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ABSTRACT

Introduction: Dissection or rupture of the aorta is accompanied by high mortality rates, and there is a pressing need for better prediction of these events for
improved patient management and clinical outcomes. Biomechanically, these events represent a situation wherein the locally acting wall stress exceed the local tissue
strength. Based on recent reports for polymers, we hypothesized that aortic tissue failure strength and stiffness are directly associated with tissue mass density. The
objective of this work was to test this novel hypothesis for porcine thoracic aorta.

Methods: Three tissue specimens from freshly harvested porcine thoracic aorta were treated with either collagenase or elastase to selectively degrade structural
proteins in the tissue, or with phosphate buffer saline (control). The tissue mass and volume of each specimen were measured before and after treatment to allow for
density calculation, then mechanically tested to failure under uniaxial extension.

Results: Protease treatments resulted in statistically significant tissue density reduction (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.003), which in
turn was significantly and directly correlated with both ultimate tensile strength (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.03) and tangent modulus
(sham vs. collagenase p = 0.007 and sham vs elastase p = 0.03).

Conclusions: This work demonstrates for the first time that tissue stiffness and tensile strength are directly correlated with tissue density in proteolytically-treated
aorta. These findings constitute an important step towards understanding aortic tissue failure mechanisms and could potentially be leveraged for non-invasive aortic
strength assessment through density measurements, which could have implications to clinical care.

1. Introduction

Normal physiologic functioning of the cardiovascular system de-
pends on the ability of the vascular tissues to safely bear imposed he-
modynamic loading. A loss of biomechanical integrity of the vascular
tissue often leads to catastrophic clinical events. For example, rupture of
abdominal aortic aneurysm and dissection of a thoracic aortic aneurysm
are caused by mechanical failure of the aortic wall tissue and results in
death up to 90% and to 43% of the time, respectively (Gloviczki et al.,
1992; Lau et al., 2019). Elective surgical intervention of aortic aneu-
rysms is currently based on the maximum diameter criterion (Darling

et al., 1977; Lombardi et al., 2020), which is inadequate as currently up
to 13% and 2% of the patients, respectively, with aneurysms below the
surgical threshold diameter do experience this clinical event (Davies
et al., 2002; Kontopodis et al., 2016). Therefore, a pressing need exists
for better evidence-based metrics to predict rupture and dissection risk
for improved patient management and clinical outcome.

From a biomechanics perspective, an aortic rupture or dissection
event is a mechanical failure of the aortic tissue when local aortic wall
stress exceeds the local wall strength (Siika et al., 2023; Thunes et al.,
2018; Vande Geest et al., 2006a). Therefore, a non-invasive means to
accurately predict local wall strength could prove valuable in prediction
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of risk that a given aneurysm is under with respect to these events. While
many experimental studies have been performed to quantify aneurysmal
tissue strength (Di Martino et al., 2006; Duprey et al., 2016; Mohan and
Melvin, 1983; Raghavan et al., 1996; Vande Geest et al., 2006b; Vande
Geest et al., 2006¢; Vorp, 2007) and have provided valuable data about
the failure properties of aortic tissue, biomechanical pathways control-
ling the failure process remain to be explored.

Our understanding of soft tissue failure modes and mechanisms is
still in its early stage, however. Some earlier efforts attempted to apply
isotropic (Karimi et al., 2014; Volokh, 2011; Volokh and Vorp, 2008;
Vorp et al., 1998) and anisotropic material failure theories (Gasser et al.,
2006; Korenczuk et al., 2017) to better understand failure of soft tissues,
including the aorta. More recently we reported an Al-based method to
predict the mechanical yield point in aneurysmal and non-aneurysmal
abdominal aorta (Chung et al., 2024). Traditional failure theories typi-
cally utilize a measure of stress (or strain) as the determiner of failure
initiation within a material (Hinton et al., 2004; Ozkaya et al., 2016).
However, such theories are difficult to apply to loaded soft tissues, in
which we do not know the in-vivo reference stress, and thus, the absolute
stress state (Fung and Liu, 1991; Fung, 1991; Gee et al., 2009; Liu and
Fung, 1988, 1989; Lu et al., 2007; Sokolis, 2015; Sokolis et al., 2023)).
Damage-based modeling of soft tissue failure has been reported (Ferreira
et al., 2017; Mousavi et al., 2018; Rausch et al., 2017). While these ef-
forts have advanced our knowledge of tissue failure phenomena, they
treat materials as homogeneous and use values of stress or strain as the
determiner of damage initiation. Soft tissues are inherently heteroge-
neous, including variations of mass density from point to point, and this
should be accounted for in development of theories pertinent to tissue
failure.

Aortic tissue is highly heterogeneous, consisting of a network of
collagen and elastin as its primary mechanical load-bearing constitu-
ents. Prior studies have shown elevated stiffness, higher volume fraction
of collagen, and lower amounts of elastin in aneurysmal compared to
healthy aortas (He and Roach, 1994). The lower amount of elastin is
associated with the degenerative process which accompanies the
ballooning/distension of the aneurysm (Dobrin et al., 1988). Treatments
with collagenase and elastase (amongst other proteins) have been used
to recreate the aneurysmal environment in-vivo in mouse (Berman et al.,
2022; Gueldner et al., 2023) and rat (Marbacher et al., 2014) models and
reported an overall decrease in tissue strength. While these reports
corroborate the load bearing and strength-providing functions of the
tissue fiber network in aorta, primary parameters of the network
determining biomechanical failure remain largely unknown. However,
this knowledge is critical for gaining mechanistic insight into tissue
failure properties that ultimately dictate aortic dissection or rupture.

We hypothesize that the origin of tissue damage, the precursor to soft
tissue failure, can be attributed to a reduction in the tissue density
rendering the tissue more susceptible to failure. The premise of this
hypothesis is based on the recent work of Alagappan et al., who suc-
cessfully predicted experimental failure behavior of different engineered
soft materials by attributing the origin of damage and fatigue to material
density reduction in the test specimens (Alagappan et al., 2016; Ala-
gappan and Rajagopal, 2022, 2023; Alagappan et al., 2018a,b). In this
article, we sought to test our hypothesis by determining how reduction
in bulk material density influences the failure behavior of porcine
thoracic aortic tissue.

2. Methods
2.1. Porcine aortic specimen preparation

A total of 7 porcine thoracic aortas were collected freshly from a local
abattoir (Thoma Meat Market, Saxonburg, PA). The pigs were male, 6-9
months old, Yorkshire, and approximately 300 1b. All aortas were kept
on ice during transport to the laboratory, where individual tissue strip
specimens were cut and placed in cold phosphate buffered saline (PBS)
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for storage to prevent tissue degradation. To cut individual specimens, a
die stamp was 3D printed using a Guider II printer (Flashforge, Zhejiang,
China). Flexible barber blades (Derby Professional, Newton Center, MA)
were clamped inside the stamp to cut dumbbell-shaped sections (an idea
adapted from (Nelson et al., 2020)). The die was made to cut specimens
60 mm long total with a 40 mm gauge length and 4 mm wide in the
central region with 10 mm wide heads on either end. The thoracic aortic
segments were longitudinally cut and 3 dumbbell sections were stamped
from same axial position (Fig. 1A), avoiding posterior regions containing
vertebral arteries. Each specimen was then stored in PBS for a few hours
at room temperature to allow for tissue saturation. The three specimens
were then treated with either PBS (sham), collagenase, or elastase as
described below. It is important to note that our use of protease treat-
ment on healthy aortic tissue was not to mimic aneurysmal tissue, but
rather as a means to alter the tissue density for testing our hypothesis.

2.2. Mass and volume measurements and bulk density calculation

The bulk tissue density was taken as the ratio of the mass and volume
and was measured individually for each mechanical test specimen prior
to treatment (Fig. 1B). Specimens were first incubated in PBS for an hour
at 37 °C, dabbed to remove surface moisture, then mass was determined
using a precision balance (PR503, Mettler Toledo, Columbus, OH) and
volume was determined using two different techniques to gather pore-
free and spatial volumes. The “pore-free volume” (Fig. 2A) was
measured from fluid displacement, which considers all solids and fluids
within the tissue, but fills the pores with fluid. The volume of fluid in a
10 mL graduated cylinder was noted, and the specimens were added.
The volume was remeasured, and the pore-free volume was acquired by
subtracting the two measures. The “spatial volume” (Fig. 2B) considers
the solid, fluid, and pores as the solid object, that is, the total encapsu-
lated space occupied by the specimen. The surface area was measured by
optically imaging the top of the specimens with an in-plane ruler and
delineating the boundary of the samples defining the surface using a
custom MATLAB (v R2022a, Mathworks, Natick, MA) script. The spatial
volume (V) was then calculated from the measured surface area (SA) and
average thickness (t) across the specimens, where V = SA*t.

2.3. Collagenase and elastase treatments

After the mass and volume were measured, the samples were placed
in a rotating incubator (37 °C) tray and treated for 24 h with PBS (sham),
70 mg/ml collagenase solution (Collagenase Type 3, Worthington, Co-
lumbus, OH, USA) or 0.01 mg/ml elastase solution (Purified Lyophilized
Elastase, Worthington, Columbus, OH, USA) (Fig. 1C). The treatment
time and concentrations were determined through trial and error via
preliminary testing to ensure that the tissue was degrading but not
dissolving completely. After the treatment, the mass and volume mea-
surements were taken again to gather final density properties after
proteolytic degradation (Fig. 1D).

2.4. Mechanical testing

All mechanical testing was performed within 48 h of tissue harvest.
Following treatment, the thickness of the gauge length region of each
dumbbell-shaped sample was measured optically with a ruler (Gueldner
etal., 2023) then was clamped on each end to create a rectangular gauge
length of approximately 30 mm in an Instron uniaxial tensile tester
(model 5543A, Norwood, MA) (Fig. 1E). The Instron had a 25 N load cell
with 0.01 mN resolution, and displacement was measured as grip-to-grip
distance with a resolution of 0.02 mm. Raw force versus displacement
data of the quasistatic load was collected at a constant displacement rate
of 9 mm/min until failure. Following testing, the raw data was analyzed
using a MATLAB (MathWorks Inc., Natick, MA) program code in which
the uniaxial first Piola-Kirchoff stress (P;;) was calculated as P;; = f/ay,
where f is the force at a given point recorded by the load cell and a, as
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Fig. 1. Treatment protocol of porcine aortic samples. A) Paired axially-oriented thoracic aortic tissue sections were removed from the intact aorta. B) Initial density
measurements were taken for each specimen, then they were randomly selected for C) treatment — either sham, collagenase, or elastase — followed by D) a secondary
density measurement. E) Each specimen was then mechanically tested to failure via uniaxial extension and the F) data used for curve fitting and property assessment.
G) The tissue was then processed for protein histology. Lastly, H) all data were analyzed statistically.
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Fig. 2. Techniques used to measure tissue specimen volume. A) “Pore-free volume” was measured by submerging the specimen in phosphate buffered saline to
permit filling the pores of the tissue, while B) “spatial volume” measured the geometric space the entire specimen (solid + pores) took up.

cross-sectional area of the aorta specimen calculated by multiplying the
initial sample width (4 mm) by the measured initial sample thickness.
Ultimate tensile strength was calculated as the maximum stress exhibi-
ted before failure. The tangent modulus was determined by measuring
the slope of the high stretch region of the stress/stretch curve chosen at a
stretch of 0.2 prior to the peak/ultimate stretch.

2.5. Material modeling

Aortic tissue is anisotropic (Liu et al., 2019). However, as a first
approximation for the tissue that is commonly adopted to describe tissue
response (Luo et al., 2016; Man et al., 2018). Stress/stretch curves for
the porcine specimens were imported for each specimen and analyzed
independently (sham vs. collagenase vs. elastase) (Fig. 1F). These stress-
stretch curves were fit with a two parameter hyperelastic isotropic
material model proposed by Raghavan and Vorp (Raghavan and Vorp,
2000) and widely used for aortic tissue across the field (Georgakarakos
et al., 2010; Kleinstreuer and Li, 2006; Li et al., 2008; Maier et al., 2010;

Truijers et al., 2007; Venkatasubramaniam et al., 2004):

W=a(l; —3) + (I — 3)° €]
where I is the first invariant of the left Cauchy-Green tensor B. The
material properties @ and § were determined by nonlinear least square
curve fitting using the least square curve fit MATLAB function,
Isqcurvefit.

2.6. Insoluble elastin and collagen staining with Movat’s Pentachrome

Frozen samples were embedded in Scigen Tissue-Plus Optimal Cut-
ting Temperature Compound embedding medium for frozen tissue
specimens (Thermo Fisher Scientific, Waltham, MA). Samples came
from the central region of the mechanical specimen, outside the grips
and close to but not at the location of failure. Samples were sectioned
longitudinally into 5-um sections and stained by the McGowan Institute
Histology Core Laboratory (McGowan Institute for Regenerative
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Medicine, University of Pittsburgh, PA). Movat’s Pentachrome staining
was used to label collagen and elastic fibers in the same sample. All
samples were imaged using a Nikon €800 and processed with NIS Ele-
ments Software (Nikon, Melville, NY).

2.7. Statistical analysis

All statistical analysis was performed in Prism (GraphPad, San Diego,
CA) (Fig. 1H). Data was checked for normality using the Shapiro-Wilk
test and for heteroskedasticity using the Breusch-Pagan Test. Repeated
measures one-way analysis of variance (ANOVA) with Dunnett’s post hoc
(with sham as the control group) was used for comparisons of the density
measurements and mechanical properties of the three groups of aortic
specimens. Simple linear regression was used to calculate R?, root mean
squared error (RMSE), and p-values. Comparisons of material property
fit parameters were analyzed using a Mann-Whitney U-Test. All results
are presented as mean + standard deviation.
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3. Results
3.1. Porcine aortic mass, volume and density measurements

For the aortic specimen groups, there was a significant change in
percent mass loss in both the collagenase (—14.2 + 4.3 %, p = 0.005)
and elastase groups (—6.4 + 2.8 %, p = 0.011) compared to the sham
group (-3.2 + 2.1%) (Fig. 3A). The percent-change of pore-free volume
(Fig. 3B) was not significantly different between collagenase (—16.9 +
9.78 %, p = 0.13) or elastase (—6.71 + 4.74 %, p = 0.44) groups
compared to sham (—2.25 + 9.90 %). The percent-change of pore-free
density (Fig. 3C) was also not significantly different between collage-
nase (4.05 £+ 10.3 %, p = 0.75) or elastase (0.46 + 5.55 %, p = 0.99)
groups versus sham (—0.05 + 8.72 %).

The percent-change in spatial volume (Fig. 3D) in collagenase-
treated (—2.37 + 7.07 %, p = 0.72) specimens were no different than
that of sham (—5.19 + 5.22 %) specimens. However, that for elastase-
treated specimens (3.74 + 8.02 %, p 0.02) was significantly
different from the sham group. The percent-change of spatial density
(Fig. 3E) between both collagenase (—11.8 + 5.70 %, p = 0.02) and
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Fig. 3. Density measurements of porcine samples. A) There was a statistically significant difference in mass, B) no significant change in pore-free volume, C) no
significant difference in percent change in pore-free density between treatment groups. There was a significant difference in D) spatial volume measurement and E)
percent change in spatial density. Bars indicate mean and the error bars indicate standard deviation, while the black circles represent values from individually tested
sham specimens, blue squares represent collagenase-treated specimens, and red triangles represent elastase-treated specimens, * indicates p < 0.05, ** indicates p

< 0.01.
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elastase (—9.29 + 6.92 %, p = 0.003) groups was significantly different
than that for sham (2.34 + 5.34 %).

3.2. Porcine aortic mechanical properties

The proteolytic treatments each had effects on the mechanical
properties of the aortic tissue specimens. The ultimate strength (Fig. 4A)
was decreased in both collagenase (63.46 + 16.19 N/cmz, p=0.02) and
elastase (69.92 + 15.15 N/cm?, p = 0.03) specimens compared to that of
the sham (95.70 4+ 12.89 N/cmz). The tangent modulus (Fig. 4B) also
decreased in the collagenase (74.78 + 11.09 N/cmz, p = 0.007) and
elastase (90.77 + 25.04 N/cm?, p = 0.03) groups compared to that of
the sham (149.52 + 30.67 N/cm?).

3.3. Correlation between density and mechanical properties

When simple linear regression was used to compare the percent
change of spatial density to the ultimate tensile strength, a significant
direct correlation was found (p = 0.03, R? = 0.2, RMSE = 19.05)
(Fig. 4C). Similarly, change in spatial density significantly correlated
with tangent modulus (Fig. 4D) (p = 0.02, R? = 0.25, RMSE = 36.46).

3.4. Porcine aortic histology

Qualitative inspection of histological images suggests that elastin
and collagen are damaged in the tunica media of the collagenase- and
elastase-treated groups compared to sham-treated group (Fig. 5), which
could explain the observed differences in density (Fig. 3). There were
some signs of tissue degradation in sham samples as they were not fixed
in paraformaldehyde and left to degrade in PBS at 37 °C which could be
indicative of native enzymatic degradation persisting. The tunica
adventitia of the sham- and elastase-treated groups consisted of thick
collagen bands, whereas the collagenase-treated group showed a
markedly thinner collagenous layer.

3.5. Material modeling of porcine tissue

The stress/stretch curves and average model fits (Equation (1) for all
specimens are shown in Fig. 6A. The material parameter o (Fig. 6B) was
(8.26 + 4.38 N/cm? for the sham group, 4.56 + 1.89 N/cm? for the
collagenase group, and 8.01 + 1.72 N/cm? for the elastase group. There
was no significant difference between any of the groups: collagenase vs
sham (p = 0.09), elastase vs sham (p = 0.99), or elastasevs collagenase
(p = 0.14). For the material parameter p values (Fig. 6C) were (4.47 +
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2.05 N/cm? for the sham group, 1.97 =+ 0.32 N/cm? for the collagenase
group, and 3.27 + 1.77 N/cm? for the elastase group), there was a dif-
ference between the collagenase group compared to the sham (p =
0.04), but there was no difference between the elastase vs sham (p =
0.90) or the elastase vs collagenase groups (p = 0.46). The average
model fits had R? of 0.99 for sham, R? of 0.88 for collagenase-treated,
and R? of 0.99 for elastase-treated.

4. Discussion

The present study demonstrates for the first time a direct relationship
between the spatial density of porcine aorta and its mechanical prop-
erties (Fig. 4). Specifically, we found a significant reduction in both
tensile strength and tangent modulus resulting from protease treatment
along with a concomitant reduction in tissue spatial density (Fig. 3).
Overall, this observation suggests that by removing critical proteins
from the extracellular matrix, we were able to alter tissue properties and
support our overall hypothesis that tissue density reduction is associated
with reduced tissue tensile strength in the axial direction. The degree at
which a density change is significant enough to impact clinical outcomes
remains to be seen. In-vivo density differences — either spatially or
temporally — may be more minute and based on ultrastructural alter-
ations rather than what we tested in this paper. Ultrastructural imper-
fections may nonetheless create points of local weakness for failure to
initiate. This may be crucial in developing a new understanding of the
structural pathways leading to aortic tissue failure, which would be
central in developing new techniques to assess the risk of clinical ca-
tastrophes due to, for example, aneurysmal rupture and aortic dissec-
tion. We envisage that new clinical imaging techniques may be
developed around the assessment of in-vivo tissue density.

Aortic specimens underwent a significant decrease in mass as a result
of proteolytic degradation (Fig. 3A). This decrease in mass was linearly
correlated with the reduction of pore-free volume (see Supplemental
Fig. 1). This suggests that as mass decreases, the pores increase in size,
allowing more fluid to flow between the pores than in the initial mea-
surements. This resulted in no change in density when using pore-free
volume (Fig. 3C). Spatial volume, on the other hand, remained rela-
tively unchanged in the sham and collagenase groups, but increased in
the elastase samples (Fig. 3D). There was a significant decrease in spatial
density for both collagenase and elastase treatments (Fig. 3E). This
supports the postulate that proteolytic treatments can impact the density
of specimens.

In cellular therapy techniques to treat aneurysms, there is a wide-
spread effort to reestablish vascular constituent normalcy by reverting
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Fig. 5. Histological images of sham- (A, D, G), collagenase- (B, E, H) and elastase-treated (C, F, I) samples from a representative porcine aorta stained with Movat’s
Pentachrome. Yellow indicates collagen fibers, black indicates elastin fibers, and red indicates fibrin. The sham-treated sample shows fewer breaks of the black elastic
fibers, a denser region of yellow collagen between elastic fibers. The collagenase-treated sample shows less collagen content than the sham with a looseness between
the fiber bundles. The elastase-treated sample shows marked disruption of black elastic fibers (red arrows in (I)) and less collagen compared to the other two groups.

the collagen and elastin disruption to its pre-aneurysmal state (Blose
et al., 2014; Nosoudi et al., 2015; Simionescu et al., 2020). Our results
showing changes in aortic tissue properties due to proteolytic treatments
are consistent with previous reports (Dobrin et al., 1984; Dobrin and
Canfield, 1984; Roach and Burton, 1957; Song and Roach, 1998). In
terms of mechanical properties, Davarani et al., noted altered biaxial
mechanics in porcine thoracic aorta resulting from elastin and collagen
structural changes induced by elastase treatment (Zeinali-Davarani
et al.,, 2013). Noble et al. created a mathematical model to quantify
changes to the mechanical response of porcine aortic tissue treated with
collagenase and elastase (Noble et al., 2016) and also showed decreased
treated tissue strengths in both axial and circumferential orientations.
They additionally showed, as has been shown previously, that stiffness

and strength is higher in the circumferential direction. In this paper we
have only analyzed the axial direction, a limitation of the current study.
Future work should explore correlations the circumferential direction as
well as with tissue stiffness parameters derived from biaxial testing of
the tissue. Schriefl et al. created a damage model to characterize struc-
tural changes in human abdominal aortic tissue at low-strain and high-
strain regions using elastase and collagenase treatments, respectively
(Schriefl et al., 2015).

While we also quantify in this current study the effect of protease
treatments on aortic tissue biomechanical properties, what sets it apart
is that we also demonstrate effects on tissue density and report a
potentially new finding that aortic tissue density is significantly and
directly correlated with both ultimate tensile strength and tangent



P.H. Gueldner et al.

Journal of Biomechanics 172 (2024) 112226

Raghavan-Vorp Model Fit
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Fig. 6. A) Raw experimental stress strain data (solid lines) and best fits of the Raghavan-Vorp model (equation (1). There was no significant difference in the material
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values (C). The box and whisker plots show the median line, 25th and 75th percentiles create the box and the whiskers are at the minimum and maximum values.

modulus. To our knowledge a relationship between the density of soft
tissues and their mechanical strength has not previously been reported.
We also demonstrated a novel experimental technique to determine
tissue density ex-vivo by applying the concepts of volume presented by
Archimedes. Our technique enabled us to account for pore-free volume
of the tissue and revealed that while spatial volume remained un-
changed, pore-free volume decreased linearly with mass. In future work,
we plan to take anisotropy into account in our material modeling.

Our study had the following limitations. Since the tissue was
removed from the body, the testing neglected the effects of the sur-
rounding tissues. Histologic imaging showed spatially heterogeneous
degradation of the tissue structure from both collagenase and elastase
treatment resulting in increased fraction of pores within the tissue
(Fig. 5) that in turn manifested in reduced spatial densities of treated
tissues. Collagenase and elastase treatment has other effects than density
reduction, such as fragmentation of elastin, which could also change the
strength or the stiffness of the tissue (Trabelsi et al., 2020). This should
be considered in future work. We took the tissue in this study to be
isotropic but it aortic aneurysm tissue is anisotropic (Liu et al., 2019),
which should be considered if biaxial testing was employed. While our
study encapsulates full tear failure, which correctly examines rupture,
this is not a failure mode consistent with aortic dissection, which is
commonly associated with a partial tear. This study looks strictly at the
effects longitudinally, which has been shown to be weaker than the
circumferential direction (Guinea et al., 2010), and would be interesting
to explore in future work. Additionally, our methods were limited to
using a single bulk tissue density measurement for a given tissue spec-
imen for comparison to its tensile strength, as more refined measure-
ments of density have not yet been discovered, tested, or validated. We
envisage that such spatial variations in density play a significant role in
the damage initiation and propagation at the microstructural level
leading to the loss of tissue biomechanical integrity. Indeed, in an earlier
computational study we showed that collagen fibers create microstruc-
tural “stress paths” within the tissue when subjected to uniaxial loading
conditions, and principal stresses were significantly higher in the zones
of lower fiber density (Thunes et al., 2016). We are currently performing
further experimental and computational studies to elucidate the effect of
such spatial heterogeneities on tissue failure biomechanics.

5. Conclusions

This work demonstrates for the first time that aortic tissue stiffness
and tensile strength are directly correlated with tissue density when

altered by proteolytic enzymes. These findings could possibly be lever-
aged to develop an enhanced understanding of tissue failure biome-
chanics with potential implications to clinical care. For example, with
respect to aortic aneurysms, a means to non-invasively assess tissue
density could serve as a proxy to tissue tensile strength, which could lead
to improved evidence-based aortic wall rupture surveillance manage-
ment protocols over the current practice of relying on orthogonal
dimensional measurements alone.
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