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Abstract

Motivation: Genome-wide association studies (GWAS) benefit from the increasing availability of genomic data and cross-institution collaborations.
However, sharing data across institutional boundaries jeopardizes medical data confidentiality and patient privacy. While modern cryptographic
techniques provide formal secure guarantees, the substantial communication and computational overheads hinder the practical application of
large-scale collaborative GWAS.

Results: This work introduces an efficient framework for conducting collaborative GWAS on distributed datasets, maintaining data privacy
without compromising the accuracy of the results. We propose a novel two-step strategy aimed at reducing communication and computational
overheads, and we employ iterative and sampling techniques to ensure accurate results. We instantiate our approach using logistic regression, a
commonly used statistical method for identifying associations between genetic markers and the phenotype of interest. We evaluate our
proposed methods using two real genomic datasets and demonstrate their robustness in the presence of between-study heterogeneity and
skewed phenotype distributions using a variety of experimental settings. The empirical results show the efficiency and applicability of the

proposed method and the promise for its application for large-scale collaborative GWAS.

Availability and implementation: The source code and data are available at https://github.com/amioamo/TDS.

1 Introduction

Over the last few years, genome-wide association studies
(GWAS) have allowed a significant understanding of the asso-
ciations between complex genetic variants and traits in indi-
viduals (Rietveld et al. 2013, Buniello et al. 2019).

The efficacy of GWAS in detecting rare yet crucial genetic
signals is influenced by various factors, such as inherent asso-
ciations between genetic variants and traits (Goldstein 2009),
data quality (Anderson et al. 2010), and sample size (Lander,
2011). Collaborative GWAS, which entails the joint analysis
of multiple datasets, has demonstrated an enhanced ability to
detect rare variations (Lango Allen et al. 2010, Lander 2011).
However, privacy concerns that deter individuals and institu-
tions from sharing private data (Gymrek et al. 2013,
Harmanci and Gerstein 2016) significantly hinder collabora-
tive studies. Moreover, legislative policies and regulations
restricting the sharing of sensitive genetic data (Act 1996,
Voigt and Von dem Bussche 2017) further limit the preva-
lence of collaborative GWAS.

Privacy-aware collaborative GWAS frameworks have been
developed, leveraging modern cryptographic and machine
learning techniques, such as Homomorphic Encryption (HE),
Secure Multi-Party Computation (SMC), and Federated

Learning (FL). Homomorphic encryption is a cryptographic
technique that allows specific operations (e.g. addition and/or
multiplication) to be conducted directly on encrypted data.
While HE offers robust security, it increases the computation
and communication burdens for the researchers. Moreover,
HE supports only addition and/or multiplication operations.
Nonlinear operations necessary for regression analysis
(e.g. logistic regression) can only be approximated, impacting
result accuracy (Blatt ez al. 2020).

SMC-based frameworks enable researchers to perform
analyses collectively over securely shared data without direct
access to the underlying input. SMC solutions, such as those
presented in (Shi et al. 2016), often utilize a cryptographic
primitive named secret sharing (Shamir 1979), where each re-
searcher generates a secret share of their private data, com-
putes intermediate results from the secret shares, and
exchanges them. Each researcher then computes the final
results based on all intermediate results. Although the secret
shares do not disclose any private information, the computa-
tion/communication costs of such solutions often render them
impractical for complex tasks. Moreover, if one or more par-
ties are compromised, the privacy of all participating parties
is at risk. Techniques such as threshold secret sharing can pro-
tect against this, but they substantially increase the share size
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and the corresponding computation/communication cost (Ito
etal. 1993).

Federated learning is an alternative machine learning tech-
nique that trains a model across multiple parties with local
datasets. In FL-based GWAS, each researcher constructs a
model with local data and shares the parameters (e.g. gra-
dients) with the server. The server amalgamates the parame-
ters from all parties and redistributes them to all researchers,
who then iteratively update the model until it converges. FL-
based approaches, for instance (Wu et al. 2021), offload the
computational overhead from the server to the researchers,
increasing communication costs due to the iterative process.
Additionally, sharing the intermediate results of the local
model may expose private information (Zhu et al. 2019).

Recent works have attempted to leverage these techniques
to address privacy concerns in collaborative GWAS while
tackling computational and communication bottlenecks.
Secure GWAS (Cho et al. 2018) is a Principal Component
Analysis (PCA)-based GWAS protocol based on SMC, using
random projections and precomputed values to expedite the
process. However, their protocol is communication-intensive,
as it requires the entire dataset to be encrypted and distributed
among all the parties. In the case of a dataset with 22536
individuals and 509k array genotypes, the total communica-
tion cost approximates 700 gigabytes.

An alternative approach to collaborative GWAS is based
on meta-analysis, a statistical tool that combines summary
statistics from similar studies and has proven effective in iden-
tifying possible associations between SNPs and traits
(Speliotes et al. 2010, Lander 2011). While meta-analysis
requires only the exchange of summary statistics between col-
laborating parties, it is still possible to identify individuals
and their relatives based on these summary statistics (Homer
et al. 2008). Moreover, results from meta-analysis of hetero-
geneous cohorts (e.g. sample size, phenotyping, imputation)
can be biased (Kanai et al. 2022). sPLINK (Nasirigerdeh et al.
2022) offers a privacy-aware alternative for meta-analysis in
GWAS based on federated learning. In this method, each cli-
ent computes local parameters and masks them with noise.
They then share the noise with the compensator and the noisy
local parameters with the server. The compensator aggregates
the clients’ noise values and sends the aggregated noise to the
server, which computes the global parameters by summing
the noisy local parameters and subtracting the aggregated
noise. Compared to SMC-based approaches, sPlink is compu-
tationally efficient as heavy computations are distributed
across clients and can be performed in plaintext. However, in-
termediate results (e.g. Hessian Matrix) are shared in plain-
text, which could lead to information leakage (Zhu et al.
2019). Furthermore, a breach of the compensator—an event
that has become increasingly probable in this era of frequent
sensitive user data leaks—jeopardizes the privacy of all parties
involved. Another issue is the slow convergence rate of the
federated learning model, which may not be guaranteed in the
presence of non-IID data (Zhao et al. 2018). In a dataset with
5343 individuals and 600k genotypes, the total analysis using
sPlink requires about 75 min, and the total communication
costs for 20 iterations are around 11 GB. In conclusion, exist-
ing methods are impractical for large datasets, which is crucial
for obtaining reliable GWAS results.

In this work, we introduce a new, efficient, privacy-
preserving federated GWAS framework named Two-Step
Dynamic Sampling (TDS) GWAS. Our approach unfolds in
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two phases. In the first phase, local parties collaboratively
identify loci in their local data that are not significantly associ-
ated. This phase substantially curbs computation and commu-
nication costs by removing a large number of non-significant
loci from subsequent analysis. In the second phase, all the
local parties iteratively share portions of their private datasets
with the server. The server performs GWAS on the pooled
data and returns the results to the local parties. Our ap-
proach, improving existing federated learning methods and
meta-analysis, involves sharing partial data, which allows us
to achieve the same results as those obtained from aggregated
analysis and enhances the performance in identifying signifi-
cantly associated loci, even with datasets having between-
study heterogeneity and imbalanced phenotype distributions.
To manage the privacy risk introduced by sharing partial
data, we apply the permutation techniques used in (Dervishi
et al. 2023) to keep the privacy risk below a baseline that
aligns with the risk associated with sharing summary
statistics.

Although our primary focus is logistic regression test, our
proposed framework can be generalized to accommodate
other useful statistics in GWAS, such as y? statistics, linear re-
gression tests, and Cochran—Armitage trend tests (CATT) sta-
tistics (Armitage 1955). We assess the proposed framework
using two real genomic datasets from the 1000 Genome
Project and OpenSNP. We simulate the phenotypes for 2400
individuals in 1000 Genome Project datasets and divide the
data between two parties, considering different levels of phe-
notype distribution imbalance and between-study heterogene-
ity. Compared to standard meta-analysis, the proposed
method consistently delivers higher accuracy rates for identi-
fying significant associations across different scenarios.
Thanks to our key two-step approach, TDS reduces the over-
all runtime and is less dependent on powerful hardware than
existing cryptographic approaches. Our work showcases a
highly effective and efficient method for conducting privacy-
preserving collaborative GWAS.

2 Materials and methods
2.1 Logistic regression

Our study concentrates on case-control GWAS. In this
method, the genomes of individuals exhibiting a particular
trait or phenotype (the case group) are compared to those
lacking that trait (the control group). The GWAS outcome
comprises the SNPs most strongly associated with the studied
trait. In such study, the phenotype of individual i is denoted
asp; € 0,1 and genotypes as x; € 0,1,2". Here, 0, 1, or 2 rep-
resent the number of minor alleles in 7 different SNPs of indi-
vidual i. For ease of distinction, we utilize bold and regular
symbols to represent vector/matrix and scalar variables, re-
spectively. We employ logistic regression to conduct the
single-SNP analysis, testing one SNP at a time and producing
a P-value for each SNP. Specifically, the probability of indi-
vidual i having the disease, conditioned on his/her genotype
x;, is expressed as

1

P(pi=1x;j,p) = ————,

1+ exp(—px})
where x; is the genotype of a SNP for individual 7, and f repre-
sents the genetic effect. We utilize the standard Wald test
(Bewick et al. 2005) to test the null hypothesis that the SNP
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has no effect (Hp : 8 = 0) against the alternative hypothesis
that it does impact the phenotype (Hy :  # 0). We reject the
null hypothesis and deem a statistical test significant if
the P-value of the Wald test statistics falls below a predefined
significance threshold p. A typical GWAS simultaneously tests
millions of SNPs. The Bonferroni correction (Bonferroni
1936) is commonly used to adjust the threshold and control
the family-wise error rate (i.e. the probability of making at
least one false positive). For # SNPs tested in one study, the
adjusted significance threshold is defined as o/#n, where o is
the target significance level (e.g. 0.05).

2.2 Two-step dynamic sampling (TDS) framework

In the proposed framework, a group of researchers possesses
their private genotype arrays and phenotype vectors. They
aim to collaboratively perform a logistic regression test to
identify genetic markers (i.e. SNPs) significantly associated
with the phenotype by sharing partial data generated from
their local dataset with a third party (e.g. a server) equipped
with extensive computational resources. Upon receipt of this
shared data, the server performs the necessary computations
and returns the association results (i.e. P-values) to the
researchers. The proposed framework assures robust results
despite between-study heterogeneity through an iterative pro-
cess to share the partial data, allowing efficient computation
while safeguarding the privacy of the participant individuals.

This section introduces the Two-step Dynamic Sampling
(TDS) federated GWAS framework. The proposed frame-
work comprises two phases. In Phase 1, both researchers con-
duct the computation locally and collaboratively identify the
insignificant associations. In Phase 1, both researchers itera-
tively share the partial data, extracted from their local data-
sets, with the server to detect significant associations for the
remaining SNPs. For the simplicity of exposition, we consider
only two researchers A and B, but our proposed approach
can readily be extended to accommodate multiple researchers.
We assume that the researchers are honest and the server
is honest-but-curious in the proposed design. An overview
of the proposed framework is depicted in Fig. 1 and
Supplementary Material S1, with the details of the two phases
discussed in the subsequent sections.

2.2.1 Phase 1: Detecting insignificant associations from local
data

Let S denote the server and D" € {0,1,2}"N" represent the
original dataset of researcher r € A, B, where 7 indicates the
number of SNPs and N” denotes the number of individuals.
We denote the set of SNP IDs as [ = {SNP;, SNP»,...,SNP,}
and the phenotype vector of each researcher as p” € {0, 1},

In Phase 1, both researchers collaborate to identify insignif-
icant associations. Initially, each researcher conducts compu-
tation with their local dataset and determines the P-values for
each SNP in [. Utilizing the selected threshold u, each re-
searcher decides the significance conditions for all the SNPs in
I. More precisely, an association is deemed insignificant if its
P-value exceeds p.

To simplify the illustration, we assume both researchers
choose identical thresholds. However, they may indepen-
dently select different thresholds. Subsequently, they share the
set of insignificant SNP IDs, INSIG I”, with each other to
identify SNPs deemed insignificant in both datasets. This pro-
cess is straightforward when both researchers are honest. For
example, researcher A can send INSIG I* to B, who then

returns INSIG I = INSIG I* N INSIG I8, i.e. the SNP IDs
deemed insignificant in both datasets, to A. In scenarios with
multiple researchers, one can serve as the aggregator of all
SNP ID lists from others. After identifying mutually insignifi-
cant SNPs, each researcher removes data associated with the
SNPs in INSIG I from their datasets. The computation of
SNP intersection is efficient and demands minimal computa-
tional and communication costs from the researchers. The
computational complexity of executing the logistic regression
test using local datasets depends on the dataset size and the
algorithms employed. For example, the training time com-
plexity of a standard binary logistic regression is O (7 x N").

While the primary objective of Phase 1 is to detect insignifi-
cant associations, it is crucial to note that researchers do not
seek to identify all insignificant associations at this stage. In
other words, both researchers aim to detect the easily identifi-
able insignificant associations, thereby reducing the number
of SNPs to be examined in the subsequent phase. An implicit
requirement is to avoid erroneously including significant
SNPs in INSIG I (i.e. false negatives). Given this consider-
ation, we employ larger P-value thresholds (e.g. u = 0.3) since
the Bonferroni correction can be overly conservative, leading
to a significant number of false negatives (Chen et al. 2021,
Gumpinger et al. 2021).

2.2.2 Phase 2: Detecting federated significant associations via
dynamic sampling

In this phase, both researchers iteratively send data related to
the remaining SNPs (I \ INSIG I) to the server, facilitating
the computation of logistic regression. Each iteration encom-
passes two stages: synchronization and outsourcing.

At iteration T, during the synchronization stage, follow-
ing a similar approach to PPKI (Dervishi et al. 2023),
researchers collaboratively decide on the set of SNPs, i.e.
It = SNP;,SNP,,...,SNP,,,, to share with the server and a
common seed Ur. Here, It C I\ INSIG I. The common
seed Ut enables researchers to shuffle their shared SNPs in
the same way, ensuring the correctness of computation
results while preventing the server from inferring the actual
genome sequence of individuals.

This process can be extended to a batch-wise approach, as
depicted in Fig. 1. For remaining SNPs post Phase 1, research-
ers can cooperatively partition the SNP IDs into b non-
overlapping subsets, i.e. I\INSIGI=1;rULtU---Ul,r
and It NI = & for i # j, and decide the common seed vec-
tor Ut for b batches. As this step does not involve the server,
one researcher could determine the SNPs IDs and the seed
and broadcast them to other researchers. Researchers share
the partial data derived from the b batches (elaborated further
later) with the server to simultaneously compute univariate
test statistics of all the SNPs. While this approach reduces the
communication load, it could raise the privacy risk, particu-
larly when each batch contains a few individuals. We argue
that researchers only need to share data of some batches after
a few iterations as they acquire high confidence in most SNPs
(as demonstrated in the experiment results in Section 4). We
also employ the technique in PPKI (Dervishi et al. 2023) to
control the privacy leakage and scrutinize the privacy risk in
Section 3.

Next, both researchers sample K individuals uniformly at
random from their local datasets (without maintaining the
case/control balance to avoid oversampling specific individu-
als when there is severe between-study heterogeneity). Even
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Figure 1. Workflow overview of the proposed framework. In Phase 1, researchers A and B perform GWAS on their local genotype arrays and phenotype
vector. They share the IDs of insignificant SNPs (red and blue columns) to obtain the intersection of the shared IDs. Both researchers then remove the
insignificant SNPs in both datasets (red columns). Phase 7 consists of two stages. Synchronization stage [(1) in the figure]: Two researchers initially
decide whether they will continue the process; if they continue, they decide on the partition of SNP set (b), number of SNPs m7, and the common
permutation seed U7 for each batch. Here, the entire set of SNPs (/) is partitioned into two batches for the illustration. Each researcher then uniformly
samples Kindividuals to generate the partial data, which is later sent to the server. The grayed cells in the partial data (e.g. D?/) suggest that the SNP IDs
and individual IDs are removed from the genotype arrays and phenotype vectors before outsourcing. Outsourcing stage: In (2), A and B send the shuffled
and anonymous partial data to the server; In (3), the server performs logistic regression tests and returns the P-values to both researchers. Each
researcher updates the significance level of each SNP based on P-values obtained from previous iterations and threshold p.

though it might seem counter-intuitive, using a random subset
suffices for good results and concurrently reduces the privacy
risk. The researchers shuffle the SNPs (i.e. columns) according
to the common seed Ut with the selected individuals. Each re-
searcher R’ then shuffles the individuals (i.e. rows) and
removes the SNP identifier and sample identifier from the ge-
notype arrays and phenotype vector. Notably, the permuta-
tion of individuals can be done independently and is
unknown to the other researcher(s).

In this scenario, the number of SNPs in each batch (1, 1)
and the number of selected individuals (K) are system parame-
ters to control the computational load and, more importantly,
the computation accuracy and privacy. The effect of 7, + on
privacy risk has been extensively examined (Dervishi et al.
2023). In this article, we focus on the impact of K on perfor-
mance and use 7z =300 as the default value [a small number,
e.g. 250, is suggested (Dervishi et al. 2023) to limit the privacy
risk and restrict the server’s ability to un-shuffle the SNP
sequences].

During the outsourcing stage, both researchers transmit the
shuffled genotype arrays and phenotype vector, Dt ®p, to
the server (here, * implies that the data is anonymized by re-
moving identifiers, and @ is the matrix concatenation opera-
tor). The server then conducts the computation on pooled
data and returns the P-values of each association test to both
researchers. Each researcher reverts the order, compares the
P-values with the thresholds (u), and obtains the significance
condition of all the SNPs in I\ INSIG I. For example, if the
returned P-value of SNP; is greater than p, then its signifi-
cance label, denoted as /; T, is set to be 0, indicating the associ-
ation between SNP; and the phenotype is insignificant. Each

researcher then uses the majority voting strategy to update the
significance label based on current and previous significance
labels. Given a list of significance labels from T iterations,
Ii, b, ..., Ir, the significance label I* is given as the label that
appears most often, i.e. I* = MODE(l, L, ..., Ir). Note that
the thresholds u can differ from the one used in Phase 1, as
researchers can select more stringent values to lower the false
negative rates. In Section 4, we empirically demonstrated the
impact of p on the utility. In the next synchronization phase,
the researchers need to determine whether to continue. Here,
we consider a simple condition where if the significance label
for all the SNPs remains constant, both researchers decide to
halt the iteration.

Phase 1 offloads the computational burden to the server,
thereby reducing inter-site communication and ensuring only
necessary information is exchanged. The computation cost
for the researchers is incurred when performing sampling and
shuffling, a task which only needs execution once. On the
server side, the computation complexity hinges on the statisti-
cal test implemented, the batch size received per iteration, and
the overall number of iterations. With T iterations, the com-
putation complexity for the server becomes O(TK x*m).
Notably, since all logistic regression computations are con-
ducted in plaintext (applicable to Phase 1 as well), both the
researchers and the server can harness parallel computation
techniques to expedite the process (Sikorska et al. 2013). The
main communication bottleneck arises from sharing the par-
tial data. For a SNP encoded with 2 bits, a single iteration
sharing m SNPs of K individuals necessitates 2mK bits in a
simplistic scenario. To reduce the size and accelerate the
transmission process, efficient compression schemes such as
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7zip can be deployed. It is important to note that all the steps
above can be easily generalized to the case where there are
multiple researchers, since all the communications are be-
tween the server and the researcher(s).

3 Privacy analysis

This study encompasses multiple researchers aiming to con-
duct collaborative logistic regression tests by sharing partial
data extracted from their datasets with a server possessing
substantial computational resources. Upon receiving this
data, the server performs necessary computations and returns
the association results (in terms of P-values) to both research-
ers. The objective of each researcher is to discern significant
associations between SNPs and specific phenotype vectors
across federated datasets, all while maintaining participant
privacy.

Genomic data sharing is vulnerable to several known pri-
vacy attacks, including membership inference attacks (Homer
et al. 2008, Wang et al. 2009), attribute inference attacks
(Humbert et al. 2013), and reconstruction attacks (Mizas
et al. 2008). Typically, adversaries are assumed to have access
to the target’s full or partial genomic sequences, exploiting
side information to increase the power of their attacks. This
study focuses on general privacy risks without specifying any
particular attacks, aiming to mitigate privacy risks associated
with iterative partial data sharing. TDS presumes an honest-
but-curious server and legitimate researchers, a threat model
widely accepted within the medical informatics context.
Therefore, during Phase 1, the two researchers directly ex-
change INSIG I, which leaks a little bit of extra information
(i.e. the SNPs that are insignificant for the other researcher.) If
this leakage is not acceptable, the researchers can employ
Private Set Intersection algorithms, such as (Pinkas et al.
2014) or (Chen et al. 2018), to obtain the INSIG I without re-
vealing real SNP IDs to each other.

Next, we discuss the potential privacy risks in Phase 2.
Suppose the server possesses a target and that target’s partial
genome sequence. While the server adheres to the protocol
and performs computations accurately, it may attempt to in-
fer additional information—specifically, the genome sequen-
ces of the target. To implement subsequent attacks, such as
membership inference and reconstruction attacks, the server
attempts to match the target’s sequence with the shared par-
tial data from both researchers. This is achievable if (i) the
server can match the unordered SNP sequence shared by the
researchers with the target’s SNP sequence in each iteration
and (ii) the server can discern the linkage among the SNPs
shared throughout the iterative process. Hence, privacy risks
depend on the number of shared SNPs, the number of itera-
tions, and the correlations between SNPs.

The system and threat models of TDS align with those of
PPKI (Dervishi et al. 2023), a federated framework for kin-
ship relatedness identification, which shares metadata gener-
ated from local datasets with the server to facilitate the
necessary computations. Two primary differences exist be-
tween TDS and PPKI. First, in PPKI, researchers share meta-
data that comprises shuffled SNPs and SNP IDs (without any
correspondence between SNPs and SNP IDs in the metadata).
In contrast, TDS assumes that SNP IDs are not revealed to
the server. Second, PPKI employs a non-iterative approach,
meaning the synchronization and outsourcing stage is per-
formed only once. We then discuss how TDS reduces privacy

risks by keeping SNP IDs hidden from the server and miti-
gates privacy risks introduced by the iterative process.

Below, we review the privacy risks and the membership at-
tack considered in PPKI. In PPKI, the metadata received by
the server includes the set of SNP IDs and shuffled SNPs.
Assuming the server has access to a target’s SNP profile, it
aims to infer the target’s membership in the federated dataset.
The membership inference attack involves two steps: (i) the
server attempts to unshuffle the shared SNPs in the metadata
and infer the actual IDs, and (ii) it performs a power analysis
(Halimi ez al. 2021) using the Hamming distance between the
target and all individuals in the unshuffled metadata.
Therefore, the privacy risk is equivalent to the probability of
the server successfully unshuffling the shared SNPs in the
metadata, a task that becomes feasible when the server knows
the SNP IDs. For example, the server can easily obtain the
Minor Allele Frequency (MAF) values and pairwise correla-
tions between SNPs in a reference population based on public
knowledge when it knows the set of SNP IDs. The server can
perform unshuffling using a greedy algorithm, as suggested in
PPKI. Notably, the server’s ability to unshuffle largely
depends on the knowledge of SNP IDs. TDS enables research-
ers to conceal SNP IDs from the server without compromising
utility, significantly restricting the server’s ability to unshuffle.
Moreover, even if the server obtains the SNP IDs in one itera-
tion (meaning it can match the unordered SNP sequence
shared by the researchers with a target’s SNP sequence), it
only affects this iteration. With the limited number of SNPs
shared in one iteration, the likelihood of a successful member-
ship inference attack is low. Furthermore, TDS can directly
adopt the techniques proposed in PPKI, such as using syn-
thetic SNPs to enhance privacy by reducing the power of
unshuffling.

In addition, when researchers iteratively share partial data,
the server may discover the linkage among the SNPs shared
throughout the iterative process and use that linkage to match
the unordered SNP sequence. To mitigate the privacy risk due
to the iterative process, researchers can select SNPs from dif-
ferent chromosomes for each iteration to eliminate the linkage
among SNPs in different iterations. Through these privacy-
preserving strategies, TDS enables efficient collaborative
analysis while minimizing the potential privacy risks.

4 Results
4.1 Test datasets

We use two real-world genome datasets from 1000 Genome
Project (1000 Genomes Project Consortium et al. 2015) and
OpenSNP (Greshake et al. 2014).

For 1000genome datasets, we perform basic quality control
steps, including excluding SNPs and individuals with missing
values, the removal of SNPs with a MAF below 0.1, and elim-
inating related samples. Subsequently, we randomly select
9423 SNPs for 2400 individuals utilizing Plink 2.0 (Chang
et al. 2015). We employ the Genetic Complex Trait Analysis
(GCTA) (Yang et al. 2011) to simulate the phenotype vectors
across five distinct scenarios, each characterized by a different
level of between-study heterogeneity and/or skewed pheno-
type distribution:

Scenario 1 (no between-study heterogeneity): Both the case
and control groups in each local dataset comprise 600
individuals.
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Scenario 2 (mild between-study heterogeneity): Researcher
A’s dataset includes 450 individuals in the case group and
750 in the control group, whereas Researcher B’s dataset con-
tains 750 individuals in the case group and 450 in the control
group.

Scenario 3 (significant imbalance): Researcher A’s dataset
has a case-to-control ratio of 300:900, while Researcher B’s
dataset shows a reversed ratio of 900:300.

Scenario 4 (highly skewed phenotype distribution): Each lo-
cal dataset comprises 300 individuals in the case group and
900 individuals in the control group.

Scenario 5 (slight skewness in phenotype distribution and
mild heterogeneity): While Researcher A maintains a balanced
dataset (case-to-control ratio of 600:600), Researcher B’s
dataset is imbalanced, with a case-to-control ratio of
300:900.

For the OpenSNP dataset, we select 28 976 SNPs on chro-
mosome 15 from 800 individuals, using eye color as the phe-
notype. The case and control datasets are evenly divided
between the two researchers.

4.2 Performance analysis

TDS comprises two distinct phases. Phase 1 is centered on
researchers identifying insignificant associations within their
local datasets to enhance efficiency. In contrast, Phase 2 fo-
cuses on enhancing utility, i.e. detecting significant associa-
tions, by facilitating an iterative sharing of partial data with
the server.

We commence by evaluating TDS’s performance and draw
comparisons to GWAR (Dimou et al. 2017), a publicly avail-
able and efficient tool for meta-analysis of GWAS. Among the
array of methods offered by GWAR, we opted for the
Cochran-Armitage Trend Test (CATT) (additive) method.
CATT is a prevalent test for GWAS association analyses and
does not rely on the assumption of Hardy—Weinberg equilib-
rium (HWE). The empirical analysis demonstrated that
CATT offers potent results and outperforms other tests
regarding efficiency. To accommodate between-study hetero-
geneity, we implemented a random-effects model for the
meta-analysis (Cantor ef al. 2010). Subsequently, we examine
the trade-offs between privacy and utility by adjusting param-
eters such as thresholds (i), sample size (K), and the number
of iterations T. The ground truth significance labels are de-
rived using the entire dataset, with a chosen significance
threshold of 0.005. We executed each experiment five times,
reporting the average of the results.

The performance of TDS and GWAR in terms of successful
association identification, as measured by sensitivity (the pro-
portion of significant associations correctly identified out of
all significant associations) and specificity (the proportion of
insignificant associations correctly identified out of all insig-
nificant associations), are depicted in Fig. 2 for the first three
scenarios. The results of the proposed method under skewed
phenotype distribution and data heterogeneity are presented
in Table 1. From Fig. 2 and Table 1, we observe that TDS
consistently surpasses meta-analysis in performance and can
accurately detect true positives. Notably, while the power of
GWAR (Dimou et al. 2017) to identify significant associa-
tions dramatically diminishes with increasing heterogeneity
and skewness of phenotype distribution, our proposed
method continues to achieve high sensitivity. Supplementary
Table S1 and Fig. S1 effectively illustrate the trade-off be-
tween efficiency and utility. Notably, when a threshold of 0.1
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Figure 2. Performance comparison of TDS versus GWAR under the first
three scenarios on 7000genome. Top: sensitivity. Bottom: specificity.
Each scenario has a different level of between-study heterogeneity. We
use different Kand u for each dashed TDS line. We set the maximal
iterations at nine and report the best performance out of the nine
iterations.

Table 1. Performance comparison of TDS versus GWAR on 1000genome
when the phenotype distribution is skewed (Sens. refers to Sensitivity,
while Spec. refers to Specificity).

Method Scenario 1 Scenario 4 Scenario 5
Sens.  Spec.  Sens. Spec.  Sens. Spec.

TDS (K =500, 1 1 0.99 0.999 099 0.99
u=0.3)

TDS (K=1500, 0.99 0.999 099 0999 0.99 0.99
u=0.25)

TDS (K =300, 0.96 0.999 095 0998 0.98 0.99
r=20.3)

TDS (K =300, 0.92 0999 092 0997 0.97 0.98
u=0.25)

GWAR (Dimou 0.76 0.997 0.79 0993 0.72 0.93
etal. 2017)

is employed in one scenario, we successfully identify 7406
(78%) insignificant associations without missing any signifi-
cant associations. Even under the most challenging condi-
tions, such as when u= 0.3 in Scenario 5, our method
effectively filters 22% of associations during Phase 1. It is im-
portant to highlight that opting for larger thresholds
(i = 0.15) guarantees that no significant SNPs are excluded
(with the exception of Scenario 3). However, it is not recom-
mended to select an excessively high threshold (u > 0.3), as it
categorizes most of the tested SNPs as “significant” in Phase
1, leading to increased runtime in Phase 2.

We proceed to examine the trade-off between privacy and
utility in Phase 2. Supplementary Fig. S2 presents the sensitiv-
ity and specificity results during Phase 2 across each iteration
with variations in the number of individuals in each batch
and thresholds. Note that the associations detected in Phase 1
are not included. Interestingly, the performances, measured
by sensitivity and specificity rates, of even-numbered
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iterations surpass those of the odd-numbered ones due to our
tie-breaking strategy. When determining the significance label
of a SNP after several iterations, we consistently lean towards
labeling it as “insignificant” in cases of ties between ‘signifi-
cant” and “insignificant” (generally observed in even-
numbered iterations), a strategy aimed at controlling the false
positive rate. TDS achieves high sensitivity and specificity
across all five scenarios, particularly in Scenario 5, which
closely simulates real-world settings. In Scenario 5, by uni-
formly selecting 300 and 500 individuals in each iteration,
~43% and 65% of the entire dataset is employed after two
iterations, respectively. Therefore, our method necessitates
sharing fewer individuals through the iterative process while
achieving high utility. Notably, it is trivial to phrase the pro-
posed method with Bernoulli Sampling, which further ampli-
fies privacy via sampling (Li ez al. 2012, Ebadi et al. 2016).

In summary, experimental results from simulated scenarios
suggest our method surpasses meta-analysis in its robustness
for identifying correct associations within heterogeneous
data. Although the Bonferroni approximation accounts for
the family-wise error rate, it tends to be excessively conserva-
tive in identifying significant associations when only a few
samples are available. The experiments demonstrate that
implementing a relatively large threshold u (e.g. 0.3) enhances
both efficiency and utility. While a small sample size
(K=300) can achieve high utility, performance can be further
amplified by using 500 samples in each iteration. The in-
curred privacy loss is offset by running fewer iterations.
During the experiments, it was noted that TDS attained opti-
mal performance at the fourth iterations in Scenarios 2 and 3,
and at the second iteration in Scenarios 4 and 5, respectively,
when using a relatively large sample size (e.g. 500) and thresh-
old (e.g. 0.3).

Having highlighted the merits of the proposed method, we
proceed to evaluate TDS using the OpenSNP dataset with
real phenotypes. Table 2 reveals that, when applying
u = 0.25, our method successfully detects 14 619 (44 %) insig-
nificant associations in Phase 1. With only two iterations, we
are able to identify the majority of significant associations.

We then show the efficiency of TDS and investigate how
the runtime of TDS changes with varying numbers of samples
and SNPs (see Supplementary Table S2 and Fig. S3 for
details). Compared to sPLINK (Nasirigerdeh et al. 2022),
TDS is around 1.5 times faster (43.5 min versus 65 min for
400K SNPs) without multi-threading and a larger sample size
(6000 versus 5823). Moreover, the results show that the run-
time increases nearly linearly with the number of SNPs, which
can be reduced by using parallel computation techniques. As
the sample size grows, runtime does not change much.

Table 2. Performance comparison of TDS versus GWAR on OpenSNP
dataset (Sens. refers to Sensitivity, while Spec. refers to Specificity).

Method Overall Phase 1 Phase 1
Sens.  Spec.  Sens. Spec. FN (TN)

TDS (K =300, 0.999  0.999 1 1 0(12837)
u=03,T=2)

TDS (K=300, 0.999 0.999 0.999 0.999 0(14619)
u=025"T=2)

TDS (K=200, 0.996 0.999 0.996 0.999 0(12837)
u=03,T=3)

GWAR (Dimou 0.732  0.992
et al. 2017)

5 Discussion and conclusion

In this study, we introduce TDS, a novel two-phase strategy
designed to mitigate the computational challenges inherent in
existing SMC and HE solutions. Phase 1 facilitates local com-
putations in plaintext, thus minimizing the need for inter-site
communication and encryption/decryption operations. On
the other hand, Phase 2 adopts an iterative principle to de-
crease data sharing and consequently reduce privacy risks.
The primary objective of our method is to improve the feasi-
bility and efficacy of collaborative GWAS, thereby expediting
genomics research while adhering to safety and privacy regu-
lations. We want to emphasize that our intention is not to
propose alternative genomic analytics methods. Instead, our
goal is to manage privacy risks to ensure they remain within
the acceptance boundaries of many institutions, such as those
stipulated by the National Institutes of Health (NIH)
Genomic Data Sharing (GDS) policy.

In Section 4, we have demonstrated that employing a more
relaxed threshold (for instance, 0.3 compared to the
Bonferroni correction) enables the identification of over half
of the insignificant SNPs using only the local dataset. It is crit-
ical to emphasize, however, that the effectiveness of Phase 1 is
contingent on the size of the dataset. Larger sample sizes pro-
duce more accurate results. Furthermore, the effectiveness
also depends on the degree of heterogeneity in the phenotype
distribution. In an extreme scenario where only control (or
case) samples are present across all researchers, Phase 1
becomes non-applicable. However, Phase 2 can still operate
effectively when the pooled datasets contain more than one
group of samples. This is possible when some hospitals pos-
sess only case samples while others have control samples.

Currently, TDS focuses on logistic regression tests but can
be expanded to accommodate quality control steps used in a
GWAS. These steps include the computations of MAF, HWE,
Linkage Disequilibrium (LD), and relatedness identification.
Federated computation of MAF, HWE, and LD is anticipated
to be straightforward, as they are based on allele frequencies
and can be attained in Phase 1. Moreover, a recent frame-
work, INK (Wang et al. 2023), devised for federated kinship
identification, can be easily incorporated into TDS as it
employs a similar system model. Addressing population strati-
fication presents greater challenges in the federated setting, as
merging two or more datasets with completely homogeneous
populations in isolation can inadvertently introduce bias due
to underlying cross-correlations. The application of PCA, a
common method for addressing population stratification, is
also not straightforward given the privacy requirements.
Furthermore, federated PCA algorithms may require more
data exchange and numerous iterations to converge on final
eigenvectors, giving rise to security and runtime concerns.
Developing an efficient federated PCA algorithm to handle
both horizontally and vertically partitioned data will be a sub-
ject of our future research.

In this article, our proposed framework aims to mitigate
general privacy risks without specifying particular attacks or
delving into intricate threat models. We prioritize providing a
practical and flexible solution that can be applied broadly in
scenarios where the threat landscape may vary. Future re-
search endeavors may delve deeper into specific privacy
threats, consider more stringent threat models, and explore
how to tailor defenses against particular types of attacks while
maintaining the overarching privacy principles.
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