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Abstract
Motivation: Recent advancements in natural language processing have highlighted the effectiveness of global contextualized representations 
from protein language models (pLMs) in numerous downstream tasks. Nonetheless, strategies to encode the site-of-interest leveraging pLMs 
for per-residue prediction tasks, such as crotonylation (Kcr) prediction, remain largely uncharted.
Results: Herein, we adopt a range of approaches for utilizing pLMs by experimenting with different input sequence types (full-length protein se
quence versus window sequence), assessing the implications of utilizing per-residue embedding of the site-of-interest as well as embeddings 
of window residues centered around it. Building upon these insights, we developed a novel residual ConvBiLSTM network designed to process 
window-level embeddings of the site-of-interest generated by the ProtT5-XL-UniRef50 pLM using full-length sequences as input. This model, 
termed T5ResConvBiLSTM, surpasses existing state-of-the-art Kcr predictors in performance across three diverse datasets. To validate our ap
proach of utilizing full sequence-based window-level embeddings, we also delved into the interpretability of ProtT5-derived embedding tensors 
in two ways: firstly, by scrutinizing the attention weights obtained from the transformer’s encoder block; and secondly, by computing SHAP val
ues for these tensors, providing a model-agnostic interpretation of the prediction results. Additionally, we enhance the latent representation of 
ProtT5 by incorporating two additional local representations, one derived from amino acid properties and the other from supervised embedding 
layer, through an intermediate fusion stacked generalization approach, using an n-mer window sequence (or, peptide/fragment). The resultant 
stacked model, dubbed LMCrot, exhibits a more pronounced improvement in predictive performance across the tested datasets.
Availability and implementation: LMCrot is publicly available at https://github.com/KCLabMTU/LMCrot.

1 Introduction
Protein crotonylation (Kcr) is an important post-translational 
modification (PTM) in which a crotonyl group (CH3CH¼
CHCO–) is added to lysine (K) residues on proteins, influencing 
their function and interaction within the cell. This PTM is asso
ciated with various cellular processes and diverse biological 
functions and diseases, such as cancer, neurological disorders, 
and cardiovascular disease (Jiang et al. 2021). Kcr plays crucial 
roles in gene expression regulation, protein stability, DNA dam
age repair, cell cycle progression, and more. It can occur on 
both histone and non-histone proteins, impacting transcription 
regulation and transcription–replication conflict resolution un
der DNA replication stress. Dynamic in nature, Kcr is regulated 
by writers, erasers, and readers. Its interaction with other 
PTMs, like ubiquitination and acetylation, is an active research 
field. Given its multifaceted roles in diseases, understanding Kcr 
can aid in targeted therapeutic development, especially for can
cer (Jiang et al. 2021).

Identifying Kcr in proteins typically involves resource- 
intensive and time-consuming wet-lab experiments like high- 
performance liquid chromatography fractionation and high- 
resolution liquid chromatography–tandem mass spectrome
try. In light of this, there has been a considerable increase in 

deep learning and machine learning research aimed at prompt 
prediction of Kcr sites (Ju and He 2017, Qiu et al. 2017, Liu 
et al. 2020). A substantial contribution in this area is Deep- 
Kcr, developed by Lv et al. (2021). This deep learning tool 
employs a convolutional neural network (CNN) model, com
bining sequence-based and physicochemical property-based 
features for predicting Kcr sites in HeLa cells. Another nota
ble development is BERT-Kcr, proposed by Qiao et al. 
(2022), which leverages a pre-trained transformer called 
BERT (bidirectional encoder representations from transform
ers) to extract high-dimensional feature representations, 
marking the first use of language model in predicting Kcr 
sites. Although other NLP-based models like ELMo (Peters 
et al. 2017) and FastText (Joulin et al. 2016) were also ex
plored, these models are primarily trained on natural lan
guage data, differing significantly from protein sequences. 
DeepCap-Kcr (Khanal et al. 2022) is the most recent ap
proach in Kcr site prediction in HeLa cells, leveraging a cap
sule network (CapsNet) underpinned by a combination of 
CNNs and long short-term memory (LSTM) units. Notably, 
the same group has also recently introduced CapsNh-Kcr 
(Khanal et al. 2023) which is also based on CapsNet, how
ever, the model specifically focuses on predicting Kcr sites in 
non-histone proteins.
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Despite these advances, there are noticeable gaps. The 
most recent predictor, DeepCap-Kcr (Khanal et al. 2022) 
offers only a marginal improvement over its predecessor, 
BERT-Kcr (Qiao et al. 2022). Interestingly, none of these 
models leverage distilled representations from protein lan
guage models (pLMs). Some approaches for other PTMs em
ploy pLMs (Pokharel et al. 2022, 2023a; Pakhrin et al. 
2023), but the optimal approach for representing the site-of- 
interest in PTM prediction remains unclear. Although BERT- 
Kcr (Qiao et al. 2022) utilizes BERT, its sole focus on peptide 
sequences causes it to overlook potential global contextual 
information of the sites. Furthermore, no effort has been 
made to interpret the embeddings derived from pLMs for 
PTM prediction tasks. To bridge these gaps, we introduce a 
residual ConvBiLSTM model trained on contextualized 
embeddings obtained from a pLM named ProtT5. This model 
uses the entire protein sequence as input and learns the repre
sentation of the site-of-interest (in this case, the lysine “K” 
residue) by considering the embeddings of all amino acids 
within a window centered around the site-of-interest. By 
combining the global representation from ProtT5 with the 
conventional local peptide-based representation, which 
includes a supervised embedding layer and physicochemical 
properties, we further enhance the model’s predictive perfor
mance. Additionally, we present a comprehensive assessment 
of four different approaches for obtaining embeddings from 
the pLMs for representing the site-of-interest. Finally, by ex
amining the attention weights and computed SHAP values, 
we attempt to interpret the rationale behind the superior per
formance of full sequence window-level ProtT5-based 
representation.

2 Materials and methods
2.1 Benchmark datasets
The dataset used to construct the proposed LMCrot was 
sourced from the work of Yu et al. (2020) which includes 14 
311 experimentally annotated Kcr sites spanning 3734 pro
teins in HeLa cells. This dataset has also been utilized by re
cent state-of-art Kcr predictors (Lv et al. 2021, Khanal et al. 
2022, Qiao et al. 2022). Following the procedures outlined in 
these predictors, the dataset was first subjected to a homol
ogy removal process using the CD-HIT algorithm with a dis
similarity cutoff of 0.3 (or, similarity cutoff of 0.7). This 
resulted in 9776 non-redundant positive sites. Subsequently, 
an equal number of stratified non-redundant lysine (K) resi
dues were randomly selected from the same protein sequences 
to serve as negative sites. The dataset was then divided into 
training and independent test sets, following a 3:1 ratio based 
on the accession ID to ensure that no proteins overlapped be
tween the sets, thus preventing contextual information leak
age. This resulted in a training set consisting of 7353 positive 
and 7353 negative sites and a test set containing 2421 posi
tive and 2421 negative sites.

To further assess the generalizability of LMCrot, we also 
experimented with additional datasets. First, we adopted a 
dataset of experimentally verified Kcr sites in non-histone 
proteins from CapsNh-Kcr (Khanal et al. 2023). This dataset, 
which has undergone redundancy removal, data balancing, 
and partitioning as part of their preprocessing steps, contains 
12 262 positive and 12 262 negative samples in the training 
set, and 3341 positive and 3341 negative sequences in the in
dependent test set, drawn from a total of 19 287 identified 

sites across 4230 proteins. Additionally, we evaluated 
LMCrot’s performance using a non-human dataset, specifi
cally from tobacco plants, drawn from Sun’s work (Sun et al. 
2017). From this dataset, we collected 2044 positive sites and 
negative sites each.

2.2 Sequence encoding
Protein sequence representation in numerical space for 
residue-specific predictions, such as PTM tasks, often poses 
challenges. Traditional approaches to PTM prediction, in
cluding crotonylation, have typically relied on feature extrac
tion from peptide sequences around the site-of-interest (in 
our case, “K”) (Li et al. 2022, Pokharel et al. 2023b). This 
approach, however, only captures the local context of the 
site, overlooking potential influences from amino acids that 
are far apart in sequence space but are in close proximity in 
space due to the non-linear and folded nature of proteins. 
Consequently, a more comprehensive representation that 
encapsulates both the local and global contexts of the site 
is required. In response to this need, our work employs 
a pLMs-based representation that operates on the entire 
sequence, thereby capturing the global context. 
Simultaneously, we also utilize two peptide (or, window 
sequence)-based encodings—the supervised embedding layer 
and informative physicochemical properties—to effectively 
capture the local environment of the site-of-interest. Given 
that the optimal window size across existing Kcr predictors 
(Lv et al. 2021, Khanal et al. 2022, Qiao et al. 2022) is 31, 
we also adhere to this size to establish the local environment 
of the site.

2.2.1 Protein language models
pLMs, leveraging transformer (Vaswani et al. 2017), are piv
otal in interpreting proteins using only their primary se
quence. Originally designed for NLP, these models excel in 
detecting intricate patterns in sequential data, creating 
embeddings for each protein sequence segment or token. For 
prediction of Kcr sites, we investigate four prominent 
transformer-based pLMs [ProtBert (Elnaggar et al. 2020), 
ProtT5 (Elnaggar et al. 2020), ESM-2 (Lin et al. 2022), Ankh 
(Elnaggar et al. 2023)] as embedding extractors (see 
Supplementary Section S2 for detailed specifications) and 
propose four extraction methods (FSPE, FSWE, WSPE, 
WSWE) to coherently represent the site-of-interest. In full 
sequence-based per-residue embeddings (FSPE) and full 
sequence-based window embeddings (FSWE), the entire se
quence of maximum length N is the input to the pLMs. FSPE 
yields a L×1 dimensional tensor representing solely the site- 
of-interest, while FSWE produces a L×W dimensional ten
sor, considering the embeddings of all residues within the des
ignated window of the site-of-interest, where L is the length 
of the embedding per amino acid and W is the window size, 
31 in this case. Conversely, window sequence-based per-resi
due embeddings (WSPE) and window sequence-based win
dow embeddings (WSWE) also produce L×1 and L×W 
dimensional tensors, respectively, with the input being a win
dow (or peptide) sequence of length W instead of the full se
quence. Table 1 summarizes these methods w.r.t each pLM 
used in this work. Note that the cross-validation experiments 
identified ProtT5 as the optimal pLM and FSWE as the opti
mal embedding extraction method, leading to the selection of 
FSWE-based ProtT5 embeddings for the final architecture 
(refer to Section 3.1).
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2.2.2 Local peptide-based encoding
In addition to pLMs, we employ two encoding techniques 
that operate on peptide (or, n-mer window) sequences. The 
first encoding is performed by the supervised embedding 
layer provided by Keras which learns a dense representation 
of the sequence as a part of the deep-learning architecture. 
The input for this layer is composed of word (amino acid) in
dices, comprising an integer-encoded window sequence that 
is centered around the site-of-interest. The layer is initialized 
randomly and is adjusted during training via backpropaga
tion. There are three salient hyperparameters of the embed
ding layer: the vocabulary size (input_dim or V), the 
embedding dimension (output_dim or D), and the input 
length (input_length). The input_dim was set to 23, 
which is based on the 20 canonical amino acids, and an addi
tional three for any non-canonical or virtual amino acids 
(“X”). The input_length is equal to the size of the peptide 
sequence (W), which in our case is 31 while output_dim 
was determined to be 15 based on fivefold cross-validation. 
Therefore, the embedding layer has an output dimension of 
15×31 (D×W).

The second peptide-based encoding leverages 1343 inher
ent amino acid properties and classifications extracted from 
the FEPS server (Ismail et al. 2022). For a detailed description 
of these features, please refer to Supplementary Section S1.

2.3 LMCrot architecture
The LMCrot architecture employs an intermediate fusion- 
based stacked generalization of three base models— 
T5ResConvBiLSTM, EmbedCNN, and PhysicoDNN and a 
meta-model that learns latent representations of the base 
models. The details of these base models and the meta- 
classifier are as follows.

2.3.1 T5ResConvBiLSTM
The architecture of T5ResConvBILSTM consists of two com
ponents. The first component incorporates the 24 encoder- 
decoder layers of the pre-trained T5 (Raffel et al. 2020) 
(ProtT5) network. The final layer of ProtT5 yields an embed
ding tensor of dimension L×N (where L ¼ 1024) on each of 
the encoder and decoder sides, where N represents the length 
of the input sequence.

The second component employs a residual convolutional 
bidirectional long short-term memory (resConvBiLSTM) 
layer to fine-tune the ProtT5 network for the Kcr prediction 
task. To achieve this, the model inputs a tensor of dimension 
1024×W, where W denotes the window size (¼31), encom
passing embeddings of neighboring amino acids centered 
around the site-of-interest (also known as FSWE tensors). 

These embeddings are derived from the encoder side of the 
last hidden layer of ProtT5 in half-precision mode. The model 
then employs a series of layers to produce the classification 
result for the input sequence. Specifically, the architecture 
integrates two time-distributed 2D convolution layers each 
with residual connections to its previous layer, followed by a 
BiLSTM layer with eight units to learn the sequence context 
in both directions of the site-of-interest. The subsequent 
dense layers render the classification between Kcr and non- 
Kcr sites. To combat overfitting, dropout layers are used 
throughout the model.

2.3.2 Stacked generalization
To enhance prediction robustness, the T5ResConvBiLSTM 
model additionally integrates the local representation of the 
site-of-interest using a supervised embedding layer and infor
mative physicochemical properties. First, the embedding 
layer’s representation of the peptide sequence of dimension 
D×W (D ¼ 15 and W ¼ 31) is learned through a 2D-CNN 
architecture with five layers, and the respective physicochem
ical properties’ representation of dimension 1343×1 is 
learned via a three-layered DNN architecture. We dub the 
CNN model trained on the embedding layer as 
“EmbedCNN” and the DNN model on physicochemical 
properties as “PhysicoDNN”. Subsequently, these indepen
dently learned latent representations are fused together with 
the ProtT5 representation leveraging an intermediate fusion- 
based stacked generalization method using a three-layered 
DNN as a meta-classifier which produces the final classifica
tion inference of the input sequence. To this end, the features 
from the final hidden layers of each base model 
(T5ResConvBiLSTM: 16× 1, EmbedCNN: 32×1, and 
PhysicoDNN: 8×1) are concatenated. These concatenated 
features (56×1 in total) are then normalized and passed 
through a Parametric ReLU (PReLU) layer to introduce non- 
linearity into the merged representation, before being fed to 
the meta-classifier. We term the overall stacked model as 
“LMCrot”. The schematic diagram of LMCrot is shown 
in Fig. 1.

The choice of intermediate fusion is driven by two primary 
reasons. First, late fusion might fail to capture the correlation 
between different representations while early fusion integra
tes raw ProtT5 features, which could lead to very high- 
dimensional input features to the meta-model (see Fig. 2d). 
Second, the fivefold cross-validation results corroborated the 
superior performance of intermediate fusion in comparison 
to early and late fusion methods (refer to Section 3.1).

Note that model selection for both the base models and the 
meta-classifier was done using fivefold cross-validation. 
Comprehensive details regarding the architectures of the base 

Table 1. Dimensions of the input sequence and output tensors for pLMs derived from FSPE, WSPE, WSWE, and FSWE.

pLM Input dimension Output dimension

FSPE and FSWE  
(full sequence-based)

WSPE and WSWE  
(peptide-based)

FSPE and WSPE  
(per-reside only)

FSWE and WSWE  
(window residues)

ProtT5 (ProtT5-XL-UniRef50) N×1 31×1 1024×1 1024×31
ProtBERT (ProtBERT-UniRef100) N×1 31×1 1024×1 1024×31
Ankh (Ankh Large) N×1 31×1 1536×1 1536×31
SeqVec (SeqVec-UniRef50) N×1 31×1 1024×1 1024×31
ESM-2 (ESM2-T36-3B-UR50D) 1024×1 31×1 2560×1 2560×31

ESM-2 can only accept sequences of up to 1024 length. SeqVec, a BiLSTM-based pLM, has also been employed for the sake of completeness.
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Figure 1. The architecture of LMCrot depicting the base models (T5ResConvBiLSTM, EmbedCNN, and PhysicoDNN) and meta-classifier. The site-of- 
interrogation “K” (positioned at index i in the input sequence of length N) is highlighted in bold red.

Figure 2. Fivefold cross-validation MCC and AUROC comparisons (a–c). (a) pLM embedding extraction methods (lineplot with one S.D.), (b) pLMs using 
FSWE (lineplot with one S.D.), (c) fusion types (box plot), and (d) feature size distribution of fusion types (bar graph).
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models and the meta-classifier are provided in Supplementary 
Section S3.

2.4 Model training and evaluation protocol
All deep-learning models were trained to minimize the binary 
cross-entropy loss function, with parameters initialized using 
the glorot uniform initializer. These parameters were opti
mized to reduce this loss function using the Adam optimizer 
with a learning rate of 0.001, with a decay rate of 0.9 for the 
first moment and 0.999 for the second moment. The training 
process was set to run for a maximum of 50 epochs, with a 
batch size of 512. Overfitting of the models was carefully 
averted using early stopping, L1 and L2 norm regularization, 
and monitoring the accuracy/loss curves in each fold of cross- 
validation. Moreover, the optimization of hyperparameters 
and model selection was performed using stratified kfold 
cross-validation on the training set, ensuring no overlap of 
proteins between the training and validation subsets of each 
fold. Independent testing was used to evaluate generalization 
error and compare our method with existing ones. For com
prehensive performance assessment, metrics like Mathews 
correlation coefficient (MCC), geometric mean (G-mean), 
F1-score, area under the receiver operating characteristic 
curve (AUROC), and area under the precision-recall curve 
(AUPR) were adopted (Powers 2011) (see Supplementary 
Section S4). The statistical significance of our method against 
the other approaches was assessed using McNemar’s test and 
Cochran’s Q test (Raschka 2020).

3 Results
We first analyze various ML/DL architectures to identify the 
optimal base models for each representation, utilizing 5-fold 
cross-validation. Subsequently, we employ data leakage proof 
stacking cross-validation (Wolpert 1992) to determine the 
optimal model for the meta-classifier. Following this, we con
duct an ablation study to assess the contribution of represen
tations and delve into the interpretation of pLM embeddings. 
Finally, independent testing is performed to compare our tool 
with existing state-of-the-art tools, and accompanying this, 
significance tests are conducted, with their results exclusively 
detailed in Supplementary Section S5.

3.1 Cross-validation analysis
Using stratified fivefold cross-validation on the training set, 
we explored multiple pLMs (ProtT5, ProtBERT, ESM-2, 
Ankh, and SeqVec) and various methods (FSPE, FSWE, 
WSPE, and WSWE) for representing the site-of-interest 
across these pLMs. For per-residue embedding extraction 
(WSPE and FSPE), where a tensor of length L×1 is extracted 
corresponding to the site-of-interest, we tested relatively sim
ple models like DNN, SVM, RF, and XGBoost as suggested 
by the works of Villegas-Morcillo et al. (2021) and 
Weissenow et al. (2022). For window embedding extraction 
methods (WSWE and FSWE), which produce an L×W di
mensional tensors, we applied spatial and sequential models. 
These models, such as CNN, LSTM, BiLSM, ConvLSTM, 
and ConvBiLSTM, are designed to capture the spatio- 
temporal correlations between the embeddings of neighbor
ing amino acids within a window.

From Fig. 2a, it is evident that FSWE secured the top rank 
in mean MCC and mean AUROC, closely followed by 
WSWE. This underlines the importance of considering 

neighboring embeddings (even in the case of pLM-based 
encoding) to boost prediction performance, rather than con
sidering the embeddings of only the site-of-interest (WSPE 
and FSPE) as in prior works like LMSuccSite (Pokharel et al. 
2022) and pLMSNOSite (Pratyush et al. 2023).

Figure 2b presents a sensitivity analysis using FSWE as the 
preferred extraction method while experimenting with vari
ous pLMs. Here, ProtT5’s superiority in terms of MCC and 
AUROC over other pLMs is observed. Notably, across all the 
embedding extraction methods, ProtT5 showcased superior 
performance in terms of MCC and AUROC compared to 
other pLMs (for a more granular breakdown for each pLM, 
please refer to Supplementary Table S12). In Table 2, we 
have delineated the performance metrics of different models 
using FSWE-based ProtT5 embeddings. From this table, one 
can discern that the ConvBiLSTM model markedly outper
forms its counterparts across all evaluation metrics. Further 
enhancement in performance is observed when introducing 
residual connections into the ConvBiLSTM network 
(ResConvBiLSTM). Given the cumulative evidence from 
these analyses, we have selected the ResConvBiLSTM archi
tecture as the most apt model and the FSWE-based extraction 
method to construct the ProtT5-based base model (also 
known as “T5ResConvBiLSTM”).

Much like the ProtT5, the optimal models for the other 
two base models which are trained on the embedding layer 
and physicochemical properties respectively were chosen 
based on fivefold cross-validation. Our results revealed that 
the 2D-CNN architecture yielded the best cross-validation 
performance for the embedding layer, while the DNN archi
tecture was optimal for the physicochemical properties. 
Details on the cross-validation performances of various mod
els related to these two representations are available in 
Supplementary Table S13. Table 3 reports the comparative 
performance of the base models and the final stacked general
ized model based on fivefold cross-validation.

Moreover, we explored three distinct representation fusion 
methods for stacked generalization. As depicted in boxplot in  
Fig. 2c, the intermediate fusion method (merging final hidden 
layers) stood out, achieving the highest mean MCC and mean 
AUROC with a small interquartile (IQR) range (see 
Supplementary Table S14 for other measures). Given this per
formance and the rationale discussed in Section 2.3.2, we 
opted for the intermediate fusion-based stacking.

3.2 Ablation study
We sought to understand the contribution of the two addi
tional local contextual representations when integrated with 
the full sequence contextual pLM. An ablation study was 
conducted, analyzing the mean MCC and mean AUROC 
based on fivefold cross-validation for each representation (see 

Table 2. Performance evaluation on fivefold cross-validation of various DL 
models utilizing FSWE-based ProtT5 embeddings.

Model MCC G-mean F1 AUPR AUROC

RNN 0.470 0.733 0.734 0.672 0.809
LSTM 0.500 0.748 0.754 0.684 0.829
BiLSTM 0.526 0.763 0.767 0.699 0.837
ConvLSTM 0.554 0.777 0.776 0.716 0.858
ConvBiLSTM 0.601 0.800 0.802 0.739 0.886
ResConvBiLSTM 0.614 0.806 0.811 0.743 0.890

The highest values are bolded in each column.
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Supplementary Table S15 for other measures). Our results 
(shown in Fig. 3) indicate that while ProtT5 on its own sur
passed the performance of the other two individual representa
tions, a combination with either physicochemical properties or 
the embedding layer via stacked generalization offered perfor
mance enhancements. Most notably, stacking all three represen
tations (LMCrot)—ProtT5, physicochemical properties, and the 
embedding layer—resulted in the most notable improvement.

Additionally, we visualized features learned from the final 
hidden layer of the ProtT5 encoder, T5ResConvBiLSTM, 
and LMCrot using training data by projecting t-SNE onto a 
R2 plane, configured with a perplexity of 50 and a learning 
rate of 200. Figure 4a displays the raw t-SNE of the ProtT5 
embeddings, derived directly from the final hidden layer of 
ProtT5’s encoder, where there is a noticeable blending of the 
Kcr and non-Kcr datapoints with a very low Euclidean sil
houette score (S-score) of 0.02, indicating minimal discerni
bility between the two. However, when we fine-tuned the 
pre-trained ProtT5 using the ResConvBiLSTM model on the 
Kcr dataset, a clearer distinction between the Kcr and non- 
Kcr samples emerged with an increased S-score of 0.26, as 
depicted in Fig. 4b. A notable difference was observed with a 
maximum S-score of 0.30 using the LMCrot model, which in
tegrated local context-based features from both the embed
ding layer and physicochemical properties. Figure 4c shows a 
pronounced separation boundary and fewer datapoints over
lap. This enhanced separation further asserts the benefits of 
combining global contextual features (from ProtT5) with lo
cal contextual features (from the embedding layer and physi
cochemical properties).

3.3 Interpretation of pLM embeddings
First, we visualized the normalized attention weights from 
the final block of the ProtT5 encoder, averaged over its heads 

(see Supplementary Fig. S5a for individual headview), for an 
example protein sequence (ID: O00244). We used a heatmap 
to identify attention-focused regions in the embedding space 
(Hou et al. 2023). In Fig. 5a, regions R2 and R3 are within 
the window around the positive site (at position 37 denoted 
in green dot) while region R1 is outside the window. Two 
key observations were made: first, we can observe that adja
cent embeddings (region R2) have a high association with the 
site whereas non-adjacent but proximal embeddings within 
the window (region R3) have some degree of association. 
This shows that considering only embeddings of the site-of- 
interest (in cases of WSPE and FSPE) might fail to capture the 
association of embeddings around the site. Second, we see an 
association between token position 11 (in region R1) with 
the token of the positive site. On referring to the 3D structure 
of the protein (shown in Fig. 5b), it was found that the fold
ing of the protein brought this position spatially closer to the 
site-of-interest, with a euclidean distance of 7:83Å (<10Å) 
between the Cα atoms of the respective sites. Therefore, rely
ing exclusively on peptide sequences (in cases of WSWE and 
WSPE) might fail to capture the association of distant resi
dues affecting the site. These two observations lend support 
to the idea that considering window embeddings, where each 
embedding is generated from the entire sequence (i.e. FSWE), 
could be more effective, as also corroborated by cross- 
validation experiments.

To delve deeper into understanding the impact of individ
ual features of ProtT5 on predictions, we employed the 
SHAP (SHapley Additive exPlanations) method to compute 
the contribution values across all samples for the 
T5ResConvBiLSTM model, using the ‘GradientExplainer’ 
(expected gradients) approach (Lundberg et al. 2017, Hou 
et al. 2023). In Fig. 6, the visualization of mean SHAP values 
over total samples for each feature of ProtT5 is depicted for 
residues at positions 15, 16 (site-of-interest), and 17 within 
the context of the window frame (see Supplementary Fig. S5b 
for all 31 positions). A close examination of the plot pertain
ing to the site-of-interest in Fig. 6b reveals that among the 
1024 features, certain features positively influence the predic
tion outcome, while others exert a negative pull. Intriguingly, 
the model is not solely influenced by the site-of-interest; fea
tures of adjacent amino acids also weigh in on the model’s 
predictions (see Fig. 6a and c).

Figure 7 presents a bar chart detailing the mean absolute 
SHAP values across all samples averaged over all the features 
for each position in the window frame. The site-of-interest, 
highlighted in orange, unmistakably stands out with the high
est mean absolute SHAP value. This underscores its pivotal 
role in model prediction. As one moves further from this cen
tral site, the SHAP values progressively diminish, indicating a 
decreasing influence on the model’s predictive capability.

3.4 Independent testing and benchmarking
Using our independent test set (HeLa), we found that 
T5ResConvBiLSTM performs better than PhysicoDNN, and 
EmbedCNN, across all metrics (refer to Table 4). Moreover, 
the model utilizing stacked generalization of all three repre
sentations, aka LMCrot, demonstrated a significant improve
ment over those trained on individual representations (see 
Supplementary Section S5 for statistical tests). Notably, while 
LMCrot was chosen as the final predictor based on cross- 

Table 3. Performance comparison on fivefold cross-validation between 
base models and stacked generalized model (LMCrot).

Base model MCC G-mean F1 AUPR AUROC

PhysicoDNN 0.562 0.780 0.786 0.717 0.861
EmbedCNN 0.585 0.788 0.786 0.733 0.883
T5ResConvBiLSTM 0.614 0.806 0.811 0.890 0.743
Stacked gen. (LMCrot) 0.640 0.819 0.824 0.890 0.898

The highest values are bolded in each column.

Figure 3. Fivefold cross-validation MCC and AUROC scores for various 
representation combinations. “ProtT5” is abbreviated as “PrtT5”, 
“Embedding layer” as “Emb”, and “Physicochemical” as “Phy”.
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validation, these independent test results underscore its 
standout performance compared to the base models.

Next, we compared our proposed model with the existing 
state-of-the-art HeLa predictor, DeepCap-Kcr (Khanal et al. 

2022). To ensure a fair comparison, we trained and tested 
this predictor using our training and independent test sets. As 
illustrated in Table 5 and ROC curve in Supplementary Fig. 
S6, LMCrot notably outperformed DeepCap-Kcr in all the 

Figure 5. (a) Heatmap illustrating avg. attention weights for each token position in the sequence. (b) 3D structure of protein showing site-of-interest, 
region R1, and their Euclidean distance (in Å or 10−10 m).

Figure 6. Lineplot showing mean SHAP values across all samples of ProtT5 embeddings/features (dim. ¼ 1024) at positions (a) 15, (b) 16 (site-of- 
interest), and (c) 17 within the window frame of site-of-interest.

Figure 4. Planer t-SNE plots of (a) raw ProtT5 embeddings, (b) T5ResConvBiLSTM, and (c) stacked model (LMCrot), along with corresponding mean 
silhouette coefficient (or, score) (range2[−1, 1]).

LMCrot                                                                                                                                                                                                                                             7 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/5/btae290/7658304 by The R
ochester Institute of Technology - W

allace Library Serials D
ept. user on 01 August 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae290#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae290#supplementary-data


performance measures, especially in terms of MCC with an 
improvement of � 7:6%. Moreover, LMCrot achieved a 
more balanced performance between sensitivity and specific
ity, reflecting an increase in G-mean by � 3:2%.

To test the generality of LMCrot across diverse datasets, 
we utilized the non-histone Kcr dataset from CapsNh-Kcr 
(Khanal et al. 2023) and the tobacco dataset (Sun et al. 
2017). Initially, we trained and tested LMCrot on the 
CapsNh-Kcr training and testing sets. As the CapsNh-Kcr did 
not release the balanced test set they used, we created a bal
anced test set on our own and employed their model to derive 
results. Our observations (refer to Table 6) revealed that 
LMCrot significantly outperformed CapsNh-Kcr, showcas
ing improvements of � 14:8%, � 6:6%, and � 4:6% in MCC, 
AUPR, and AUROC, respectively.

Given the limited size of the tobacco dataset, we employed 
cross-species testing to predict all sites in this dataset using 
the model initially trained on the HeLa dataset. For bench
marking, we employed the DeepCap-Kcr model and observed 
that LMCrot surpassed its performance in all performance 
measures on this dataset as well (refer to Table 7).

Furthermore, comparing the difference in performance of 
LMCrot against DeepCap-Kcr and CapsNh-Kcr on these 
datasets using McNemar’s test revealed P-values lower than 
the significance level (α ¼ .05) across all comparisons, 
highlighting that LMCrot’s performance is statistically 

significant when contrasted with these existing approaches 
(see Supplementary Section S5). These findings affirm that 
LMCrot is one of the most effective predictors for protein 
Kcr sites. It is also worth highlighting that the pLM-based 
model, T5ResConvBiLSTM, on its own, delivered better 
results than the existing predictors in all three datasets (see 
Tables 5–7). Interestingly, T5ResConvBiLSTM has � 23:8%

fewer trainable parameters than DeepCap-Kcr (see 
Supplementary Fig. S7). These evidences point to the notable 
performance of LMCrot being primarily driven by the rich 
representations from a pLM.

4 Conclusion
Protein Kcr has emerged as an essential PTM due to its cru
cial role in a myriad of physiological and pathological pro
cesses. In recent years, the adoption of pLM-based 
methodologies has seen a significant increase in various bio
informatics tasks. However, the optimal utilization of these 
embeddings for solving per-residue prediction problems, such 
as PTM prediction, is still an active field of research.

In this research, we meticulously explored various strate
gies to employ embeddings from pLMs, aiming to establish a 
reliable representation of Kcr and non-Kcr sites. Our investi
gation revealed that utilizing the full sequence as input to 
pLMs, in contrast to the traditional approach of using pep
tide sequences, and considering the embeddings of all amino 
acids within the window frame for modeling, rather than just 
the site-of-interest [as seen in pLMSNOSite (Pratyush et al. 
2023), LMSuccSite (Pokharel et al. 2022), and Chandra et al. 
(2023)], yielded optimal results. Exploiting this methodology, 
termed FSWE, we developed the T5ResConvBiLSTM model, 
incorporating the ProtT5 pLM, which exhibited a promising 
performance. By merging the ProtT5 representation with the 
conventional peptide-based representations, namely the su
pervised embedding layer and physicochemical properties, 
through an intermediate fusion-based stacked generalization 
approach, we proposed LMCrot, a more robust Kcr site pre
diction tool. Based on rigorous independent testing on three 
datasets, LMCrot demonstrated superior predictive perfor
mance compared to existing state-of-the-art tools. The ele
vated performance is predominantly attributed to the 

Table 4. Performance comparison between base models and stacked 
model (LMCrot) on the independent test set (HeLa).

Base model MCC G-mean F1 AUPR AUROC

PhysicoDNN 0.564 0.779 0.770 0.863 0.870
EmbedCNN 0.639 0.818 0.824 0.898 0.901
T5ResConvBiLSTM 0.656 0.828 0.831 0.901 0.907
Stacked gen.(LMCrot) 0.699 0.849 0.852 0.917 0.922

The highest values are bolded in each column.

Table 5. Performance comparison of the existing predictor with 
T5ResConvBiLSTM and LMCrot on the independent test set (HeLa).

Predictor MCC G-mean F1 AUPR AUROC

DeepCap-Kcr 0.650 0.823 0.830 0.906 0.906
T5ResConvBiLSTM 0.656 0.828 0.831 0.901 0.907
LMCrot 0.699 0.849 0.852 0.917 0.922

The highest values are bolded in each column.

Table 6. Performance comparison of the existing predictor with 
T5ResConvBiLSTM and LMCrot on the non-histone test set.

Predictor MCC G-mean F1 AUPR AUROC

CapsNh-Kcr 0.589 0.786 0.807 0.833 0.862
T5ResConvBiLSTM 0.644 0.822 0.825 0.877 0.891
LMCrot 0.676 0.837 0.842 0.888 0.902

The highest values are bolded in each column.

Table 7. Performance comparison of DeepCap-Kcr with 
T5ResConvBiLSTM and LMCrot on the tobacco test set using cross- 
species testing.

Predictor MCC G-mean F1 AUPR AUROC

DeepCap-Kcr 0.393 0.687 0.719 0.734 0.761
T5ResConvBiLSTM 0.412 0.658 0.741 0.734 0.762
LMCrot 0.451 0.695 0.753 0.749 0.781

The highest values are bolded in each column.

Figure 7. Bargraph showing mean absolute SHAP value across all 
features at each position in the window frame (size¼ 31).
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globally contextualized representation derived from pLM 
and the innovative approach utilized to secure the embed
dings of the site-of-interest, as substantiated by the ablation 
study and independent test results. By analyzing the attention 
weights derived from the ProtT5 encoder and the SHAP val
ues of their corresponding embeddings, we offered insights 
into why it is essential to consider the entire sequence context 
and the embeddings of all amino acids within the window for 
pLM-based representation.

LMCrot, substantiated by empirical results, stands out as a 
promising instrument for predicting Kcr sites in proteins and 
is accessible in our public repository for the scientific commu
nity (https://github.com/KCLabMTU/LMCrot). The ap
proach used in LMCrot for sequence representation can be 
extrapolated to numerous other PTM prediction tasks and 
various other per-reside prediction tasks. While LMCrot 
showcases promising capabilities, incorporating the struc
tural information extracted from 3D structures of proteins 
can amplify the predictive accuracy.
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