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Abstract—Continuous Integration (CI) is a widely-adopted
software development practice for automated code integration. A
typical CI workflow involves multiple independent stakeholders,
including code hosting platforms (CHPs), CI platforms (CPs),
and third party services. While CI can significantly improve
development e�ciency, unfortunately, it also exposes new attack
surfaces. As the code executed by a CI task may come from a
less-trusted user, improperly configured CI with weak isolation
mechanisms might enable attackers to inject malicious code
into victim software by triggering a CI task. Also, one insecure
stakeholder can potentially a�ect the whole process. In this
paper, we systematically study potential security threats in CI
workflows with multiple stakeholders and major CP components
considered. We design and develop an analysis tool, CInspector,
to investigate potential vulnerabilities in seven popular CPs,
when integrated with three mainstream CHPs. We find that
all CPs have the risk of token leakage caused by improper
resource sharing and isolation, and many of them utilize over-
privileged tokens with improper validity periods. We further
reveal four novel attack vectors that allow attackers to escalate
their privileges and stealthy inject malicious code by executing
a piece of code in a CI task. To understand the potential
impact, we conduct a large-scale measurement on the three
mainstream CHPs, scrutinizing over 1.69 million repositories.
Our quantitative analysis demonstrates that some very popular
repositories and large organizations are a�ected by these attacks.
We have duly reported the identified vulnerabilities to CPs and
received positive responses.

1. Introduction
Continuous Integration (CI) is a software development

practice of automatically integrating code changes with auto-
mated build and test. CI can significantly improve software
development e�ciency while reducing costs, and has been
considered as one of the most e�ective ways to promptly
deliver continuous improvements to customers [1]. Therefore,
CI services have gained popularity among developers: it is
reported that 36% of developers have applied CI services to
automatically build and test their code changes in 2022 [2].

Unfortunately, CI also exposes new attack surfaces, as it
needs to execute user-defined code (potentially less trusted)
in the build and test phases of CI workflows. If CI services

Lingyun Ying is the corresponding author.

are improperly configured without strong isolation enforced,
attackers can intentionally inject malicious code into victim
software by submitting a pull request and triggering a
CI task. As one of the top five challenges in software
supply chain security [3], many CI security incidents [4]
have happened in recent years. For example, attackers have
created a backdoor in the o�cial PHP interpreter artifact by
exploiting a malicious commit to the PHP’s repository, which
might trigger a CI workflow that performs an automated
deployment [5]. Moreover, CI workflows involve multiple
independent stakeholders, and one insecure stakeholder can
potentially a�ect the whole process. It is reported that
attackers utilize unknown methods to steal GitHub OAuth
tokens on two popular CI platforms (CPs), TravisCI [6] and
Heroku [7], and further abuse these tokens to steal source
code from multiple organizations’ private repositories [8].

In this paper, we systematically study potential security
threats in CI workflows, covering three primary stakeholders,
i.e., CPs, Code Hosting Platforms (CHPs), and Third Party
Services (TPSs). We consider major CP components (e.g.,
controller, runner, and executor) and extract a basic security
model and principles by reading documents and analyzing
the source code. We identify a series of security risks in CI
workflows that could potentially cause serious consequences,
such as privilege escalation. Specifically, as resource sharing
is quite common in CI services (e.g., many CPs support run-
ning di�erent repositories on the same CI runner), the weak
isolation between CP components may allow users with lower
authority to access non-authorized resources. Meanwhile, we
find that tokens are largely utilized for authorization among
stakeholders. If token accessibility is not properly configured,
token leakage might occur since the code executed by a
CI task may come from a malicious developer [9]. Even
worse, over-privileged tokens can potentially enable attackers
to access unauthorized resources (e.g., the source code of
private repositories). Finally, tokens with improper validity
periods can further amplify various security threats.

We design and develop an analysis tool, CInspector, to
investigate potential vulnerabilities in existing CPs. CInspec-
tor dynamically collects a wide-spectrum of networking data
(e.g., tra�c generated in the runner machine) and system
information (e.g., process and socket port information), and
further adopts a two-stage analysis. In the online stage,
CInspector performs automated tests using dedicated pre-
designed test suites on suspected tokens to identify their
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permissions and validity periods. Then, CInspector performs
token pedigree analysis based on the network tra�c and
further identifies token accessibility. Finally, CInspector
conducts rule-based threat analysis to uncover the potential
security risks (e.g., token leakage).

We analyze seven popular CPs, including three CHP
built-in CPs (i.e., GitHub Actions, GitLab CI, and Bitbucket
Pipelines) and four independent CPs (i.e., CircleCI, TravisCI,
TeamCity, and Jenkins), with three mainstream CHPs (i.e.,
GitHub, GitLab, and Bitbucket). We identify four types of
problems that may cause token leakage. Particularly, we find
that tokens can be leaked from command-line information,
environment variables, plaintext files with improper permis-
sions, and memory that other processes can inspect. All CPs
have the risk of token leakage, and many of them have the
problem of over-privileged tokens. Also, improperly long-
lived tokens widely exist: some tokens even do not expire
after two weeks, potentially allowing attackers (e.g., a fired
employee) to access resources after the CI task is finished.

Based on the identified risks, we further reveal four
novel attack vectors that allow attackers who can execute
code in CI tasks to escalate their privileges and stealthily
inject malicious code. Specifically, attackers can utilize a
stolen token to register an alternative runner and hijack
all following CI tasks. For some CPs, their over-privileged
tokens used for code cloning from GitHub can be easily
stolen by attackers (without any permissions) to obtain read,
write, and admin permissions of all repositories managed
by the repository owner. We also find that some leaked
tokens enable attackers to arbitrarily tamper with the CI task
results, which can bypass existing code-checking mechanisms.
Finally, some CPs improperly utilize TPS’s long-term access
token, allowing attackers to modify artifacts of the repository.

To evaluate the potential impact of our disclosed at-
tacks, we conduct a large-scale measurement on the three
mainstream CHPs. We collect 1.69 million repositories that
are integrated with at least one of the seven CPs. We
find that some very popular repositories and many large
organizations are a�ected by these attacks. For example, 7
out of the top 100 stars repositories on GitHub, and multiple
repositories of Google, Microsoft, NVIDIA, and Apache
use the self-hosted runner and are vulnerable to the task
hijacking attack. We further reveal that 8,464 secrets in
2,472 vulnerable repositories are in danger: adversaries can
exploit these secrets to launch advanced attacks, such as
covertly injecting malicious code into many popular packages
that are used by millions of developers.

Finally, we discuss several defense practices that CPs
should adopt to mitigate these attacks. We have disclosed
our findings to all a�ected service providers and received
positive feedback. For example, the TeamCity team have
confirmed the reported vulnerabilities and marked two of
them as ‘show-stopper’ (the highest level). The GitHub,
GitLab, Bitbucket, Jenkins, and CircleCI teams have also
acknowledged our reported issues and the Bitbucket team
have awarded us with a $1,200 bug bounty.

In summary, the major contributions of this work include:
÷ We systematically study potential security threats in CI

workflows and identify several risks involving the autho-
rization process and resource isolation among multiple
stakeholders.

÷ We design and develop a fine-grained analysis tool, CIn-
spector, and analyze seven popular CPs using it. We
find that all seven CPs su�er from several security risks,
potentially causing serious consequences.

÷ We reveal four new attack vectors allowing attackers to
steal source code from repositories without any access
permission, arbitrarily tamper with CI task results, and
maliciously modify the artifacts generated in CI workflows.

÷ We conduct a large-scale measurement on three main-
stream CHPs, demonstrating that the above attacks could
pose severe security threats to the open source community.

÷ We have disclosed all our findings to the corresponding
service providers and received positive feedback.

2. Background
2.1. Primary Stakeholders
Code Hosting Platforms (CHPs) are responsible for storing
repositories’ source code. Popular CHPs (e.g., GitHub, Git-
Lab, and Bitbucket) generally adopt role-based access control
to their repositories. There are three types of roles: owner,
collaborator, and reporter. Repository owners have full
access to their repositories: they can control the permissions
of repository members and provide authorization to third
party services (TPSs). Repository collaborators can have read
(e.g., browse, clone, and create pull requests) and write (e.g.,
edit source code and merge pull requests) permissions on
the repository. However, they cannot edit settings or provide
authorization to any TPSs. Reporters (e.g., software testers)
only have read permissions for the source code but not write
permissions.
CI Platforms (CPs) are responsible for executing a reposi-
tory’s CI tasks. A CP can be a part of a CHP (e.g., GitHub
Actions) or independent of CHPs (e.g., CircleCI).

Repository owners first need to grant a CP permis-
sion and configure CI tasks via a configuration file (e.g.,
.travis.yml in TravisCI) or web portal (e.g., TeamCity).
Generally, the CI task configuration contains: (1) Execution
Triggers specify when or which events should trigger the
execution of a CI task. For example, based on the configura-
tion, a new push event or pull request can trigger a CI task
execution. (2) Runner Configuration indicates the running
environment (e.g., the OS version) required by a CI task.
(3) Jobs and Steps. Each CI task is a collection of jobs
which can be executed sequentially or in parallel. Each job
is a sequence of steps, and a step can execute one or more
commands (e.g., run test code or build artifact). (4) Secrets
can be used to access TPSs during the CI task execution.
Repository owners can define secrets as key-value pairs on
the CP web portal and use keys instead of values in the CI
task configuration to avoid exposing secrets. (5) Artifacts are
files generated during the execution of a CI task. Mainstream
CPs support three categories of artifacts: package release
files, intermediate files passed between multiple jobs of the
same CI task, and test-related files such as test reports and
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Figure 1: Overview of CI workflow.

screenshots. For example, developers can use artifacts to
share data between jobs in GitHub Actions.

Once the configuration is completed, any defined events
will trigger the CP to execute a CI task. The execution
of a CI task involves three components: CI controller, CI
runner, and CI executor. Controller is the core of CP. It is
responsible for processing authorization with CHPs, parsing
the CI task configuration, receiving execution trigger events,
and scheduling and distributing CI tasks. The controller will
also generate detailed execution logs in real time and display
the task execution result (i.e., success or failure).

Runner is an agent installed on a di�erent host machine
from the controller. The runner must be registered in the
controller to receive instructions. Runners can run on servers
provided by CPs (called CP-hosted runners) or on an
organization’s own machines (called self-hosted runners),
which enable the organization to customize the environment
and save costs [10].

Finally, executor is essentially an environment where CI
tasks will be executed. For example, GitLab CI allows users
to specify di�erent types of executors, such as shell executors
and Docker executors. If the Docker executor is used, the
runner will start a Docker container when it receives a new
CI task, and then execute the task in the Docker container.
Third Party Services (TPSs) such as cloud services might
also be involved during executing CI tasks. For example,
CircleCI stores the artifacts generated by CI tasks in AWS
S3 [11].

2.2. CI Workflow
Figure 1 shows a typical CI workflow. As multiple

stakeholders are involved in the process, tokens are largely
utilized for authorization. First, the repository owner grants
the CI controller with CHP access (step ∂). A CHP token
(Tchp) is released to allow the CP to access source code in
the repository and receive trigger events (e.g., pull requests).
Then, a CI runner will be registered in the controller (step
∑), with a runner registration token (Tregister) released.
Particularly, in the self-hosted runner mode, the controller
will generate a unique and permanent registration token for
each runner. In some CPs, after a runner is successfully
registered, the controller will further provide a runner au-
thentication token to the runner for authenticating subsequent
communication. We treat both tokens as the Tregister.

Next, when execution trigger events occur in the reposi-
tory (step ∏), the CHP will notify the controller to distribute
a task to an appropriate runner based on the CI task
configuration (step π). The CP utilizes a task token (Ttask)
for the authorization between runner and controller. This
token will also be used for updating task execution logs
and returning task results. Particularly, a runner can execute
multiple CI tasks in parallel. To avoid interference among
di�erent tasks, CPs generally generate an independent task
token for each CI task execution.

When a runner receives a CI task, it starts an executor to
execute the task (step ∫). CI task execution requires cloning
the source code of a repository from the CHP to an executor.
For non-public repositories, a code deploy token (Tdeploy) is
provided by the CHP for authorizing the cloning process.
The executor uses the Tdeploy to clone source code from the
CHP, and then executes jobs in the task (step ª). During
the execution (step º), the executor may interact with TPSs
(e.g., upload artifacts to cloud storage services). This step
needs authentication and authorization with TPSs, which
involves an artifact token (Tartifact). Finally, as step Ω, after
the CI task is finished, the executor (or the runner for some
special cases) returns the task result to the controller.

3. CI Security Model and Principles
In a typical CI scenario, an organization can utilize

CHPs to maintain multiple repositories, and then maintain
several servers (possibly self-hosted) for operating the CI
controller and runners/executors. As employees are typically
granted di�erent permissions and authorization levels (to
repositories), CPs need to carefully set the resource sharing
strategy among the controller, runners, and executors, with
resources properly isolated. Otherwise, a user with lower
authority could break the isolation to access non-authorized
resources (e.g., repositories).
Threat Model. In the above scenario, we assume the
controller is properly separated from runners/executors (e.g.,
running in di�erent machines), as explicitly stated by many
CPs for safety concerns [12]. CPs are set with default
or widely adopted configurations. Besides, all stakehold-
ers (e.g., CHPs, CPs, and TPSs) and the communication
between/inside them are secured.

Overall, we consider adversaries as normal users with
low authorization levels or limited permissions. The goal
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of adversaries is to gain unauthorized access to resources
(e.g., escalating their privileges to read private repository’s
source code) or to distribute malicious code stealthily (e.g.,
injecting backdoors into artifacts built by CI workflows).
They follow the CI execution flow and can execute a piece
of code in a CI task, which involves running an executor
process, to steal weak-isolated tokens with high permissions.
Specifically, they can either modify the CI configuration files
(if they are not protected) or modify the codebase such as
unit test code used in a CI task (which is easy as most CPs
have no limitations on this).

In particular, we describe three di�erent types of adver-
saries and their capabilities as follows:
÷ TYPE I: Pull request initiator for open source repository.

Pull request is the primary collaborative way for developers
to contribute open source repositories. Some CI tasks
can be configured to automatically start running after
receiving a new pull request. Recent research [9] shows
that 44.4% of the public repositories on GitHub, which
use GitHub Actions, are set to trigger a CI task when
a new pull_request event occurs. Adversaries can
then exploit this feature to execute their malicious code
in the CI task of the victim repository by submitting a
pull request. Note that GitHub has disabled the execution
of new GitHub Actions created by first-time contributors
without the approval from a repository owner [13]. However,
adversaries can gain the trust of the repository owner by
first submitting a valid pull request and later submitting
a malicious pull request. Note that this type of adversary
does not require the corresponding code changes of the pull
request to be merged into the victim repository. In many
cases (based on the configuration), CPs may run the pull
request’s CI task before the merging. For example, GitHub
provides a feature [14] that makes a pull request mergeable
only after it passes CI checks, which can be used to mount
the attack.

÷ TYPE II: Evil repository collaborator. Adversaries can be
collaborators of one repository in the victim organization.
They only have limited access (e.g., read and write) to
the repository. However, they are not authorized to change
the repository settings, nor manipulate software releases
like artifacts. Also, they do not have any permissions on
other repositories of the victim organization. In this case,
adversaries can introduce the malicious code in a CI task
execution by modifying the authorized repository’s CI build
script or testing code.

÷ TYPE III: Evil repository owner. Adversaries are the
owner of one repository in the victim organization and have
full access to the repository. They can introduce malicious
code in the execution of CI tasks by using carefully crafted
CI build scripts or testing code. However, they do not
have any permissions on other repositories of the victim
organization.

Based on our threat model, we introduce several potential
security threats in the existing CI workflows. While there
are no unified public standards, we extract a basic security
model and principles by reading documents and analyzing

the source code of relevant open-source components.

3.1. Weak Resource Isolation
An executor is started by a CI runner; thus both com-

ponents usually run on the same host machine. Existing
CPs support running di�erent repositories on the same
runner. In this case, if the runner is not properly isolated
from the executor, the task of one repository could attack
other repositories (e.g., stealing tokens). The isolation should
prevent the executor from accessing any sensitive data from
the runner (e.g., Tregister) nor a�ecting the execution of the
runner (e.g., kill the runner process).

Besides, some CPs adopt a continuous runner reuse
strategy: after executing a task, the runner will be reused
for the next one. Under this mode, any sensitive data (e.g.,
tokens) used by the previous task must be cleared. Otherwise,
it might be leaked to the subsequent CI tasks, which might
belong to a di�erent repository.

If there is no isolation (e.g., both components run on the
same system with root privileges), attackers can control one
executor to access all resources on the system. They can also
control other processes through syscalls like ptrace [15].
Thus, existing CPs adopt di�erent runner/executor isolation
strategies, such as running them on di�erent virtual machines
(VM), Linux containers (namespaces), and native processes.
At the process level, two components run under the same non-
root namespace and have limited access to the file system.
They can still exchange data through various inter-process
communication methods. One component can even kill the
other component’s process. Thus, our threat model considers
that the process isolation is not enough. At the container
(namespace) level, two components run under di�erent Linux
namespaces. For example, the runner runs in the host system,
the executor runs in a non-privileged Docker container; or
both components run as di�erent Linux users. Even with
this isolation, containers should still be carefully configured.
For example, if the container runs in the privileged mode,
it can be considered as no isolation since Docker has full
access to the host system. In addition, data exchange can
be performed by setting environment variables for Docker,
which might also cause information leakage.

3.2. Improper Code Hosting Platform Token
Tchp allows the CP to access source code in the repository

and receive trigger events. Improper usages of the Tchp
can leak CHP data to attackers. Generally, there are two
types of Tchp: (1) Personal access credentials, which inherit
permissions from the CHP user and can access resources
on behalf of the user. Examples include username/password
from CHPs and Personal Access Token (PAT), used by
GitHub [16] and GitLab [17]. (2) Authorization access
credentials, issued by a CHP specified for authorization.
Repository owners can limit the permissions and lifetimes
of these credentials. Authorization credentials are usually
implemented based on the OAuth protocol. All the three
mainstream CHPs support such credentials for authorization.
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Figure 2: Workflow of CInspector.

Generally, the authorization access credentials are more
suitable for CHPs to provide authorization to CPs than
personal access credentials. Due to the broad range of
permissions that personal access credentials have, using these
credentials to authorize CPs is considered a security risk.
For example, GitHub’s o�cial security guide clearly states
that authorizing GitHub Actions "should never use personal
access tokens" [18].

Furthermore, Tchp must be properly stored and should
never be passed to the runner/executor to avoid token leakage.
Otherwise, executors running by adversaries may obtain this
token and further access repositories in CHPs. For example,
it is reported that attackers successfully steal OAuth tokens
of TravisCI and Heroku (obtained from GitHub) using some
unknown methods and further steal the code of multiple
organizations’ private repositories hosted on GitHub [8].

3.3. Improper Token Permissions
The accessibility and permissions of all tokens should be

carefully configured and limited to avoid potential privilege
escalation. For example, Ttask is used for the authorization
between the runner/executor and controller. Since the code
executed by the CI task may come from a malicious devel-
oper [9], Ttask should be limited to the originated repository,
without access to other repositories (e.g., read the source
code of other repositories). Similarly, permissions should be
properly configured for Tdeploy.

For the permission of Tartifact, this token should not sup-
port modifying the artifact after creation. For example, both
GitHub and GitLab only provide interfaces for downloading
and deleting artifacts, but not for modifying [19] [20]. Also,
Tartifact should only have access to the artifacts generated
by the current task, without permissions for other tasks.
Otherwise, attackers who obtained this token might be able
to access and modify unauthorized artifacts.

3.4. Improper Token Validity Period
Many tokens, including Ttask, Tdeploy, and Tartifact, should

be one-time used only (e.g., expire immediately after the
corresponding task ends). Tokens with unnecessarily long
validity periods can cause/amplify many security threats,
especially if tokens are leaked. For example, both GitHub

Actions and GitLab CI expire Ttask immediately after the CI
task ends to improve security [21] [22].

Particularly, similar rules apply for Tdeploy, which is used
by the CHP for authorizing the cloning process on CPs.
With a long-lived Tdeploy, an immoral employee who has
been fired might still be able to access the source code of
the organization’s private repositories. Generally, there are
three types of common Tdeploy [23]: (1) Tchp. Executors use
the Tchp directly. (2) One-time token. Based on Tchp, the
controller uses the CHP APIs to generate a one-time token
for code clone (e.g., GitHub’s server-to-server tokens [23]).
(3) Private key. The controller generates a pair of public and
private keys. The public key will be added to a repository of
the CHP, and the private key can be used as a code deploy
token. Among them, both Tchp and private key are long-lived
by default. Therefore, if CPs use these two types of Tdeploy
without properly setting the validity period, they are prone
to security breaches.

4. Methodology
To investigate the potential vulnerabilities in CI services,

we design an analysis tool, CInspector, to analyze popular
CPs and their interaction with related stakeholders (e.g.,
CHPs and TPSs). The overall workflow of CInspector
is illustrated in Figure 2. CInspector conducts black-box
testing on CPs using a self-hosted runner (or an on-premise
deployed runner) deployed on our own machine. During the
execution of the CI task, CInspector records the network
tra�c generated in the runner machine and collects a wide-
spectrum of system data (e.g., process and socket port
information). The analysis process further consists of online
and o�ine stages. In the online analysis stage, CInspector
extracts suspected tokens from network tra�c. It uses pre-
designed test suites to perform automated tests on tokens
to identify their permissions and validity periods. In the
o�ine analysis stage, CInspector performs token pedigree
analysis based on the network tra�c. It further performs
token accessibility analysis to identify whether a token can
be acquired by potential adversaries (e.g., token leakage).
Finally, according to a series of rules, CInspector outputs the
potential security risks. This section details all components
of CInspector. We also discuss ethical concerns.
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4.1. Target Platforms
We choose three CHPs, namely GitHub, GitLab, and

Bitbucket, which dominate the CHP market and are supported
by all mainstream independent CPs [24]. Following several
recent researches [9] [25], we select seven CPs with high
market share [24], including three CHP built-in CPs (i.e.,
GitHub Actions, GitLab CI, and Bitbucket Pipelines), and
four popular independent CPs (i.e., CircleCI, TravisCI,
TeamCity, and Jenkins).

We use a self-hosted runner for all CPs except for
TravisCI. TravisCI does not support the self-hosting mode,
so we run an on-premise deployment runner (deploying all
components in our own machines)1. We also deploy the
runner and executor on Linux, which is adopted by most
CPs. For executor, as most CPs utilize Docker container or
shell as the built-in executor, we thus focus on these two
types of executors (if supported) for testing. Particularly, if
a CP’s built-in executor has root privileges, we also grant
root privileges to the executor in the self-hosted runner.

4.2. Preparation
We attempt to simulate users with di�erent privileges

and test potential misconfigured token permissions.
Repositories. We first create an organization on each of the
three CHPs. Within the organization, we further create two
private repositories (Repo1 and Repo2) and two users (User1
and User2). User1 is the owner of both repositories. User2
is set as a collaborator of Repo1 with low-level authority (as
mentioned in Section 2.1), but has no permission on Repo2.

This setup allows us to test whether User2, as a potential
attacker, can access non-authorized resources. It also allows
us to examine over-privileged tokens (e.g., whether or not
tokens in CI tasks initiated by User1 and User2 are the same).
Runner Registration. We register the self-hosted runner and
record the registration token generated by each controller.
For CPs supporting multiple repositories to share the same
runner, we register both repositories on the same runner.
Data Extraction Tools. We use the tool mitmproxy [26]
on the runner host to monitor network tra�c and decrypt
SSL encrypted tra�c by installing a custom certificate. We
develop a Linux shell script to regularly collect data such as
the UID and PID of the process and the socket port opened
by a process. We also use the Docker inspect tool [27]
to regularly collect the configuration of running Docker
containers, including environment variables and directory
mapping. These data are then fed for token analysis.
Customized CI Tasks. We instrument the CI build script
and the testing code to output the executor process’ UID,
PID, and environment variables. CInspector also tests if the
process has root privileges and whether the process is inside
a Docker container.
Token Test Suites. We design several token test suites to test
each token’s permissions for accessing relevant resources, as
shown in Table 1. For each token, the test covers accessing
user profiles, reading/writing both repositories, modifying

1We collectively refer to them as self-hosted runners in this paper.

TABLE 1: Overview of the token test suites.
Targets Test Operations

READ, WRITE to the source code of Repo1 and Repo2.
READ, WRITE, LIST, DELETE the artifacts of both Repos.Repos
WRITE to the settings of Repo1 and Repo2.

READ, WRITE to the execution logs of the current CI task.Controller WRITE to the execution result of current CI task.

Users READ, WRITE to user profiles of User1 and User2.

the repository’s settings, reading/writing artifacts, etc. We
utilize APIs [28] [29] [30] [31] provided by CHPs, CPs, and
TPSs for implementing the test suites. Particularly, after a
CI task ends, CInspector further runs the test suites several
times at di�erent intervals to test tokens’ validity periods.

4.3. Online Analysis
We manually conduct 4 rounds of testing for all valid

combinations of CHP and CP. Round 1, with User1 as the
initiator, we run a CI task of Repo1. Round 2, after 1 hour,
we run the CI task of Repo1 again with User1 as the initiator.
Round 3, after 1 hour again, we run the CI task of Repo1,
but with User2 as the initiator. Round 4, we run a CI task
of Repo2 with User1 as the initiator.

In each round of testing, CInspector automatically ana-
lyzes the decrypted network tra�c in real time. We extract
the token from the HTTP Authorization header and
adopt the open source tool Trivy [32] to extract useful data
in the payload (e.g., tokens, public/private keys). For each
extracted token, CInspector run the token test suites with both
repositories’ resources and record the results accordingly.

4.4. O�ine Analysis
CInspector maps the extracted tokens with the corre-

sponding processes through the Linux socket port and then
conducts o�ine analysis. Note that a token can be associated
with multiple processes since it might be transmitted across
processes and containers.
Token Accessibility Analysis. CInspector conducts token
accessibility analysis to infer whether or not a token is visible
to an executor process based on the following rules: (1)
processes in non-privileged Docker containers should not
access processes in the host; (2) processes in privileged
Docker containers can access processes in the host; (3)
processes with root privileges can access any process; and
(4) a process can access other processes under the same UID
but cannot access other processes under di�erent UIDs.
Token Pedigree Analysis. In some HTTP request-response
pairs, there is a unique token in the requests, but with one
or multiple new token®s in the corresponding responses. For
example, CircleCI sends an HTTP request2 with Ttask, and
the HTTP response message includes Tdeploy. CInspector
considers that these new tokens are derived from the token.
During token accessibility analysis, if a token is visible to
the executor process, CInspector also treats all its derived
tokens as visible.

2The URL is https://runner.circleci.com/api/v2/task/config.
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Abstract—Todo.

1. Introduction

chp(t) :- t matches one of Tchps’s
formats

equal(t1, t2…tn) :- t1…tn’s values pairwise
equal

nequal(t1, t2…tn) :- t1…tn’s values pairwise
unequal

used(t, s) :- t is used in s scenario
label(t, l1…ln) :- t is labeled with l1…ln

expire(t,�) :- t expires after � minutes
from the task ends

access(t, r) :- t can access repository r

1: Built-in rules for token related predicates.

chp(t) � label(t, CT)
equal(t, � t® � {Tregister recorded}) � label(t, RT)

used(t, ‘when sending the task results’) � label(t, TT)
used(t, ‘when cloning the source code’) � label(t, DT)

used(t, ‘when uploading the artifacts’) � label(t, AT)
equal(tR1

, tR2
, tR3

, tR4
) � label(t, RU)

nequal(tR1
, tR2

, tR3
, tR4

) � label(t, TU)
equal(tR1

, tR2
), nequal(tR1

, tR4
) � label(t, PU)

equal(tR1
, tR2

, tR4
), nequal(tR1

, tR3
) � label(t, UU)

expire(t, 0) � label(t, IE)

(tRn
indicates a token’s value in the round n of the test task.)

2: Token label rules.

C�PToken(CT ): label(t, CT) � chp(t)
Runner Unique(RU): label(t, RT) � equal(t, � t® � {Tregister recorded})

Task Unique(TU): label(t, TT) � used(t, ‘when sending the task results’)
Deploy Token(DT): label(t, DT) � used(t, ‘when cloning the source code’)
Artifact Token(AT): label(t, AT) � used(t, ‘when uploading the artifacts’)

Runner Unique(RU): label(t, RU) � equal(tR1
, tR2

, tR3
, tR4

)
Task Unique(TU): label(t, TU) � nequal(tR1

, tR2
, tR3

, tR4
)

Repository Unique(PU): label(t, PU) � equal(tR1
, tR2

), nequal(tR1
, tR4

)
User Unique(UU): label(t, UU) � equal(tR1

, tR2
, tR4

), nequal(tR1
, tR3

)
Immediately Expire(IE): label(t, IE) � expire(t, 0)

(tRn
indicates a token’s value in the round n of the test task.)

3: Token label rules.
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Figure 3: Token analysis predicates.

CHP Token(CT): label(t, CT) � chp(t)
Runner Registration Token(RT): label(t, RT) � equal(t, � t® � {Tregister recorded})

Task Token(TT): label(t, TT) � used(t, ‘when sending the task results’)
Deploy Token(DT): label(t, DT) � used(t, ‘when cloning the source code’)
Artifact Token(AT): label(t, AT) � used(t, ‘when uploading the artifacts’)

Runner Unique(RU): label(t, RU) � equal(tR1
, tR2

, tR3
, tR4

)
Task Unique(TU): label(t, TU) � nequal(tR1
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)
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)
User Unique(UU): label(t, UU) � equal(tR1
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)
Immediately Expire(IE): label(t, IE) � expire(t, 0)

(tRn
indicates a token’s value in the round n of the test task.)

9: Token label rules.
Figure 4: Token label rules.

CHP Token(CT): label(t, CT) � chp(t)
Immediately Expire(IE): label(t, IE) � expire(t, 0)

(tRn
indicates a token’s value in the round n of the test task.)

4: Token label rules.

label(t, CT)
warn(t)

l � {RT,TT,DT,AT} , label(t, CT, l)
warn(t)

access(t,¬Repot), l � {TT,DT,AT}, label(t, l)
warn(t)

access(t,¬Repot), l � {TU,PU,UU}, label(t, l)
warn(t)

�Repo access(t,Repo), label(t, RU)
warn(t)

¬label(t, IE), l � {TT,DT,AT}, label(t, l)
warn(t)

5: Threat analysis rules.

chp(t) :- t matches one of Tchps’s
formats

equal(t1, t2…tn) :- t1…tn’s values pairwise
equal

nequal(t1, t2…tn) :- t1…tn’s values pairwise
unequal

used(t, s) :- t is used in s scenario
label(t, l1…ln) :- t is labeled with l1…ln

expire(t,�) :- t expires after � minutes
from the task ends

access(t, r) :- t can access repository r

6: Built-in rules for token related predicates.

CHP Token(CT): label(t, CT) � chp(t)
Runner Unique(RU): label(t, RT) � equal(t, � t® � {Tregister recorded})

Task Unique(TU): label(t, TT) � used(t, ‘when sending the task results’)
Deploy Token(DT): label(t, DT) � used(t, ‘when cloning the source code’)
Artifact Token(AT): label(t, AT) � used(t, ‘when uploading the artifacts’)

Runner Unique(RU): label(t, RU) � equal(tR1
, tR2

, tR3
, tR4

)
Task Unique(TU): label(t, TU) � nequal(tR1

, tR2
, tR3

, tR4
)

Repository Unique(PU): label(t, PU) � equal(tR1
, tR2

), nequal(tR1
, tR4

)
User Unique(UU): label(t, UU) � equal(tR1

, tR2
, tR4

), nequal(tR1
, tR3

)
Immediately Expire(IE): label(t, IE) � expire(t, 0)

(tRn
indicates a token’s value in the round n of the test task.)

7: Token label rules.

Figure 5: Threat analysis rules.

Token Labeling. CInspector labels all tokens during the
analysis. Figure 3 shows the base rules for token-related
predicates, which are straightforward and self-explained. For
example, chp(t) means a token t’s format is the same as a
Tchp’s (e.g., all GitHub PATs are initiated with ghp_). Then,
we label tokens following the rules in Figure 4. For instance,
if chp(t) is true, the token t is labeled with CT . We first
assign a label to each type of token (e.g., DT for Tdeploy).
Then, we test whether the token is unique for each task
(TU ), user (UU ), runner (RU ), and repository (PU ). For
example, a token is labeled as PU (repository unique) if both
equal(tR1

, tR2
) and nequal(tR1

, tR4
) are true, meaning

that the tokens used in the first two rounds are the same (for
Repo1), while di�erent from the fourth round (for Repo2).
We also mark a token as IE if it expires immediately. Note
a token may be marked with multiple labels.

4.5. Rule-Based Threat Analysis
We mainly consider three types of threats: (1) token

leakage: if a token is visible to executors; (2) over-privileged:
if a token has unnecessary permissions that could potentially
cause privilege escalation; and (3) improper validity period:
if a token persists (remains valid) for a long time.

Based on these threats, we propose several detection
rules for di�erent tokens. For the task-unique token, it should
expire immediately after the task ends. Also, it should only

have access rights to the repository that the task belongs
to. For the runner-unique token, it can only be used to
generate other tokens (e.g., Ttask) and should not have the
read permissions of the source code of any repositories. As
multiple repositories might share tokens if they share the
same runner, if a token has read access to one repository, it
can also access other repositories. For the repository-unique
token, it should only have the access permissions to the
corresponding repository. Figure 5 lists the detailed rules for
detecting security threats. Take the first rule as an example,
if a token t is labeled as CT , it indicates that the Tchp is
transmitted to the runner/executor; thus, there is a security
risk of Tchp leakage. As another example, in the third rule,
the token t is labeled as one of Ttask / Tdeploy / Tartifact but
has access rights to repositories other than the originated
one, indicating a potential risk of privilege escalation.

4.6. Ethical Considerations
We believe there are no or only minor ethical issues in our

work. We have never conducted any experiments on third-
party repositories/projects. All vulnerability analyses and
threat validations are done on our-owned repositories/projects
or our locally deployed CPs. Moreover, we conduct all the
experiments using our own accounts. The black-box testing
of the runner and executor is also conducted on our own
self-hosted runner machine. To test the risk of privilege
escalation, we also use our own resources and never try
to access any resources that do not belong to us. Finally,
after the testing, we have timely disclosed all our findings
to corresponding stakeholders (details in Section 7.2).

5. Identified Issues in CI Platforms
5.1. Token Leakage

Token leakage is highly related to how a token is used
and the isolation strategy between the executor and the runner.
We have adopted CInspector to semi-automatic unveil several
token-leakage threats as follows. CInspector automatically
collects and analyzes token leakage for most potential leakage
sinks (e.g., .bash_hisotry file, the configuration file of CI
runner, environment variables, and command-line arguments).
We then manually analyze memory leakages, as various
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TABLE 2: The runner isolation strategy, token leakage, and token reuse problems on each CP. � means no isolation. � means process-level
isolation. ○ means Linux namespace-level isolation. 3 indicates the executor can access the runner’s resources. C/E/F /M in the Token
Leakage column mean the token leakage ways: C - Command-line, E - Environment Variables, F - Files, M - Memory.

Access Runner’s Token Leakage Token Reuse
CPs Executors Runner

Isolation C E F M Tchp Tregister Ttask Tdeploy Tartifact as Tdeploy as Tartifact

GitHub Actions Shell† � 3 3 3 3 C ,F ,M E,M E,M E,M Ttask Ttask
Docker ○ 3 E E E Ttask TtaskGitLab CI Shell � 3 3 E E E Ttask Ttask
Docker ○Bitbucket Pipelines Shell � 3 3 3 3 C ,M E,M M E,M
Docker �< 3 3 3 3 F ,M F ,M MCircleCI Shell � 3 3 3 3 C ,M F ,M F ,M M

TravisCI Docker ○ 3 E F E
TeamCity Shell � 3 3 3 3 M F ,M M F ,M M T ‡

chp
Docker �< 3 3 3 3 M C ,M M M M T ‡

chpJenkins Shell � 3 3 3 3 M C ,M M M M T ‡
chp

† The GitHub will generate a clean VM for each GitHub-hosted runner. However, since the runner and the executor are running within the same VM,
we consider the isolation of the GitHub-hosted runner to be the same as the Shell executor.

* In CircleCI’s and Jenkins’s docker executor mode, the runner and the executor are running in the same container (the former has root privileges).
‡ When integrated with GitHub, TeamCity uses Tchp as Tdeploy. When integrated with Bitbucket and GitLab, Jenkins uses Tchp as Tdeploy.

memory layouts (e.g., native, JVM, and .NET) are adopted
by CI runners.

5.1.1. Risks of Token Leakage
Using Token on the Command-line. There are several ways
that Linux shells can expose sensitive data. When a process
is running, it is easy to get the process information through
the command ps -ef. For instance, the self-hosted runner
of Bitbucket Pipelines takes the Tregister as an argument to
the start command3. Even after the process exits, one can
still observe this command information in the shell’s history
file (such as .bash_history file). Therefore, these tokens
can be leaked to adversaries in a CI task. We find that the
self-hosted runner of GitHub Actions su�ers from the issue.
Setting Token as Environment Variables. Using envi-
ronment variable is common for data (e.g., token) trans-
fer, especially to transfer data from the host to a Docker
container. However, environment variables can be easily
read in multiple ways, and thus tokens can be leaked. For
example, in GitLab CI Docker mode, a Ttask is passed
into a Docker container as an environment variable for an
executor to use. As another example, to protect the Ttask
(i.e., ACTIONS_RUNTIME_TOKEN in GitHub) from being
read by testing code, GitHub Actions only passes the token
to necessary jobs, via setting environment variables in the
self-hosted runner. However, an executor process can directly
steal the Ttask by reading the environment variables of other
processes through the /proc/{pid}/environ file.
Storing Token in Plaintext File. We find that many CPs
store plaintext tokens in files directly, which can be easily
obtained by other processes under the same namespace. For
example, in the Docker executor mode, CircleCI saves the
config file of a CI task inside the executor container4. As
a result, the executor can directly obtain the Ttask and the

3
start.sh -OAuthClientId -OAuthClientSecret

4
/.circleci-runner-config.json

Tdeploy in the file through a CI task. In GitHub Actions,
after a self-hosted runner is registered, the controller will
send a Tregister for subsequent authentication. The runner
saves this token in three files5. Similarly, the executor (in
the shell mode) has permission to read these files, so anyone
who controls the executor can steal the Tregister through a CI
task. Finally, we find that TeamCity adopts an interesting
strategy. TeamCity stores the Tdeploy in a temporary file6 and
will delete the file immediately after finishing code cloning.
However, since TeamCity’s runner runs in continuous mode,
attackers can implant a monitoring program in the runner
machine through a CI task to continuously scan the target
directory, and still obtain the token.
Keeping Token in Memory. If an executor runs with root
privileges, adversaries can directly read the memory of the
runner process through a CI task and search for token strings
according to the token format. For instance, both executors of
GitHub Actions and CircleCI have root privileges [33] [34].
Thus, adversaries can grab the Tregister and the Ttask directly
from the runner process’s memory.

On the other hand, a process without root privileges
cannot read the memory of other processes. However, security
risks still exist in some CPs. While the executors of TeamCity,
Jenkins, and Bitbucket Pipelines (in shell executor mode) do
not have root privileges, their runner processes open JVM
Tool Interface (JVM TI) [35]. This interface allows a non-
root process to inspect the runner process’s memory and
further controls the execution of the runner process. JVM
TI is enabled by default when JVM is started, and it can
only be actively disabled [36]. Therefore, various tokens in
the memory of runner processes can be leaked. Even worse,
all these CPs allow multiple repositories to share the same
runner. Thus, all these repositories’ tokens kept in memory
are at the risk of being stolen.

5
.runner, .credentials, and .credentials_rsaparams

6
{runner folder}/temp/buildTmp/pass
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5.1.2. Token Leakage Analysis Results
We find that all seven CPs su�er from token leakage

problems, and the detailed results are listed in Table 2.
First, all CPs leak the Ttask. As the executor frequently

uses the Ttask for various operations (e.g., log sending and
task result uploading) during the execution of a CI task, most
runners simply transfer the Ttask to the executor. The only
exception is the Docker mode executor of Bitbucket Pipelines
(its shell mode executor is still vulnerable to the problem).
When Bitbucket Pipelines executes a CI task, it starts an
executor Docker container and an auxiliary Docker con-
tainer (named atlassian/pipelines-auth-proxy)
to handle the authentication with the controller. The runner
passes the Ttask to the auxiliary container rather than the
executor container. Unfortunately, although the above method
will not leak the Ttask, Bitbucket Pipelines still su�ers from
other potential attacks related to the Ttask (i.e., Task Result
Hijacking Attack) in Section 6.3.

Similarly, the Tdeploy might be leaked. Particularly, we
find that the Tdeploy of CircleCI and TravisCI are in the form
of public-private key pair, while others are strings. Both
have security risks if permissions and validity periods are
not carefully configured (discussed in Section 6.2).

In addition, we also find that shell mode executors
can easily leak Tregister through a file or command-line.
The only exception is GitLab CI: although its shell
mode executor writes the Tregister to the configuration file
(i.e., /etc/gitlab-runner/config.toml), the per-
mission of the file is set to only readable by the root user.
Thus, executors running under non-root privileges cannot
read the file, avoiding token leakage.

Finally, we have another interesting finding: the Tchp,
which is supposed to only be used between CHP and the
controller for authorization, is leaked in the runners of
TeamCity and Jenkins. The cause is that these two CPs reuse
the value of the Tchp as the Tdeploy. In the next subsection,
we show that the misuse of di�erent types of tokens can
cause severe security issues.

5.2. Token Misuse
CInspector also shows that the misuse of tokens widely

exists in all CPs. Some misuses can cause privilege escalation
(i.e., over-privileged tokens), while others grant tokens
with improperly long validity periods. We have manually
confirmed the potential security risks. For example, after
CInspector discovering a long-lived token, we determine its
accurate expiration time by reading related documents or
analyzing network tra�c.

5.2.1. Over-privileged Token
We find that the Tdeploy of multiple CPs have over-

privilege problems. The analysis results are shown in Table 3.
In our experiment, the Tdeploy extracted from the CI task
of Repo1 should only have read permission of Repo1, as
described in Section 4.2. However, TeamCity and Jenkins
have over-privileged Tdeploy when integrated with some CHPs
(i.e., GitHub and GitLab). For example, when TeamCity is

TABLE 3: The Tdeploy over-privilege problems. The columns
highlighted in gray color indicate over-privileged permissions. 3
means the token has this permission. R-Read, W -Write, A-Admin.

Repo1 Repo2
CPs CHPs R W A R W A

User
Profiles

GitLab CI GitLab 3 3

GitHub† 3 3 3 3 3 3
GitLab 3 3 3 3 3 3 3TeamCity

Bitbucket 3 3 3

GitHub 3
GitLab† 3 3 3 3 3 3 3Jenkins

Bitbucket† 3 3 3 3 3 3 3

† Reusing the Tchp.

integrated with GitHub/GitLab, the Tdeploy of Repo1 has
the read, write, and admin (modify repository settings)
permissions of both Repo1 and Repo2. With GitLab, the
Tdeploy of TeamCity can even read user profile of User1.
When integrated with Bitbucket, TeamCity’s Tdeploy has the
read permissions of both Repo1 and Repo2, as well as the
user profile of User1. In addition, the GitLab CI controller
grants the Tdeploy the same permissions as the user who
triggered the CI task [37]. Thus, in the CI task of Repo1
initiated by User1, the Tdeploy also has the read permission
of Repo2, which is over-privileged.

The Tartifact of multiple CPs also su�er from over-
privilege problems. As discussed in Section 3.3�Tartifact
should not support modifying the artifacts after they are
generated. However, TravisCI, CircleCI, and Jenkins fail to
apply the write-once-read-many (WORM) model [38] to
protect the artifacts. Their Tartifact can be used to modify
existing artifacts as long as the token is valid. Even worse,
TravisCI directly uses AWS’s long-term access token as
Tartifact [39], which has the permission to modify all artifacts
in the repository, regardless of the owner (e.g., CI tasks) of
an artifact.

5.2.2. Cross-task Reused Token
Token reuse (e.g., using the same token as Ttask, Tdeploy,

and Tartifact) is quite common in all CPs. We do not find
any security threats of token reuse if the token is one-time
and only valid in a single task. However, with a di�erent life
cycle, token reuse might pose security threats. For instance,
when TeamCity is integrated with GitHub, the Tchp will be
reused as a task’s Tdeploy. Similar reuse also happens when
Jenkins is integrated with Bitbucket and GitLab. Typically,
once authorized, the Tchp is valid for a long time with high
permissions (e.g., full access to multiple repositories), as
the Tchp might be used in multiple subsequent tasks. If
CPs simply reuse Tchp as Tdeploy, the Tdeploy then has extra
unnecessary permissions, and the Tdeploy leakage can further
cause serious security issues.

Particularly, the problem is even worse in Jenkins. First,
as described in Section 3.2, there is a security risk if CPs use
personal access credentials as Tchp. Unfortunately, Jenkins
uses them in the form of username/password when integrated
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TABLE 4: Token validity period (in minutes) of CPs. Hyphen (-)
means the token expires immediately. Infinity (ÿ) means the token
does not expire after two weeks.

CPs CHPs Ttask Tdeploy Tartifact

GitHub Actions GitHub - - -
GitLab CI GitLab - - -

Bitbucket Pipelines Bitbucket 180 180 -

CircleCI
GitHub 300 ÿ 15
GitLab 300 ÿ 15

Bitbucket 300 ÿ 15
GitHub - 60 ÿ
GitLab - ÿ ÿTravisCI

Bitbucket - ÿ ÿ

TeamCity
GitHub - ÿ 10
GitLab - 120 10

Bitbucket - 120 10
GitHub - ÿ 60
GitLab - ÿ 60Jenkins

Bitbucket - ÿ 60

with GitLab and Bitbucket, which violates security guidelines
and might lead to source code leakage [37] [40]. Moreover,
Jenkins reuses users’ Tchp as their tasks’ Tdeploy, which can
further pose a serious security threat to the users’ repositories.

5.2.3. Long-lived Token
For security considerations, Ttask, Tdeploy, and Tartifact

should be one-time and short-lived tokens which expire
immediately after a CI task ends. In practice, these tokens in
many CPs do not expire immediately. Particularly, in some
CPs, these tokens will automatically expire after a period of
time once the CI task ends. We consider this type of token as
a medium security risk. In some cases, several tokens never
expire during our experiments (1 day), unless the repository
owner manually revokes them. For those tokens, we further
check their validity multiple times within the next 2 weeks.
If these tokens are still valid after 2 weeks, we treat them
as non-expired with high-security threats. Overall, five CPs
(i.e., Bitbucket Pipelines, CircleCI, TravisCI, TeamCity, and
Jenkins) have problems, as listed in Table 4.

Specifically, we find that all Ttask, Tdeploy, and Tartifact
su�er from the medium risk. There are two main reasons:
(1) Some CPs simply use the default expiration time when
generating tokens from CHPs. For example, TravisCI uses
GitHub’s server-to-server token [41] as Tdeploy. When this
token is generated, GitHub sets a default expiration time of
1 hour. (2) Some CPs set the longest possible validity period
for tokens. For example, the maximum execution duration of
a CI task in CircleCI is 5 hours [42]. CircleCI then sets the
validity period of Ttask to 5 hours, ensuring that the token
will not expire during the CI task (in the worst case), while
80% of workflows are reported to be completed within 10
minutes [43].

Even worse, some Tdeploy and Tartifact never expire. For
instance, CircleCI’s Tdeploy is implemented by adding a public
key to CHPs, which will never expire unless the repository
owner manually revokes it. This also applies to CPs that use
Tchp (which does not expire) as Tdeploy. Examples include
TeamCity integrated with GitHub and Jenkins integrated

TABLE 5: Overview of potential threats on each CP. 3 means the
CP is vulnerable.

Attack Vectors
CPs Executors A1 A2 A3 A4

GitHub Actions Shell 3 3
Docker 3 3GitLab CI Shell 3 3
Docker 3Bitbucket Pipelines Shell 3 3
Docker 3 3CircleCI Shell 3 3

TravisCI Docker 3 3
TeamCity Shell 3 3 3

Docker 3 3 3Jenkins Shell 3 3 3 3

with GitLab/Bitbucket. Finally, we find that TravisCI uses
AWS’ long-term access token as Tartifact to access S3, which
also su�ers from the problem.

6. Attack Vectors
Based on the token leakage and token misuse results,

we propose four novel attacks that enable adversaries to
access unauthorized resources, manipulate execution results,
and bypass security mechanisms on CHPs. We still consider
the same scenarios described in our threat model. In each
attack vector, we describe the related tokens, specific attack
methods, and a�ected CPs. We also collect data on the
repositories of the open-source community using these CPs
and evaluate the potential impact of these attacks. A summary
of investigated CPs with potential vulnerabilities is listed in
Table 5. Particularly, these attacks (except A1) can a�ect not
only self-hosted runners but also CP-hosted runners.

6.1. Task Hijacking Attack (A1)
Related Token: Runner Registration/Authentication Token.
Adversaries: Type I, II, III.
Attack Method. Attackers can steal the Tregister and register
a malicious runner to connect with the controller. Most
controllers will simply approve this registration without any
notification, as this Tregister has been utilized before. The
controller will then distribute subsequent CI tasks of victim
repositories (using the benign runner) to the malicious runner.
The whole process is entirely transparent to CI tasks. The
consequence of this attack can be severe. For example, if
the victim (benign) runner is shared by multiple repositories,
the new registered (malicious) runner can hijack subsequent
CI tasks, allowing attackers to access all repositories’ source
code even without any permissions. In addition, when the
controller distributes a CI task, it will also pass sensitive
data such as secrets to the malicious runner, which can
also be leaked to attackers.
Vulnerable CI Platforms. CPs that leaks the Tregister (shown
in Table 2) are vulnerable to this attack, including GitHub
Actions, Bitbucket Pipelines (shell mode executor), CircleCI,
TeamCity, and Jenkins (the default launch mode). In Cir-
cleCI, runners actively pull tasks. When multiple runners
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exist, CircleCI adopts a first-come, first-served strategy. A
benign runner initiates an HTTP request7 about every 10
minutes to pull a new task from the controller. The runner
authenticates to the controller by placing its Tregister in the
HTTP Authorization header. Attackers can steal this
token via memory dumping. Once attackers get this token,
they can actively pull tasks with higher frequency and more
likely obtain tasks from the controller. Similarly, Bitbucket
Pipelines using shell mode executor is also vulnerable to
this attack.

GitHub Actions, TeamCity, and Jenkins prohibit a new
runner from registering with the controller using the same
Tregister, if the benign runner is active. Unfortunately, the
executor and the runner of these three CPs run in the same
namespace. Thus, the executor process can force the runner
process to exit (e.g., through commands such as kill -9).
As a result, attackers can kill the benign runner process
after stealing the Tregister and then immediately register a
malicious runner. This attack is stealthy because nothing
abnormal can be seen on the web portals of both CHP and
CP. The only exception is that the CI task log might be
incomplete (a task might not be completed as the runner is
killed). However, attackers can modify the task log with the
Task Result Hijacking Attack (A3) described later.

6.2. Repository Privilege Escalation Attack (A2)
Related Token: CHP Token and Code Deploy Token.
Adversaries: Type I, II, III.
Attack Method. Attackers who are only low-privilege collab-
orators of a repository (called Repotask) in an organization
can steal over-privileged tokens through CI tasks to access
unauthorized resources. They can (1) conduct unauthorized
operations on Repotask, such as modifying the repository
settings or reading the user profile of the repository owner;
and (2) access unauthorized resources in other repositories
(attackers do not have access permissions, but the owner of
Repotask has). Note that this attack is not limited to a self-
hosted runner. It also does not require multiple repositories
sharing the same runner, as the source code is stored in CHP.
Vulnerable CI Platforms. TeamCity and Jenkins are a�ected
by this attack. These two CPs’ Tdeploy have over-privilege
problems when integrated with certain CHPs (as shown in
Table 3). The token can be leaked via the JVM TI injection.

6.3. Task Result Hijacking Attack (A3)
To ensure software quality, CI workflows typically apply

a series of CI checks, such as code quality analysis and
vulnerability check with the static application security testing
tools [44]. The result of a CI task (i.e., success or failure) is
one key indicator of whether a project passes quality checks.
Based on the results, CPs will trigger di�erent subsequent
jobs. For example, all mainstream CHPs have a feature of
status checks, i.e., mark a pull request as mergable only after
it passes the CI checks [14] [45] [46]. Bitbucket even supports
automatically merging a pull request if all checks pass [46].

7The URL is https://runner.circleci.com/api/v2/runner/claim.

In this attack, we show that attackers can manipulate the
execution results of CI checks.
Related Token: Task Token.
Adversaries: Type I, II.
Attack Method. All target CPs rely on Ttask to receive CI
task results/logs during task execution. Attackers can steal
the Ttask through a CI task and use the stolen Ttask to report
a fake task result (e.g., success) to the controller before the
real result (e.g., failure) is submitted. With a spoofed result,
attackers can trick the repository owner into merge code with
vulnerabilities even if multiple checks are adopted. Besides,
attackers can also use the Ttask to send modified logs to the
controller to make the attack more stealthy.
Vulnerable CI Platforms. All seven CPs are a�ected by this
attack. GitHub Actions, GitLab CI, CircleCI, TravisCI, and
TeamCity, utilize the HTTP protocol to transmit logs and task
results. Once attackers get the Ttask, they can directly initiate
an HTTP request to submit spoofed task results. Jenkins uses
Java Network Launch Protocol (JNLP) [47] to implement
the communication between the controller and the runner.
Attackers can spoof the task result to the controller following
the protocol. Besides, they can also utilize JVM TI injection
to control the runner to return the tampered result.

Particularly, although attackers cannot steal the Ttask of
Bitbucket Pipelines in the Docker executor mode, they can
still launch the A3 attack. In this mode, the executor runs
in a stand-alone Docker container, separated from both the
runner and the auxiliary containers. When a task execution
ends, the executor delivers the task result to the auxiliary
Docker container based on a script file8 inside the executor
container. Attackers can simply modify the content of the
above script to tamper with the task result.

6.4. Artifact Hijacking Attack (A4)
Related Token: Artifact Token.
Adversaries: Type I, II, III.
Attack Method. As many CPs improperly configure the
Tartifact’s permissions, attackers can exploit a leaked Tartifact
to inject malicious code into the artifacts generated in the CI
task. In addition, the Tartifact in many CPs have unnecessarily
long validity periods, allowing attackers to modify an artifact
even after the corresponding CI task has ended. Moreover,
in some improperly configured CPs, attackers can potentially
abuse the Tartifact obtained from one CI task to attack
other CI tasks of the same repository. Even worse, an over-
privileged Tartifact might allow attackers to access and modify
the artifacts of other repositories.
Vulnerable CI Platforms. All four independent CPs support
using AWS S3 as artifact storage. Among them, TravisCI,
CircleCI, and Jenkins are vulnerable to this attack. Particu-
larly, TravisCI uses AWS’s long-term access token to access
S3 [39] and directly passes this token to the executor as
the Tartifact through environment variables. Attackers can
steal this token via reading these environment variables9. As
all CI tasks of one repository share the same AWS access

8
/tmp/{id}/tmp/echoResultToResultFileScript.sh

9
ARTIFACTS_KEY and ARTIFACTS_SECRET
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token, attackers can then arbitrarily modify all artifacts of the
repository, including those generated by historical, current,
or even future CI tasks, as long as the token remains valid.
Even worse, if an organization sets artifact storage of multiple
repositories to the same AWS S3 bucket, attackers can further
use this token to access/modify artifacts belonging to other
repositories, even though they do not have any access rights
to these repositories.

CircleCI creates an AWS temporary security creden-
tial [48] for each CI task as its Tartifact and further limits
the token’s read and write permissions to the artifacts of the
current CI task. However, we find that CircleCI’s executor
has root privileges, allowing attackers to grab Tartifact from
memory through syscalls such as ptrace [15]. Furthermore,
we find that the validity period of CircleCI’s Tartifact (about
15 minutes) is not synchronized with the execution time of
the CI task. As a result, attackers have the opportunity to
tamper with the generated artifacts after a CI task ends.

Jenkins uses AWS S3 presigned URLs [49] as
Tartifact [50]. There is no limitation about what files can be
uploaded to a presigned URL. Anyone who gets a presigned
URL can get temporary access to the specific file in S3. More
specifically, Jenkins pre-allocates the storage path on S3 for
the artifacts of a CI task. Then, it generates a presigned URL
valid for 1 hour and sends the URL to a CI executor for
uploading artifacts. Again, we find that the validity period
of the presigned URL (1 hour) is not synchronized with
the execution time of a CI task. Therefore, attackers can
steal Tartifact via JVM TI injection and further modify the
generated artifacts even after a CI task ends.

Instead, TeamCity, which also uses AWS S3 presigned
URLs, is not vulnerable as it adopts a di�erent strategy.
When TeamCity generates a presigned URL, it utilizes
the Content-MD5 parameter to specify the MD5 hash
value [51] of the artifact to be uploaded. Thus, even if
attackers get the presigned URL, they still cannot modify
the artifact since the verification of the AWS server will fail.

6.5. Measurement Results
We conduct a large-scale measurement on three main-

stream CHPs (i.e., GitHub, GitLab, and Bitbucket) to evaluate
the potential impact of the above mentioned attacks in the
open source community. Obviously, we are unable to measure
private repositories, so the actual situation could be worse.
Data Collection. We employ multiple strategies to collect
as many repositories as possible for di�erent combinations
of CPs and CHPs. All CPs except TeamCity support setting
CI configurations through config files. Therefore, we collect
a repository’s CP by checking the corresponding CI config
file. We are unable to collect repositories that integrate with
TeamCity since TeamCity cannot be set through the config
file. For GitLab and Bitbucket, we obtain all public reposito-
ries and their contents via public APIs [52] [53] [54] [55]. In
total, we have collected 3,328,928 repositories on GitLab and
2,355,610 repositories on Bitbucket. The data was collected
on November 2022.

We are unable to do a full crawl using GitHub API,
facing the same di�culty as the recent work conducted

by Koishybayev et al. [9]: GitHub’s REST APIs limit the
crawling rate to 5,000 requests/hour, with only the first 1,000
results returned for each query. We have then adopted a
similar method (e.g., using GitHub Actions from GHArchive
data [56] by analyzing github_bot generated events) [9]
and successfully obtained 669,070 repositories. However,
other CPs do not have github_bot generated events, we
then use GitHub Activity Data on BigQuery [57] to collect
repositories using other CPs (484,230 in total). Note that
GitHub Activity Data only contains 3.3M repositories, which
is a small part of GitHub’s full public repositories (at least
38M). Moreover, in addition to the config file, Jenkins also
supports setting CI configuration through the CI controller
web portal, which we are unable to collect. Thus, more
repositories actually use the above CPs.

Finally, the total numbers of collected repositories on
the three CHPs are: GitHub Actions (669,070), GitLab CI
(297,529), Bitbucket Pipelines (27,814), CircleCI (122,911),
TravisCI (553,362), and Jenkins (19,562).
Task Hijacking Attack (A1). Repositories using GitHub
Actions, Bitbucket Pipelines, CircleCI, TeamCity, and Jenk-
ins, while also using self-hosted runners, are vulnerable to
A1. The numbers of repositories using self-hosted runners
are: 22,274 (7.49%) with GitLab CI, 9,290 (1.39%) with
GitHub Actions, 178 (0.64%) with Bitbucket Pipelines, and
40 (0.03%) with CircleCI. Jenkins does not provide CP-
hosted runners; thus we infer all 19,562 repositories with
Jenkins are also vulnerable. Among them, many are very
popular repositories. For example, 7 out of the top 100 stars
repositories on GitHub use the self-hosted runner; multiple
repositories of Google, Microsoft, Docker, Tencent, NVIDIA,
and Apache also use GitHub Actions self-hosted runner. Part
of the results is shown in Table 8 in the Appendix.

We take GitHub Actions as a case study. For popular
repositories threatened by A1, the secrets leakage is a
serious threat. GitHub Actions uses secrets to transfer
sensitive data in CI tasks. For safety concerns, GitHub
Actions only transfers secrets to jobs that need them and
promptly scrubs secrets from memory [18]. However, these
secrets can easily be leaked with A1. For example, attackers
can modify the GitHub Runner source code [58] and compile
a custom CI runner to record secrets, as the GitHub
controller passes secrets to the runner during a CI task.
In total, we find 8,464 secrets that could be stolen in 2,472
vulnerable repositories. Particularly, the most common secrets
are for publishing package releases and for Docker Hub
authentication. Due to ethical concerns, we do not actually
obtain these secrets to test their validity and functionalities.
Instead, we analyze their invocations in the CI build scripts
to evaluate the possible damage. We list the threats of some
popular repositories in Table 6. We can see that attackers can
use the stolen secrets to perform malicious code injection or
launch a software supply chain attack, potentially a�ecting
a large number of users.
Repository Privilege Escalation Attack (A2). In the
open source community, if a repository using the GitLab
CI/TeamCity/Jenkins has collaborators, it may be vulnerable
to A2. If the repository owner has access rights to multiple
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TABLE 6: GitHub repositories< using GitHub Actions that are vulnerable to A1, their vulnerable secrets, and possible consequences.
Repositories (# of Stars) Vulnerable Secrets Possible Consequences of Secrets Leakage

ge**ry/s**y (33K) GH_RELEASE_PAT Attackers can inject malicious code into the released package
of s**y, a popular tool with 3.5M users.

d**m/d**m (17K) ENV_D**M_S3_AWS_SECRET_ACCESS_KEY
ENV_DOCKERHUB_KEY_MATERIAL

Attackers can steal the long-term AWS and Docker Hub
credentials for publishing the package of d**m company.

k**y/k**y (15K) PYPI_PASSWORD
UBUNTU_UPLOAD_KEY

Attackers can publish a malicious version of k**y, which
has 90,000 monthly downloads on PyPI.

cu**js/cu**js (14K) NPM_TOKEN
DOCKERHUB_TOKEN

Attackers can publish a malicious version of cu**js, which
has 100,000+ monthly downloads on npm.

Ho**ew/ho**re (12K) HO**EW_CORE_GITHUB_PACKAGES_TOKEN Attackers can release malicious packages to the Ho**ew
repository.

* Name hidden due to ethical concerns.

other repositories, all of these repositories might be accessible
by evil collaborators. Among the 317,091 repositories using
GitLab CI/Jenkins, there are 180,617 (56.96%) repositories
with collaborators. Particularly, the owner of 49,305 (15.55%)
repositories have access rights to other repositories.
Task Result Hijacking Attack (A3). We measure A3 on
GitHub, as it allows us to obtain the branch protection settings
of public repositories with public APIs [59]. In total, we
have collected 669,070 repositories using GitHub Action,
469,609 using TravisCI, and 9,643 using CircleCI. Among
them, we find that 107,859 repositories have enabled the
branch protection rule of required_status_checks

(i.e., merge a pull request only after it passes CI checks).
The numbers of repositories with the rule enabled on di�erent
CPs are GitHub Actions 83,047 (12.41%), TravisCI 20,831
(4.44%), and CircleCI 2,977 (30.87%). We also notice
that many popular repositories have this rule enabled. For
example, 31.48% of repositories with more than 5,000 stars
have enabled this rule.
Artifact Hijacking Attack (A4). Repositories using TravisCI,
CircleCI, and Jenkins that upload artifacts in CI build
scripts are all vulnerable to A4. We find that 4,463 (3.63%)
repositories using CircleCI, 2,845 (0.51%) repositories using
TravisCI, and 2,069 (10.58%) repositories using Jenkins are
a�ected by this threat. All a�ected repositories using TravisCI
are also vulnerable to long-term AWS-token leakage.

In addition, if the artifacts (e.g., the package releases or
the intermediate files) are tampered with, there will be severe
security risks, as attackers might covertly inject malicious
code or stealthy replace artifacts. We analyze the top 50
repositories threatened by A4, and find that 22 (44%) of
them use artifacts to store package releases or intermediate
files. A list of the top 8 stars vulnerable repositories is
presented in Table 7.

7. Countermeasures and Disclosure
7.1. Defense Practices

We propose several defensive practices to reduce the
occurrence of discovered threats.
Proper Isolation Between Runner and Executor. Since
the executor may execute code from an untrusted source,
CPs should properly isolate the executor from the runner,
preventing the executor from interfering with the runner
or accessing resources owned by the runner. Our analysis

TABLE 7: Top 8 stars repositories vulnerable to A4 and their
artifacts’ usage. Rls.-Releases, Inter.-Intermediates, Rep.-Reports.

Repositories (# of Stars) CPs Rls. Inter. Rep.

facebook/react (198K) CircleCI 3 3 3
facebook/react-native (106K) CircleCI 3 3 3
angular/angular (85K) CircleCI 3 3
callemall/material-ui (83K) CircleCI 3
storybooks/storybook (75K) CircleCI 3
kadirahq/react-storybook (74K) CircleCI 3
huggingface/transformers (74K) CircleCI 3
docker/docker (65K) Jenkins 3

results show that executors in the Docker mode are generally
better isolated than those in the shell mode. However, Docker
containers still need to be carefully configured to avoid token
leakage (e.g., avoid leaking tokens through environment
variables). Also, using a separate Docker container to handle
executor authentication is an e�ective method, as adopted
by Bitbucket Pipelines.
Limiting Permission and Lifetime of Tokens. When CPs
obtain tokens from CHP, they should follow the principle of
least privilege, only applying for the needed permissions. In
addition, CPs should continuously optimize the authorization
with CHP according to the updated security functions. For
example, GitHub is publicly testing fine-grained PATs [60],
which provides granular control over the permissions and
repository access that they grant to a PAT. Meanwhile, CPs
that use TPSs as artifact storage should also adopt the
security features of TPSs to prevent artifacts from being
tampered with. For example, AWS S3 provides not only the
Content-MD5 function [51] (already adopted by TeamCity)
but also S3 Object Lock [38], which can be used to prevent
artifacts from being deleted or overwritten. Finally, all tokens’
validity periods must be strictly controlled, and a one-time
token must expire immediately after the task ends.
Scrutinizing Reused Resources. Organizations should care-
fully design their CI workflows and adopt CPs to balance
resource usage and system security. They should thoroughly
check reused resources to exclude potential risks of token
leakage. For example, a runner should only be shared
among repositories maintained by developers with the same
privileges within the organization. A self-hosted runner
should not be shared between public repositories and private
repositories. Also, the continuous runner mode should only
be used in a controlled and trusted environment.
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7.2. Disclosure
We have initiated responsible disclosure with seven CPs

to help them mitigate the detected threats. We have reported
detailed information of all identified vulnerabilities and their
potential threats, as well as the mitigation proposed in
Section 7.1 to these entities. We have received multiple
positive feedback. The TeamCity team have confirmed
multiple issues, including task hijacking (A1), repository
privilege escalation (A2), and task result hijacking (A3).
They have marked two issues as ‘show-stopper’ (the highest
level) and have fixed the JVM TI injection vulnerability. The
Jenkins team have acknowledged our report and confirmed
that not sharing runners across trust boundaries is a necessary
step to prevent similar attacks. The Bitbucket team have
confirmed task hijacking (A1) and task result hijacking (A3)
issues. Furthermore, they rewarded us with a bug bounty
of $1,200. The GitLab team have appreciated our work and
confirmed issues with repository privilege escalation (A2) and
task result hijacking (A3). The GitHub team have confirmed
issues with task hijacking (A1) and task result hijacking (A3).
For A1, they recommend using separate runner groups for
repositories with di�erent trust levels. For A3, they said that
they will make the functionality (GitHub Actions alters the
result of a CI run) more strict in the future. The CircleCI
team have confirmed our reported issues and rewarded us
with a gift. They have also promised to better protect the
tokens.

8. Related Work
CI Security. There are many research works study the
impact of CI services [61] [62] [63] and use CI to optimize
builds and reduce cost [64] [65] [66] [67]. Meanwhile,
CI security has also gradually attracted much researchers’
attention [68] [63] [69] [9] [70] [71] [25]. Hilton et al. [68]
showed that securing secrets is a significant concern in CI
security via semi-structured interviews with CI users. Li et
al. [69] studied the abuse of CI services and found many illicit
cryptomining instances on mainstream CPs. Koishybayev et
al. [9] performed a large scale measurement study on GitHub
Actions workflows. They found that 99.8% workflows apply
the default permission, which is actually over-privileged.
They also uncovered that GitHub Actions stores plaintext
secrets in files on the CI runner, which can be retrieved by
third-party actions. Unlike previous works, we are the first to
examine the interaction among multiple primary stakeholders
of CI and the authentication/authorization process through
the entire CI workflow, to the best of our knowledge.

Configuration smells in CI is another security issue that
has been studied extensively [25] [72] [73] [74] [75] [76] [77].
These works focus on automatically identifying and fixing
improper configurations. Vassallo et al. [75] built a reporting
tool to detect anti-patterns by analyzing CI build logs and
repository information. Our work focuses on security flaws
caused by CPs, which pose threats to users even if they use
the proper CI configurations.
Credential Security. OAuth protocol is widely used for
authentication and thus attracted extensive research e�orts

in recent years, including modeling OAuth protocol’s se-
curity [78] [79] and finding flaws in protocol implemen-
tations [80] [81]. With many practices being proposed to
help developers securely implement the OAuth protocol [78],
Chen et al. [80] demonstrated that many mobile apps still
incorrectly implement OAuth. While some Tchp studied in
our work are implemented with OAuth, other tokens are
not. We also mainly focus on the permissions and validity
periods, which are unrelated to OAuth implementation.

Many studies have also been conducted on studying
potential risks of credential leakage [82], [83]. Bai et al. [84]
studied the token leakage on mobile o�ine payment caused
by design flaws. Meli et al. [70] demonstrated that secret
leakage is a serious problem a�ecting over 100,000 public
GitHub repositories. Our work shows that existing CI services
also su�er from the token leakage problem.
Software Supply Chain Security. Existing software supply
chain faces many security threats, thus have recently attracted
many research e�orts, including vulnerable package depen-
dencies [85] [86] [87] [88] [89], resource reuse [90] [91] [92],
and typosquatting [93] [94] [95] [96]. Enck et al. [3]
discussed the top five challenges in software supply chain
security and argued that "securing the build process" is very
important. Zahan et al. [97] analyzed the metadata of 1.63
million JavaScript npm packages and proposed six weak
link signals, discovering that many maintainers’ accounts
can be taken over. Duan et al. [98] designed a comparative
framework to identify security threats in PyPI, npm, and
RubyGems, and detected hundreds of malicious packages.
Zimmermann et al. [99] found that some maintainer accounts
could be abused to inject malicious code into many packages.
Our work further complements these previous research e�orts
on understanding CI security in the software supply chain.

9. Conclusion
This paper systematically analyzes potential security

threats in CI workflows. We find that weak resource isolation
and token misuse exist in CPs. We develop an analysis tool
to investigate potential vulnerabilities in seven popular CPs
and conduct a large-scale measurement on three mainstream
CHPs. Our experimental results show that all CPs have the
risk of token leakage, and many of them use over-privileged
tokens with improper validity periods. We reveal four novel
attack vectors and identify that some popular repositories
and large organizations are potentially a�ected by these
attacks. We have discussed potential mitigation, reported all
security issues to corresponding CPs, and received positive
responses.
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Appendix

TABLE 8: Some repositories on GitHub, which are threatened by A1 and use GitHub Actions, and their numbers of stars.
Repositories # of Stars

tensorflow/tensorflow 169,276
electron/electron 104,610
ant-design/ant-design 82,949
huggingface/transformers 74,705
docker/docker 64,576
pytorch/pytorch 60,492
coder/code-server 57,759
apache/airflow 28,245
ClickHouse/ClickHouse 26,170
google/jax 20,981
Tencent/ncnn 15,973
NVIDIA/nvidia-docker 15,449
microsoft/LightGBM 14,427
Homebrew/homebrew-core 11,867
mozilla-mobile 11,088
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