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Abstract—The use of medical data for machine learning,
including unsupervised methods, such as clustering, is often
restricted by privacy regulations, such as the health insurance
portability and accountability act (HIPAA). Medical data is sensi-
tive and highly regulated and anonymization is often insufficient
to protect a patient’s identity. Traditional clustering algorithms
are also unsuitable for longitudinal behavioral health trials, which
often have missing data and observe individual behaviors over
varying time periods. In this work, we develop a new decen-
tralized federated multiple imputation-based fuzzy clustering
algorithm for complex longitudinal behavioral trial data collected
from multisite randomized controlled trials over different time
periods. Federated learning (FL) preserves privacy by aggre-
gating model parameters instead of data. Unlike previous FL
methods, this proposed algorithm requires only two rounds of
communication and handles clients with varying numbers of
time points for incomplete longitudinal data. The model is eval-
uated on both empirical longitudinal dietary health data and
simulated clusters with different numbers of clients, effect sizes,
correlations, and sample sizes. The proposed algorithm converges
rapidly and achieves desirable performance on multiple cluster-
ing metrics. This new method allows for targeted treatments for
various patient groups while preserving their data privacy and
enables the potential for broader applications in the Internet of
Medical Things.

Index Terms—Behavior, decentralized computing, diet, feder-
ated learning (FL), fuzzy clustering, Internet of Medical Things
(IoMT), longitudinal trial, missing data.

I. INTRODUCTION

INCREASING reliance on big data has become an emerg-
ing trend in health research. Machine learning algorithms
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are trained across disciplines to mine large data sets for pat-
terns; examples include detecting infectious disease outbreaks,
predicting mortality, and diagnosing health conditions [1].
For longitudinal behavioral health data, clustering algorithms
are especially useful, as they can identify groups of similar
patients to gain insight into their behaviors and associated
health outcomes [2], [3], [4], [5], [6], [7].

Employing machine learning methods, such as cluster-
ing, often may require the aggregation and harmonization of
large data repositories [8], [9], [10]. While modern health-
care institutions collect a vast array of data on their patients,
its use is often restricted due to data privacy regulations,
such as the health insurance portability and accountability
act (HIPAA) and other laws [11], [12], [13]. Medical data
is sensitive and highly regulated; anonymization is often
insufficient to protect a patient’s identity [14], and other
technical challenges, such as data security during delivery,
create difficulties in preserving privacy as well [15], [16].
Because of this, healthcare institutions are, justifiably, often
unable to share data with researchers and machine learning
engineers [17], [18].

Much research has been devoted to solving the data pri-
vacy problem in machine learning using federated learning
(FL). To allow a decentralized network of clients to collabo-
ratively train a machine learning model without sharing data,
the FL paradigm has been developed. Rather than training
a model using a set of aggregated data, model parameters
are distributed to individual data sources for updates, and
results are averaged (Fig. 1) [17], [18], [19]. This allows mod-
els to be trained while circumventing the need for healthcare
institutions to share data with researchers.

Longitudinal behavioral health trials often generate high-
dimensional data with complex intercorrelation [6], [20]. In
longitudinal behavioral health trials, clustering has the poten-
tial to identify groups that share distinct trajectories related to
outcomes [7]. However, current FL methods are often inad-
equate for clustering on longitudinal data. FL can require
excessive rounds of communication, slowing down the algo-
rithm, and cannot always handle data sets containing missing
values, different numbers of time points, or features, a com-
mon occurrence in longitudinal behavioral health studies.
Furthermore, previous FL research has often treated data from
different clients as representing a single participant rather
than recognizing the possibility of pooling data at the institu-
tion or trial level, which may be more useful from a policy
perspective.
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B. Federated Learning
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Fig. 1. Diagram depicting the difference between federated and non-FL.
In A, data from healthcare institutions are aggregated to train a model. In
B, model parameters are distributed to each institution for training and then
aggregated.

A. Non-Federated Learning

it

Additionally, current FL cannot handle the complexity of
longitudinal behavioral health trials, such as missing data and
varying numbers of observations and time points between
different data collection sites. Missing data are inevitable
in longitudinal trials, and this missingness could be non-
ignorable (informative drop-out) resulting from intermittent
missingness (i.e., occasional missing and can relapse) and
drop-out missingness (i.e., premature withdrawal and never
relapse). Using only cases with no missing values typically
ignores many cases, leading to a loss of power in outcome
tests. At the same time, single-imputation-based clustering
(e.g., mean, regression, and hot deck) misleads the cluster-
ing accuracy due to the unaccounted uncertainty in imputation
[21], [22], [23], [24].

In this work, we aim to develop and evaluate federated fuzzy
clustering for applications in the Internet of Medical Things
(IoMT) that maintains the privacy-preserving quality of FL
while overcoming the aforementioned limitations for longi-
tudinal behavioral health studies. We formulate a federated
multiple imputation-based fuzzy (FeMIFuzzy) algorithm based
on a decentralized FL framework and our previously developed
MIFuzzy method [2], [3], [4], [5], [23]. FeMIFuzzy incorpo-
rates information from multiple clients, allowing incomplete
longitudinal data from numerous healthcare institutions to
be aggregated. FeMIFuzzy is built on our MIFuzzy algo-
rithm, which is robust to a range of missing data mechanisms
(missing completely at random (MCAR), missing at ran-
dom (MAR), and non-MAR) [2]. With a fairly wide range
of missing rates in our tested observational studies (OSs)
and randomized controlled trials (RCTs) and simulation (real:
8%—42.5%; simulation: 5%-40%), our studies consistently
found that MIFuzzy outperforms these comparators in OS,
RCT, and simulation with average clustering accuracy of 97%,
an inconsistency rate of 3% across real and simulation studies,
and at least 14% accuracy and 18% inconsistency gap between
these comparators and MIFuzzy [2].

After data collection, each individual client runs the
MIFuzzy algorithm in parallel. The optimal number of clusters
is voted by clients, and the global cluster model is cre-
ated by integrating results from each client using Sammon
Mapping and weighted averaging. This method preserves
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privacy, requires minimal communication, effectively aggre-
gates all studies, and identifies clusters on incomplete lon-
gitudinal data that may collect varying numbers of time
points, thereby representing a novel contribution to the FL
literature.

We evaluate FeMIFuzzy on an empirical health scenario
using harmonized data from multiple longitudinal dietary stud-
ies in Massachusetts [25], [26], [27], [28] and simulated data
with various effect sizes, correlations, and sample sizes. In the
empirical scenario, each study represents a different client in
the distributed framework. The data collected are incomplete.
Hence, the MIFuzzy algorithm is needed to effectively pro-
cess the missing data while handling high-dimensional data
and overlapped clusters. Thus, we illustrate the novel use of
federated MlIfuzzy clustering in real-world longitudinal trial
settings. For numerical analysis, we simulate data using vari-
ous effect sizes, correlations, sample sizes, numbers of clients,
and numbers of clusters. The simulated data are labeled into
clusters to assess the performance of the proposed FeMIFuzzy
clustering method. Empirical and simulation tests demonstrate
the efficacy of our method for decentralized fuzzy clustering
based on several clustering evaluation metrics.

This article is structured as follows. First, in Section II, we
review the literature and background information related to
health data privacy and fuzzy clustering. Next, in Section III,
we describe the FeMIFuzzy model and the empirical sim-
ulation, which evaluates its performance on harmonized
dietary data from [10]. Section IV discussed the evaluation
methods and results. Finally, we conclude with a discus-
sion in Section V that explores potential future work in
this area.

II. BACKGROUND AND LITERATURE REVIEW

As our capacity to collect medical data expands, longitu-
dinal behavioral health studies are becoming more prevalent
and collecting larger quantities of observations and vari-
ables. Consequently, current and future longitudinal behavioral
health studies need to employ methods for analyzing big data,
including trajectory pattern recognition and data mining [21],
[22], [23], [29]. These methods allow the development of
adaptive treatment plans for individual patients. By relying
on health data for pattern recognition in the IoMT, healthcare
institutions can provide higher quality care. In this section,
we survey the challenges of analyzing large longitudinal
health study data and explain the foundational computational
techniques used in this study.

A. Data Privacy

In the United States, the privacy of personal health data is
protected under federal law by the HIPAA of 1996, or HIPAA.
This law limits healthcare providers from disclosing protected
health information (PHI) to external entities. This includes per-
sonally identifiable information relating to physical or mental
health, provision of care, or payment linked to an individ-
ual [11], [12]. Other countries similarly regulate health data
privacy [13].
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Although HIPAA allows de-identified information to be
disclosed, this requires either a formal determination by
an investigator or the removal of all identifiers that could
provide identifying knowledge [11], [12]. However, full de-
identification may be difficult or even impossible, as removing
basic personal information, such as name or address, is often
insufficient to preserve privacy due to modern identity recon-
struction techniques [14]. It may even reduce data usefulness
- for example, if a removed street address would be necessary
to perform spatial data analysis. Since healthcare institutions
must legally protect privacy, they have minimal incentive to
share data with outsiders.

This poses a problem because future advances in biomedical
and health research will require large data sets. As surveyed by
Mooney and Pejaver, public health research has begun to lever-
age machine learning algorithms that rely on big data to mine
for patterns that predict patient behaviors and outcomes [1].
These include geospatial, omics, electronic health record, per-
sonal monitoring (i.e., FitBit), and effluent (i.e., online search
activity) data. Even in the field of nutrition alone, machine
learning has been applied for predicting high-blood pressure
and body fat, weight loss success during interventions, and risk
of metabolic syndrome [30], as well as studying gut micro-
biome features associated with diabetes [31] and integrating
genomics data into nutrition studies [32].

While previous biomedical studies using machine learning
have relied on large aggregated databases - for example, the
Human Connectome [33], the Cancer Imaging Archive [8], or
the U.K. Biobank [34] - such databases are not easily compiled
due to privacy and other concerns. However, as discussed by
Tresp et al. [15] and Chen et al. [16], the digitization of health
data and cloud computing technologies have not only allowed
additional information on health and fitness to be collected,
such as via wearable sensors but has also promoted sharing,
mobilizing, and advanced analysis of data across of healthcare
institutions. Sharing medical data is easier than ever, but doing
so requires developing privacy-protecting mechanisms such as
federated analysis.

FL was first proposed in 2016 by Konecny et al. [19], who
discuss a variety of methods for optimization across distributed
nodes. In FL, rather than updating model parameters based on
a single aggregate data set, model parameters are distributed to
individual clients, who update the parameters based on their
local data. Then, they transmit these model parameters and
aggregate each client’s parameters using federated averag-
ing to obtain a global model. This process repeats iteratively.
Performing federated averaging preserves privacy but requires
a round of communication between clients at each iteration,
which can be time-consuming.

Applications and challenges associated with FL for health-
care are surveyed by Rieke et al. [17] and Xu et al. [18].
These works discuss how FL can be used to preserve privacy
in healthcare. By distributing model parameters, FL circum-
vents the data aggregation necessary for machine learning, a
process called data-private collaborative learning [35]. Case
studies of FL applied to medical areas have been conducted
- for instance, Sheller et al. [35] used FL to detect cancer
in brain tissue, finding comparable performance. Hence, FL
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allows multiple healthcare institutions to train different types
of models, including clustering models, without sharing patient
data.

B. Problems With Existing Federated Clustering

As mentioned previously, behavioral health data is often
collected in longitudinal trials. This means that some health
measure is collected at two or more separate points in time. For
example, a study might measure the quality of a person’s diet
at the start of a study and one year after some intervention [41].
For clustering on longitudinal studies, current FL. methods are
inadequate for several reasons.

First, longitudinal behavioral health data from different
studies (or clients) could have different numbers of timepoints.
FL traditionally requires the same number of attributes [17],
[42]. Thus, performing federated clustering on these data sets
would be difficult.

The second problem is that FL can be slow and inconsis-
tent. FL typically requires a round of communication between
each client at each iteration of the algorithm [17], [42].
Machine learning algorithms can take hundreds of iterations
to converge, with each round introducing substantial network
communications overhead. Each communication can also pose
an opportunity for a cyberattack. Additionally, because FL
requires incorporating information from all other clients,
depending on the implementation of the algorithm, technical
problems or delays in communications in just a single client
could halt progress for all others. Therefore, methods that
reduce the amount of necessary communication are preferable.

The third problem is that federated clustering treats data
from different clients as one aggregated set of data rather than
as individual trials [37], [42]. This may be undesirable when
clustering data from longitudinal behavioral health studies, as
some resulting clusters could only be present in a single study
or client. This means that simple federated averaging will not
suffice since some clusters may form from observations in
just a single client. For applications that require every cluster
to incorporate information or observations from all studies,
researchers may prefer a method that performs clustering on
individual clients first and then aggregates the results rather
than aggregating results within the training process. Our novel
algorithm incorporates FL and fuzzy clustering to overcome
these issues in federated clustering for longitudinal behavioral
health studies.

The final problem is the incomplete data existing in longi-
tudinal studies. In longitudinal clinical behavioral data, it is
very common for patients to miss one or multiple observa-
tions over the study process. Using only the complete data
may introduce bias, such as excluding groups, that are more
likely to miss appointments. Therefore, it is essential to have
federated clustering cope with missing values.

C. Previous Research in Federated Fuzzy Clustering

Recently, researchers have attempted to develop federated
clustering algorithms to address the challenges of different
domains. The method F-FCM proposed in [10] preservers pri-
vacy but requires many rounds of communication to converge

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downloaded on August 01,2024 at 13:32:22 UTC from IEEE Xplore. Restrictions apply.



14660

IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 8, 15 APRIL 2024

TABLE I
FEATURES COVERED IN EXISTING FEDERATED LEARNING LITERATURE AND PROPOSED FEMIFuzzY

Method Fuzzy Clustering  Federated Missing Data ~ Decentralized = Non-IID Data
FLSC [36] Y Y N N Y
F-FCM [37] Y Y N N N
kfed [38] N Y N Y N
FL+HC [39] Y Y N N Y
FFCM [40] Y Y N Y Y
FeMIFuzzy (Our proposed method) Y Y Y Y Y

and does not address missing data. Another federated cluster-
ing method called FCFLA was proposed by Yoo et al. [43]
for solar power generation forecasting, where each local solar
generator can be included in more than one set of local
generators (cluster). However, this method does not work with
longitudinal data and does not focus on preserving privacy,
which is important for longitudinal health data. Additionally,
Zhu et al. [44] proposed a rule-based horizontal federated
fuzzy clustering, which is distinct from FCM or MIFuzzy.
However, even though this rule-based method maintains user
privacy, it does not address the problem of the same data being
characterized in different feature spaces. For comparison, in
Table I, we show a clear gap in the current federated clustering
literature.

For medical data, CIT2FR-FL-NAS is a FL method
developed in the neuro-fuzzy architecture search domain [45].
However, this method does not focus on clustering.

D. MIFuzzy for Longitudinal Behavioral Health Studies

Longitudinal behavioral health studies often employ fuzzy
clustering to identify distinct groups in a data set. First
developed in the 1960s and ‘70s, fuzzy clustering is a soft
computing technique that partitions data into groups based on
some criteria, usually related to distance or dissimilarity [46].
Unlike “hard” clustering, which places each subject into one
discrete group, fuzzy clustering measures the degree of belong-
ing, or membership, of each participant to each cluster. This
effectively allows each subject to belong to more than one
cluster at a time.

Fuzzy clustering is highly useful for health studies that
group patients depending on behavioral intervention responses,
as it captures the complex relationship between a patient,
their behavior, and their outcomes [2], [23], [47]. In health
studies, fuzzy clustering can be used to, for example, group
patients depending on their responses to behavioral inter-
ventions, thereby informing researchers how different types
of intervention may yield varying outcomes for different
patient types [2], [6], [7], [21], [48]. Allowing observations
to belong to more than one cluster is important in health
domains since patients may share characteristics across dif-
ferent intervention responses. Here, fuzzy logic captures the
uncertainty and imprecision in our understanding of health
conditions [49].

Additionally, multiple imputation (MI) allows us to deal
with missing data that is common in OSs and RCTs in lon-
gitudinal health studies, in favor of single imputation [24],

[50], [51], [52], [53]. MI is a method for generating multiple
data sets with replacement values for the missing data [54].
For longitudinal health studies, integrating the MI approach
to clustering will help reduce the uncertainty of imputation,
hence improving the accuracy of the clustering [2]. The MI-
based fuzzy clustering (MIFuzzy) Clustering algorithm has
been developed in OSs and random controlled trials (RCTs)
to cope with real-world longitudinal data that are error-prone,
nonnormal, high dimensional, and contain missing and zero-
inflated values. It has evolved from its stepwise concept to
a current iterative integrated MIFuzzy clustering model by
learning the features and data structure in real OS and RCT,
and comparing to other major pattern recognition methods
in real data and simulation. MIFuzzy represents a full the-
oretical integration of MI, fuzzy-logic-based clustering, and
visualization-aided validation for trajectory pattern analysis in
longitudinal studies. It addresses: the extent to which an indi-
vidual’s behaviors partially involves them in more than one
cluster, e.g., due to food-intake changes over time (techni-
cally, clusters touch or overlap); nonnormal, high-dimensional
longitudinal data with missing values and zero-inflation; and
the need to visualize and validate patterns. MIFuzzy embed-
ded visualization-aided pattern-validation process is replicable
in contrast to most clustering models that generate clusters
without or unclear verification. MIFuzzy uses observed scores
to capture individual behavioral change over time and identify
latent clusters in populations that describe distinct behavioral
trajectories. MIFuzzy approach to testing outcomes remains
novel in that it relates identified behavioral trajectory patterns
that account for individual behavior changes and variations
influenced by different contexts over time, to other important
risk factors (e.g., demographics and psychosocial variables)
and outcomes (e.g., obesity, diabetes, and CVD).

Hence, this research aims to develop a decentralized ver-
sion of MIFuzzy for longitudinal data - specifically, dietary
data - that preserves privacy as effectively as FL while having
the benefit of MIFuzzy. A few papers have explored federated
clustering. For example, Kumar et al. [42] have introduced
a federated k-means clustering algorithm and evaluated its
performance on classical ML problems. In this algorithm, each
node transmits the means aggregated using federated averag-
ing. Pedrycz developed a federated FCM algorithm [37] that
functions similarly. However, these methods did not address
the problem of incomplete data in their approaches. Thus, we
propose the Federated MIFuzzy clustering, or FeMIFuzzy for
short, a method that overcomes the existing problems for fed-
erated fuzzy clustering on longitudinal behavioral health data.
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This method can cluster longitudinal behavioral health data
from multiple decentralized clients, such as healthcare institu-
tions or medical research centers, including those with varying
time points and incomplete data, with only two rounds of
communication.

III. DECENTRALIZED FEDERATED MIFUZZY CLUSTERING

This section outlines our proposed FeMIFuzzy algorithm
which clusters data from multiple decentralized clients, such as
healthcare institutions or medical research centers. Clustering
input takes the form of a matrix or data frame; rows represent
observations (patients or other individuals) and columns repre-
sent attributes (features) at given time points in the longitudinal
study.

At each client, FeMIFuzzy involves three modules, includ-
ing Sammon mapping, MI, and MIFuzzy clustering. The MI
module handles the arbitrary missing patterns and is embedded
in the FeMIFuzzy clustering procedure. Sammon Mapping is
also integrated into this procedure to map high-dimensional
data to a space of lower dimensionality. It preserves the
inherent high-dimensional data structure in the lower dimen-
sion projection. By preserving the data structure, Sammon
Mapping allows the construction of a global cluster model
on longitudinal data sets containing different numbers of time
points.

At the global stage, the clients’ results are aggregated with
respect to clients’ sample sizes to find the optimal number of
clusters and global centroids.

We assume that all clients possess an adequate number of
sample observations - a number larger than the potential num-
ber of clusters in the data - compared to other clients. In
addition, each client requires the capability to communicate
model parameters with every other client for the model to
function.

MI: The first module in FeMIFuzzy is MI. MI works by:
generating multiple replacement values (“imputations”) for
missing data, resulting in many data sets with replaced missing
information; and analyzing and integrating the results of the
imputed sets. Let O be the data distribution of the population.
The MI module can be expressed as

Om1 = Eyy v, E[Q(Yo, Yi)] (D

where Yo is the observed data and Yj; is the missing data.
Detailed discussions and evaluation are described for MIFuzzy
in [2] regarding the three classical missing mechanisms,
MCAR, MAR, and missing not at random (MNAR) [52], [53].

MIFuzzy Clustering: The second module in FeMIFuzzy is
MIFuzzy. The first step for MIFuzzy is identifying attributes.
In longitudinal multiple-component behavioral studies, the
type and number of components are likely to differ, with vary-
ing numbers of time points. The MIFuzzy’s objective function
is as follows:

InX UV, 0) =

N c
+D ke (Z it — 1) )
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where X denotes the attributes, U is the degree of membership
for each subject (i = 1,2, ..., n) in the respective cluster (k =
1,2,...,C) and V are the cluster centroids.

The advantage of MIfuzzy clustering is that rather than
treating each point as a member of just one single cluster at
each iteration, each observation possesses a degree of belong-
ing to each cluster [2], [3], [4], [5], [23] which is stored in a
matrix U. Equation (3) shows an example of how each imputed
set U is structured - each row represents an observation, and
each column represents a centroid, with the rows summing to 1

C1 (6} Cc3

x1 |03 0.6 0.1
3
Untt = (3)

x [02 03 05
Uw is calculated using the two equations below. The degree
of belonging (umi);;,; between observation i and cluster j is
calculated at each iteration as in (4), where m represents the
fuzzifier. (umr);j,, corresponds to the degree that a given obser-
vation belongs to a given cluster and represents the ijth entry

of the partition matrix U

1
(M) ij,e = . 4)

2
Z [|xi— V/t”2 m—=T
k=1 =V 1%

Equation (5) provides each updated centroid V; at iteration
t+1

N
2 i (UMD i

. 3
25\121 (uvm)ij

(VMDj,r+1 =

Following MIFuzzy validation procedure, the clustering results
from each imputed data set are first analyzed at each client,
involving averaging validation indices across imputed data
sets, e.g., 10 imputed sets for our included longitudinal stud-
ies, matching centroids and cluster labels across the imputed
data sets. To validate the clustering results and identify the
optimal number of clusters, several validation indices were
revised in the framework of MI-based clustering validation [5]:
Xie-Beni index, which is well known for fuzzy clustering, the
lower the better [55], Silhouette Score, a popular score mea-
suring the goodness of a clustering technique, ranging from
—1 to 1, the higher the better [56], and Inertia, which is the
target function for MIFuzzy clustering. For cluster label and
centroid matching, multiple criteria are used, including the
number of observations, mean values, minimum values, max-
imum values, standard deviations, and median values in each
cluster. The identified centroids at each client are the average
values of the matched centroids across the imputed data sets.

Sammon Mapping The third module of FeMIFuzzy is
Sammon Mapping. It is the module that allows FeMIFuzzy
to construct a global cluster model on longitudinal data sets
containing different numbers of time points. Sammon map-
ping projects the longitudinal data to a lower dimensional
space while preserving the original structure of interpoint dis-
tances in high-dimensional space. The Sammon Mapping’s
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target function, also known as Sammon’s Stress, is as follows:

2
(e — dan)y)
(dvD)j;

PN — > 6)
2i<j(dm)j; =

where (dMI)Z. denotes the distance between the ith and jth

objects in the original space and (dmr);; the distance in the

projections.

Federated MIFuzzy Global Model: At the global stage, the
clients’ results are aggregated with respect to clients’ sample
sizes to find the optimal number of clusters and the global
centroids. To generate the global model, three primary factors
are considered: 1) the clients need to agree on the optimal
number of clusters; 2) the cluster labels across the clients
are correctly matched together; and 3) all clients contain the
same features. To identify the optimal number of clusters, we
developed an observation-weighted majority voting, where the
client with the most observations, i.e., with the largest number
of subjects, has the most votes. To match the cluster labels
and centroids across the clients, we also use the mean val-
ues, minimum values, maximum values, standard deviations,
and median values in each cluster to match them across the
clients. To handle varying numbers of time points, each client
performs MIFuzzy and Sammon Mapping modules on its own
side before communicating with other clients. The centroids
are projected on the Sammon space along with calculating the
mean, minimum, maximum, standard deviations, and median
of the cluster centroids. After that, we can calculate the global
model.

First, to identify the global optimal number of clusters, we
use

M

ny
Calobal = ) Nk )
k=1

where nj is the number of observations from client k, N
is the total number of observations across all the clients,
and ¢y is the vote for the optimal number of clusters from
client k.

After identify the global optimal number of cluster c,lobal,
we can generate the global centroids. Let V;; represent a
final given centroid j for the client k after the convergence
of FeMIFuzzy and M is the number of clients. Then, (8) cal-
culates each final centroid Vj* for the global cluster model by
weighted-averaging the centroid j across all clients where the
weight is the ratio between the client’s number of observa-
tions and the total number of observations. This average is
weighted by the number of samples in each client, so clients
with more observations have a greater influence on the global
model

* u S
k=1

Hence, (8) describes the global centroids produced by
FeMIFuzzy. These steps are included in Algorithm 1 and
depicted graphically in Fig. 2.

FeMIFuzzy Communication Architecture: The process of
calculating the global model using data from across many
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Algorithm 1 Federated MIFuzzy

1) Communication Round 1: The clients communicate
the data dictionary to identify the attributes that:
a) use all intervention components
b) include repeated measures of components.
2) For each client:
a) Perform Sammon mapping for the data to reduce
dimension to 2-D space.
b) for each number of clusters for 1 to M: perform
MIFuzzy Clustering
¢) Calculate the Xie-Beni Index for each number of
clusters
d) Calculate the Silhouette Score for each number of
clusters
e) For each number of clusters, match the centroids
and clusters across the imputed data sets using
the minimum Euclidean distance between imputed
centroids
f) For each number of clusters, calculate the final
client’s centroids by averaging the values of the
imputed data sets’ centroids
g) Each imputed set selects the optimal number of
clusters based on a clustering quality index such
as the XBys index and some criterion - for exam-
ple, the “elbow method” which selects the first k
clusters at which the clustering index ceases to
improve.
h) Vote for the clients’ cluster number using majority
voting across the imputed sets
3) Communication Round 2: Each client transmits their
Sammon-projected centroids for each number of clusters
along with the vote for the optimal number of clusters
to all other clients.
4) Use Equation (7) to decide the global optimal number
of clusters
5) Match the centroids and clusters across the clients
using the minimum Euclidean distance between clients’
centroids
6) Calculate the global centroids using Equation (8).

clients is modeled as a decentralized parallel system. In
this architecture, each client runs the FeMIFuzzy algorithm
simultaneously in parallel until a round of communication
is required. There are two rounds of communication for our
proposed FeMIFuzzy. In the first round, clients communicate
the data dictionary, including the number of time points, the
number of attributes, and their descriptions. The identified
attributes used for clustering must use all intervention or treat-
ment components and include all repeated measures of compo-
nents. In the second, each client transmits their calculated cen-
troids and their vote for the optimal number of clusters to every
other client. This communication process between clients is
depicted graphically in Fig. 3. From the communicated votes
of the optimal number of clusters and centroids, FeMIFuzzy
uses (7) and (8) to generate the global model(as explained in
Algorithm 1).
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1V. EVALUATION

The FeMIFuzzy algorithm was implemented in MATLAB
and empirically evaluated on a desktop with an Intel Core
17-6700 CPU. FeMIFuzzy was evaluated using both real data
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TABLE II
NUMBER OF TIME POINTS AND SAMPLES IN EACH EMPIRICAL CLIENT

Empirical ~ Time n
Client Points ~ Samples
1 4 191
2 4 240
3 3 252
4 2 570

and simulation. First, the algorithm was applied to a set of har-
monized dietary data collected from four different clients. This
harmonized data set contains sets of observations provided
by multiple different healthcare institutions that may require
clustering while maintaining privacy. Then, FeMIFuzzy was
applied to simulated data with varying effect sizes, correla-
tions, number of clients, and sample sizes to understand its
performance under different conditions better.

Dietary Study Data: First, this study performed clustering
on a harmonized data set containing observations from four
longitudinal dietary health studies, as described in [10]. These
studies survey participants about their diet habits, recording the
types of foods that they consume over 24 h three times in two
weeks over a varied number of study years. For each partici-
pant, eight variables were recorded, each describing a different
quantity of food (vegetables, meat, etc.) that the participant
consumed in the study period. These were then calculated to
obtain individual dietary quality indices; in this study, we focus
on the Alternate Healthy Eating Index (AHEI-2005) [57].

Simulated Data: In our simulation, each dietary study repre-
sents a separate client in the distributed algorithm. Each client
data set contains 2, 3, or 4 attributes, each representing an
AHEI-2005 score at a different time point in the longitudi-
nal study. Table II displays the number of samples and time
points for each client. To simulate the data using parameters
generated from our longitudinal dietary studies, we randomly
generated cluster centroids a minimum distance apart, with
distances of 0.2 (small effect size, typical of dietary health
studies), 0.5 (medium effect), and 0.8 (large effect) [58]. Then,
we sampled new observations from a multivariate distribu-
tion centered on each cluster centroid to generate each new
cluster. We also use different number settings of correlation
for each distribution generated, including small, medium, and
large correlation [58].

Synthetic data sets containing 4, 8, and 100 clients with
different total sample sizes were simulated. In each data
set, different numbers of clusters (3, 4, 5, 6) are simulated
and labeled. Observations were drawn from a multivariate
Gaussian distribution with degrees of freedom equal to the
number of samples for each effect size. The FeMIFuzzy
algorithm was then evaluated on each data set.

A. FeMIFuzzy Evaluation Methods

The performance of FeMIFuzzy was evaluated using sev-
eral metrics. The algorithm was repeated across 10 trials for
each client. Each client also has multiple imputed sets. The
metric means and standard errors are reported in Table III.
The metrics recorded are as follows.
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TABLE III
FEMIFUZzY PERFORMANCE ACROSS CLIENTS ON EMPIRICAL DATA

mean (+SD)
Client 1 2 3 4 Global Model
X By Index 0.332  (4£0.0014) 0.275  (£0.0009) 0.419 (£0.0097) 0.388  (£0.0000) 0.3641  (40.0007)
Silhouetteys; Score 0257  (£0.0085) 0.299  (4+0.0008)  0.3376  (£0.0044)  0.4643 (40.00) 0.3755  (4:0.0008)
Inertianss 1727 (£4.9992) 2375 (£0.5819) 1980 (£3.2923) 4078 (£0.0135) 8886 (£4.93)
Largest Cluster 0.26 (£0.0099) 0231  (£0.0079) 0.28 (+0.0116) 0.245 (£0.00) 0.25 (£0.05)
Tterations 114 (£8.6894) 146 (£17.6278) 130 (£13.1918) 92 (£8.4704)
Time (s) 6.1442  (+£0.134) 8.256  (+0.1524) 8.95 (+£0.8433)  9.6367  (+0.3676)

1) XByy Index The averaged Xie-Beni index value across
imputed data sets, representing the ratio of the compact-
ness of each cluster to their separation [55], taking into
account degrees of membership in each cluster. Smaller
values are preferable since they indicate more com-
pact and separate clusters. The XBy index is computed
as in (9). This metric is standard for fuzzy clustering
evaluation and has been used previously [2]

XBmr = i Lizt L=t i1V _Xf||2/10 )
n (min||V,- _ V,||2)
i#j '

2) Silhouettey; Score: The averaged Silhouette score
imputed data sets, measuring how well entries fit their
own cluster compared to others, on average, and ignores
fuzzy degrees of belonging. A higher score is prefer-
able, and a positive score indicates that the algorithm
has functioned effectively [56].

3) Inertiayy, or the averaged within-cluster sum of squares
across imputed data sets, is the measure that FeMIFuzzy
seeks to minimize, but is only useful for examining indi-
vidual trials since scenarios with more observations will
always feature higher inertia. Lower inertia is preferable.

Finally, we report the total number of iterations for conver-
gence and the time FeMIFuzzy taken in seconds to indicate
whether the algorithm converges at a reasonable speed. For
FeMIFuzzy, we used a fuzzifier of m = 2.7 using a tolerance
of le — 4. The fuzzifier was selected based on the optimal
choice from a range of fuzzifiers for dietary data from previous
studies [2], [59].

With empirical dietary study data, we also report the pro-
portion of observations in the largest cluster to demonstrate
that the algorithm does not simply place every observation
into one cluster, which would not be useful.

mi=1

B. FeMIFuzzy Evaluation Methods

1) Dietary Study Results Using FeMIFuzzy: After applying
the FeMIFuzzy clustering algorithm to the empirical data set
with four clients, we found that the output matched expec-
tations. The algorithm consistently selected S clusters as the
optimal using the majority vote method. Fig. 4 represents how
the algorithm uses MIFuzzy and Sammon mapping to cluster
and visualize data. The final global centroids are calculated
using a weighted average from the clients’ centroids.

FeMIFuzzy results across all four clients for 5 clusters are
displayed in Table III. Though metrics vary across clients, we

Sammon mapping

Fig. 4. Sammon mapping of the dietary study data set with clustering results
from FeMIFuzzy.

observe consistently low-XBy values of roughly 0.27 to 0.42
and positive Silhouettenyr scores of 0.25 to 0.47. These metrics
also displayed low-standard error, indicating that performance
was consistent across repeated trials or imputed data sets. The
largest cluster size only made up 23-28% of observations,
confirming the method’s functionality for further analysis.
Finally, the algorithm converged relatively quickly, averaging
between 92 to 146 iterations per client and only requiring
8-9 s on average across clients to run in MATLAB (MATLAB
R2022b [60]).

For most evaluation metrics, the global model yielded sim-
ilar or improved performance compared to individual clients.
With an average Silhouettenyy score of 0.33 and XByyy index
of 0.35, we can be assured quality clusters are still produced.
Furthermore, while the inertiay; was larger than that of any
individual client, it accounts for observations across all clients.
The global model inertia of 8886 was lower than the summed
average inertia across individual clients, which totaled about
10160. Hence, regarding inertia, the global model actually
improved over individual cluster models.

2) Simulation Results Using FeMIFuzzy (Distributions):
After empirical evaluation, we applied FeMIFuzzy to a vari-
ety of simulated data sets with different numbers of clusters
and clients, different distances between centroids (represent-
ing effect sizes), and correlation. For distribution, we use the
Gaussian distribution. Fig. 5 displays examples of how data
were distributed for a 2-D client across distributions and effect
sizes. As depicted, larger effect sizes yielded more easily
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Fig. 6. Median XByjy index attained by FeMIFuzzy global cluster solution on simulated data ranging from 4 to 100 clients. Graph compares scenarios with

different numbers of clusters, effect sizes, and sample sizes.

separable clusters, while small effect sizes resulted in clus-
ters that were difficult to separate by the human eye. Subtly
different spreads of data points also occurred between small,
medium, and large correlations.

Clustering Index: We started by evaluating scenarios with
different numbers of clients, including 4, 8, and 100 clients.
Fig. 6 displays the average global XByp index across dif-
ferent effect sizes from the global cluster solution for each
given number of clusters with the total sample sizes at 600,
3000, and 30000 across different effect sizes and correlations.
An average XByj index in the range of [0,1] indicates that

Authorized licensed use limited to: University of Massachusetts - Dartmouth. Downl

the clustering solutions were of high quality, as this indicates
that the average cluster separation was larger than the aver-
age cluster variation - in other words, clusters did not overlap.
We can observe, on average that the larger the sample size,
the smaller the global XBy and clustering quality. Across
most clients, correlations, and effect sizes, as measured by the
average XBy index, FeMIFuzzy consistently produced high-
quality clusters. Better XB indices tended to be produced for
larger effect sizes and larger sample sizes.

Across the majority of scenarios with reasonable numbers of
clients, varied correlation, and effect sizes, as measured by the
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average XByy index, FeMIFuzzy consistently produced high-
quality clusters. Better XBy indices tended to be produced
for larger effect sizes and larger sample sizes. However, for
smaller sample sizes, FeMIFuzzy sometimes produced poor
outlier solutions with much larger XBy indices. Hence, it is
important to have a sufficient sample size for each client, at
least 5 samples per cluster to ensure that the algorithm does
not select a suboptimal clustering result.

We can also measure the cluster quality using the average
Silhouetteny score, which does not factor in the “degree of
membership” feature of the fuzzy clustering solution. Fig. 7
displays the average Silhouetteny score across 4, 8, and 100
clients for each scenario for each given number of clusters with
sample sizes of 600, 3000, and 30 000. A positive Silhouetteny
score indicates a quality clustering solution, informing us that,
on average, observations fit better into their assigned cluster
than into other clusters.

Based on the silhouette scores, FeMIFuzzy always produced
quality clustering solutions across client counts. Like the XBpg
index, the algorithm produced better solutions at larger effect
sizes, with the highest average silhouette scores tending to
occur at the larger effect size of 0.8. However, similar to XByj,
for a large number of clients at 100 clients and a small sample
size of 600, the average Silhouetteyy decreases at the effect
size 0.8 with medium and high correlation. Regardless, the
overall results show that the algorithm mostly produced aver-
age Silhouetteyyy scores in the positive range, with Silhouetten
scores up to 0.8 in the case of effect size 0.8.

Clustering Performance: Aside from cluster indices, we
also evaluate FeMIFuzzy performance based on the cluster-
ing accuracy and the number of iterations. To calculate the
clustering accuracy, we keep labels of each cluster when gen-
erating the simulated data. The global labels are calculated
using Euclidean distance from the global centroids on the 2-D

Sammon Mapping space. The final accuracy is then calculated
from the confusion matrix between the predicted and assigned
labels.

Fig. 8 displays the accuracy score across 4, 8, and 100
clients for each scenario for each given number of clusters with
sample sizes of 600, 3000, and 30 000. The method shows bet-
ter accuracy at a larger effect size compared to a lower effect
size as expected. Additionally, the accuracy increases as the
sample size increases. At a sample size of 30000, the accu-
racy goes above 90% accuracy for both effect sizes of 0.5 and
0.8 across difference correlations, with numbers of clients 4
and 8. At 100 clients, FeMIFuzzy still shows good accuracy at
around 80% accuracy. Furthermore, for comparison, we also
run a decentralized federated FCM method (FFCM) on the
same simulated data sets [40]. This comparison method also
uses 2 rounds of communication. However, the comparison
method does not use MI to deal with the missing data (miss-
ing rate = 20%). To deal with varying timepoints, FFCM used
PCA instead of Sammon Mapping. The results show signifi-
cant improvements using FeMIFuzzy compared to the FFCM
in almost all cases with a sufficient sample size. It shows that
with a sufficient sample size per client and an effect size of
0.5 or 0.8, FeMIFuzzy can achieve high accuracy ranging from
60-80%.

Finally, FeMIFuzzy converged rapidly. Fig. 9 displays the
algorithm’s convergence speed, measured both in the number
of iterations and computational time. Convergence speed was
consistent across clients and distributions, generally falling in
the range of about 10-80 iterations. The algorithm FeMIFuzzy
converges much more quickly on data sets with larger effect
sizes - a sensible result, given that larger effect sizes result
in more clearly separable clusters. Additionally, on average,
FeMIFuzzy needs fewer iterations when the number of sam-
ples per client is sufficiently large. The reduction in iterations,
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Convergence rate of FeMIFuzzy algorithm on simulated data ranging from 4 to 100 clients. Convergence is measured in time (in seconds) and

iterations; the graph compares scenarios with different numbers of clusters, effect sizes, and sample sizes.

however, does not reduce the execution speed significantly as
the execution speed correlates more with the sample size.
Voting Method Evaluation: While FeMIFuzzy produced
high-quality solutions in our simulations, it is also worth con-
sidering whether its selection of the optimal number of clusters
produced results that matched the actual number of clusters
generated. FeMIFuzzy performed better in finding the optimal
number of clusters when effect sizes were large (0.8), espe-
cially in the 4-cluster scenario where it voted correctly in

every instance for both distributions. When effect sizes were
small (0.2), FeMIFuzzy tended to select higher numbers of
clusters. Given a small effect size, minuscule trivial clusters
could appear. This would happen in empirical longitudinal
behavioral studies where behaviors fluctuate and clusters may
overlap. When analyzed more closely, the trivial clusters (those
with few cases) could be merged with larger nearby clusters.

In Table IV, we compare the mode vote for the 5 cluster
scenario across all clients, rounding up in the presence of ties.
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TABLE IV
MODE NUMBER OF CLUSTERS SELECTED BY FEMIFuzzy
(COMPARED TO FIVE TRUE CLUSTERS)

Effect Size

Correlation Number of Clients

0.1 8

0.3 8

0.5 8

N Ul| 1oyl | U1y Ul
Gl Q1| U1 U1 | =
= Q1 U1 | = U1 Q1| = U1 Ul

Results did not particularly vary across different client counts,
and FeMIFuzzy always either identified the correct number of
clusters or was one cluster off (meaning that it merged two
very similar clusters or identified a small trivial cluster in a
larger existing cluster). As such, the results were relatively
consistent.

V. DISCUSSION

The FeMIFuzzy algorithm described in this article sup-
ports fuzzy clustering among a decentralized network of
clients. This allows many healthcare institutions to cooper-
atively construct global cluster models while preserving data
privacy. FeMIFuzzy also overcomes longitudinal data issues,
permitting clustering on data sets that are incomplete, may
not share the same number of attributes (features or columns),
incorporating observations from all clients in each cluster, and
requiring only two round of communication.

On empirical dietary data, FeMIFuzzy converged rapidly
and achieved desirable clustering performance on various
metrics, including XByp index and Silhouetteny; score. On
simulated data, FeMIFuzzy also demonstrated consistent high-
Silhouetteny; scores and low XBpp indices across different
numbers of clients, effect sizes, numbers of clusters, corre-
lations, and sample sizes. It converged faster regarding the
number of iterations for clusters of larger effect sizes - a logi-
cal outcome given that such clusters appear more distinctly
partitioned. Additionally, using labels from simulated data,
we show that FeMIFuzzy can achieve very high accuracy
in clustering, especially with sufficient sample size (30 per
client) and large effect size. Finally, FeMIFuzzy voted for the
optimal number of clusters accurately. Based on these results,
our method appears suitable for use on longitudinal dietary
health data and similar studies.

While this study used the elbow method heuristic with
weighted voting to select the number of clusters based on the
XB index, our proposed approach can easily be extended to
many other methods to find the optimal number of clusters.
For example, this method could be adapted to methods like the
gap statistic [61]. Other voting schemes could be proposed as
well; for instance, in some scenarios, it may be more appropri-
ate to perform a simple majority vote rather than a weighted
average of votes. In addition, we rounded cluster count votes
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down, which may have caused FeMIFuzzy’s underestimation
of the true number of clusters observed; changing this assump-
tion may result in higher accuracy in cluster count estimation,
as our evaluation approach was more conservative.

This method does contain limitations. Similar FL. methods
often assume that data is identically and independently dis-
tributed (IID) among clients [19]. Though the dietary data used
in this study is non-IID, more extreme data distributions, such
as large imbalances in the sample sizes across clients, might
result in poor performance. Hence, it may be worth adopting
strategies for non-IID data from existing FL research [62],
[63].

In future work, we plan to integrate FeMIFuzzy into existing
work in pattern recognition for longitudinal behavioral health
trials, and broader application in the IoMT. Specifically, we
also can extend the model to our neuro-fuzzy classification
model [64] for predicting clinical outcomes of interventions
depending on patient characteristics.

Our proposed FeMIFuzzy clustering approach can identify
clusters in incomplete longitudinal behavioral health data dis-
tributed across several disparate healthcare institutions or other
clients. By protecting individual patient privacy and allow-
ing the clustering of longitudinal incomplete data containing
different numbers of time points, the algorithm can improve
health research and treatment plans.

Further research testing the performance of federated fuzzy
clustering on a real-world platform would provide better
performance insights, yielding a valuable tool for improving
targeted patient treatments while preserving privacy.
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