spacetime in appendix A.1, before detailing the equations of motion for the scalar
and gauge fields in appendix A.2, and the derivation of the stress-energy tensor and sources
for the evolution of the BSSN system in appendix A.3.

A.1 3 + 1 decomposition

The line element in 3 + 1 form is

ds
2 = ≠–

2dt
2 + “ij

1
dx

i + —
idt

2 1
dx

j + —
jdt

2
, (A.1)

where the lapse – and shift —
i parameterize gauge degrees of freedom, while the spatial

metric “ij and “
ij are used to lower and raise indices of spatial tensors. The lapse and shift

define the normal vector to hypersurfaces,

n
µ = 1

–

1
1, ≠—

i
2

. (A.2)

From the normalization condition of the normal vector, nµn
µ = ≠1, we can calculate

its inverse,

nµ = (≠–, 0, 0, 0). (A.3)

The projector onto spatial hypersurfaces is

“
µ

‹ = ”
µ

‹ + n
µ
n‹ . (A.4)

The 3-dimensional covariant derivative is

Dµf © “
‹

µ Ò‹f, (A.5)

which is expressed via the 3-dimensional connection coe�cients,

�i
jk = 1

2“
il (ˆk“lj + ˆj“lk ≠ ˆl“jk) . (A.6)

The extrinsic curvature tensor is

Kµ‹ = ≠“
–

µ “
—

‹ Ò–n—, (A.7)

and its trace is

K © g
µ‹

Kµ‹ = ≠Ò–
n–. (A.8)
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A.2 Equations of motion

For completeness, we generalize the action eq. (2.1) to include a kinetic coupling W (Ï),

S =
⁄

d4
x

Ô
≠g

C
M

2
Pl

2 R ≠ 1
2ÒµÏÒµ

Ï ≠ V (Ï) ≠ W („)
4 Fµ‹F

µ‹ ≠ X(Ï)
4 Fµ‹F̃

µ‹

D

. (A.9)

A.2.1 Scalar fields
Starting with the action eq. (A.9), the Euler-Lagrange equation for the scalar field is

≠ÒµÒµ
Ï = ˆL

ˆÏ
= ≠dV

dÏ
≠ 1

4
dW

dÏ
Fµ‹F

µ‹ ≠ 1
4

dX

dÏ
Fµ‹F̃

µ‹
. (A.10)

To rewrite this in the 3 + 1 form, we must first decompose ÒµÏ into its parts normal to
(�) and lying in (DµÏ) spatial hypersurfaces,

Ò‹Ï = D‹Ï ≠ n‹�. (A.11)

This defines the scalar’s conjugate momentum,

� © n
µÒµÏ = 1

–

1
Ò0Ï ≠ —

kÒkÏ

2
. (A.12)

A similar expansion of the covariant d’Alembertian yields

ÒµÒµÏ = 1
–

“
ij

Di–DjÏ + “
ij

1
ˆiDjÏ ≠ �k

ijDkÏ

2
+ K� ≠ 1

–

1
ˆt� ≠ —

k
Dk�

2
. (A.13)

Rearranging eq. (A.10) into an explicit evolution equation for �,

ˆt� = —
k
Dk� + “

ij (–ˆiDjÏ + Di–DjÏ) + –

3
K� ≠ “

ij�k
ijDkÏ ≠ ˆL

ˆÏ

4
, (A.14)

while solving eq. (A.12) for ˆtÏ yields

ˆtÏ = —
k
DkÏ + –�. (A.15)

To increase numerical stability, we promote the spatial derivatives of the scalar field
to dynamical degrees of freedom themselves,

Âi © DiÏ. (A.16)

These evolve according to the gradient of eq. (A.15),

ˆtÂi = —
k
ˆkÂi + Âkˆi—

k + –Di� + �Di–. (A.17)

Using this variable, eq. (A.14) becomes

ˆt� = —
k
Dk� + “

ij (–ˆiÂj + Di–Âj) + –

3
K� ≠ “

ij�k
ijÂk ≠ ˆL

ˆÏ

4
, (A.18)

which gives us the full system, eq. (2.28).
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A.2.2 Gauge fields
Again, starting with the model eq. (A.9), the Euler-Lagrange equations for the gauge field are

0 = W (Ï)Ò–
F–— + ˆ

–
W (Ï)F–— + ˆ

–
X(Ï)F̃–—, (A.19)

which may be rearranged into canonical form as

ÒµF
µ‹ = ≠ 1

W (Ï)
1
ˆµW (Ï)F µ‹ + ˆµX(Ï)F̃ µ‹

2
© ≠J

‹
. (A.20)

In the last line we define the “source vector” J
‹ to encode the coupling to the scalar.

To recast these into the BSSN formalism, we begin by splitting the vector potential Aµ

into its components along and orthogonal to spatial hypersurfaces,

Aµ © Aµ + nµA, (A.21)

where Aµ = “
‹

µ A‹ and A = ≠n
‹
A‹ . The electric and magnetic fields are

E
µ = “

µ
‹n–F

‹– (A.22)
B

µ = ≠“
µ

‹n–F̃
‹– (A.23)

= 1
2‘

µ–fl“
n–F“fl. (A.24)

In terms of these variables, the field tensor is

Fµ‹ = nµE‹ ≠ n‹Eµ + DµA‹ ≠ D‹Aµ, (A.25)

or equivalently

F
µ‹ = n

µ
E

‹ ≠ n
‹
E

µ + n‡‘
‡µ‹fl

Bfl. (A.26)

We also decompose the source vector analogously to the gauge field, eq. (A.21):

J
µ © J µ + n

µJ . (A.27)

We can extend the gauge field system to include a constraint damping field Z as [108–111]

ÒµF
µ‹ + J

‹ ≠ 1
W (Ï) (Ò‹

Z ≠ Ÿn
‹
Z) = 0 (A.28a)

and
Òµ

Aµ + Z = 0. (A.28b)

We can now set Lorenz gauge, Òµ
Aµ + Z = 0, to obtain the evolution equation for A.

Expanding the covariant divergence in terms of the 3 + 1 decomposition and rearranging gives

ˆtA = —
k
DkA + –

1
KA ≠ D

iAi ≠ Z

2
≠ AiD

i
–. (A.29)

The dynamics of Ai follow from the definition of Ei:

ˆtAi = —
k
ˆkAi + Akˆi—

k ≠ ADi– ≠ – (Ei + DiA) . (A.30)
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The electric field’s own evolution equation comes from the projection of Maxwell’s equation
eq. (A.28a) onto spatial hypersurfaces,

ˆtE
i = —

k
ˆkE

i ≠ E
k
ˆk—

i + –

3
KE

i ≠ J i + 1
W (Ï)D

i
Z

4
+ ‘

ijk
Dj (–Bk) . (A.31)

Note that the latter term may be rewritten as

‘
ijk

Dj (–Bk) = Dj (–DiAj ≠ DjAi) . (A.32)

The spatial component of the source vector evaluates to

J i = 1
W (Ï)

3dW

dÏ

Ë
�E

i ≠ ‘
ijk

DjÏBk

È
+ dX

dÏ

Ë
≠�B

i ≠ ‘
ijk

DjÏEk

È4
. (A.33)

Finally, when the constraint damping field Z = 0, the component of eq. (A.19) normal
to spatial hypersurfaces yields Gauss’s law,

DiE
i = J , (A.34)

where

J = ≠ 1
W (Ï)

3dW

dÏ
E

i
DiÏ ≠ dX

dÏ
B

i
DiÏ

4
. (A.35)

When including the constraint damping field, this equation instead specifies the dynamics
of Z. Namely, eq. (A.34) reads

DµE
µ ≠ J ≠ 1

W (Ï)

3 1
–

Ë
ˆtZ ≠ —

k
DkZ

È
+ ŸZ

4
= 0, (A.36)

yielding the evolution equation

ˆtZ = —
k
DkZ ≠ –ŸZ + –W (Ï)

1
DiE

i ≠ J
2

. (A.37)

A.3 Stress-energy tensor

The 3 + 1 Einstein equations are written in terms of the following projections of the stress-
energy tensor (see, e.g. [101]):

fl © n
–
n

—
T–— (A.38a)

Sµ © ≠“
–

µ n
—
T–— (A.38b)

Sµ‹ © “
–

µ “
—

‹ T–— (A.38c)
S © “

–—
S–—. (A.38d)

By construction, Sµ and Sµ‹ are spatial.
We write the total stress tensor as a sum of contributions from the scalar and gauge

field, Tµ‹ © T
Ï
µ‹ + T

A
µ‹ . The scalar-field stress-energy tensor,

T
Ï
µ‹ = ÒµÏÒ‹Ï + gµ‹

3
≠1

2ˆ–Ïˆ
–
Ï ≠ V (Ï)

4
, (A.39)
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decomposes as

fl
Ï = 1

2�2 + 1
2DiÏD

i
Ï + V (Ï) (A.40a)

S
Ï
µ = ≠�DµÏ (A.40b)

S
Ï
µ‹ = DµÏD‹Ï ≠ “µ‹

3
≠1

2�2 + 1
2DiÏD

i
Ï + V (Ï)

4
(A.40c)

S
Ï = 3

2�2 ≠ 1
2DiÏD

i
Ï ≠ 3V (Ï). (A.40d)

The stress-energy tensor for the gauge field is

T
A
µ‹ = g

–—
Fµ–F‹— ≠ gµ‹

1
4F–—F

–—
, (A.41)

and its 3 + 1 components are

fl
A = W (Ï)

2 (E–E
– + B–B

–) (A.42a)

S
A
µ = W (Ï)‘µ–flE

–
B

fl (A.42b)

S
A
µ‹ = W (Ï)

3
≠EµE‹ ≠ BµB‹ + 1

2“µ‹ (E–E
– + B–B

–)
4

(A.42c)

S
A = W (Ï)

2 (E–E
– + B–B

–) . (A.42d)

B Perturbation theory

In this appendix, we detail perturbation theory in the BSSN formalism and describe how
we set initial conditions in the BSSN code.

B.1 Metric perturbations

We define the perturbed metric

gµ‹ © a(·)2 (÷µ‹ + hµ‹) (B.1)

where hµ‹ is a small perturbation with scalar-vector-tensor decomposition

h00 = ≠E (B.2a)
hi0 = ˆiF + Gi (B.2b)
hij = A”ij + ˆiˆjB + ˆiCj + ˆjCi + Dij . (B.2c)

Here Ci and Gi are transverse vectors — namely, ˆiCi = 0 and ˆiGi = 0 — and Dij is
transverse (ˆiDik = 0) and traceless (Dii = 0).
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We expand the BSSN variables to linear order about a homogeneous and isotropic
background spacetime as

– = –0 + ”– (B.3a)
—

i = 0 + ”—
i (B.3b)

„ = „0 + ”„ (B.3c)
“̄ij = ”ij + ”“ij (B.3d)
K = K0 + ”K (B.3e)

Ãij = 0 + aij . (B.3f)

Expanding the BSSN metric in these variables, we identify

e
4„0 = –0(·)2 (B.4)

or
„0 = ln –0

2 , (B.5)

and
”–

–0
= E (B.6)

—i = a(·)2 (ˆiF + Gi) (B.7)
4”„ = A (B.8)
”“ij = ˆiˆjB + ˆiCj + ˆjCi + Dij . (B.9)

We can linearize the equation of motion for “̄ij to obtain

ˆt“̄mn = ≠2–0amn + ”moˆn”—
o + ”onˆm”—

o ≠ 2
3”mnˆo”—

o
, (B.10)

which allows us to identify gravitational waves (in the linearized theory) as

ˆtDmn = ≠2–0a
TT
mn (B.11)

The trace of the extrinsic curvature, K, expands to

K © ≠ 6
–

ˆt„ = ≠ 6
–0

3
1 ≠ ”–

–0

4
(ˆt„0 + ˆt”„) (B.12)

= ≠ 6
–0

3
ˆt„0 + ˆt”„ ≠ ˆt„0

”–

–0

4
. (B.13)

The background component is

K0 = ≠ 6
–0

ˆt„0, (B.14)

which, using eq. (B.4), corresponds to the (cosmic-time) Hubble parameter H = H/a via

K0 = ≠6
a

ˆt ln a

2 = ≠3ˆta

a2 = ≠3H, (B.15)

remembering that ˆt in the BSSN formalism corresponds to conformal time for our particular
gauge choices.
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B.2 Initial conditions

The linearized tensor parts of aij and ”“ij , eq. (B.3), comprise genuine, propagating degrees
of freedom, so their initial condition is specified independent of constraints. We therefore
choose Dij = 0 and D

Õ
ij = 0 from eq. (B.2) initially. The remaining degrees of freedom are

either gauge choices or set by constraints. We take —
i = ”—

i = 0 as an initial condition.
Correspondingly, we set F = 0 and Gi = 0 from eq. (B.2), amounting to the fixing of two
vector and one scalar gauge modes. The initial conditions are simplest to solve for when
taking B = 0 as the final gauge choice.

We define the short-hand

y(x) = 1
Ò2 f(x) ©

⁄ d3
k

(2fi)3
e

ik·x

≠k2

⁄
d3

y e
≠ik·y

f(y) (B.16)

to denote the solution to Poisson’s equation, Ò2
y(x) = f(x). The constraint on the vectors

may be solved straightforwardly via

1
2–0

ˆtCm = ≠ 1
M

2
Pl

1
Ò2 Sm. (B.17)

This sets the vector contribution amn as ≠ˆ(nˆtCm)/2–0. For the scalar degrees of freedom,
with B = 0 one may directly solve the scalar part of the momentum constraint as

”K = ≠ 3
2M

2
Pl

1
Ò2 ˆmSm. (B.18)

With this solution, we can compute

”Â

Â0
= Â

4
0

Ò2

A
1
6K0”K ≠ 1

4M
2
Pl

”fl

B

. (B.19)

Finally, Gauss’s law expands to

J = ˆiE
i = ˆiˆtAi ≠ ˆiˆ

iA, (B.20)

and, since we take ˆiˆtAi = 0 initially, we satisfy this constraint by setting

A = ≠ 1
Ò2 J . (B.21)

C Robustness checks

For the six BSSN simulations presented here, we calculate the violation of the Hamiltonian
and momentum constraints, eqs. (2.16) and (2.17), and of Gauss’ Law, eq. (2.32), to ensure
that we stay on the solution surface of the problem. In figure 9 we plot these constraints vs
N © ln a to show that they are bounded throughout the simulation. For the results presented
in this work, we take a conservative cuto� of N = 2 as a final time. This allows us to consider
all of the BSSN simulations in regime where the constraints are small. In addition, the results
in section 3 are well reproduced by simulations with 2563 rather than 3843 grid points; the
latter is the largest grid that is computationally tractable with our resources. We choose
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Figure 9. Statistics of violations of the Hamiltonian [H, eq. (2.16)], momentum [Mi, eq. (2.17)], and
Gauss [G, eq. (2.32)] constraints. Note that we in the main text we only present results up to N = 2.
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this largest grid for our main results in order to maximize the range in scales over which the
BSSN results may be reliably compared to the FLRW results, e.g., in figure 3.

For FLRW simulations, the first Friedmann equation, H
2 = fl/3M

2
Pl, serves as a constraint

that measures the analog of energy conservation in flat space; the simulations satisfy it to one
part in 104 or better. The gauge constraints are likewise satisfied to one part in 103 ÷ 102 (see
refs. [40, 41, 86, 87] for further discussion of the robustness of these methods). The FLRW
results are all consistent with those of lower-resolution simulations presented in refs. [86–88].
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