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CONSTRUCTING MULTICUSPED HYPERBOLIC MANIFOLDS
THAT ARE ISOSPECTRAL AND NOT ISOMETRIC

BENJAMIN LINOWITZ

In a recent paper Garoufalidis and Reid constructed pairs of 1-cusped hyperbolic 3-manifolds which are
isospectral but not isometric. We extend this work to the multicusped setting by constructing isospectral
but not isometric hyperbolic 3-manifolds with arbitrarily many cusps. The manifolds we construct have
the same Eisenstein series, the same infinite discrete spectrum and the same complex length spectrum.
Our construction makes crucial use of Sunada’s method and the strong approximation theorem of Nori
and Weisfeiler.

1. Introduction

In 1966 Kac [11] famously asked “Can one hear the shape of a drum?” In other words, can one deduce
the shape of a planar domain given knowledge of the frequencies at which it resonates? Long before
Kac had posed his question mathematicians had considered analogous problems in more general settings
and sought to determine the extent to which the geometry and topology of a Riemannian manifold is
determined by its Laplace eigenvalue spectrum.

Early constructions of isospectral nonisometric manifolds include 16-dimensional flat tori (Milnor [15]),
compact Riemann surfaces (Vignéras [24]) and lens spaces (Ikeda [10]). For an excellent survey of the
long history of the construction of isospectral nonisometric manifolds we refer the reader to [8].

In this paper we consider a problem posed by Gordon, Perry and Schueth [9, Problem 1.2]: to construct
complete, noncompact manifolds that are isospectral and nonisometric. This problem has received a
great deal of attention in the case of surfaces. For example, Brooks and Davidovich [1] were able to use
Sunada’s method [20] in order to construct a number of examples of isospectral nonisometric hyperbolic
2-orbifolds. For more examples, see [9].

In a recent paper Garoufalidis and Reid [5] constructed the first known examples of isospectral
nonisometric 1-cusped hyperbolic 3-manifolds. The main result of this paper extends the work of
Garoufalidis and Reid to the multicusped setting:

Theorem 1.1. There exist finite volume orientable n-cusped hyperbolic 3-manifolds that are isospectral
and not isometric for arbitrarily large positive integers n.

Moreover, the manifolds we construct will be shown to have the same Eisenstein series, the same
infinite discrete spectrum and the same complex length spectrum.
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2. Preliminaries

Given a positive integer d > 2 we define H? to be d-dimensional hyperbolic space, that is, the connected
and simply connected Riemannian manifold of dimension d having constant curvature —1. Let I" be a
torsion-free discrete group of orientation preserving isometries of H such that the quotient space H¢/I"
has finite hyperbolic volume. Thus M = H“/ T is a finite volume orientable hyperbolic d-manifold.

There exists a compact hyperbolic d-manifold M’ with boundary (possibly empty) such that the
complement M — M’ consists of at most finitely many disjoint unbounded ends of finite volume, the cusps
of M. Each cusp is homeomorphic to N x (0, co) where N is a compact Euclidean (d — 1)-manifold.

Let A denote the limit set of I' (i.e., the set of limit points of all the orbits of the action of I on H¢). A
point ¢ € A is called a parabolic limit point if it is the fixed point of some parabolic isometry y € I'. The
stabilizer ', < T" of such a c is called a maximal parabolic subgroup of . A cusp of I is a I"-equivalence
class of parabolic limit points and will be denoted by [c]r. We will omit the subscript when the group is
clear from context. The correspondence between cusps of M and cusps of I' is given by the fact if C is a
cusp of M then C may be identified as C = V,./ " where V. C H¢ is a precisely invariant horoball based
at ¢ for some cusp [c] of I

3. Spectrum of the Laplacian
It is known that the space L>(M) has a decomposition

L*(M)=L2, (M) L2, (M)

con

where L2, (M) corresponds to the discrete spectrum of the Laplacian on M and L? (M) corresponds to
the continuous spectrum of M. The discrete spectrum of M is a collection of eigenvalues 0 <A} <A, <---
where each A ; occurs with a finite multiplicity. The continuous spectrum of M is empty when M is
compact and otherwise is a union of finitely many intervals (one for each cusp of M) of the form

[1(d—1)? 00).

When M is compact it is known that the discrete spectrum is infinite and obeys Weyl’s asymptotic
law. The precise analogue of Weyl’s asymptotic law is in general not available when M is not compact,
though it is known in the case that I" is an arithmetic congruence group [19; 21; 22; 23].

The following elementary lemma will be useful in proving that certain manifolds have infinite discrete
spectrum:

Lemma 3.1. Let M = H¢ /T be a noncompact hyperbolic d-manifold and M' = H? /T be a finite cover
of M. If M has an infinite discrete Laplace spectrum then so does M.

Proof. The eigenfunctions associated to the discrete Laplace spectrum of M are the set of eigenfunctions
of the Laplacian that are invariant under I' and which are L’-integrable over some (and hence any)
fundamental domain for I. Any such function is also invariant under I'’, and since the fundamental
domain of I' is a finite union of fundamental domains of T, the function will also be L? integrable over a
fundamental domain for I'’. It follows that M’ has an infinite discrete Laplace spectrum if M does. [J

In order to discuss the spectrum of M further we need to make clear the contribution of Eisenstein
series. Let [c] be a cusp of I with stabilizer I'.. The Eisenstein series on M associated to [c] is defined
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to be the convergent series

Eyc(w,s)= > yiolyw)’, weH? seC, Re(s)>d—1,
yel Al

where y € I' represents a nonidentity coset I'.y of I'; in I' and o is an orientation preserving isometry of
hyperbolic space taking the point at infinity to the cusp point c¢. This definition does not depend on the
choice of o. Here we use the coordinates z = (x, y) € HY = R?~! x R for the upper half-space.

Let ¢y, ..., ¢ be representatives of a full set of inequivalent cusps of I. To ease notation we will
temporarily refer to the Eisenstein series associated to the i-th cusp by E;(w, s). The constant term of
E;(w, s) with respect to ¢; is denoted E;;(w, s) and satisfies

Eyj(w, s) =8;3(0; w) + ¢ (5) (o w) '

where o is the orientation preserving isometry of hyperbolic space taking the point at infinity to the
cusp point ¢; and where the coefficients ¢;; (s) define the scattering matrix ®(s) = (¢;;). We define the
scattering determinant to be the function ¢(s) = det ®(s). The Eisenstein series E;(w, s), the scattering
matrix ®(s) and the scattering determinant ¢ (s) have meromorphic extensions to the complex plane. The
poles of ¢(s) are poles of the Eisenstein series and all lie in the half-plane Re(s) < %(d — 1), except for
at most finitely many poles in the interval (%(d —-1),d—- 1]. The latter poles are related to the discrete
spectrum as follows: Taking the residue of E;(w, s) at one of the latter poles yields an eigenfunction of
the Laplacian with eigenvalue s(d — 1 —s). The subset of the discrete spectrum arising from residues of
poles of Eisenstein series (equivalently, of ¢(s)) is called the residual spectrum. If t is such a pole then
we define the multiplicity at t to be the dimension of the eigenspace in the case when ¢ contributes to the
residual spectrum as described above. This discussion motivates the following definition:

Definition 3.2. Let M, M, be n-cusped hyperbolic d-manifolds (for some positive integer ) of finite
volume with scattering determinants ¢ (s), ¢2(s). We say that M| and M, are isospectral if

e M and M; have the same discrete spectrum, counting multiplicities;

e ¢1(s) and ¢, (s) have the same set of poles and multiplicities.

The scattering determinant is in general very difficult to compute explicitly, although it has been worked
out in several special case. For example, the scattering determinants associated to Hilbert modular groups
over number fields have been computed in terms of Dedekind zeta functions by Efrat and Sarnak [3]
and Masri [14]. Similarly, the scattering determinant of certain arithmetic lattices acting on hyperbolic
3-space were computed by Elstrodt, Grunewald, and Mennicke [4]. More recently, Kelmer and Yu [12]
have treated the case of certain arithmetic lattices acting on hyperbolic n-space.

4. Cusps of finite covers of hyperbolic manifolds

We begin with a group theoretic lemma. Let G be a group, g be an element of G, and H, K be subgroups
of G. We define the double coset HgK by

HgK ={hgk:he H, keK).
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Lemma 4.1. There is a bijection between the cosets of H in HgK and the cosets of gKg~'NH in gKg~!

Proof. Recall that HgK is the union of the cosets Hgk as k varies over the elements of K. As right
cosets of H in G, two cosets Hgk; and Hgk; intersect if and only if they are equal. Observe that
Hgk, = Hgk, if and only if there is an element 4 € H such that gk; = hgk;, or equivalently, if and
only if klkz_1 € g7 'Hg (and thus is an element of K N g~'Hg). This shows that Hgk; = Hgk, if
and only if (K Ng~'Hg)k; = (K N g~ 'Hg)k,. We have therefore shown that the map f given by
f(Hgk) = (K N g~'Hg)k is a bijection between the cosets of H in HgK and of K Ng~'Hg in K.
We can now conjugate by g to obtain a bijection between the cosets of H in HgK and the cosets of
(gKg~'NnH)ingKg™". (|

Let I be a discrete subgroup of Isom™ (H¢) and x, y € dH¢ be I'-equivalent. Let G be a subgroup of
" of finite index. We now define the set
Iyy={yel:yxeG-y}.
Lemma 4.2. There is an equality of sets I'y , = Gy Py, where Py = Stabr(x) and y is any element of '
such that yx = y.

Proof. That any element of Gy P, lies in I'y , is clear. Suppose therefore that § € I'y , and that
8x = gy = g(yx). Then (gy)~'6x = x, hence y~'g7'6 € P, and there exists p € P, such that
y ~'g~18 = p. This implies that § = gyp € Gy P, and completes the proof of the lemma. 0

Let M =H¢/T and N = H¢/G be noncompact hyperbolic d-manifolds of finite volume and
7:N—M

be a covering. Let ¢ represent a cusp of I and P = Stabr(c).

Definition. The preimage of a cusp of M is always a union of cusps of N. We say a cusp of M remains
a cusp of N relative to w when the preimage of that cusp has precisely one cusp of N. Algebraically, this
is equivalent to [c]r = [c]6.

Lemma 4.3. Suppose c is a cusp representative of both I" and G and that [c]r = [c]g. Then there is an
equality of sets ' = G P.

Proof. That GP C T' is clear as both G and P are subgroups of I Now let y € I'. Since I'c = Gc¢ there
exists an element g € G such that yc = gc. It follows that (g~'y)c = ¢, hence g~'y € P and there exists

p € P such that g~'y = p. This implies that y = gp, concluding the proof. O
Theorem 4.4. Let {d,, ..., d,) represent the G-orbits on the elements of dH? belonging to the cusp [c]
of I. Then

m

[T : G]= ) [Stabr(d;) : Stabr(d;) N G].

i=1
Proof. Write I' as a disjoint union of cosets Gy;:
-
I'= U G)/,'.
i=1

Since I' acts transitively on [c], every element of [c] is in the G orbit of y;d; for some i. For each
Jel{l,...,m}, fix§; €' suchthat§;dy =d;. By Lemma 4.2, U4y.a; =G4 Stabr(d;). Lemma 4.1 shows
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that La,.a is the union of n cosets of G, where n is the index of §; Stabr (d1)8j_1 NG in §; Stabr (dl)éj_l.
As 8]‘ Stabr (dl)a;l = Stabr ((del) = Stabr (dj), we see that n = [Stabr (dj) : Stabr (d]) NGJ.

Putting all of this together, we see that I is the disjoint union of I'y, 4, as j varies over {1, ..., m}.
Since each of these is the disjoint union of [Stabr(d;) : Stabr(d;) N G| cosets of G, we conclude that

[I:Gl= i[Stabr (d;) : Stabr (d;) N G1,

i=1

which completes our proof. U

Corollary 4.5. We have an equality of indices [I" : G] = [Stabr(d) : Stabr(d) N G] for all cusps [d] of G
if and only if every cusp of M remains a cusp of N.

Proof. We first prove that if every cusp of M remains a cusp of N then [ : G] = [Stabr(d) : Stabg (d)] for
all cusps [d] of G. Fix a cusp [d] of G and define P = Stabr(d). We must show that [P : PNG]=[I": G].
To that end, suppose that p;, p» € P. Then

GpiNGpy # 9 Gp1=Gp

p1 = gp forsome g € G
pip,' =g

plpz_1 ePNG
(PNG)p1=(PNG)ps.

11111

We have therefore exhibited a bijection between the cosets of G in GP =T" (the equality follows from
Lemma 4.3) and the cosets of (PN G) in P, hence [I": G] =[P : PNG].
As the reverse direction is an immediate consequence of Theorem 4.4, our proof is complete. O

Corollary 4.6. Suppose that N is a normal cover of M. Let [c] be a cusp of I" and [d] be a cusp of G
contained in [c]. The number of cusps of G contained in [c] is
[T:G]
[Stabr(d) : Stabr(d) N G]

Proof. In light of Theorem 4.4 it suffices to prove that if [d;], [d;] are cusps of G contained in the cusp
[c] of T then [Stabr(d;) : Stabr(d;) N G] = [Stabr(d;) : Stabr(d;) N G]. To that end, let y € I be such
that yd; = d;. Then

Stabr(d;) = Stabr (yd;) = y Stabr(d;)y ",

I we have

hence, as G =y Gy~
[Stabr(d;) : Stabr (d;)NG] =[y Stabr(d;)y ' : ¥ Stabr(d;)y ' Ny Gy ~'1=[Stabr(d;) : Stabr(d;)NG],

which completes the proof. O
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5. Eisenstein series

Theorem 5.1. Let M = H?/ T be a noncompact hyperbolic d-manifold and N = H?/ G be a finite cover
of M with covering degree n. If a cusp [c] of T is also a cusp of G (i.e., the preimage in N of the
corresponding cusp of M is a single cusp) then Ey (w, s) = Ey (w, §).

Proof. Let c represent a fixed cusp of I" and P = Stabr(c). We begin our proof by noting that Theorem 4.4
shows that [[" : G] =[P : P N G], hence we may select a collection of coset representatives for P N G in
P which is also a collection of coset representatives for G in I. Let {51, ..., 8,} C P be such a collection.

An arbitrary term of E ;. (w, s) is of the form y(o~'yw)* where y € I" represents a nonidentity coset
Py of P inT and o is the orientation preserving isometry of hyperbolic space taking the point at infinity
to the cusp point ¢. Here we use the coordinates z = (x, y) € H? = R?~! x R* for the upper half-space.
Using our decomposition of I' into cosets of G we see that there exists §; and g € G such that y =4 g.
Because §; € P, the coset Py = P§;g is equal to the coset Pg as cosets of P\I'. In particular this implies
that we may choose representatives for the cosets P\I" to all lie in G. Note that for all g1, g» € G we have

Pgi=Pg << gg ' €P
— glgglePﬂG
— (PNG)g1=(PNG)g.

It follows that

Eycw,s)= Y yo 'yw)= Y y 'gw) =Eyc(w,s). O
yeP\I' gePNG\G

The following is an immediate consequence of Theorem 5.1:

Corollary 5.2. Suppose that M is a cusped orientable finite volume hyperbolic d-manifold and that
M1, M are finite covers of M with the same covering degree and having the property that every cusp of
M remains a cusp of M; (i = 1,2). Then all of the Eisenstein series of M| and M, are equal.

6. Congruence covers and p-reps

Let M be a noncompact finite volume orientable hyperbolic 3-manifold. Let ¢y, ..., ¢, represent a
complete set of inequivalent cusps of 71 (M) and P; be the subgroup of 7| (M) that fixes c;.

Remark. Throughout this paper we adopt the convention that for a prime number p, the groups SL;([F,)
and PSL,([F,) are denoted SL(2, p) and PSL(2, p).

Definition 6.1. A surjective homomorphism p : 71 (M) — PSL(2, p) is called a p-rep if, for all i, p(P;)
is nontrivial and all nontrivial elements of p(P;) are parabolic elements of PSL(2, p).

We remark that if p : 71 (M) — PSL(2, p) is a p-rep then p(P;) must be a subgroup of PSL(2, p) of
order p.

Theorem 6.2. Let M be a 1-cusped, nonarithmetic, finite volume orientable hyperbolic 3-manifold with
p-reps p : w1 (M) — PSL(2,7) and p' : m1(M) — PSL(2, 11). Let k be a number field with ring of
integers Oy and degree not divisible by 3. Assume that the faithful discrete representation of wi(M) can be
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conjugated to lie in PSL(2, Oy). There exist infinitely many prime powers q and covers M, of M such
that:

(1) the composite homomorphism
pgi=pot:m(My) — m(M)— PSL(2,7)

is a p-rep,
(i1) the degree over M of the cover M, is %(cf —q),
(iii) the number of cusps of M, is at least g + 1, and
(iv) M, has an infinite discrete spectrum.

Proof. We begin by constructing a finite cover M of M which has an infinite discrete spectrum. The
manifold M, will arise as a finite cover of M and will therefore have an infinite discrete spectrum by
virtue of Lemma 3.1. To that end, let H be an index 11 subgroup of PSL(2, 11). Such a subgroup is
well-known to exist, and the cover of M associated to the pullback subgroup of H by p’ is a degree 11
cover of M. Denote this cover by M. We claim that M has one cusp. Let P be the subgroup of 7 (M)
stabilizing the cusp of M. As was commented above, p’(P) must be a cyclic subgroup of PSL(2, 11) of
order 11. Since H has index 11 in PSL(2, 11) and | PSL(2, 11)| = 660 =22-3-5- 11 it must be the case
that o’(P) N H is trivial. It follows that [P : P N (1\7)] =11=[m(M): 711(]\71)], hence M has one
cusp by Corollary 4.5. It now follows from [5, Theorem 2.4] that M has an infinite discrete spectrum. We
note that [5, Theorem 2.4] has two hypotheses: that M be nonarithmetic and that M not be the minimal
element in its commensurability class. That M is nonarithmetic is clear, since it is a finite cover of M,
which is nonarithmetic. It is equally clear that M is not the minimal element of its commensurability
class, since such an element cannot be a finite cover of another hyperbolic 3-manifold.

We claim that 7 (]l71 ) also admits a p-rep to PSL(2, 7). In particular, we will show the homomorphism
to PSL(2, 7) obtained by composing the inclusion map (1\7) — 7 (M) with p : m{ (M) — PSL(2, 7)
is a p-rep. To see this, note that because gcd(11, | PSL(2, 7)|) = 1, the map g — g'lisa bijection from
PSL(2, 7) to itself, hence our claim follows from the fact that for every y € m;(M) the element v lies
in T (1\7 ).

Given a proper, nonzero ideal / of Oy we have a composite homomorphism

¢1 : 11 (M) —> PSL(2, Or) —> PSL(2, O /1)

called the level I congruence homomorphism. It follows from the strong approximation theorem of
Nori [16] and Weisfeiler [25] that for all but finitely many prime ideals p of Oy the level p congruence
homomorphism ¢y, is surjective.

By Dirichlet’s theorem on primes in arithmetic progressions we may choose a prime p satisfying
p =5 (mod 168) which does not divide the discriminant of k. Let p be a prime ideal of Oy lying above
p which has inertia degree f satisfying ged(f, 3) = 1. Note that the existence of such a prime ideal p
follows from the well-known equality in algebraic number theory

8

k:Ql=) eWi/p)fi/p),

i=1
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where pOy = p; - - - pg, e(p;/p) denotes the ramification degree of p; over p and f(p;/p) denotes the
inertia degree of p; over p. In particular our assertion follows from the hypothesis that [k : (2] not be
divisible by 3 and the fact that all of the ramification degrees e(p;/p) are equal to one (since p doesn’t
divide the discriminant of k and thus does not ramify in k).

We observed above that it follows from the strong approximation theorem that for all but finitely many
primes the associated congruence homomorphism is surjective. In light of our use of Dirichlet’s theorem
on primes in arithmetic progressions in the previous paragraph we may assume that p was selected so
that ¢, is surjective. Let M, be the cover of M associated to the kernel of ¢p. The cover M, of M is
normal of degree

|PSL(2, O /p)| = | PSL(2, p)| = 3(p* = p7),

which proves (ii) upon setting ¢ = p/.

Assertion (iii) follows from assertion (ii) and Corollary 4.6 since the image under ¢, of a cusp stabilizer
P; will be an abelian subgroup of PSL(2, p/) and thus will have order at most % pl(p7 —1) by the
classification of subgroups of PSL(2, g) (see [2]).

We now prove assertion (i). We will abuse notation and denote by p the p-rep from 711(]\71 ) onto
PSL(2, 7). Because this p-rep was obtained by composing the inclusion of 7| (1\71 ) into 1 (M) with the
p-rep from (M) onto PSL(2, 7) (which was also denoted p), it suffices to prove assertion (i) with M in
place of M. Let N = §(p*/ —p/) =[m1 (M) : 71 (M,)]. As py (1 (M) contains pg (y) = p(y™) = p(y)¥
for all y € m(M) and p : w1 (M) — PSL(2, 7) is surjective, the surjectivity of p, follows from the fact
(easily verifiable in SAGE [18]) that PSL(2, 7) is generated by the N-th powers of its elements whenever

=5 (mod 168) and gcd(f, 3) = 1.

Let Py be the subgroup of (M ) which fixes some cusp of M, and P be the subgroup of (M)
fixing the corresponding cusp of M. Because ot 4 (M) — PSL(2,7) is a p-rep, p(P) consists entirely
of parabolic elements and therefore is a subgroup of PSL(2, 7) of order 7. Note that [P : Py] =d for
some divisor d of N. We will show that N, and thus d, is not divisible by 7. Because p was chosen so
that p =5 (mod 168), we also have p =5 (mod 7) (since 168 =23-3-7). It is now an easy exercise in
elementary number theory to show that N = %( p3/ — p7) is not divisible by 7 whenever gcd(f, 3) = 1.
Having shown that gcd(d, 7) = 1, we observe that if y € P has nontrivial image in PSL(2, 7) then y? € P,
and thus p, (yd) = ,o(y)d is nontrivial in PSL(2, 7). Since p,(Py) is a subgroup of p(P) and thus also
consists entirely of parabolic elements, this proves assertion (i). O

Remark. As the proof of Theorem 6.2 shows, the prime powers g appearing in the theorem’s statement
may be taken to be powers of infinitely many different primes. Indeed, that this is possible follows
immediately from our application of Dirichlet’s theorem on primes in arithmetic progressions.

7. Sunada’s method for constructing isospectral manifolds

We begin this section by recalling the statement of Sunada’s theorem [20].
Given a finite group G with subgroups H; and H> we say that H; and H, are almost conjugate if, for
all g € G,
#(H N [g) =#(H2N[g])

where [g] denotes the conjugacy class of g in G.
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Theorem 7.1 (Sunada). Let M be a Riemannian manifold and p : (M) — G be a surjective homo-
morphism. The coverings M™' and M™ of M with fundamental groups p~'(Hy) and p~'(H,) are
isospectral.

The following is a group theoretic lemma of Prasad and Rajan [17, Lemma 1] which they used to
reprove Sunada’s theorem. In what follows, if G is a group and V is a G-module then V ¢ is the submodule
of invariants of G:

Lemma 7.2. Suppose that G is a finite group with almost conjugate subgroups H| and H,. Assume that
V is a representation space of G over a field k of characteristic zero. Then there exists an isomorphism
i VI — VI commuting with the action of any endomorphism A of V which commutes with the action
of G on V; i.e., the following diagram commutes:

Vi — yih

NI

l
vH — yH

Theorem 7.3. Let M =H?/ T be a cusped finite volume orientable hyperbolic 3-manifold that is nonarith-
metic and that is the minimal element in its commensurability class (i.e., ' = Comm(I") where Comm( - )
denotes the commensurator). Let My = H?/ Ty be a finite cover of M, G be a finite group and Hy, H, be
nonconjugate almost conjugate subgroups of G. Suppose that I' admits a homomorphism onto G such
that the induced composite homomorphism I'y < I — G is also onto. Let My, M, be the finite covers of
My associated to the pullback subgroups of H\ and H, and assume that M| and M, both have the same
number of cusps as My. Then M| and M, are isospectral, have the same complex length spectra, are
nonisometric and have infinite discrete spectra.

Proof. Our proof will largely follow the proof of the analogous result of Garoufalidis and Reid [5,
Theorem 3.1].

We begin by proving that the manifolds M; and M, are nonisometric. Let I'j, ['; be such that
M| = [|-|]3/ I't and M, = |H]3/ ['p. If M| and M, are isometric then there exists g € Isom(H?) such that
gl g_1 = I';. Such an element g necessarily lies in the commensurator Comm(I") of I', and since
I' = Comm(I") we see that g € I By hypothesis there exists a surjective homomorphism p : I' = G.
Projecting onto G we see that p(g) H; p(g)~! = Ha, which contradicts our hypothesis that H; and H> be
nonconjugate.

To prove that M; and M, are isospectral we must show that their scattering determinants have the
same poles with multiplicities and that they have the same discrete spectrum. Since M and M; have the
same covering degree over M, that their scattering determinants have the same poles with multiplicities
follows immediately from Theorem 5.1, which in fact shows that all of their Eisenstein series coincide.
That M1 and M; have the same discrete spectrum follows from Lemma 7.2 with k =C, V = Lﬁi sc(Mo)
and A the Laplacian.

That M and M, have the same complex length spectra follows from the proof given by Sunada [20,
Section 4].

That M, and M, have infinite discrete spectra follows from [5, Theorem 2.4]. O
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8. Proof of Theorem 1.1

In light of Theorems 6.2 and 7.3 it suffices to exhibit a nonarithmetic, 1-cusped finite volume hyperbolic
3-manifold M which is the minimal element in its commensurability class and which admits p-reps onto
PSL(2,7) and PSL(2, 11). Our example of such a manifold is taken from Section 4 of [5].

To prove this assertion, let M be a hyperbolic 3-manifold as in the previous paragraph and assume
that 77 (M) can be conjugated to lie in PSL(2, Of) for some number field £ whose degree is not divisible
by 3. (We will construct such a manifold below.) It follows from Theorem 6.2 that there exist infinitely
many prime powers g and covers M, of M such that composing the inclusion 7y (M) < (M) with
the p-rep (M) — PSL(2, 7) yields a p-rep and such that M, has at least g + 1 cusps.

We have seen that there is a surjective homomorphism p : 71 (M,) — PSL(2, 7). It is well known that
PSL(2, 7) contains a pair of nonconjugate, almost conjugate subgroups of index 7. Call these subgroups
H| and H, and observe that since |PSL(2,7)| = 168, it must be that H; and H, have order 24. Let
M; =H? /Ti (i =1, 2) be the manifold covers of M, associated to H; and H,.

Fix i € {1, 2} and let [d] be a cusp of I';. Let P; = Stabr,(d) and P = Stabm(Mq>(d). Because the
homomorphism p : 7 (M,;) — PSL(2,7) is a p-rep, p(P) is a cyclic subgroup of PSL(2, 7) of order 7.
Since H; has order 24 it must be that p(P) N H; is trivial. In particular it follows that p(P;) = 1 and
consequently that [ (M) : T';]=7=[P : P;]. Corollary 4.5 now implies that every cusp of M, remains
a cusp of M;. In particular this shows that M; and M, both have the same number of cusps as M, and this
number can be made arbitrarily large by taking the prime power g (from Theorem 6.2) to be arbitrarily
large. Theorem 1.1 now follows from Theorem 7.3.

We now construct a nonarithmetic, 1-cusped finite volume hyperbolic 3-manifold M which is the
minimal element in its commensurability class and which admits p-reps onto PSL(2, 7) and PSL(2, 11).
We will additionally show that r; (M) can be conjugated to lie in PSL(2, O;) where k is a number field
of degree 8.

To that end, let K be the knot K11n116 of the Hoste—Thistlethwaite table shown in Figure 1. The
manifold M = §3\ K =H?3/T has 1 cusp, volume 7.7544537602 - - - and invariant trace field k = Q(z)
where r = 0.00106 +0.9101192; is a root of the polynomial x® — 2x7 — x4 4x> — 3x3 +x + 1. It was
proven in [7] that M is the minimal element in its commensurability class (i.e., that ' = Comm(I") where
Comm(I") denotes the commensurator of I'). The work of Margulis [13] shows that this implies M must

:

Figure 1. The knot K11n116. Image taken from [5
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be nonarithmetic. Moreover, a computation in Snap [6] shows that I" has presentation

I'={a,b,c|aaCbAccBB, aacbCbAAB),
and peripheral structure

u=CbAcb, *=AAbCCbach.

Here A=a~!, B=b"", C =c~ In terms of matrices, we may represent I as a subgroup of PSL(2, O)
via

—24t—1 =344 -t 412 -1
a= ,
—24r—1 0
) —tT 4215 =265 =383 + 242 -3t — 1 10 =20 + 14 4303 212+ 31 42
N T30 S At A 122 21 £ =305 At A 2 42)
— 10445 =8t 4T3 =512 -t 2T+ T — 145 + 15 — 1263+ 12 4+ 31 — 1
c= .
P =3t 443 — 32 41 —tT 41— 9 4 1144 — 93 + 312 +1 -2
We now show that I' admits p-reps onto PSL(2, 7) and PSL(2, 11). We begin by exhibiting the p-rep
onto PSL(2, 7). As the discriminant of k is 156166337, which is not divisible by 7, we see that 7 is
unramified in k/Q. Using SAGE [18] we find that 70, = ppop3, where the inertia degrees of the p; are
1,2,5. We note that the prime p; of norm 7 is equal to the principal ideal (+ — 1). Upon identifying

Ox/p1 with F; we obtain a homomorphism from I" to PSL(2, 7) by reducing the matrix entries of a, b, ¢
modulo py. The images of a, b, ¢ in PSL(2, 7) are represented by

(61 (16 ._(34
“\eo) "T\3s5) “Tlos)

while the images of w, A in PSL(2, 7) are represented by the parabolic matrices

(0 4 - 25
H=s5) "“\i3)
It remains only to show that the homomorphism we have defined, call it p7, is surjective. Our proof of

this will make use of the following easy lemma:

Lemma 8.1. Let p be a prime. The group SL(2, p) is generated by the matrices

() o)

Proof. The lemma follows from the fact that SL(2, Z) is generated by the matrices in the lemma’s
statement. To see this, note that the usual generators of SL(2, Z) are

0 —1 11
=(10) =)

and S=T"'UuT!. O
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Surjectivity of our homomorphism p7 : I' — PSL(2, 7) now follows from the fact that

(1 1)=p7(b)_1p7(a)_zp7(b)_1pv(a)m(b)_] and (1

01 0) = p7(c)pr(a) " p7(b) p7(c)>.

11

We have just shown that [' admits a p-rep onto PSL(2, 7). We now show that [ admits a p-rep onto
PSL(2, 11) as well. In k we have the factorization 110, = ppop3 where the inertia degrees of the p; are
1, 1, 6. We may assume without loss of generality that p; = (¢ —4). Identifying Oy /p; with [; we see
that the images in PSL(2, 11) of a, b, c are represented by the matrices

(96 (43 ._(01
“o) "T\11) “Tle a)

while the images of w, A in PSL(2, 11) are represented by the parabolic matrices

_(1010) (100
=\1010) *~\6 10)

Finally, we show that our homomorphism p;; : I' = PSL(2, 11) is surjective by applying Lemma 8.1. To
that end we simply note that

(1 1)=/011(@)_1,011(19)1011(6)_1 and (1

01 0) = p11(c)p11(a)

11

This completes the proof of Theorem 1.1.
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