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Abstract—Many new methodologies for the control of large-
scale multi-agent systems are based on macroscopic representa-
tions of the emerging system dynamics, in the form of continuum
approximations of large ensembles. These techniques, that are
developed in the limit case of an infinite number of agents, are
usually validated only through numerical simulations. In this
paper, we introduce a mixed reality set-up for testing swarm
robotics techniques, focusing on the macroscopic collective motion
of robotic swarms. This hybrid apparatus combines both real dif-
ferential drive robots and virtual agents to create a heterogeneous
swarm of tunable size. We also extend continuification-based
control methods for swarms to higher dimensions, and assess
experimentally their validity in the new platform. Our study
demonstrates the effectiveness of the platform for conducting
large-scale swarm robotics experiments, and it contributes new
theoretical insights into control algorithms exploiting continuifi-
cation approaches.

Index Terms—Autonomous robots, Mobile robotics, Partial
differential equations

I. INTRODUCTION

Several new techniques for the analysis and control of large-

scale multi-agent systems rely on the assumption that the

interacting dynamical systems of the ensemble (agents) are

numerous enough to be described in a continuuum framework

[1]–[5]. Such an assumption paves the way for recasting

many traditional microscopic agent-based formulations, based

on large sets of ordinary differential equations (ODEs), into

smaller sets of partial differential equations (PDEs) for a

macroscopic representation of their collective behavior. For

instance, it can be advantageous to study the spatio-temporal
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dynamics of a large group of mobile agents in terms of their

density, rather than keeping track of the motion of each of

the agents [1]–[3], [6], [7]. In so doing, one can address

the curse of dimensionality of microscopic representations by

formulating control algorithms at the scale where the collective

behavior emerges [8]. Suitable applications include, but are not

limited to, multi-robot systems [7], [9], [10], traffic control

[11], [12], cell populations [13], and human networks [14].

Recasting these systems into continuum formulations offers

new opportunities in the analysis and design of novel control

approaches to tame collective dynamics. Pressing open chal-

lenges are: (i) to find agile methods to inform and experimen-

tally validate the synthesis of control algorithms developed in

a continuum framework [15], and (ii) to design new strategies

for controlling the collective behavior of large-scale multi-

agent systems, such as those in swarm robotics, that exploit

their macroscopic approximation in terms of PDEs [16].

Regarding the first challenge, full-scale experiments about

the control of large-scale multi-agent systems have been

recently carried out [17]–[20]. However, the majority of the

existing control solutions have been tested only using com-

puter simulations due to practical limitations. In this paper,

we present a novel mixed reality environment where some

real mobile robots interact among themselves and with other

virtual agents. We bring settings as that in [21] and other recent

mixed reality platforms [22], [23], to large-scale scenarios. In

so doing, we integrate insights from disability studies [24],

[25] and animal behavior research [26]–[29] where digital

twins of patients or animals are often utilized for testing

new strategies in virtual reality settings. Our set-up let the

user choose the size of the ensemble to study, avoiding the

bottleneck of extreme time cost and resources of experiments

of large-scale systems. Moreover, in our setting, the specific

model for the virtual agents can be chosen by the designer

and is not constrained to a specific commercial robot. The

whole apparatus is easy to implement and can be realized,

for example, by adapting other existing facilities such as the

Robotarium at GeorgiaTech [30]. Relevant previous work in

the field of swarm robotics includes the use of augmented

reality for providing simple testbed agents, like kilobots, with

augmented sensing capabilities [31], [32].

To address the second challenge highlighted above, we ad-

dress the theoretical problem of extending the continuification-

based control approach presented in [1], [2] to higher-

dimensions. Upon deriving a PDE describing the emergent

collective behavior of the swarm we wish to control (con-

tinuification), we design a macroscopic control action that
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Fig. 1. Continuification control scheme (inspired by [3]). The schemes
describes all the stages of the solution: (i) continuification, (ii) macroscopic
control design, and (iii) discretization.

ensures convergence to a desired density. Such a control is then

discretized to obtain deployable control inputs for the agents

in the swarm (see Fig. 1). We emphasize that the transition

from the 1D case discussed in [1] to the broader theoretical

framework in higher dimensions is non-trivial from the techni-

cal viewpoint, as detailed in Section III-D. Specifically, during

the discretization process, new degrees of freedom emerge and

technical advancements are needed to ensure well posedness,

and, eventually, fulfill additional control requirements. Finally,

the proposed platform is used to validate experimentally the

theoretical framework that we developed.

The rest of the paper is organized as follows. In Section

II, we describe the experimental platform. Specifically, in

Section II-A we focus on the mobile robots we designed, and

then, in Section II-B on the platform itself. In Section III,

we derive the theoretical extension to higher-dimensions of

the continuification-based control approach that is validated

experimentally in Section IV to demonstrate the use of the

platform. We discuss results and conclusions in Section IV-B

and V, respectively.

II. EXPERIMENTAL MIXED REALITY ENVIRONMENT

Here, we detail our experimental apparatus for the design

of experiments about the coordination of hybrid large swarms

of real robots and virtual agents. We first present the mobile

robotic agents and their kinematics. Then, we describe the

integration of these robots with the virtual agents in the overall

mixed reality platform.

A. Differential drive robots

We built four differential drive robots, as the one ren-

dered in Fig. 2a. These robots featured a 3D-printed

PLA frame (Polylite, Polymaker) printed on a Bambu

Lab X1C (CAD model available at https://github.com/

Dynamical-Systems-Laboratory/ContinuificationControl). The

sizes of the robot are such that it can be schematized as a

rectangle 11.5 cm × 9.5 cm. Each robot was equipped with

an ESP32 microcontroller, operating two continuous rotation

servo motors (FS90R, Feetech) directly connected to 56 mm

wheels. Additionally, an omni-directional wheel was attached

(a)

(b)

Fig. 2. (a) Render of a differential drive robot, and (b) inner view of the
robot.

at the front-bottom of the robot. Power was supplied to each

robot through an off-the-shelf power bank (Attom, Ultra Slim

3000mAh). We show the real robot, with sizes and hardware in

Fig. 2b. In the absence of a load, the motors are able to rotate

at approximately 14 rad/s and provide a torque of 1.5 kg·cm.

Taking into account the wheel radius, the maximum linear

speed that can be achieved by the robot is approximately 0.8

m/s (when both wheels are rotating in the same direction at

full speed).

The i-th differential drive robots is characterized by the

following non-holonomic kinematic behavior:

ż
R
i = R(θi)u

R
i , (1)

for i = 1, . . . , 4. In particular, zRi = [xR
i , θi]

T is the state of

the i-th differential drive robot, where x
R
i = [xR

i,1, x
R
i,2]

T is its

position in a Cartesian coordinate framework and θi ∈ [−π, π]
its orientation. Moreover,

R(θ) =





cos θi 0
sin θi 0
0 1



 , (2)

and u
R
i = [Vi, ωi]

T is the vector of the control variables, with

Vi being the instantaneous velocity of the mid-point between

the robots’ wheels, and with ωi being its angular velocity.

B. Mixed reality environment

We built the set-up shown in Fig. 3a, comprising a set of

differential drive robots moving on the ground and an overhead

camera (16MP wide-angle camera – Arducam, placed at 1m

height). The camera was placed so that the robots could move

in an area of approximately 2 m × 2 m. Aruco markers

were attached to the robots, so that they could be easily

tracked by the camera and perform their pose estimation. A

Python program using OpenCV was developed to estimate
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Fig. 3. Experimental platform. (a) A render of the real set-up, with 4 robots
moving in the arena, and (b) a sketch of the platform, assuming virtual agents
to be the black dots and real robots to be concentric circles.

the robots’ pose in each frame. The video feed, with all the

estimated robots’ positions, was given to the central station

of the platform, a Dell Aurora (13th Gen Intel® i9 13900KF,

64GB of DDR5 RAM NVIDIA® GeForce RTX™ 4090). Such

a machine was also provided with the positions (and eventually

velocities) of a user-defined number of virtual agents. In

principle, one can choose the specific mathematical model for

the virtual agents. Based on the literature about the control of

large-scale mobile agents, a reasonable choice is to select their

dynamics as that of single or double integrator without any

kinematic constraint [6], [33]. Using the available information

(robots’ positions and virtual agents’ positions, at least), the

central station was in charge of controlling the hybrid swarm

of real and virtual agents, according to some user-definable

algorithm. Such a control algorithm should be chosen so that

the needed information could be estimated by tracking the real

robots with a camera, since robots were not equipped with any

specific sensor.

The application of any control strategy consists of (i) up-

dating the positions of the virtual agents, based on the specific

dynamical model that is assumed for them, and (ii) computing

the control inputs for the real robots and sending them

trough a TCP client/server communication protocol on the

local Wi-Fi. The idea is sketched in Fig. 3b. Since collective

motion techniques are typically developed for kinematically

unconstrained agents, a low-level trajectory tracking control

is needed for the robots. We used the input/output feedback

linearization technique that is proposed in [34] (Chapter 11.6).

We remark that the set-up we propose is versatile, as it could

account for various constraints that can be chosen by the user,

like, for instance, limited sensing and obstacles.

III. HIGH-DIMENSIONAL CONTINUIFICATION-BASED

CONTROL

We now present the theoretical expansion of our 1D study

[1] to higher-dimensional periodic domains. We consider a

group of interacting agents, whose dynamics is detailed in

Section III-B, within the context of a density control prob-

lem, that is formally given in Section III-C. Specifically, by

appropriately choosing their control inputs, we want them to

displace according to a desired density. The control solution,

described in details in Section III-D, follows a continuification

scheme as the one depicted in Fig. 1. First, we provide some

useful notation.

A. Mathematical preliminaries

Here we give some mathematical definitions and concepts

that will be used throughout the paper. We define Ω :=
[−π, π]d, with d = 1, 2, 3 the periodic cube of side 2π. The

case d = 1 coincides with the unit circle, d = 2 with the

periodic square, and d = 3 with the periodic cube. We denote

by ∥h(·, t)∥ the L2 norm of the function h : Ω × Rg0 → R,

with respect to its first variable. For brevity, we will also

denote the norm as ∥h∥, without explicitly indicating the

dependencies. We denote with “ ∗ ” the convolution operator.

When referring to periodic functions and domains, the convo-

lution needs to be interpreted as its circular version [35]. When

one of the functions involved in the convolution is vector

valued, the operator is interpreted as the multi-dimensional

(circular) convolution. For PDEs, we denote by (·)t and (·)x
first order time and space partial derivatives. We use the ∇
operator for vectorial differential operators. Specifically, given

a vector valued function h, we denote its gradient as ∇h, its

divergence as ∇ · h, its curl as ∇ × h, and its Laplacian as

∇2
h. We denote by n = (n1, . . . , nd) the d-dimensional multi-

index, consisting in the tuple of dimension d, with ni ∈ Z.

Thus, n = [n1, . . . , nd] is the row vector associated to n.

B. The model

We consider N dynamical systems moving in Ω. The

agents’ dynamics is modeled using the kinematic assumption

[6], [33] (i.e., neglecting acceleration and considering a drag

force proportional to the velocity) and assuming agents are not

subject to any non-holonomic constraint. Specifically, we set

ẋi =
N
∑

k=1

f ({xi,xk}) + ui, i = 1, . . . , N, (3)

where xi ∈ Ω is the i-th agent’s position, and {xi,xk} is the

relative position between agent i and k, wrapped to have values

in Ω (see [1] for the explicit expression in 1D), f : Ω → R
d

is a periodic velocity interaction kernel modeling pairwise

interactions between the agents, and ui is a velocity control

input designed as to fulfill some control problem. Furthermore,

we assume f(z) = −∇F (z), where F : R
d → R is a soft-

core potential, meaning that f(0) = 0. The Morse potential,

vastly used in the literature [6], [36], is a choice of this kind.

We remark that, in the absence of control, agents subject to a

repulsive kernel will spread in Ω until reaching an equilibrium

configuration. Agents subject to a Morse-like kernel (long-

range attraction and short-range repulsion), will reach an

aggregated compact formation (see [6] for a comprehensive

description of the uncontrolled problem with 1D examples).

Assuming the number of agents N is sufficiently large, we

describe the system’s collective behavior in terms of the spatio-

temporal evolution of the swarm’s density. Hence, we define

the density at time t as the scalar function ρ : Ω×Rg0 → Rg0,

such that
∫

Ω
ρ(x, t) dx = N and the integral over a subset of

Ω returns the number of agents in it.

C. Problem statement

The problem is to select a set of distributed control inputs

ui acting at the microscopic, agent-level allowing the agents to
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organize themselves into a desired macroscopic configuration

on Ω. Specifically, given some desired periodic smooth density

profile, ρd(x, t), associated with the target agents’ configura-

tion, the problem can be reformulated as that of finding a set

of distributed control inputs ui, i = 1, 2, . . . , N in (3) such

that

lim
t→∞

∥ρd(·, t)− ρ(·, t)∥ = 0, (4)

for agents starting from any initial configuration xi(0) =
xi0, i = 1, 2, . . . , N . This problem is a non-trivial extension to

higher dimensions of the one-dimensional problem discussed

in [1].

D. Control design

We adopt a continuification approach [1]–[3], consisting in

the following steps that are briefly discussed in Sec. I.

(i) Continuification: in the limit case of an infinite number

of agents, we recast the microscopic dynamics of the agents

(3) as the mass balance equation [1], [2]

ρt(x, t) +∇ · [ρ(x, t)V(x, t)] = q(x, t), (5)

where

V(x, t) =

∫

Ω

f ({x, z}) ρ(z, t) dz = (f ∗ ρ)(x, t). (6)

represents the characteristic velocity field encapsulating the

interactions between the agents in the continuum. The scalar

function q, represents the macroscopic control action. It is

written as a mass source/sink for simplifying derivations, but

will be in the end recast as an additional velocity field.

For (5) to be well posed, we require the periodicity of ρ(x, t)
on ∂Ω ∀t ∈ Rg0 and that ρ(x, 0) = ρ0(x). We remark that

V is periodic by construction, as it comes from a circular

convolution. Thus, the periodicity of the density is enough to

ensure mass is conserved when q = 0, i.e.,
(∫

Ω
ρ(x, t) dx

)

t
=

0 (using the divergence theorem and exploiting the periodicity

of the flux).

Remark. We do not assume the agents’ dynamics to be linear

and interactions to take place on a spatially-invariant lattice

as done in [3], where some useful heuristics extensions to

nonlinear systems and different topologies are presented.

(ii) Macroscopic control design: we assume the desired

density profile obeys to the mass conservation law

ρdt (x, t) +∇ ·
[

ρd(x, t)Vd(x, t)
]

= 0, (7)

where

V
d(x, t) =

∫

Ω

f ({x, z}) ρd(z, t) dz = (f ∗ ρd)(x, t). (8)

Periodic boundary conditions and initial condition for (7) are

set similarly to those of (5). Furthermore, we define the error

function e(x, t) := ρd(x, t)− ρ(x, t).

Theorem 1 (Macroscopic convergence). Choosing

q(x, t) = Kpe(x, t)−∇ ·
[

e(x, t)Vd(x, t)
]

−∇ · [ρ(x, t)Ve(x, t)] , (9)

where Kp is a positive control gain and V
e(x, t) = (f ∗

e)(x, t), the error dynamics globally asymptotically converges

to 0

lim
t→∞

e(x, t) = 0 ∀ e(x, 0). (10)

Proof. We can compute the error dynamics by subtracting (5)

from (7), resulting in

et(x, t) +∇ ·
[

ρd(x, t)Vd(x, t)
]

−

∇ · [ρ(x, t)V(x, t)] = −q(x, t). (11)

The error function e(x, t) is periodic on ∂Ω ∀t ∈ Rg0 and

e(x, 0) = ρd(x, 0) − ρ(x, 0). Then, taking into account that

ρ = ρd − e, and V = V
d −V

e, we rewrite (11) as

et(x, t) +∇ ·
[

e(x, t)Vd(x, t)
]

+

∇ · [ρ(x, t)Ve(x, t)] = −q(x, t). (12)

Plugging in (9), we get

et(x, t) = −Kpe(x, t). (13)

Since Kp > 0, (10) holds.

(iii) Discretization and microscopic control: in order to

dicretize the macroscopic control action q, we first recast the

macroscopic controlled model as

ρt(x, t) +∇ · [ρ(x, t) (V(x, t) +U(x, t))] = 0, (14)

where U is a controlled velocity field, in which we want to

incorporate the control action. Equation (14) is equivalent to

(5), if

∇ · [ρ(x, t)U(x, t)] = −q(x, t). (15)

In contrast to the case where d = 1 discussed in reference

[1], equation (15) is insufficient to uniquely determine U

from q since it represents only a scalar relationship (as the

divergence returns a scalar function). Hence, we define the flux

w(x, t) := ρ(x, t)U(x, t), and close the problem by adding

an extra differential constraint on the curl of w. Namely, we

consider the set of equations
{

∇ ·w(x, t) = −q(x, t)

∇×w(x, t) = 0
(16)

For problem (16) to be well posed, we require w(x, t) to be

periodic on ∂Ω. Notice that (16) is a purely spatial problem,

as no time derivatives are involved. We also remark that

the choice of closing the problem using the irrotationality

condition is arbitrary, and other closures can be considered.

This specific one allows not to introduce vorticity into the

velocity field we are looking for. Since Ω is simply connected,

and ∇×w = 0, we can express w using the scalar potential ϕ.

Specifically, we pose w(x, t) = −∇ϕ(x, t), making the zero-

curl condition always fulfilled. Then, substituting this into the

divergence relation in (16), we can recast (16) as the Poisson

equation

∇2ϕ(x, t) = q(x, t). (17)
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Problem (17) is characterized by the periodicity of ∇ϕ(x, t)
on ∂Ω. We wish to remark the analogy with the derivation of

the Poisson equation in the context of the electrostatic field

[37]. Equation (17), together with its boundary conditions,

defines ϕ up to a constant C. Since we are interested in

computing w = −∇ϕ, the value of C is irrelevant. We solve

the Poisson problem (17) in Ω using the Fourier series. Then,

writing the Fourier series of ϕ in Ω, we get

ϕ(x) =
∑

m∈Zd

γm ejm·x + C, (18)

where m is a multi-index, m is the row vector associated to

this multi-index, γm is the m-th Fourier coefficient, j is the

imaginary unit, and x is assumed to be a column. Given this

expression for the potential, we write its Laplacian as

∇2ϕ(x) =
∑

m∈Zd

γm∥m∥2ejm·x. (19)

Next, we can apply Fourier series to the known function q,

resulting in

q(x) =
∑

m∈Zd

cm ejm·x, (20)

where, since at time t the function q is known, we can also

express the coefficients as

cm =
1

(2π)d

∫

Ω

q(x)e−jm·x dx. (21)

Then, recalling (17), we can express the coefficients of the

Fourier series of the potential ϕ as

γm = −
cm

∥m∥2
. (22)

Hence w = −∇ϕ and, consequently, U = w/ρ. Such

derivations need to take place at each t. From the imple-

mentation viewpoint, when computing ϕ, and consequently

w, we approximate it only considering the first M (with M
sufficiently large) terms of the infinite summations in (18).

Then, we can compute the microscopic control inputs for

the discrete set of agents by spatially sampling U(x, t), that

is

ui(t) = U(xi, t), i = 1, 2, . . . , N. (23)

Notice that our discretization procedure is different from the

one that is proposed in [3].

Remark. The macroscopic control action q is based on non-

local terms like V
d and V

e, making the control action exerted

at x depending on the error everywhere else in Ω. The input

ui can be approximated in terms of local information, since

the assumption of unlimited sensing is practically mitigated

by assuming a vanishing interaction kernel. We refer to [2],

[38] for analytical results about limited sensing.

Remark. The macroscopic velocity field U is well-defined

only when ρ ̸= 0. This is indeed a fair assumption, as

finally we will estimate the density by the agents position

with an estimation kernel of our choice. Moreover, as U will

be sampled at the agents locations, i.e. where the density is

different from 0, we know U is well defined where it is needed.

Fig. 4. Control scheme for robot i. By measuring the overall density of the
swarm, the continuification control inputs can be used to give the robots a
desired position and velocity to track.

Remark. The proposed technique differs from its one-

dimensional counterpart in [1] for the steps following (15).

In particular, if d = 1, (15) can be spatially integrated to

uniquely determine U (one-dimensional version of U) from q.

IV. VALIDATION OF THE CONTROL APPROACH VIA THE

NEW EXPERIMENTAL PLATFORM

Next, we experimentally validate the higher-dimensional

continuification control strategy proposed in Section III-D to

steer the collective behavior of a swarm of robots in the plane.

In so doing, we also demonstrate the use of our experimental

platform for evaluating the performance of control algorithms.

To this aim, we fix d = 2, making Ω the periodic square. For

modeling pairwise interactions between the agents, we choose

a periodic soft-core repulsive kernel, based on its non-periodic

version

f(x) =

{

x

∥x∥e
−

∥x∥
L if ∥x∥ ≠ 0

0 otherwise.
(24)

The periodization of the kernel consists in an infinite series

extending the non-periodic kernel in every direction [39].

Since no closed form was found, we approximate it by

truncating the series. Moreover, we fix L = 1.

In what follows, we always refer to a Cartesian coordinate

system, like the one considered for the individual kinematics.

For each experimental trial we consider that agents start on

a perfect square lattice, meaning that the initial density is

constant and, in particular, ρ(x, 0) = N/(2π)2. As for the

desired density to achieve, we choose the 2D Von-Mises

function

ρd(x) = Z exp{kT
c1(x, µ, ν) + c2(x, µ, µ) I2 c

T
2 (x, ν, ν)}

(25)

where k = [k1, k2]
T is the vector of the concentration

coefficients, µ and ν are the means along the two directions,

c1(x, a, b) = [cos(x1 − a), cos(x2 − b)] and c2(x, a, b) =
[cos(x1 − a), sin(x2 − b)] (with a, b ∈ Ω), where x1 and x2

are the components of x in the Cartesian coordinate system,

and I2 is the second order identity matrix. Z is a normalization

coefficient, to allow ρd to sum to the total number of agents

N . To assess the performance in different scenarios, we

also take into account the case where the desired density is

multimodal, that is the combination of several densities like

(25). To address tracking scenarios as well, we study the case

where the means, µ and ν, in (25) are time varying. We
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(a) (b)

(c) (d)

Fig. 5. Monomodal regulation. (a) Desired density, (b) steady-state configu-
ration of the swarm, (c) percentage error in time, (d) KL divergence in time.

remark that the scenarios we consider mimic more classical

microscopic problems of spatial organization. For instance,

density regulation to Gaussian-like profiles can be seen as

rendez-vouz problems [40], while tracking cases as formation

control ones [41].

The overall control scheme for the hybrid swarm is shown

in Fig. 4. Specifically, while virtual agents’ positions can be

updated purely using the technique described in Section III, for

the differential drive robots, that are kinematically constrained

(see Section II-A), such a method needs to be integrated with

an ad-hoc controller for tracking problems. As previously

mentioned, we used the input/output feedback linearization

technique in [34] (Chapter 11.6). The integration is performed

by using the continuification method to compute the desired

position and velocity of the robot, that is then tracked with

its embedded controller. In the case where only real robots

are present, the blocks regarding virtual agents in the scheme

in Fig. 4 shall be omitted. To adapt the assumption on the

periodicity of the domain to the experiments and avoid real

robots to try to cross the domain’s boundaries, we defined a

fictitious periodic extended domain (double sized with respect

to the effective arena where robots move). The arena where

agents move is the inner part of such an extended domain. To

avoid agents to go out of the arena (that is the inner part of

the domain), the desired density is set as the actual one in the

inner part of the domain, and is then extended to be almost

zero elsewhere (i.e., in the arena fictitious extension).

We characterize the experiments recording ∥e∥2 in time.

Specifically, the performance of each trial is assessed in terms

of the percentage error

Ē(t) =
∥e(·, t)∥2

maxt ∥e(·, t)∥2
100. (26)

The value of Ē at the end of the trial is the remaining

(a) (b)

(c) (d)

Fig. 6. Multimodal regulation. (a) Desired density, (b) steady-state configu-
ration of the swarm, (c) percentage error in time, (d) KL divergence in time.

percentage L2 error. Trials are also characterized using the

Kullback-Leibler (KL) divergence, as often done for density

control problems [42].

For each trial, we considered a sample of N = 100 agents

(96 virtual agents and 4 real robots), and we discretized (3)

(modeling the motion of the virtual agents and the desired

positions for the robots) using forward Euler with a non-

dimensional time step ∆t = 0.01. This corresponds to the

camera frame rate of 20 frames per second (FPS) in the ex-

periments, at which the control algorithm is running. Thus, the

unit non-dimensional time in any of our graphs corresponds

to 5 s. The spatial domain is discretized into a regular mesh

of 200 × 200 cells. We remark that virtual agents are indeed

not constrained to move on such a mesh, and that it is only

used for defining functions such as the desired and effective

density of the swarm. We also remark that spatial measures are

adapted to consider that the region where robots are moving

coincides with the definition of Ω.

A. Experimental trials

Here, we detail our experiments, whose videos are avail-

able on Github at https://github.com/Dynamical-Systems-

Laboratory/ContinuificationControl.git.

a) Monomodal regulation: We want the hybrid swarm

to start from an initial constant density and aggregate towards

the von Mises function that is depicted in Fig. 5a, which is

characterized by µ = ν = 0, and κ1 = κ2 = 1.5 (see (25)).

Such a desired configuration consists in a clustered formation

about the origin of Ω. The final formation that is achieved by

the swarm is reported in Fig. 5b, while the time evolution of

Ē is shown in Fig. 5c. We record a steady-state value of Ē,

that is the residual percentage L2 error, of approximately 2%.

In Fig. IV, we report the time evolution of the KL divergece.



7

(a) (b) (c) (d)

Fig. 7. Tracking experiments. (a) Time evolution of the means of the monomodal time variant desired density to track, (b) percentage error in time during
the monomodal tracking trial, (c) time evolution of the means of the two modes of the desired von Mises functions in the multimodal tracking trial (fist mode
blue and orange, second mode yellow and purple), and (d) percentage error in time during the multimodal tracking trial.

b) Multimodal regulation: We consider the swarm to

start from an initial constant density and aggregate towards the

combination of four von Mises functions as the one in (25)

(see Fig. 6a for a graphical representation). The concentration

coefficients of all the modes is set to 2, and the mean values

are µ1 = µ2 = −π/2, µ3 = µ4 = π/2, ν1 = ν2 = π/2, and

ν3 = ν4 = π/2. This desired density consists of four clusters

of agents symmetrically displaced around the origin. The final

formation is reported in Fig. 6b, while the time evolution of

Ē is shown in Fig. 6c. The final value of Ē is below 30%. In

Fig. IV we show the time evolution of the KL divergence.

c) Monomodal tracking: Here, we focus on a

monomodal tracking scenario, where the desired density

is a 2D von Mises function, whose means are time varying,

see (25). Specifically, we consider µ(t) and ν(t) behaving

as in Fig. 7a, while the concentration coefficients are kept

constant and equal to 1. Such a desired density is centered at

the origin for t f 1. Then, it starts moving at constant velocity

towards a side of the domain and then on the circle of radius

π/2. We report the results of the trial in Fig. 7b, where the

evolution of Ē is shown. Specifically, its steady-state value is

below 50%. For brevity, we do not report the KL divergence

in time, which remains below 0.25.

d) Multimodal tracking: Here, we consider a multimodal

tracking case, where two von Mises functions with constant

concentration coefficients of 2.2 orbitate on the circle of radius

2π/3, after remaining still at two sides of the domain for t f
1. Specifically, µ1(t), ν1(t) and µ2(t), ν2(t), the means of

the two von Mises functions, evolve as in Fig. 7c. Such a

desired behavior consists of two clusters of agents orbiting

on a circle. Results are reported in Fig. 7d, where the time

evolution Ē is also shown. After an initial transient, Ē settles

to approximately 50%. For brevity, we omit the KL divergence

in time, which remains below 0.3.

B. Results and Discussion

We considered a hybrid swarm of 4 differential drive

robots and 96 virtual agents, interacting through a repulsive

kernel. Assuming the group to start on a perfect square lattice

(intial constant density), we tasked the swarm to aggregate

according to four different desired densities, under a new 2D

continuification control action. Specifically, we presented a

monomodal and multimodal regulation case, where the means

of the von Mises functions to achieve are time invariant, and a

monomodal and multimodal tracking case, where, instead, the

means of the von Mises functions to achieve are time variant.

We characterized the performance of each trial using the

time evolution of the normalized L2 error, namely Ē. Although

the correct formation has been attained in each of the trials,

we obtained our best results in the regulations scenarios

(monomodal and multimodal), where the steady-state residual

percentage error went below 10% and 30% respectively (Fig.s

5 and 6). Concerning the tracking cases, instead, performance

was less remarkable, with Ē being around 50%, in both the

monomodal and multimodal case (see Fig. 7).

Although the prescribed formation was always attained (see

Figs. 5 and 6 and available videos for the tracking cases),

the asymptotic convergence that is prescribed by the theory

(see Section III) was not accomplished. This is due to two

main factors. First, we adapted the theoretical framework to

experiments to cope with the periodicity assumption about the

domain and with the constrained kinematic of the differential

robots. Second, the inherent uncertainties and noise of the

experimental set-up need also to be considered. Note that,

another source of performance degradation is the finite size

of the swarm. Specifically, our convergence guarantees hold

in the limiting case of infinite agents. Indeed, should we

numerically integrate (5), assuming an infinite number of

agents, we would be able to reduce ∥eF ∥22 to 0.

V. CONCLUSIONS

We developed a new mixed reality, flexible, experimental

environment for large-scale swarm robotics experiments with

relatively small time and resources demand, and we presented

the extension to higher dimensions of the continuification-

based control strategy proposed in [1]. Our approach leveraged

hybrid swarms of differential drive robots and virtual agents,

making the size of the swarm easily scalable by the user. We

demonstrated the applicability and effectiveness of our set-up

for the experimental validation of the continuification-based

control of swarming robots in the plane.

When experimentally implementing a macroscopic control

technique with the assumption of an infinite number of agents,

we reported a performance degradation, even if convergence is

theoretically ensured. This is due to both implementation prob-

lems and theoretical drawbacks of the strategy. In particular,
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performance degradation is due to (i) the experimental set-

up, (ii) the necessary adaptation of the control strategy to the

kinematic constraints of the real robots and the periodicity of

the domain, and (iii) the inherent approximation introduced by

the continuum hypothesis. Current work seeks to build more

differential drive robots to asses how the ratio between real

robots and virtual agents influence the effectiveness of the

platform, and rephrase the theoretical framework to reduce

the number of adaptations to go from theory and simulations

to reality.
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