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Abstract: Functional data have received significant attention as they frequently
appear in modern applications, such as functional magnetic resonance imaging
(fMRI) and natural language processing. The infinite-dimensional nature of func-
tional data makes it necessary to use dimension reduction techniques. Most ex-
isting techniques, however, rely on the covariance operator, which can be affected
by heavy-tailed data and unusual observations. Therefore, in this paper, we con-
sider a robust sliced inverse regression for multivariate elliptical functional data.
For that reason, we introduce a new statistical linear operator, called the con-
ditional spatial sign Kendall’s tau covariance operator, which can be seen as an
extension of the multivariate Kendall’s tau to both the conditional and functional
settings. The new operator is robust to heavy-tailed data and outliers, and hence
can provide a robust estimate of the sufficient predictors. We also derive the
convergence rates of the proposed estimators for both completely and partially
observed data. Finally, we demonstrate the finite sample performance of our

estimator using simulation examples and a real dataset based on fMRI.



Key words and phrases: dimension reduction, elliptical distribution, functional

data, sliced inverse regression, spatial sign.

1. Introduction

The complexity of data structures has increased over the past few decades
as data storage capacity and its usage demand have exploded. Following
these phenomena, functional data analysis (FDA) has gained great atten-
tion, which treats an entire curve or a vector of curves as a single obser-
vation. Functional data are considered to be random elements in infinite-
dimensional linear spaces and the extension of multivariate data analysis
to functional data is highly non-trivial. However, the rapid development of
FDA in the past few decades has enabled us to use a variety of techniques
to analyze such infinite dimensional data. See Wang et al. (2016) for a
comprehensive overview on FDA.

The infinite-dimensional nature of functional data leverages the use of
dimension reduction techniques, i.e., techniques that replace the functional

objects with finite ones while maintaining all the necessary information. At
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the unsupervised setting, a common dimension reduction technique is that
of functional principal component analysis (FPCA); see Hall and Hosseini-
Nasab (2006), and Happ and Greven (2018) for an overview. At the super-
vised setting, many authors considered extensions of dimension reduction
techniques to functional data. For example, Ferré and Yao (2003) proposed
functional sliced inverse regression (FSIR) by extending the sliced inverse
regression (SIR) of Li (1991) to the case where the predictor is a function,
while Li and Song (2022) further generalized sufficient dimension reduction
to the nonlinear case and where both the response and the predictor are
random elements in a Hilbert space.

The aforementioned methods are based on the covariance operator,
which can be sensitive under heavy-tailed data and unusual observations.
To address these challenges, at the unsupervised setting, efficient robust
methods for FPCA have been recently developed. For example, L.ocantore
et al. (1999) introduced the spherical covariance operator to replace the
covariance operator. Gervini (2008) introduced the functional median for
robust mean estimation and studied the properties of the principal com-
ponents of the spherical covariance operator, under the assumption that
the observed functions lie in a finite-dimensional Hilbert space. Bali et al.

(2011) extended the projection-pursuit method of [i and Chen (1985) to



the functional setting and Kraus and Panaretos (2012) proposed to replace
the covariance operator with a dispersion operator defined through a vari-
ational problem. Boente et al. (2019) and Wang et al. (2022) introduced
the functional pairwise spatial sign operator that extends the multivariate
Kendall’s tau matrix of Choi and Marden (1998) to the functional setting.
For Euclidean finite-dimensional data, the multivariate Kendall’s tau ma-
trix has also been studied by several other authors; see Marden (1999),
Han and Liu (2018), Croux et al. (2002), Visuri et al. (2000), and Jackson
and Chen (2004). In particular, Marden (1999) showed that the population
multivariate Kendall’s tau shares the same eigenspace with the covariance
matrix under the coordinate-wise symmetric condition.

All above works tackle the problem at the unsupervised learning set-
ting. In this article, we introduce robust inverse regression for multivariate
elliptical functional data. We relax the Gaussian assumption in Ferré and
Yao (2003), and we consider the situation where the multivariate functional
predictors are not Gaussian and may be characterized by the presence of
atypical observations. Our proposal thus extends two lines of existing and
relevant research: from robust inverse regression of random variables to that
of random functions, and from unsupervised robust dimension reduction

for functional data to supervised robust dimension reduction for functional



data. We note that Chen et al. (2022) introduced elliptical sliced inverse
regression for finite-dimensional data. However, our method involves vec-
tors of random functions and hence, requires different techniques for both

the method and the theory. We make several contributions as below:

e We define the elliptical distribution for a vector of random functions,
extending the existing definition of Boente et al. (20141) to the multi-

variate setting.

e We introduce a new statistical linear operator, called the conditional
spatial sign Kendall’s tau covariance operator, which can be seen as
an extension of the multivariate Kendall’s tau to both the conditional
and functional settings, and is capable to handle heavy-tailed func-
tional data and outliers. We show that the conditional spatial sign
Kendall’s tau covariance operator has the same eigenfunctions with
the conditional covariance operator, and hence we can formulate the
generalized eigenvalue problem based on this new operator to achieve

estimation robustness.

e We derive the convergence rates of the proposed estimators for both
completely and partially observed data. In practice, we can only

observe the functions at discrete time points, and the new theoretical



results support practical estimation procedure.

The rest of the paper is organized as follows. Section 2 introduces the mul-
tivariate elliptical random elements in Hilbert spaces and the conditional
spatial sign Kendall’s tau covariance operator. Section 3 describes the pro-
posed method of robust functional SIR. Section 4 presents the asymptotic
results of the method, while Section 5 demonstrates its sample estimation.
Finally, the finite sample performance of the proposed method is illustrated
through simulation studies in Section 6 and through a neuroimaging dataset
in Section 7. All proofs and some additional results can be found in the

supplementary file.

2. Multivariate elliptical random elements in Hilbert spaces

In this section we present basic notations and definitions that will be used
throughout the paper. Let (2, F, P) be a probability space and # be a
separable Hilbert space of real-valued functions defined on 7', where T is a
closed interval in R. Let (-,-), represent the inner product in # with the
induced norm || - || ,» A random element U in J# is a mapping from € to »#
that is measurable with respect to the Borel o-field generated by the open

sets in 7. Assuming

Assumption 1. E||U|]?, < oo,



implies that E||U]|,, < co, under which the mapping # — R, s — E(s,U) ,
is a bounded linear functional. Then, by Riesz representation there exists

a unique j,; € s, such that

(s, to)or =E((s,U) ). (2.1)

The function p, is called the mean of U and it can also be written as
E(U). Under Assumption 1, we can define the covariance operator of U,
Yov =E[{U—-E(U)}®{U —E(U)}], where ® represents the tensor product
on . If for example, # = L,(T), where L,(T) denotes the space of
square-integrable real-valued functions, then the mean of U is the function
t — EU(t) and the covariance operator is defined as the integral operator
Soo(f) = [, f(s)ovu(s,t)dt for f € s, where oy (s,t) = cov{U(s),U(t)}
is the covariance function of U.

Under Assumption 1, it can be shown that X, is a self-adjoint, non-
negative definite and trace-class operator, and that it belongs to the Hilbert
space of Hilbert-Schmidt operators over J#. Hence, it achieves a spectral
decomposition ) \.¢, ® ¢,, where {),},., are the nonnegative eigen-
values satisfying A\, > A\, > ... > 0, and {¢,},>, are the eigenfunctions

forming an orthonormal basis in J#. Moreover, U — u,, can be expressed as



the Karhunen-Loéve expansion (Bosq, 2000)

U—py =) N0, (2.2)
r=1
where &, = A"Y2(U — py, é,), 7 = 1,2, ..., are zero mean, unit variance,

and uncorrelated random variables. Next, we give the definition of the
elliptical distribution for a univariate random element in 7, as introduced

in Boente et al. (2014, 2019).

Definition 1. A random element U in 2 is said to follow a functional
elliptical distribution with parameters u € 2 and ¥ : # — #, where X
is a self-adjoint, nonnegative definite and compact operator, if and only if,
for any d > 1 and for any linear and bounded operator A : # — R?, we
have that Elexp{it"(AU)}| = exp(it" Au)p{t"(AXA*)t}, t € R where ¢ is
a valid characteristic function in R and A* : R* — . denotes the adjoint
operator of A. Equivalently, AU is a d-dimensional elliptical random vector,
written as AU ~ &,(Au, AXA*, p). We write U ~ E(u, 3, ), and we call p

the location parameter and X the scatter operator of U.

Note that, if u, = E(U) exists, then p, = pu, and if E|U|]?, < oo,
then ¥, = aX for some constant a (Boente et al.; 2014, 2019). Moreover,
elliptical random elements in 2# are closed through linear and bounded

transformations; see Lemma 2.1 in Boente et al. (2014, 2019). According



to Boente et al. (2014, 2019), the elliptical random elements in # can be
constructed as follows: Let N be a Gaussian random element in 5 with
zero mean and covariance operator Y, and let S be a nonnegative random
variable that is independent of N. Given u € 7, the random element
UL i+ SN is an elliptical random element in 2, i.e., U ~ E(u, %, )
with ¥ = ¥yy and ¢(z) = E{exp(—x5/2)}. Throughout the paper, for an
elliptical random element U we assume that E(S?) < oo, so that ¥,, =
E(S*)X. Further, for model identifiability, we assume that E(S*) = 1. The
class of the elliptical distributions in .# includes the Gaussian distribution
by taking p(t) = exp(—t/2) and X = X.

We now turn to vector-valued random functions. For each ¢t =1,... p,
let 7, be a separable Hilbert space of real-valued functions on 7" with inner
product (-,-),. Let 7= @?_ 2, be the direct sum of J#,,..., 5, That
is, @?_ 7, is the Cartesian product 7, x --- x 2, with its inner product
defined by (f, 9)ar= D" ([fi, G:), Where f and g are members of ®?_ .7,
and f; and g, are the ith components of f and g, respectively.

Let X = (X',...,X?) be a random element in @&?_ .#,. For each

i =1,...,p, we assume that E||X"||2, < co. The covariance operator be-
tween X' and X’ is defined as Yyi; = cov(X* X7) = E{(X" — puyi) ®

(X7 — pys)}, where pyi and py; are the means of X and X7, respectively,



as defined in (2.1), for 4,7 = 1,...,p. Note that, X, i € B(;, ),
where % (#;, #,) denotes the set of all bounded operators from #; to
;. Define Y i to be the operator &*_ 7, — & 7, (ti,....,t,) —
(O iyt .., >0 Yyeyit,). Intuitively, X can be interpreted as the
p X p matrix whose (i, j)th entry is X ... The covariance operator Xy x is
a linear, self-adjoint, symmetric and nonnegative definite operator. More-
over, it is assumed to be a compact operator in @  .#;; see Proposi-
tion 2 of Happ and Greven (2018) for more details. Then, there exists
a complete orthonormal basis of eigenfunctions {¢,},-, in ®”_ #, such that
Yex = > 0 % ® 1, , where the eigenvalues {v,},, satisfy v, > v, >

... > 0. Then, X admits the multivariate Karhunen-Loéve decomposition

(see Proposition 4 of Happ and Greven (2018))

X — Hx = ZSZ{Y:QPT wm (23>
where p, = v7*(X — px, ¥, )em 7 = 1,2,..., are zero mean, unit-variance,
and uncorrelated random variables, and gy = (pix1, ..., fxr) € B, ;.

Suppose for any d > 1 and each 7 = 1,...,d,7 = 1,...,p, A, is a

ij
linear and bounded operator from 5, to R. We define the matrix of op-
erators A = {A;}{?  as the mapping A : @77, — R, (t,,...,t,) —

1

O r Aute, -, > 0 Aut,). Using this convention we can define the multi-

variate elliptical random element in @©?_ 7.



Definition 2. Suppose X is a random element in @2 #,. We say that
X follows the multivariate functional elliptical distribution with location
parameter p € @°_ 7, and scatter operator ¥ : @7_ 7, — ®F_ 7, if and
only if, for any d > 1, and for any linear and bounded d X p matrix of op-
erators A = {A;}{7: @7 A, — R, we have that AX ~ &,(Au, ALA", p),
where A* : R* — @?_ #, denotes the adjoint operator of A and ¢ is a valid

characteristic function in R?. We write X ~ &,(u, 2, ¢).

Remark 1. Asin the classical setting, elliptical random elements in &?_, .7,
can be characterised by their marginals. In particular, X is an elliptical
random element in @?_ 7, if and only if for any bounded and linear operator
B:@r_ o — @ A, k <p, BX is an elliptical random element in &F | 7,
with parameters Bp and BYB*. That is, if X is an elliptical random
element in @7 ,7;, then X, is an elliptical random element in J#,. As
in the case with p = 1, the following construction allows to obtain an
elliptical random element in @&7_,.#,. Let N be a Gaussian random element
in B?_ #; with zero mean and covariance operator ¥y, and let S be a non-
negative random variable that is independent of N. Given pu € @7_ 7, the
random element X < 1+ SN is an elliptical random element in &2_, 57, i.e.,
X ~ & (i, 2, ) with ¥ = Xyy. We assume that the covariance operator of

X € @P_, s, is the same as its scatter operator X.



2.1 Spatial sign Kendall’s tau covariance operator

2.1 Spatial sign Kendall’s tau covariance operator

We next define the spatial sign Kendall’s tau covariance operator of a vector

of functions X € @, ., to the multiple setting.

Definition 3. Assume X is a random element in @& ,57,. Let X be an

independent copy of X, the operator defined as

{(X—X)@(X—X)T}’

Tyx = =
HX - X”ga;f

is called the spatial sign Kendall’s tau covariance operator.

The spatial sign Kendall’s tau covariance operator Ty can be seen
as the covariance operator of the functional pairwise spatial signs (X —
X)/||X — X||s.r and it exists without any moment assumptions. Moreover,
(2.4) shows that Ty is self-adjoint. An alternative robust estimator of the

covariance operator, introduced by Locantore et al. (1999), is called the

(X—px)Q(X—px)T }

spherical covariance operator and is given by Ry = ]E{ X x|
(R

The next lemma shows that the Kendall’s tau covariance operator, Ty, and
the spherical covariance operator, Ryy, coincide when X ~ & (ux, X, ¢).
However, the advantage of using Ty is that it avoids the estimation of the

location centre fix.

Lemma 1. Let X be an elliptical random element in @®F_ 7, satisfying



2.1 Spatial sign Kendall’s tau covariance operator

Assumption 1. Then, E{w} = E{(X_“X)@’(X #x) }, where X

IX-XI2, X —rix 2

is an independent copy of X.

The following theorem states that, for elliptical random elements in
@r_,#;, the spatial sign Kendall’s tau covariance operator Ty has the
same set of eigenfunctions with the covariance operator ¥y . In addition,
they have the same descending order of the eigenvalues. For a similar result

for a univariate X, see Kraus and Panarctos (2012) and Wang et al. (2022).

Theorem 1. Let X be an elliptical random element in &°_ #;, satisfying
Assumption 1, with mean function ux € ®°_ ., and covariance operator
Yxx. Then, we have Txyx = > 7 0,1, ® 1,, where the eigenvalues {0, },5,
of Txx satisfy o, = E(’YTYQ/Zk Y, ) = 142 5, {%}721 and {1, },>,
are the eigenvalues and the eigenfunctions of the covariance operator ¥x x,

respectively, and {Y,},>1, are iid standard normal random variables.

The proof of Theorem 1 for the multivariate case X € @?_ 7, follows
the same arguments as in the proof of Theorem 4 in Wang et al. (2022),
and thus it is omitted. A similar result to Theorem 1 was obtained
by Gervini (2008), under the assumption of exchangeability of the scores.
However, Gervini (2008) does not require any moment assumptions as the

author assumes that the Karhunen-Loéve expansion is a finite sum, i.e., that



2.2 Conditional spatial sign covariance operator

function X lies in finite-dimensional Hilbert spaces. In contrast, our results
rely on infinite-dimensional functions X, and, without the Assumption 1
of finite second moments, the convergence of an infinite Karhunen-Loéve

series is not guaranteed (Kraus and Panaretos, 2012).

2.2 Conditional spatial sign covariance operator

We now define the conditional spatial sign covariance operator, a general-
ization of the Kendall’s tau covariance matrix to the functional and condi-
tional settings. Let Y be a random variable with support €2,.. For each
fixed y € Q, let pxy(y) be the Riesz representation of the bounded
linear functional @®*_,#, > s — E((s,X)es.y). Then, the conditional
expectation of X given Y is the mapping y — puxy(y). Moreover, we

can define the conditional covariance operator of iy (Y) by Zyxy =

El{pxiy (V) = px} @ {pxpy (V) = pux}7]. Then, define

{pxy (V) = py (V)} ® {MX\YN(Y> — py (V)T
||NX|Y(Y) - MX\Y(Y>||§9,;¢ ’

(2.5)

TXX\Y S
where Y is an independent copy of Y.

Definition 4. We call the operator Ty defined in (2.5) the conditional

spatial sign covariance operator of fixy(Y).



3. Robust inverse regression

3.1 Population level

Let Y be a random variable and X be an elliptical random element in
@’_, s, with mean function py € @”_ ., and covariance operator Xy . Di-
mension reduction techniques aim at finding functions f,, ..., Bx in &7_, 7,

K > 1, such that

Y:g(<617X>®J%-"’<BK’X>®%’76)> (36)

where ¢ is an arbitrary unknown function on R**' and ¢ is independent of
X. An equivalent definition of (3.6) isthat Y L X | (B, X) e - - s (Brs X)aw
The functions f,, ..., B in @7_ 7, are called the functional dimension re-
duction directions and the subspace spanned by f,,..., Bk is called the
functional dimension reduction subspace. The smallest functional dimension
reduction subspace is called the functional central subspace and is denoted
by Sy;x. As in the classical setting, the functional dimension reduction
directions (., ..., 0, are not identifiable. However, the functional central
subspace Sy x is identifiable, and is the goal of the estimation. A common
assumption in the dimension reduction literature is that of the linearity
condition, which is adopted to the functional case and is satisfied in our

setting since X has an elliptical distribution.



3.1 Population level

Assumption 2. For any function b € @ #; there exist constants c,,
Cl) PN 7CK SUCh that E(<b, X>®j///| </81, X)@]/@ ceey </8K7 X>®j;a) - CO+CI<51, X>@jf+

et ek (B, X) e

Under Assumption 2, (YY) — pyx belongs to the subspace spanned
by Yxxf1, .-, 2xxPx (Theorem 2.1, Ferré and Yao (2003)). The next
theorem provides a parallel result, where ¥y is replaced with the spatial

sign Kendall’s tau covariance operator Ty defined in (2.4).

Theorem 2. Let X be an elliptical random element in &F_,#,;, satisfying

Assumption 1. Then, pixy(Y) — px € span{Txxfi, ..., TxxPx}-

It follows from Theorem 2 that ¥, is degenerate in any direction
Ty x-orthogonal to the central subspace, implying that the range of ¥y«
is contained in span{Tyx/3, ..., TxxPx}. Thus, a subspace of the central
subspace can be recovered through the T’ y-orthonormal eigenfunctions of
Yxxjy corresponding to its K largest eigenvalues. However, the covari-
ance operator Xy, can be sensitive to outliers and heavy-tailed data. A
robust alternative can be obtained using the next theorem, which states
that for elliptical random elements, the range of T’y is also contained in
span{Txxf, ..., TxxPx}. Thus, we can use Tk to provide an efficient

and robust estimate of the central subspace.



3.1 Population level

Theorem 3. Let X be an elliptical random element in &°_ 7, satisfying

Assumption 1. Then, Txx)y and Xy have the same eigenfunctions.

Under Assumption 1, Theorems 2 and 3 imply that the range of T xy
is contained in span{Txy/fi, ..., TxxBx}. Hence, the K eigenfunctions of
TT Ty corresponding to the K nonzero largest eigenvalues generate a
subspace that is contained in the central subspace Sy x. Here, T}, denotes
the Moore-Penrose inverse of Tyy which is defined in the next paragraph.
Recall, the goal of sufficient dimension reduction is not about estimating the
directions [, ..., 8%, but rather estimating the central subspace spanned
by B, ..., Bx. Hence, with a little abuse of notation, we will use £, ..., 8%
to denote the T’y x-orthonormal eigenfunctions of T x,,. To get those eigen-
functions, it is convenient to determine the eigenfunctions n,,...,n,, of
T;%(TXX‘YTE( and to use 5, = T;%(m, (=1,..., K, leading to the following

eigenvalue problem

.y oL t3
maximize (1, Tx%xTxxy IxxM) or

subject to n € B A (N, Mer=1, N N)er=0L0=1,..., K — 1.
(3.7)
The functions 7,,...,7nx generate a subspace of the central subspace Sy x.

We refer to any sample estimator targeting the central subspace as R-FSIR.

In the infinite-dimensional setting, Ty x is not necessarily invertible as it is a



3.1 Population level

compact operator. However, following He et al. (2003), we can define the in-
1
verse of the restricted operator of Ty x. Let R _1/2 be the range of T, which
XX

is characterized by R .2 = {f € @7_ 7, : Y 6"
XX

i=1"1

<f7 ¢i>€9,7f|2 < OO,f €

ker(Txx)}, where ker(Tyx) denotes the kernel of the operator Tx . Define
R, ="{he@_ st :h=>37056"f el [ € Rpup}t C & .
Ty x XX

~1 . A
Then, the restricted operator T'¢y = Ty« |R71/ is a one-to-one mapping from
1/2

Txx

R;i ;> to R_1/2. We call the inverse of this restricted operator the Moore-
XX XX

1 1 1
. 3 . 3 t3 _
Penrose inverse of T'?y and denote it as Ty%. Thus, Ty% : RT)l(/)Q( — RTi/Q

X x
and Tjﬁ( = Y% 07", @ 1. Moreover, TE( satisfies the usual proper-
ties of an inverse in the sense that TéXT;é(f = f, for all f € RT;(/; and
T;%(Téxg =g, for all g € R;}/Q. Note that we do not assume that T;é( is
XX
continuous, which would be a strong assumption since Té x 18 a trace-class
operator whose eigenvalues tend to zero. The following assumption guar-
antees that the operator TE{TXX‘YTE( is a well-defined Hilbert-Schmidt

1 1
operator as well as that the eigenfunctions of T;&TX X|YT;(§( are well-defined

in ®r_ .

- e N {E(p; [Y)—E(p} 1Y) HE(p3 [Y)—E(p; Y)}
Assumption 3. Y = > 625 'E? - - . o < 00,
=t = AE(p:|Y) — E(pz]Y)}?

where Y is an independent copy of Y, {6,}.>: and ¢, are the eigenvalues

1/2

and eigenfunctions of Ty, respectively, and p: = v"?p, = (X — ux,¥,)en

Assumption 3 implies Zzléi‘lKTXX‘yTJ(iU,%)@/AQ < oo for all u €



3.2 Sample level

RT;(/;. Thus, |<TXX|YT;<%(U, ;) er]® must decay to 0 faster than ¢, as i — oc.
Essentially, it implies that T X|YT)§( is a Hilbert-Schmidt operator, and can
be interpreted as a type of smoothness assumption. It requires the range
space of T’y X‘YT;(%( to be sufficiently focused on the eigenspaces of the large
eigenvalues of T)%X. The following proposition is analogue to Theorem 2.1

of Ferré and Yao (2005) and to Theorem 4.8 of He et al. (2003).

Proposition 1. Let X be an elliptical random element in &F_, #;, satisfying
Assumption 1. Then, under Assumption 3, the eigenfunctions 1, ..., Nk

1 1
associated with the K positive eigenvalues of T;(%(TXXWT;(%( are well-defined.

3.2 Sample level

In this section, we derive the sample estimate of the conditional spatial
sign covariance operator when the functions are fully observed. For u =
1,...,n, let Y, be an independent and identically distributed (iid) sample
from Y, and let X,,..., X, be an iid sample from the random element
X = (X',...,X"), such that X, = (X!,..., X?)". Consider partitioning

Y into slices J,,...,Jy. Then, for each slice h, estimate x|y (h) using

/lX\Y (h) _ E{XI(YeJn)}

= e h=1,...,H, where E,(-) denotes the sample mean

and I(-) denotes the indicator function. Then, by (2.4) we estimate T x



using

R 2 X, — X))@ (X, — X))
Z ( ) @ ( )

Ty = — .
e n(n—1) | X, — X (3.8)

2
1§u<ul§n oA

Note that TX « is a U-statistic of order 2 with the kernel,

(Xu - Xu') ® (Xu - Xu’)T
”Xu - Xu,

(X, X.) =

2
A
Moreover, k(-,-) is a bounded operator, i.e., ||k|,, < 1. Similarly, we can

estimate Ty y as defined in (2.5) by

~ 2 {ﬂx\y(h) - ﬂx|y<h/)} ® {ﬂx\y(h) B ﬂXiy(hl)}T
- 1) 2 [ iy (R) = iy (R)I[E '

(3.9)

4. Asymptotic theory

4.1 Convergence rates for fully observed random functions

We first establish the convergence rate of R-FSIR assuming the random
functions X%, ¢ =1,...,p, are fully observed. The following theorem is due

to Zhong et al. (2022) (Theorem 2.1).

Theorem 4. Let Ty be as defined in (3.8). Then, |[Txx — Txx|lon =

O,(n=1?).

p

For the iid sample {(Y,, X,) : u=1,...,n}, denote the order statistics

{(Yw,Xw) : u=1,...,n} where Yy, < Y, ... <Y, are called the



4.1 Convergence rates for fully observed random functions

concomitant of Y, (Yang, 1977). Then, following Chen ot al. (2022), we
introduce the following double subscripts, where the first subscript refers
to the slice number and the second subscript refers to the order number
of an observation in the given slice, that is, X,, = Xy 14 and Y, =
Yuon-nysn, @ = 1,...,0h = 1,...,H, where { = [n/H] is the number of
observations in a given slice. Define m,(Y) = E(X*|Y), k£ = 1,...,p,
and m(Y) = E(X|Y) = (E(X'|Y),...,E(X?|Y))". Next, to derive the
convergence rate of TX x1v, we need the following smoothness condition on

the inverse regression curve, which was also used in Hsing and Carroll (1992)
and Zhu and Ng (1995).

Assumption 4. Let [[ (B) be the collection of all n-points partitions
—B <yu < ... <yu < Bof the closed interval [—B, B], where B > 0 and

n > 1. Any function m(y) : R +— @*_ 27, is said to have a total variation

of order r if for any fixed B > 0, lim, . 1" supy 5 >, [Im(yg.) —

’@%f = O

m (Y )
Assumption 4 holds for any r > 1 if m is a continuous function.

Theorem 5. Assume E|| X||} , < co. Assumption 4 holds with r = 4, and if
there exists a nondecreasing real-valued function M and B, > 0 such that for
any two points y, and y, both in (—oo, B,| or [By, 00), [|m(y,) —m(y,)||er <

|M () — M(y,)| and M*(w)P(Y > u) — 0 ast — oo,n — oo. Then,
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4.1 Convergence rates for fully observed random functions

||TXX|Y — Tixivllop = O,(n7'?), where TXX‘Y and T,y are defined in (3.9)

and (2.5), respectively.

Assumption 5. There exists a bounded and self-adjoint operator Dy :

Assumption 5 requires Ty "1 x|y to be a bounded operator, and that
ran(Tyxy) C ran(TyY), (4.10)

where ran(7L%/) is the range of the operator T{?, characterized by ran(T¢Y’) =

{f € oo Y, Utlad’ < oo f 1 ker(TXX)}, and (8,1, (62,0, - -
are the eigenvalue-eigenfunctions pairs of Ty . Note that, condition (4.10)
requires that » > W < o0, for all f € ran(Ty?). Therefore,
in order for condition (4.10) to hold, (T« xy f, %)%, must decay faster than
6:"* as i — oo. This means that the operator Tyyy sends any incom-
ing function f € ran(T}%’) to the eigen-spaces of Ty corresponding to
the large eigenvalues, or to the low-frequency components of Ty. More-
over, the degree of concentration increases as [ increases. For that rea-
son, Assumption 5 can be interpreted as a type of smoothness, where
[ characterizes the degree of smoothness. Moreover, Assumption 5 al-

lows to derive the convergence rates of certain operators beyond consis-

tency, when dealing with compact operators which are noninvertible in the



4.1 Convergence rates for fully observed random functions

infinite-dimensional case. Finally, in the simulations setting, we approxi-
mate the functions through a few coefficients, and hence Assumption 5 holds
since all operators involved are finite-rank operators. See also Li (2018) for
more details. For simplicity, we use the notation M = T ;%(TXX‘YT ;é( and
Men) = (TXX + en])*% AXX|Y(TXX + enI)*%, where (€,),ey 1S a sequence of

positive numbers such that ¢, — 0 as n — oc.

Theorem 6. Let X be an elliptical random element in &F_ #;, satisfying
E| X%, < co. Then, under Assumptions 3, 4, and 5, and n=*® <€, <1,

we have ||M(€n> — MHOP = Op(n71€;5/2 _|_ n*1/2€;1 + Ezlin(l,ﬁ)>-

Let (Ci,m1), (Gos12) - - -, (Ciey ) and (élaﬁ1)7 (6277?2) cee (éra fix) be the

first K eigenvalues-eigenfunction pairs of M and M (n) " respectively. The
following corollary provides the rates of convergence for the eigenvalues
él, e CAA and eigenfunctions 7, ..., 7, which are the same as the ones in
Theorem 6. The corollary follows by applying perturbation theory for linear

operators ([oltchinskii and Gine (2000), Kato (2013), Chapter VIII).

Corollary 1. Under the assumptions of Theorem 6 and the assumption

that the nonzero eigenvalues of M are distinct, we have for k=1,... K,

||77k - ,r]k“@,%ﬂ = Op(n_lej’/2 + n‘1/25;1 + Efin(l,ﬁ))’

G — Gl = O, (716,72 7126+ e,



4.2  Convergence rates for partially observed random functions

Next, we derive the convergence rates of the transformed eigenfunctions

~ ~

By = (Txx + €l)7'/?n, and the sufficient predictors </§,€, X)ork=1,... K.

Theorem 7. Let X be an elliptical random element in &°_ #;, satisfying
E[| X%, < oco. Then, under Assumptions 3, 4, and 5, B > 1, and n™"/* <

€, < 1, we have fork=1,... K,

HBk o ﬁk”@%': Op(nflqs/z + 77/71/26773/2 4+ 62.1:1(1,571))’

[(Bes XD = (B X)ord = O, (071672 472 %2 4 qn770),

4.2 Convergence rates for partially observed random functions

We next derive the convergence rate under the scenario that each random
function X', ¢+ = 1,...,p, is only partially observed. Partially observed
functions can only be observed at a measurement schedule and must be
estimated from observed values at the sampled time points. Measurement
schedules are classified as ‘dense’ if the covariance operator i can be
estimated at n~'/? rate; otherwise they are classified as ‘sparse’. See Yao
et al. (2005) for more information about the measurement schedule.

Foreachu =1,...,n, let X, (t) = (X!(t),...,X?(t))" be the estimated
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functions. We then estimate

EXI(Y € J,)}

iy (h) = h=1,....H
MX\Y( ) ]En{I(Y c Jh)} ) ) ’ )
- 2 Xu—Xu/ ® XM—XM/ T
Txx = 1 Z ( = ) A< N ) ,
n(n —1) 1<u<u/<n X, — Xu’“ea%

- 2 Z [{/:LXY(h) — gy (R)} @ {igyy (h) — gy (R)}7

Tyxy = - -
T H(H - 1) i1y (h) = sy (R)I[2,

1<h<h/<H
Theorems 5 and 6 show that the convergence rates depend on the rate

12 when the func-

of convergence of || Txx — Tx||.,. This rate is equal to n
tions are completely observed. However, when the functions are partially
observed, we may assume that Ty is estimated at an arbitrary rate n="
such that n='* <n~" < 1 with 0 < v < 1/2. The denser the measurement

schedule, the closer 7 is to 1/2. The next theorem extends Theorem 6 and

Theorem 7, and takes into account the effect of the measurement schedule.

Theorem 8. Let X be an elliptical random element in &°_ 7, satisfying

E|| X%, < oco. Under Assumptions 3, 4, 5, the assumption that there

oA

exists 0 < v < 1/2 such that |Txx — Txx|op = O,(n77), B > 1, and

Ik



n~"? <€, <1, we have

[ M — M

ow=0,n""e+ne +e,),
HBk - /BkH@.l/’: Op(/ff%' 6:15/2 + ,rfye:s/z + €i11i11(17¢171))’

~

(B X — (Bus X) el = O, (6,7 4 76,2 4 enn50),

n n

5. Implementation

In Section 3.2, we described the estimation procedures at the operator level.
To implement the estimation procedure, we need to represent operators as
matrices through coordinating mapping. To save space we leave the full
details of the development of the coordinate mapping in the supplementary

file, while only present the final results here.

5.1 Algorithm for R-FSIR

1. Foreachi =1,...,p, choose a finite set of functions {g;, ..., g;, } such
that span{g;,...,g; } = 7,

2. Obtain the Gram matrix K, and its centered version @Q,, K,Q,, = G.,.

3. For each X,,u =1,...,n, calculate the centered version X, — E,X,.

4. Compute the coordinate [X,] relative to the basis # of ®r_,s#,, and

derive the gram matrix G = @Q,, KQ,, of the basis %.



5. Divide the range of Y into H equal slices, J,, ..., Jy.
6. For each h = 1,..., H, compute [fiyy(h)] according to

EAXIY € )} EAXUY €J)}
E{IY €J)}r  EJI(Y € )}

[/lX\Y(h)] =

7. Compute the matrices 2 and A, defined as

__ 2 [y (7)) = fucgy (W) [y () — fixyy (R)]T
A= H(H —1) 2 {[ﬂxy(h) — fxpy (W] G iy (h) = fixyy ()] }

1<h<h/<H

2 —_ ’ — / T
o s D XX -
n(n —1) L= (X, — X |'G[X, — X./]
8. Compute the matrix MAM" and its K eigenvectors, vy, ..., vy, where

M = (G2QGH)G3,
9. Obtain the eigenfunctions 3,, £ = 1,..., K by 3, = V] (G3QGE) 1B GT3D,

(=1,...,K, where b= (b'7,...,0"")" and b’ = (bi,...,b. ).

We determine the dimension K of the central subspace using the CVBIC
criterion introduced by Li et al. (2011), with full details developed in the

supplementary material in Section S2.4.

6. Simulation Studies

The finite sample performance of the proposed methodology is illustrated
through simulation examples. We use R-FSIR to denote the proposed rank-

based FSIR method, and we compare it with FSIR (Ferré and Yao, 2003).



The simulation setting is an extension of Wang et al. (2022) to multivari-
ate functional data and is as follows. For j = 1,... p, assume puy; = 0 and
generate X7(t) from the univariate Karhunen-Loéve expansion (2.2), that
is, XJ(t) = Y"1 & .¢i(t), t €[0,1], u=1,...,n, where ¢(t) = v/2sin(27t),
¢i(t) = V2cos(2mt), ¢i(t) = V2sin(4nt) and ¢i(t) = v2cos(4nt), and &,
are mutually independent random variables with zero mean and variance
var(€2) = A, g = 1,..., 4 with (A, Ay, Ay A)T = (2,1,1/2,1/4).

To simulate the multivariate functional data X, (t) = (X (¢), ..., X?(¢))
from the Karhunen-Loéve expansion (2.3), we obtain the multivariate FPCA
eigenfunctions through an orthogonalization of the univariate eigenfunc-
tions, as described in the Proposition 5 of Happ and Greven (2018). Specif-
ically, let €,= ((&))7,...,(€?)")" € R*, where & = (&,,...,&,)", j =
1,...,p, u = 1,...,n, and let Z € R*”** be the covariance matrix of
the univariate FPCA scores €, whose (j,k)th entry is the matrix Z* =
cov(&’,€") € R**. Then, the kth eigenfunction of X, denoted by ¥, (t) =
(WL(t),...,¥r(t))T, is given by ¢i(t) = ¢'(t)"vl, k = 1,...,12, where
@'(t) = (¢i(t),...,¢.(t)" and vi = (vi,,...,v],)T € R* denotes the jth
block of the eigenvector v, of Z. Then, the scores p,, are obtained by
Puk = lezjzlviq o k=1,...,12, u = 1,...,n, where we assume that

coordinate-wise scores &’ are simulated from the following distributions:



6.1 Results

1) Gaussian 2) multivariate Student-¢ distribution with two and three de-
grees of freedom and 3) Cauchy distribution. Moreover, to evaluate the
robustness of the method, for each 7 = 1,...,p and each ¢ = 1,...,4, we
randomly select m out of the n simulated coordinate-wise scores &’ and
add a shift of +5 or -5 in an alternating way. We estimate each function

X7 using 4 cubic piecewise polynomials.

6.1 Results

We simulate n independent copies of the response Y from each of the fol-

lowing single- and double-index models

1

Model I: Y =

~ + 0.2,

Model II: Y = sin(7(8,, X)ar/4) + 0.5¢,
Model III: Y = arctan(w (8, X)e./2) + €,

Model IV: Y = arctan(n (5, X)) + 0.5sin(7(8,, X)er/6) + 0.1€,

<ﬁ17 X>ewf

Model V: =
0.5 + ((B2, X)ar+1)2

+ 0.2¢,

where B3,(t) = ,(t) and B,(t) = ,(t) are the first and second eigen-
functions of Xy, respectively, X is simulated as described in Section 6,
assuming /i, (t) = 0 for all j = 1,...p, and observed at 101 time points

equally spaced in [0,1]. The error € is generated according to a standard



6.1 Results

normal distribution. We use n = 400, p = 5, and H = 10 slices.

To evaluate the performance of each method, we use the multiple cor-
relation between the true and estimated predictors, also considered in l.i
and Song (2022). Specifically, let U and V' be random vectors of the same
dimension and let Cy, , Cyy , and Cy represent the sample covariance
matrices. The multiple correlation between U and V' is mcorr(U,V) =
tr(C’;‘l// QC’VUC’J}]CUVC‘;‘l/ ?). This measure varies from 0 to K, and a value
close to K indicates better estimation accuracy.

Table 1 shows the observed, over the 100 simulation runs, means and
standard deviations (in parenthesis) of the multiple correlation between
the true and the estimated predictors when no outliers are present (upper
part) and when outliers are added as described in Section 6 (lower part).
We expect the multiple correlation to be close to K = 1 for the single-
index Models I - III and close to K = 2 for the double-index Models IV
- V. We observe that R-FSIR and FSIR have comparable performance for
the Gaussian distribution with no outliers. However, R-FSIR outperforms
FSIR for heavy-tailed data. Specifically, the efficiency of R-FSIR remains
reasonably high, whereas the efficiency of FSIR decreases considerably. This
is especially evident when outliers are added to the data.

In Sections S3 and S4 of the supplementary appendix, we further inves-



Table 1: Mean (and standard deviation) of the multiple correlation with no

outliers (upper) and with outliers added (lower) for Study 1

number of Gaussian t(3) t(2) Cauchy
Models
outliers FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR FSIR R-FSIR

I 0.96 (0.02)  0.96 (0.02) | 0.60 (0.24) 0.82 (0.21) | 0.37 (0.22) 0.85 (0.22) | 0.22 (0.13) 0.84 (0.23)
I |0.98(0.001) 0.98 (0.001) | 0.68 (0.17) 0.86 (0.17) | 0.34 (0.23) 0.84 (0.20) | 0.21 (0.14) 0.85 (0.23)
m=0 I | 0.98 (0.001) 0.98 (0.001) | 0.88 (0.11) 0.99 (0.007) | 0.69 (0.20) 0.99 (0.01) | 0.30 (0.19) 0.98 (0.03)
IV | 1.91(0.04) 1.93(0.03) |1.45(0.27) 1.81 (0.15) | 0.91 (0.33) 1.69 (0.28) | 0.33 (0.17) 1.65 (0.35)

V| 1.83(0.07)  1.83(0.09) | 1.28 (0.28) 1.56 (0.26) | 0.81 (0.26) 1.51 (0.31) | 0.27 (0.14) 1.69 (0.30)

I 0.24 (0.06)  0.75 (0.24) | 0.26 (0.15)  0.50 (0.26) | 0.26 (0.19) 0.48 (0.32) | 0.23 (0.15) 0.78 (0.28)
11 040 (0.1)  0.96 (0.02) |0.33(0.14) 0.78 (0.15) | 0.26 (0.16) 0.57 (0.30) | 0.20 (0.14) 0.84 (0.23)
m =40 I | 0.82(0.04) 0.99 (0.0005) | 0.84 (0.07) 0.99 (0.02) | 0.79 (0.17) 0.96 (0.05) | 0.32 (0.18) 0.98 (0.03)
IV | 140 (0.09) 175 (0.11) | 1.19 (0.20) 1.75 (0.17) | 0.94 (0.27) 1.58 (0.29) | 0.34 (0.15) 1.59 (0.34)

V| 157(0.22) 155 (0.24) | 1.18 (0.28) 1.52 (0.29) | 0.84 (0.32) 1.47 (0.31) | 0.26 (0.14) 1.62 (0.34)

tigate the performance of R-FSIR for a variety of combinations of (n,p, H)

and the performance of the CVBIC order-determination criterion (S2.10).

7. Neuroimaging data application

To illustrate the performance of the methodology we use an fMRI dataset,
obtained from the ADHD-200 Consortium (http://fcon_1000.projects.
nitrc.org/indi/adhd200/index.html), consisting of resting-state fMRI
and anatomical datasets of children with and without ADHD aggregated
across 8 independent imaging sites. For our analysis, we consider the

resting-state fMRI of the New York University Child Study Center. This



dataset includes 222 subjects, of which 99 are the controls and the rest
are diagnosed with ADHD. The ADHD group is further divided into the
ADHD Combined group (77 subjects), the ADHD Inattentive group (44
subjects) and the ADHD Hyperactive group (2 subjects); we use the 77
subjects in the ADHD Combined group for our analysis. Moreover, 5 sub-
jects were removed from the ADHD Combined group because of significant
amount of missing observations, resulting in n = 72 subjects. Technical
details regarding the sample and the scanning parameters can be found at
the ADHD-200 Consortium.

The dataset was preprocessed by the NeuroBureau community using
the Athena pipeline. 116 brain regions-of-interest (ROI) were constructed
for the preprocessed resting-state fMRI using the anatomical labelling at-
las (AAL) developed by Craddock et al. (2012). fMRI time series were
extracted for each of the 116 regions by averaging all voxels time series
within each region at each time point, resulting in 172 time points for
each of the 116 regions for each subject. Hence, for each subject we have
116 different regional fMRI time series, observed at 172 time points. The
AAL atlas and the regional fMRI time series are publicly available at NI-
TRC (www.nitrc.org). The aim is to determine the association between the

ADHD index with the brain activities measured by the fMRI. To simplify



the model, we use the results obtained in Mahzarnia and Song (2022) and
choose the 42 regions out of the 116 most related with the ADHD index;
the list of the these regions can be found in Mahzarnia and Song (2022). In
Section S5 of the supplementary appendix, we provide the smoothed spline
fMRI curves with outliers and boxplots of the first two principal compo-
nents for two regions of interest, showing that the marginal distributions
are heavy-tailed.

Next, we apply R-FSIR using seven number of slices and 15 number of
basis. Moreover, we use the CVBIC order-determination criterion defined
in (S2.10) and conclude that K = 5. Then, we apply R-FSIR and FSIR
to obtain the five sufficient predictors (X, éj)e,f In order to compare the
performance of the two methods, we apply a generalized additive model
(GAM) using the new sufficient predictors and calculate the root mean
squared errors. The results are 2.059 and 2.488 for R-FSIR and FSIR, re-
spectively. We note that we try different values for the number of slices and
the number of basis, but the results did not change much. There is a general
tendency for R-FSIR and FSIR to perform better with smaller number of
slices, but this pattern was not strong to require more consideration.

Figure 1 illustrates pair-plots of the five sufficient predictors (X, Bj)@ o

j = 1,...,5, where the different colors denote different values of the re-



sponse variable Y. Specifically, we define a new variable, Yy, to take values
1,...,7, depending on which quantile an observation falls. For example,
forw = 1,...,n, Yy, = 1 if Y, falls in the smallest (1/7)100% of the
data, Yg, = 2 if Y, falls in the (2/7)100% of the data, and so on. For
interpretation purposes, we refer to the ADHD index score as very low-
level (Yo = 1), low-level (Yo = 2), mild low-level (Y, = 3), middle-level
(Yo = 4), mild high-level (Yy = 5), high-level (Yy = 6), very high-level
(Yo = 7). The diagonal plots illustrate the estimated density curves of
(X, Bj)@,%p, j=1,...,5, for each Y. Observe that each sufficient predic-
tor represents different groups of Y and that the five sufficient predictors
capture the important characteristics of the conditional distribution Y |X.
For example, the first sufficient predictor differentiates middle-level ADHD
score from other levels. The second sufficient predictor differentiates low-
level, mild high-level, and very high-level ADHD scores. The third pre-
dictor can separate very high-level and high-level scores. The combination
of second and third predictors can separate high-level ADHD index scores
(mild-high, high, very high), while the combination of second and fourth
predictors can separate low-level scores (very low, low, mild-low). Finally,

the fifth predictor separates low-level and high-level ADHD index scores.
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Figure 1: Pair plots of the R-FSIR sufficient predictors colored with the

ADHD index score

Supplementary Materials

The Supplementary Appendix contains the algorithms for the proposed

method, all the proofs of the theoretical results, and additional simulations.
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