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Abstract

Motivation: Recent advancements in natural language processing have highlighted the effectiveness of global contextualized representations
from protein language models (pLMs) in numerous downstream tasks. Nonetheless, strategies to encode the site-of-interest leveraging pLMs
for per-residue prediction tasks, such as crotonylation (Kcr) prediction, remain largely uncharted.

Pawel Pratyush

Results: Herein, we adopt a range of approaches for utilizing pLMs by experimenting with different input sequence types (full-length protein se-
guence versus window sequence), assessing the implications of utilizing per-residue embedding of the site-of-interest as well as embeddings
of window residues centered around it. Building upon these insights, we developed a novel residual ConvBiLSTM network designed to process
window-level embeddings of the site-of-interest generated by the ProtT5-XL-UniRef50 pLM using full-length sequences as input. This model,
termed T5ResConvBIiLSTM, surpasses existing state-of-the-art Ker predictors in performance across three diverse datasets. To validate our ap-
proach of utilizing full sequence-based window-level embeddings, we also delved into the interpretability of ProtT5-derived embedding tensors
in two ways: firstly, by scrutinizing the attention weights obtained from the transformer’s encoder block; and secondly, by computing SHAP val-
ues for these tensors, providing a model-agnostic interpretation of the prediction results. Additionally, we enhance the latent representation of
ProtT5 by incorporating two additional local representations, one derived from amino acid properties and the other from supervised embedding
layer, through an intermediate fusion stacked generalization approach, using an n-mer window sequence (or, peptide/fragment). The resultant

stacked model, dubbed LMCrot, exhibits a more pronounced improvement in predictive performance across the tested datasets.
Availability and implementation: LMCrot is publicly available at https://github.com/KCLabMTU/LMCrot.

1 Introduction

Protein crotonylation (Kcr) is an important post-translational
modification (PTM) in which a crotonyl group (CH3;CH=
CHCO-) is added to lysine (K) residues on proteins, influencing
their function and interaction within the cell. This PTM is asso-
ciated with various cellular processes and diverse biological
functions and diseases, such as cancer, neurological disorders,
and cardiovascular disease (Jiang et al. 2021). Kcr plays crucial
roles in gene expression regulation, protein stability, DNA dam-
age repair, cell cycle progression, and more. It can occur on
both histone and non-histone proteins, impacting transcription
regulation and transcription—replication conflict resolution un-
der DNA replication stress. Dynamic in nature, Kcr is regulated
by writers, erasers, and readers. Its interaction with other
PTM:s, like ubiquitination and acetylation, is an active research
field. Given its multifaceted roles in diseases, understanding Kcr
can aid in targeted therapeutic development, especially for can-
cer (Jiang et al. 2021).

Identifying Kcr in proteins typically involves resource-
intensive and time-consuming wet-lab experiments like high-
performance liquid chromatography fractionation and high-
resolution liquid chromatography-tandem mass spectrome-
try. In light of this, there has been a considerable increase in

deep learning and machine learning research aimed at prompt
prediction of Ker sites (Ju and He 2017, Qiu et al. 2017, Liu
et al. 2020). A substantial contribution in this area is Deep-
Kcr, developed by Lv et al. (2021). This deep learning tool
employs a convolutional neural network (CNN) model, com-
bining sequence-based and physicochemical property-based
features for predicting Kcr sites in HeLa cells. Another nota-
ble development is BERT-Kcr, proposed by Qiao et al.
(2022), which leverages a pre-trained transformer called
BERT (bidirectional encoder representations from transform-
ers) to extract high-dimensional feature representations,
marking the first use of language model in predicting Kcr
sites. Although other NLP-based models like ELMo (Peters
et al. 2017) and FastText (Joulin et al. 2016) were also ex-
plored, these models are primarily trained on natural lan-
guage data, differing significantly from protein sequences.
DeepCap-Kcr (Khanal et al. 2022) is the most recent ap-
proach in Kcr site prediction in HeLa cells, leveraging a cap-
sule network (CapsNet) underpinned by a combination of
CNNs and long short-term memory (LSTM) units. Notably,
the same group has also recently introduced CapsNh-Kcr
(Khanal et al. 2023) which is also based on CapsNet, how-
ever, the model specifically focuses on predicting Ker sites in
non-histone proteins.
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Despite these advances, there are noticeable gaps. The
most recent predictor, DeepCap-Kcr (Khanal et al. 2022)
offers only a marginal improvement over its predecessor,
BERT-Kcr (Qiao e al. 2022). Interestingly, none of these
models leverage distilled representations from protein lan-
guage models (pLMs). Some approaches for other PTMs em-
ploy pLMs (Pokharel et al. 2022, 2023a; Pakhrin ez al.
2023), but the optimal approach for representing the site-of-
interest in PTM prediction remains unclear. Although BERT-
Kcr (Qiao et al. 2022) utilizes BERT, its sole focus on peptide
sequences causes it to overlook potential global contextual
information of the sites. Furthermore, no effort has been
made to interpret the embeddings derived from pLMs for
PTM prediction tasks. To bridge these gaps, we introduce a
residual ConvBiLSTM model trained on contextualized
embeddings obtained from a pLM named ProtT5. This model
uses the entire protein sequence as input and learns the repre-
sentation of the site-of-interest (in this case, the lysine “K”
residue) by considering the embeddings of all amino acids
within a window centered around the site-of-interest. By
combining the global representation from ProtT5 with the
conventional local peptide-based representation, which
includes a supervised embedding layer and physicochemical
properties, we further enhance the model’s predictive perfor-
mance. Additionally, we present a comprehensive assessment
of four different approaches for obtaining embeddings from
the pLMs for representing the site-of-interest. Finally, by ex-
amining the attention weights and computed SHAP values,
we attempt to interpret the rationale behind the superior per-
formance of full sequence window-level ProtT5-based
representation.

2 Materials and methods
2.1 Benchmark datasets

The dataset used to construct the proposed LMCrot was
sourced from the work of Yu et al. (2020) which includes 14
311 experimentally annotated Kcr sites spanning 3734 pro-
teins in HeLa cells. This dataset has also been utilized by re-
cent state-of-art Kcr predictors (Lv e al. 2021, Khanal et al.
2022, Qiao et al. 2022). Following the procedures outlined in
these predictors, the dataset was first subjected to a homol-
ogy removal process using the CD-HIT algorithm with a dis-
similarity cutoff of 0.3 (or, similarity cutoff of 0.7). This
resulted in 9776 non-redundant positive sites. Subsequently,
an equal number of stratified non-redundant lysine (K) resi-
dues were randomly selected from the same protein sequences
to serve as negative sites. The dataset was then divided into
training and independent test sets, following a 3:1 ratio based
on the accession ID to ensure that no proteins overlapped be-
tween the sets, thus preventing contextual information leak-
age. This resulted in a training set consisting of 7353 positive
and 7353 negative sites and a test set containing 2421 posi-
tive and 2421 negative sites.

To further assess the generalizability of LMCrot, we also
experimented with additional datasets. First, we adopted a
dataset of experimentally verified Kcr sites in non-histone
proteins from CapsNh-Kcr (Khanal ez al. 2023). This dataset,
which has undergone redundancy removal, data balancing,
and partitioning as part of their preprocessing steps, contains
12 262 positive and 12 262 negative samples in the training
set, and 3341 positive and 3341 negative sequences in the in-
dependent test set, drawn from a total of 19 287 identified
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sites across 4230 proteins. Additionally, we evaluated
LMCrot’s performance using a non-human dataset, specifi-
cally from tobacco plants, drawn from Sun’s work (Sun ez al.
2017). From this dataset, we collected 2044 positive sites and
negative sites each.

2.2 Sequence encoding

Protein sequence representation in numerical space for
residue-specific predictions, such as PTM tasks, often poses
challenges. Traditional approaches to PTM prediction, in-
cluding crotonylation, have typically relied on feature extrac-
tion from peptide sequences around the site-of-interest (in
our case, “K”) (Li et al. 2022, Pokharel et al. 2023b). This
approach, however, only captures the local context of the
site, overlooking potential influences from amino acids that
are far apart in sequence space but are in close proximity in
space due to the non-linear and folded nature of proteins.
Consequently, a more comprehensive representation that
encapsulates both the local and global contexts of the site
is required. In response to this need, our work employs
a pLMs-based representation that operates on the entire
sequence, thereby capturing the global context.
Simultaneously, we also utilize two peptide (or, window
sequence)-based encodings—the supervised embedding layer
and informative physicochemical properties—to effectively
capture the local environment of the site-of-interest. Given
that the optimal window size across existing Kcr predictors
(Lv et al. 2021, Khanal et al. 2022, Qiao et al. 2022) is 31,
we also adhere to this size to establish the local environment
of the site.

2.2.1 Protein language models

pLMs, leveraging transformer (Vaswani et al. 2017), are piv-
otal in interpreting proteins using only their primary se-
quence. Originally designed for NLP, these models excel in
detecting intricate patterns in sequential data, creating
embeddings for each protein sequence segment or token. For
prediction of Kecr sites, we investigate four prominent
transformer-based pLMs [ProtBert (Elnaggar et al. 2020),
ProtTS5 (Elnaggar et al. 2020), ESM-2 (Lin et al. 2022), Ankh
(Elnaggar et al. 2023)] as embedding extractors (see
Supplementary Section S2 for detailed specifications) and
propose four extraction methods (FSPE, FSWE, WSPE,
WSWE) to coherently represent the site-of-interest. In full
sequence-based per-residue embeddings (FSPE) and full
sequence-based window embeddings (FSWE), the entire se-
quence of maximum length N is the input to the pLMs. FSPE
yields a L x 1 dimensional tensor representing solely the site-
of-interest, while FSWE produces a L x W dimensional ten-
sor, considering the embeddings of all residues within the des-
ignated window of the site-of-interest, where L is the length
of the embedding per amino acid and W is the window size,
31 in this case. Conversely, window sequence-based per-resi-
due embeddings (WSPE) and window sequence-based win-
dow embeddings (WSWE) also produce Lx1 and Lx W
dimensional tensors, respectively, with the input being a win-
dow (or peptide) sequence of length W instead of the full se-
quence. Table 1 summarizes these methods w.r.t each pLM
used in this work. Note that the cross-validation experiments
identified ProtT5 as the optimal pLM and FSWE as the opti-
mal embedding extraction method, leading to the selection of
FSWE-based ProtT5 embeddings for the final architecture
(refer to Section 3.1).
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Table 1. Dimensions of the input sequence and output tensors for pLMs derived from FSPE, WSPE, WSWE, and FSWE.
pLM Input dimension Output dimension
FSPE and FSWE WSPE and WSWE FSPE and WSPE FSWE and WSWE

(full sequence-based) (peptide-based) (per-reside only) (window residues)
ProtT5 (ProtT5-XL-UniRef50) Nx1 31x1 1024x1 1024x31
ProtBERT (ProtBERT-UniRef100) Nx1 31x1 1024x1 1024x31
Ankh (Ankh Large) Nx1 31x1 1536x1 1536x31
SeqVec (SeqVec-UniRef50) Nx1 31x1 1024x1 1024x31
ESM-2 (ESM2-T36-3B-UR50D) 1024x1 31x1 2560x1 2560x31

ESM-2 can only accept sequences of up to 1024 length. SeqVec, a BILSTM-based pLM, has also been employed for the sake of completeness.

2.2.2 Local peptide-based encoding

In addition to pLMs, we employ two encoding techniques
that operate on peptide (or, 7n-mer window) sequences. The
first encoding is performed by the supervised embedding
layer provided by Keras which learns a dense representation
of the sequence as a part of the deep-learning architecture.
The input for this layer is composed of word (amino acid) in-
dices, comprising an integer-encoded window sequence that
is centered around the site-of-interest. The layer is initialized
randomly and is adjusted during training via backpropaga-
tion. There are three salient hyperparameters of the embed-
ding layer: the vocabulary size (input dim or V), the
embedding dimension (output dim or D), and the input
length (input length). The input dim was set to 23,
which is based on the 20 canonical amino acids, and an addi-
tional three for any non-canonical or virtual amino acids
(“X”). The input_length is equal to the size of the peptide
sequence (W), which in our case is 31 while output dim
was determined to be 15 based on fivefold cross-validation.
Therefore, the embedding layer has an output dimension of
15%x31 (D x W).

The second peptide-based encoding leverages 1343 inher-
ent amino acid properties and classifications extracted from
the FEPS server (Ismail et al. 2022). For a detailed description
of these features, please refer to Supplementary Section S1.

2.3 LMCrot architecture

The LMCrot architecture employs an intermediate fusion-
based stacked generalization of three base models—
T5ResConvBiLSTM, EmbedCNN, and PhysicoDNN and a
meta-model that learns latent representations of the base
models. The details of these base models and the meta-
classifier are as follows.

2.3.1 T5ResConvBiLSTM

The architecture of TSResConvBILSTM consists of two com-
ponents. The first component incorporates the 24 encoder-
decoder layers of the pre-trained TS (Raffel et al. 2020)
(ProtT$5) network. The final layer of ProtTS5 yields an embed-
ding tensor of dimension L X N (where L = 1024) on each of
the encoder and decoder sides, where N represents the length
of the input sequence.

The second component employs a residual convolutional
bidirectional long short-term memory (resConvBiLSTM)
layer to fine-tune the ProtT5 network for the Ker prediction
task. To achieve this, the model inputs a tensor of dimension
1024 x W, where W denotes the window size (=31), encom-
passing embeddings of neighboring amino acids centered
around the site-of-interest (also known as FSWE tensors).

These embeddings are derived from the encoder side of the
last hidden layer of ProtTS$ in half-precision mode. The model
then employs a series of layers to produce the classification
result for the input sequence. Specifically, the architecture
integrates two time-distributed 2D convolution layers each
with residual connections to its previous layer, followed by a
BiLSTM layer with eight units to learn the sequence context
in both directions of the site-of-interest. The subsequent
dense layers render the classification between Kcr and non-
Kcr sites. To combat overfitting, dropout layers are used
throughout the model.

2.3.2 Stacked generalization

To enhance prediction robustness, the T5ResConvBiLSTM
model additionally integrates the local representation of the
site-of-interest using a supervised embedding layer and infor-
mative physicochemical properties. First, the embedding
layer’s representation of the peptide sequence of dimension
DxW (D =15 and W = 31) is learned through a 2D-CNN
architecture with five layers, and the respective physicochem-
ical properties’ representation of dimension 1343 x1 is
learned via a three-layered DNN architecture. We dub the
CNN model trained on the embedding layer as
“EmbedCNN” and the DNN model on physicochemical
properties as “PhysicoDNN?”. Subsequently, these indepen-
dently learned latent representations are fused together with
the ProtT35 representation leveraging an intermediate fusion-
based stacked generalization method using a three-layered
DNN as a meta-classifier which produces the final classifica-
tion inference of the input sequence. To this end, the features
from the final hidden layers of each base model
(T5ResConvBiLSTM: 16x 1, EmbedCNN: 32x1, and
PhysicoDNN: 8 x 1) are concatenated. These concatenated
features (56X 1 in total) are then normalized and passed
through a Parametric ReLU (PReLU) layer to introduce non-
linearity into the merged representation, before being fed to
the meta-classifier. We term the overall stacked model as
“LMCrot”. The schematic diagram of LMCrot is shown
in Fig. 1.

The choice of intermediate fusion is driven by two primary
reasons. First, late fusion might fail to capture the correlation
between different representations while early fusion integra-
tes raw ProtT5 features, which could lead to very high-
dimensional input features to the meta-model (see Fig. 2d).
Second, the fivefold cross-validation results corroborated the
superior performance of intermediate fusion in comparison
to early and late fusion methods (refer to Section 3.1).

Note that model selection for both the base models and the
meta-classifier was done using fivefold cross-validation.
Comprehensive details regarding the architectures of the base
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models and the meta-classifier are provided in Supplementary
Section S3.

2.4 Model training and evaluation protocol

All deep-learning models were trained to minimize the binary
cross-entropy loss function, with parameters initialized using
the glorot uniform initializer. These parameters were opti-
mized to reduce this loss function using the Adam optimizer
with a learning rate of 0.001, with a decay rate of 0.9 for the
first moment and 0.999 for the second moment. The training
process was set to run for a maximum of 50 epochs, with a
batch size of 512. Overfitting of the models was carefully
averted using early stopping, L1 and L2 norm regularization,
and monitoring the accuracy/loss curves in each fold of cross-
validation. Moreover, the optimization of hyperparameters
and model selection was performed using stratified kfold
cross-validation on the training set, ensuring no overlap of
proteins between the training and validation subsets of each
fold. Independent testing was used to evaluate generalization
error and compare our method with existing ones. For com-
prehensive performance assessment, metrics like Mathews
correlation coefficient (MCC), geometric mean (G-mean),
Fl-score, area under the receiver operating characteristic
curve (AUROC), and area under the precision-recall curve
(AUPR) were adopted (Powers 2011) (see Supplementary
Section S4). The statistical significance of our method against
the other approaches was assessed using McNemar’s test and
Cochran’s Q test (Raschka 2020).

3 Results

We first analyze various ML/DL architectures to identify the
optimal base models for each representation, utilizing 5-fold
cross-validation. Subsequently, we employ data leakage proof
stacking cross-validation (Wolpert 1992) to determine the
optimal model for the meta-classifier. Following this, we con-
duct an ablation study to assess the contribution of represen-
tations and delve into the interpretation of pLM embeddings.
Finally, independent testing is performed to compare our tool
with existing state-of-the-art tools, and accompanying this,
significance tests are conducted, with their results exclusively
detailed in Supplementary Section S35.

3.1 Cross-validation analysis

Using stratified fivefold cross-validation on the training set,
we explored multiple pLMs (ProtT5, ProtBERT, ESM-2,
Ankh, and SeqVec) and various methods (FSPE, FSWE,
WSPE, and WSWE) for representing the site-of-interest
across these pLMs. For per-residue embedding extraction
(WSPE and FSPE), where a tensor of length L X 1 is extracted
corresponding to the site-of-interest, we tested relatively sim-
ple models like DNN, SVM, RF, and XGBoost as suggested
by the works of Villegas-Morcillo et al. (2021) and
Weissenow et al. (2022). For window embedding extraction
methods (WSWE and FSWE), which produce an L x W di-
mensional tensors, we applied spatial and sequential models.
These models, such as CNN, LSTM, BiLSM, ConvLSTM,
and ConvBiLSTM, are designed to capture the spatio-
temporal correlations between the embeddings of neighbor-
ing amino acids within a window.

From Fig. 2a, it is evident that FSWE secured the top rank
in mean MCC and mean AUROC, closely followed by
WSWE. This underlines the importance of considering

neighboring embeddings (even in the case of pLM-based
encoding) to boost prediction performance, rather than con-
sidering the embeddings of only the site-of-interest (WSPE
and FSPE) as in prior works like LMSuccSite (Pokharel et al.
2022) and pLMSNOSite (Pratyush et al. 2023).

Figure 2b presents a sensitivity analysis using FSWE as the
preferred extraction method while experimenting with vari-
ous pLMs. Here, ProtTS5’s superiority in terms of MCC and
AUROC over other pLMs is observed. Notably, across all the
embedding extraction methods, ProtT5 showcased superior
performance in terms of MCC and AUROC compared to
other pLMs (for a more granular breakdown for each pLM,
please refer to Supplementary Table S12). In Table 2, we
have delineated the performance metrics of different models
using FSWE-based ProtT5 embeddings. From this table, one
can discern that the ConvBiLSTM model markedly outper-
forms its counterparts across all evaluation metrics. Further
enhancement in performance is observed when introducing
residual connections into the ConvBiLSTM network
(ResConvBiLSTM). Given the cumulative evidence from
these analyses, we have selected the ResConvBiLSTM archi-
tecture as the most apt model and the FSWE-based extraction
method to construct the ProtTS5-based base model (also
known as “T5ResConvBiLSTM”).

Much like the ProtTS5, the optimal models for the other
two base models which are trained on the embedding layer
and physicochemical properties respectively were chosen
based on fivefold cross-validation. Our results revealed that
the 2D-CNN architecture yielded the best cross-validation
performance for the embedding layer, while the DNN archi-
tecture was optimal for the physicochemical properties.
Details on the cross-validation performances of various mod-
els related to these two representations are available in
Supplementary Table S13. Table 3 reports the comparative
performance of the base models and the final stacked general-
ized model based on fivefold cross-validation.

Moreover, we explored three distinct representation fusion
methods for stacked generalization. As depicted in boxplot in
Fig. 2c¢, the intermediate fusion method (merging final hidden
layers) stood out, achieving the highest mean MCC and mean
AUROC with a small interquartile (IQR) range (see
Supplementary Table S14 for other measures). Given this per-
formance and the rationale discussed in Section 2.3.2, we
opted for the intermediate fusion-based stacking.

3.2 Ablation study

We sought to understand the contribution of the two addi-
tional local contextual representations when integrated with
the full sequence contextual pLM. An ablation study was
conducted, analyzing the mean MCC and mean AUROC
based on fivefold cross-validation for each representation (see

Table 2. Performance evaluation on fivefold cross-validation of various DL
models utilizing FSWE-based ProtT5 embeddings.

Model MCC G-mean F1 AUPR  AUROC
RNN 0470 0733 0.734  0.672  0.809
LSTM 0.500  0.748  0.754 0.684  0.829
BiLSTM 0.526 0763 0767 0.699  0.837
ConvLSTM 0.554 0777 0776 0.716  0.858
ConvBiLSTM 0.601  0.800  0.802 0.739  0.886

ResConvBiLSTM  0.614 0.806 0.811  0.743 0.890

The highest values are bolded in each column.
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Table 3. Performance comparison on fivefold cross-validation between
base models and stacked generalized model (LMCrot).

Base model MCC G-mean F1 AUPR AUROC
PhysicoDNN 0.562 0.780 0.786 0.717 0.861
EmbedCNN 0.585 0.788 0.786 0.733 0.883

T5ResConvBiLSTM 0.614 0.806 0.811 0.890 0.743
Stacked gen. (LMCrot) 0.640 0.819  0.824 0.890 0.898

The highest values are bolded in each column.
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Figure 3. Fivefold cross-validation MCC and AUROC scores for various
representation combinations. “ProtT5" is abbreviated as “PrtT5",
“Embedding layer” as “Emb”, and “Physicochemical” as “Phy".

Supplementary Table S15 for other measures). Our results
(shown in Fig. 3) indicate that while ProtT5 on its own sur-
passed the performance of the other two individual representa-
tions, a combination with either physicochemical properties or
the embedding layer via stacked generalization offered perfor-
mance enhancements. Most notably, stacking all three represen-
tations (LMCrot)—ProtT$5, physicochemical properties, and the
embedding layer—resulted in the most notable improvement.

Additionally, we visualized features learned from the final
hidden layer of the ProtT5 encoder, T5SResConvBiLSTM,
and LMCrot using training data by projecting ¢-SNE onto a
R? plane, configured with a perplexity of 50 and a learning
rate of 200. Figure 4a displays the raw t-SNE of the ProtT$
embeddings, derived directly from the final hidden layer of
ProtT5’s encoder, where there is a noticeable blending of the
Kcr and non-Ker datapoints with a very low Euclidean sil-
houette score (S-score) of 0.02, indicating minimal discerni-
bility between the two. However, when we fine-tuned the
pre-trained ProtT5 using the ResConvBiLSTM model on the
Kcr dataset, a clearer distinction between the Kcr and non-
Kcr samples emerged with an increased S-score of 0.26, as
depicted in Fig. 4b. A notable difference was observed with a
maximum S-score of 0.30 using the LMCrot model, which in-
tegrated local context-based features from both the embed-
ding layer and physicochemical properties. Figure 4c shows a
pronounced separation boundary and fewer datapoints over-
lap. This enhanced separation further asserts the benefits of
combining global contextual features (from ProtT5) with lo-
cal contextual features (from the embedding layer and physi-
cochemical properties).

3.3 Interpretation of pLM embeddings

First, we visualized the normalized attention weights from
the final block of the ProtT5 encoder, averaged over its heads
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(see Supplementary Fig. S5a for individual headview), for an
example protein sequence (ID: 000244). We used a heatmap
to identify attention-focused regions in the embedding space
(Hou et al. 2023). In Fig. 5a, regions R2 and R3 are within
the window around the positive site (at position 37 denoted
in green dot) while region R1 is outside the window. Two
key observations were made: first, we can observe that adja-
cent embeddings (region R2) have a high association with the
site whereas non-adjacent but proximal embeddings within
the window (region R3) have some degree of association.
This shows that considering only embeddings of the site-of-
interest (in cases of WSPE and FSPE) might fail to capture the
association of embeddings around the site. Second, we see an
association between token position 11 (in region R1) with
the token of the positive site. On referring to the 3D structure
of the protein (shown in Fig. 5b), it was found that the fold-
ing of the protein brought this position spatially closer to the
site-of-interest, with a euclidean distance of 7.83A (<10A)
between the Ca atoms of the respective sites. Therefore, rely-
ing exclusively on peptide sequences (in cases of WSWE and
WSPE) might fail to capture the association of distant resi-
dues affecting the site. These two observations lend support
to the idea that considering window embeddings, where each
embedding is generated from the entire sequence (i.e. FSWE),
could be more effective, as also corroborated by cross-
validation experiments.

To delve deeper into understanding the impact of individ-
ual features of ProtT5 on predictions, we employed the
SHAP (SHapley Additive exPlanations) method to compute
the contribution values across all samples for the
TS5ResConvBiLSTM model, using the ‘GradientExplainer’
(expected gradients) approach (Lundberg et al. 2017, Hou
et al. 2023). In Fig. 6, the visualization of mean SHAP values
over total samples for each feature of ProtT5 is depicted for
residues at positions 15, 16 (site-of-interest), and 17 within
the context of the window frame (see Supplementary Fig. S5b
for all 31 positions). A close examination of the plot pertain-
ing to the site-of-interest in Fig. 6b reveals that among the
1024 features, certain features positively influence the predic-
tion outcome, while others exert a negative pull. Intriguingly,
the model is not solely influenced by the site-of-interest; fea-
tures of adjacent amino acids also weigh in on the model’s
predictions (see Fig. 6a and c).

Figure 7 presents a bar chart detailing the mean absolute
SHAP values across all samples averaged over all the features
for each position in the window frame. The site-of-interest,
highlighted in orange, unmistakably stands out with the high-
est mean absolute SHAP value. This underscores its pivotal
role in model prediction. As one moves further from this cen-
tral site, the SHAP values progressively diminish, indicating a
decreasing influence on the model’s predictive capability.

3.4 Independent testing and benchmarking

Using our independent test set (HeLa), we found that
T5ResConvBiLSTM performs better than PhysicoDNN, and
EmbedCNN, across all metrics (refer to Table 4). Moreover,
the model utilizing stacked generalization of all three repre-
sentations, aka LMCrot, demonstrated a significant improve-
ment over those trained on individual representations (see
Supplementary Section S5 for statistical tests). Notably, while
LMCrot was chosen as the final predictor based on cross-
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Figure 6. Lineplot showing mean SHAP values across all samples of ProtT5 embeddings/features (dim. = 1024) at positions (a) 15, (b) 16 (site-of-
interest), and (c) 17 within the window frame of site-of-interest.

validation,

these independent test results underscore its
standout performance compared to the base models.

Next, we compared our proposed model with the existing
state-of-the-art HeLa predictor, DeepCap-Kcr (Khanal ez al.

2022). To ensure a fair comparison, we trained and tested

this predictor using our training and independent test sets. As

illustrated in Table 5 and ROC curve in Supplementary Fig.
S6, LMCrot notably outperformed DeepCap-Kcr in all the
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Figure 7. Bargraph showing mean absolute SHAP value across all
features at each position in the window frame (size =31).

Table 4. Performance comparison between base models and stacked
model (LMCrot) on the independent test set (Hela).

Base model MCC G-mean F1 AUPR AUROC
PhysicoDNN 0.564 0.779 0.770 0.863 0.870
Embed CNN 0.639 0.818 0.824 0.898 0.901

T5ResConvBiLSTM 0.656 0.828 0.831 0.901 0.907
Stacked gen.(LMCrot) 0.699 0.849 0.852 0.917 0.922

The highest values are bolded in each column.

Table 5. Performance comparison of the existing predictor with
T5ResConvBiLSTM and LMCrot on the independent test set (HelLa).

Predictor MCC G-mean F1 AUPR AUROC
DeepCap-Ker 0.650 0.823 0.830 0.906 0.906
T5ResConvBiLSTM  0.656 0.828 0.831 0.901 0.907
LMCrot 0.699 0.849 0.852 0917 0.922

The highest values are bolded in each column.

performance measures, especially in terms of MCC with an
improvement of ~ 7.6%. Moreover, LMCrot achieved a
more balanced performance between sensitivity and specific-
ity, reflecting an increase in G-mean by ~ 3.2%.

To test the generality of LMCrot across diverse datasets,
we utilized the non-histone Kcr dataset from CapsNh-Kcr
(Khanal et al. 2023) and the tobacco dataset (Sun et al.
2017). Initially, we trained and tested LMCrot on the
CapsNh-Kcr training and testing sets. As the CapsNh-Ker did
not release the balanced test set they used, we created a bal-
anced test set on our own and employed their model to derive
results. Our observations (refer to Table 6) revealed that
LMCirot significantly outperformed CapsNh-Kcr, showcas-
ing improvements of ~ 14.8%, ~ 6.6%, and ~ 4.6% in MCC,
AUPR, and AUROC, respectively.

Given the limited size of the tobacco dataset, we employed
cross-species testing to predict all sites in this dataset using
the model initially trained on the HeLa dataset. For bench-
marking, we employed the DeepCap-Kcr model and observed
that LMCrot surpassed its performance in all performance
measures on this dataset as well (refer to Table 7).

Furthermore, comparing the difference in performance of
LMCrot against DeepCap-Kcr and CapsNh-Ker on these
datasets using McNemar’s test revealed P-values lower than
the significance level (@ = .05) across all comparisons,
highlighting that LMCrot’s performance is statistically
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Table 6. Performance comparison of the existing predictor with
T5ResConvBiLSTM and LMCrot on the non-histone test set.

Predictor MCC G-mean F1 AUPR AUROC
CapsNh-Kecr 0.589 0.786 0.807 0.833 0.862
T5ResConvBiLSTM  0.644 0.822 0.825 0.877 0.891
LMCrot 0.676 0.837 0.842 0.888 0.902

The highest values are bolded in each column.

Table 7. Performance comparison of DeepCap-Kcr with
T5ResConvBiLSTM and LMCrot on the tobacco test set using cross-
species testing.

Predictor MCC G-mean F1 AUPR AUROC
DeepCap-Ker 0.393 0.687 0.719 0.734 0.761
T5ResConvBiLSTM  0.412 0.658 0.741 0.734 0.762
LMCrot 0.451 0.695 0.753  0.749 0.781

The highest values are bolded in each column.

significant when contrasted with these existing approaches
(see Supplementary Section S5). These findings affirm that
LMCrot is one of the most effective predictors for protein
Ker sites. It is also worth highlighting that the pLM-based
model, T5ResConvBiLSTM, on its own, delivered better
results than the existing predictors in all three datasets (see
Tables 5-7). Interestingly, TSResConvBiLSTM has ~ 23.8%
fewer trainable parameters than DeepCap-Kcr (see
Supplementary Fig. S7). These evidences point to the notable
performance of LMCrot being primarily driven by the rich
representations from a pLM.

4 Conclusion

Protein Kcr has emerged as an essential PTM due to its cru-
cial role in a myriad of physiological and pathological pro-
cesses. In recent years, the adoption of pLM-based
methodologies has seen a significant increase in various bio-
informatics tasks. However, the optimal utilization of these
embeddings for solving per-residue prediction problems, such
as PTM prediction, is still an active field of research.

In this research, we meticulously explored various strate-
gies to employ embeddings from pLMs, aiming to establish a
reliable representation of Ker and non-Kecr sites. Our investi-
gation revealed that utilizing the full sequence as input to
pLMs, in contrast to the traditional approach of using pep-
tide sequences, and considering the embeddings of all amino
acids within the window frame for modeling, rather than just
the site-of-interest [as seen in pLMSNOSite (Pratyush ez al.
2023), LMSuccSite (Pokharel et al. 2022), and Chandra et al.
(2023)], yielded optimal results. Exploiting this methodology,
termed FSWE, we developed the T5ResConvBiLSTM model,
incorporating the ProtT5 pLM, which exhibited a promising
performance. By merging the ProtT5 representation with the
conventional peptide-based representations, namely the su-
pervised embedding layer and physicochemical properties,
through an intermediate fusion-based stacked generalization
approach, we proposed LMCrot, a more robust Kcr site pre-
diction tool. Based on rigorous independent testing on three
datasets, LMCrot demonstrated superior predictive perfor-
mance compared to existing state-of-the-art tools. The ele-
vated performance is predominantly attributed to the
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globally contextualized representation derived from pLM
and the innovative approach utilized to secure the embed-
dings of the site-of-interest, as substantiated by the ablation
study and independent test results. By analyzing the attention
weights derived from the ProtT5 encoder and the SHAP val-
ues of their corresponding embeddings, we offered insights
into why it is essential to consider the entire sequence context
and the embeddings of all amino acids within the window for
pLM-based representation.

LMCirot, substantiated by empirical results, stands out as a
promising instrument for predicting Kcr sites in proteins and
is accessible in our public repository for the scientific commu-
nity (https://github.com/KCLabMTU/LMCrot). The ap-
proach used in LMCrot for sequence representation can be
extrapolated to numerous other PTM prediction tasks and
various other per-reside prediction tasks. While LMCrot
showcases promising capabilities, incorporating the struc-
tural information extracted from 3D structures of proteins
can amplify the predictive accuracy.
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