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Trabecular bone, a solid that has a heterogeneous porous structure, demonstrates nonlinear stress—strain
relationship, even within the small strain region, when subject to stresses. It also exhibits different responses
when subject to tension and compression. This study presents the development of an implicit constitutive
relation between the stress and the linearized strain specifically tailored for trabecular bone-like materials.
The structure of the constitutive relation requires the solution of the balance of linear momentum and the
constitutive relations simultaneously, and in view of this, a two-field mixed finite element model capable

of solving general boundary value problems governed by a system of coupled equations is proposed. We
investigate the effects of nonlinearity and heterogeneity in a dogbone-shaped sample. Our study is able to
capture the significant nonlinear characteristics of the response of the trabecular bone undergoing small strains
in experiments, in both tension and compression, very well.

1. Introduction

The mechanical properties of bone, such as stiffness, are greatly
influenced by natural variations in the porosity of the bone, and hence
its density. The papers that address this issue are too numerous to cite
and so we shall selectively cite a few of them see [1-5] with a clear
caveat that this is just a very small representative sample. Not only
does the porosity of the bone affect the mechanical properties of the
bone, it affects the permeability of the bone and governs the nature of
the interstitial flow within the bone (see [6]). It is also well-known that
bone is viscoelastic (see [7-9]) and its viscoelastic nature might even
depend on the gender (see [10]), and it is also well recognized that
the trabecular bone is anisotropic, usually assumed to be transversely
isotropic (see [11-15]). However, to incorporate the fact that the bone
is porous and hence its properties depend on the density and the
applied pressure, that it is viscoelastic, anisotropic, inhomogeneous,
and that its response is distinct in tension versus compression, all at one
go, is a tall order. In view of this, in this study we restrict our modeling
of the bone to being elastic, and that it exhibits nonlinear response in
the small strain range, and displays distinct behavior in tension and
compression. We do caution that this is an approximation and that the
nonlinearity in the response might be due to progression of damage.
Moreover, data is not available with regard to unloading and hence we
are not in a position to fashion a model that can capture the dissipation
that might be generated. We are essentially assuming this dissipation is
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negligible and the bone is elastic, the anisotropy and viscoelastic nature
of bone will be the subject matter of subsequent study.

Trabecular bone, a porous material found in the human skeletal
system, exhibits complex mechanical behavior. For trabecular bone
the relationship between the stress and the strain is nonlinear, even
under small strains (see [16]). Furthermore, the response during ten-
sion differs from the response during compression. Understanding and
accurately modeling the mechanical response of trabecular bone is
crucial for design and analysis in orthopedics, and tissue engineering.
Consequently, there is a need to develop appropriate constitutive rela-
tions and appropriate computational tools that can capture the unique
mechanical properties of this material.

Accurate mechanical modeling of bone behavior has significant
clinical application, particularly in guiding patient-specific orthope-
dic care. Understanding this behavior would greatly improve numer-
ous clinical challenges such as fracture risk assessment, reconstructive
implant selection, physical therapy strategy, and activity recommen-
dations. Advances in imaging resolution and computational power
have made CT-based finite element analysis (FEA) increasingly viable
for regular clinical use (see [17-19]). FEA-based fracture prediction
of metastatic bone have shown promising results, indicating com-
putational predictive accuracy comparable to experienced orthopedic
surgeons (see [20]). Comprehensive models of bone fracture healing
require integration of cellular response to mechanostimulation as tis-
sue differentiation within the fracture callus is widely understood to
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be regulated by the distribution of local strain (see [21]). Despite
some success, many of these computational models are predicated on
isotropic and/or linear constitutive models of the bone which do not
capture the complexity of the tissue’s mechanical response.

Bone presents interesting challenges to the constitutive modeler.
As mentioned earlier unlike most metals and polymers, the material
moduli characterizing the bone’s response in tension differs from that
during compression, even when the deformations are small.! Such
behavior is also exhibited by materials such as rocks, and is a con-
sequence of the material’s internal structure. Given the dependence
of the material moduli on the density, we are able to capture such
response characteristics by allowing the material moduli to depend on
the magnitude of the trace of the linearized strain which in virtue of
the balance of mass is related to the density, the details of which are
provided later.

In this study, we focus on developing an implicit constitutive rela-
tion for trabecular bone-like materials. Unlike the traditional linearized
elastic model, which assumes a linear relationship between the stress
and strain, trabecular bone demonstrates nonlinear behavior, partic-
ularly in the small strain region, even when strains are below 3%.
This nonlinear stress-strain relationship arises due to the intricate
architecture and porous nature of trabecular bone, which affects its
mechanical response under external loading conditions.

We use a two-field mixed finite element model capable of solving
general boundary value problems associated with the equilibrium of
elastic bodies that are described by implicit equations. This approach
enables us to accurately represent the mechanical response of trabec-
ular bone-like materials under diverse loading conditions. Specifically,
we will examine a dogbone-shaped sample of a trabecular bone sub-
jected to simple compression and compare the resulting stresses and
strains to those obtained from the classical linearized elastic solid.

2. Implicit constitutive relation for trabecular bone
2.1. Preliminaries

Consider an abstract body B occupying a region Q2 in three-
dimensional Euclidean space, with boundary 0£2y. The body’s particles
are labeled by their material positions X at a conveniently chosen
reference configuration, preferably, at time ¢ = 0. Let N(X) denote the
outward unit normal to the boundary of the body at X. As the body
deforms in time due to forces acting on it, let it occupy a different
region £, in space, the positions x of the particles in this configuration
of the body are related to their initial positions through a differentiable
map x = y(X,1) referred to as the motion of the body. We can now
define the displacement field u = x — X, the deformation gradient F =
37’;, the right Cauchy-Green tensor C = FT F, the left Cauchy-Green
tensor B = FFT, and Green-Saint Venant strain tensor E = 1/2(C —I),
associated with the motion.

Denoting the density of the body in the reference configuration and
configuration at time ¢ as py and p, respectively, the balance of mass is

pr=p detF. (€Y

We restrict ourselves to deformations that satisfy J = detF > 0.
Denoting the first Piola—Kirchhoff and Cauchy stress tensors by S and

1 It has been well established that rocks exhibit different response char-
acteristics in tension and compression (see [22-25]) and such a response is
attributed to the nature of the porous structure of the rocks (see [26]). [27]
have developed an implicit constitutive relation to describe the response of
such rocks. Their constitutive relation expresses the linearized strain as a
nonlinear function of the stress, a constitutive relation that can be obtained
by linearizing an appropriate implicit constitutive relation between the stress
and the Cauchy-Green strain.
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T (where S = JTFT) respectively, the balance of linear momentum
under static equilibrium is

0=Div S+ f, inQy (2)

where f are body forces per unit volume in the reference configuration
and Div is divergence operator with respect to X.

The linearized strain tensor is defined as:

1(ou  ou”
=< (&2 +2 ). 3

e) 2<ax X ) 3

As we shall be restricting ourselves to small strains, we do not fur-
ther distinguish between § and T.? The balance of angular momentum
implies T = T7.

Eq. (2) is the governing equation for static boundary value problems
along with boundary conditions

TN=g onTly (€3]

u=up onlp 5)

where g and u;, are prescribed boundary traction and displacements®;
0Qr =TIy UTp and I'y N I'p is a null set.

Displacement field that satisfies (2) along with boundary condi-
tions (4) and (5) cannot be solved for unless the constitutive relation
between stress T and € (Eq. (3)) is further prescribed. Balance of mass
implies p ~ pg(1 —1tre) and needs to be appropriately enforced. Balance
of angular momentum is enforced by the requirement that the stress be
symmetric, i.e., T =T".

2.2. Implicit constitutive relations

Within the context of small deformation gradients, and hence small
strains, general constitutive relations for Cauchy elastic bodies [28,29],
and hence Green elastic bodies [30] reduce to the classical linearized
elastic constitutive relation which is characterized by two constants,
the two Lame’ constants or alternatively by the Young’s modulus and
Poisson’s ratio. The material moduli have to be constants and cannot
depend on density in virtue of the balance of mass (see [31]). Since we
are interested in describing bodies whose material constants depend on
density, even when they are subject to small strains, we cannot consider
linearizations of Cauchy elastic bodies. The way out of this impasse is
to consider the linearization of the more general class of elastic bodies
introduced by [32] wherein the stress and the Cauchy-Green tensor are
related through an implicit relation.

Linearizing such an implicit relation under the assumption that the
displacement gradient is small leads to a nonlinear implicit relation

2 Since the norm of the displacement gradient is of (), § < 1, the
Cauchy stress T ~ .S (Piola-Kirchhoff stress). This is a consequence of detF ~
(1+tr(vu)) and F7 = (14 vu)" ~ (1-vu)’. The assumption is the same as
that which is made in the classical theory of linearized elasticity. While
in comparison to 1, tr(vu) is of O(8) and is ignored, the term A;tr(vu) cannot
be ignored as 4;,, i = 1,2,3 (see Eq. (6) that follows), is large. Under the
assumption of small displacement gradient, the balance of mass approximates
to p = pg(1 —tr(vu)). Once again, since the norm of the displacement gradient
is small, while the reference and current densities will be approximately the
same, the term

P~ Pr

Aitre = 4; (
PR

), i=1, 2, 3.

3 Though we prescribe the displacement at the boundary, we recognize that
this displacement is a consequence of the appropriate traction at the boundary.
Boundary conditions are a consequence of the nature of the material on either
side of the boundary and how the body and its surroundings interact. Forces
are exerted at the boundary of the body of interest and the body deforms
leading to a displacement of the boundary. Since in some instances, we are
not able to measure the cause (in this case the forces at the boundary) but
can easily ascertain the displacement or velocity (the effect), we prescribe the
latter.
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between the Cauchy stress and the linearized strain. At times such a
relation can be simplified to express the stress in terms of the linearized
strain wherein nonlinear terms of the linearized strain appear, but
such a form of expressing the constitutive relation is not allowable as
nonlinear terms in the linearized strain are to be ignored with regard to
the linearized strain. As shown by [33], linearizing an implicit elastic
body and inverting the expression, and inverting the expression for the
stress in terms of the Cauchy-Green strain and then inverting do not
lead to the same constitutive relation. Thus, one has to restrict oneself
to solving the system of equations consisting in the balance of linear
momentum and the constitutive relation simultaneously. This requires
the development of non-standard numerical techniques to solve bound-
ary value problems. In this study, we develop a finite element method
to analyze the problem.

We study several boundary value problems. We compare identical
two dogbone samples, when both of them are homogeneous, both
of them have an inclusion that is of lower and higher density, and
thus softer and stiffer, respectively, in a small region of the dog bone
than the rest, the inhomogeneities being in different locations. We
also study the problem of a hole and a semicircular notch in the
dog bone. As is to be expected, in the region with lower density and
less stiffness we obtain strains that are much higher than the rest of
the body. The linearized elastic body has constant density and thus
constant Young’s modulus. (Of course, we can have an inhomogeneous
linearized elastic body whose Young’s modulus varies over the body.
However, the Young’s modulus cannot depend on the density as this
would immediately imply that the density depends on fre, and the
constitutive relation would no more be linear in the linearized strain.)

2.3. Density-dependent constitutive relations

We shall consider a sub-class of the linearization of the implicit
relations considered by [34,35], specifically one wherein the Cauchy
stress and the linearized strain appear linearly. Though the stress
and strain appear linearly in the implicit relation, the relation is not
bilinear. This allows the constitutive relation to capture the nonlinear
response exhibited by the Trabecular bone while undergoing small
strain (see Fig. 1).

We consider an implicit equation of the form [31]:

(1 + A4,trT))e — By(1 + Ay (tre)T — By(1 + A5(tre))trT)I = 0. (6)

Note that in Eq. (6) only a linear term in € appears. It is shown in
footnote 2, since tre is linearly related to the density, density appears
only linearly in the constitutive relation. The Young’s modulus is usu-
ally assumed to be a power-law of the density. Such an assumption is
totally ad hoc in that it will not arise as a proper linearization of Cauchy
elastic bodies or even implicit elastic bodies as this would imply the
constitutive relation will not be linear in €. For instance, in the paper
by [36], in addition to the constitutive relation (6) wherein tre appears
linearly, they use the generalization of the Young’s modulus dependent
on a power-law for the density. However, such an assumption is not
consistent with requiring that only a linear expression of 7re is to appear
in the constitutive relation. With regard to the corroboration of the
results of the experiment under consideration the choice of constitutive
relation (6) wherein 7re appears linearly seems to suffice.

In view of the balance of mass, the term 7re can be expressed in
terms of the current density and the reference density. Since #T is the
mean value of the stress, the material moduli depend on both density
and the mean value of the stress, which is an expected characteristic of
porous solids.

4 The term pressure is used rather indiscriminately in mechanics and
especially in incompressible nonlinear materials, the Lagrange multiplier that
enforces the constraint of incompressibility is incorrectly referred to as the
pressure (see [37] for a discussion of the notion of pressure in mechanics).
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Table 1
Parameters values in constitutive relation (8) calibrated for trabecular bone data in
Fig. 1.

A Ay=—=Ay =y E v B, B,
(MPa™1) (no units) (MPa) (no units) (MPa™1) (MPa™1)
0. 35. 200. 0.3 (A+wW/E  —v/E

We notice that when 4, 4, and A; are zero, the constitutive relation
reduces to that for a classical linearized elastic solid. The constitutive
relation (6) when 4, is zero has been studied recently by Murru
et al. [38-41], and a further simplification of the constitutive relation
by thresholding has been carried out by Itou et al. [42-44].

2.4. Constitutive relation for trabecular bone

For the material described by the constitutive relation (6) one can
define, when A; = 0, a generalized Young’s modulus through®

1

E, = . 7
& B[l + Aytre] + By[1 + Astre] @

The generalized Young’s modulus of trabecular bone decreases dur-
ing both compression and extension, which would not be captured by
the above expressions for the generalized Young’s modulus. We thus
modify our constitutive relation to the following expression that is in
keeping with the fact that the Young’s modulus decreases during both
extension and compression:

(14 4,(trT))e — By(1 + Ay|treDT — By(1 + A3|tre|)erTHI = 0. 8)

where |.| denotes absolute value. While the constitutive relation (6)
could lead to a generalized Young’s modulus that decreases during both
compression and tension if different parameters for 4,, i = 1,2,3 are
chosen differently for tension and compression, the constitutive relation
(8) can describe the same response using the same parameter values in
compression and tension.

To simulate the response of a dogbone shaped sample of a trabecular
bone under tension, we employed the parameters listed in Table 1. The
normal values were obtained by fitting the model with the experimental
data for tension of the trabecular bone sourced from [45]. These values
were used to fit the compressive response which is different from that
in tension. That is, the material moduli determined by fitting tension were
able to predict the response in compression. The Young’s modulus E and
Poisson’s ratio v used to compute the material constants B, and B,
correspond to the values appropriate for the classical linearized elastic
response.

Rewriting the generalized modulus for the constitutive relation (8)
using the chosen form for B and B, in Table 1,

E = E
1+ [Ay + v(Ay — W)]|tre|”

€)

We have set 4, =0 and 4, = —A; =y in order to minimize both the
number of parameters used as well the magnitude of the parameters.®

5 There is a typographical error in [31], it should be 4, and A, as in the
equation above and not A, and 4, as it appears in [31]. The generalized
Young’s modulus defined in (7) depends inversely on the trace of the linearized

strain and since the rre ~ (";"" ), it depends inversely on the density. Usually,
one assumes a power-law dgpendence for the generalized Young’s modulus
for the density and this would imply that trace of the linearized strain would
appear in a nonlinear fashion in the constitutive relation. For instance, such
a choice was made to study the deformation of beams within the context of
the constitutive relation studied in this paper by [46]. Here, we are interested
in investigating the consequences of assuming that the trace of the linearized
strain appears linearly in the constitutive theory.

6 When calibrating a suitably selected constitutive relation using experimen-
tal data that may possess noise and bias, the selection of a model containing
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Bone Stress-Strain Relationship Calibration
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Fig. 1. Comparison of experimental data with results from the linear and nonlinear models for trabecular bone in tension. Experimental data sourced from [45] are depicted. The

maximal stresses in the nonlinear material are approximately 40% lower compared to

Moreover, during the calibration process of the constitutive relation
with experimental data, a deliberate effort was made to decrease both
the L, and L; norms (total number of nonzero elements and sum of
the magnitude, respectively) of the parameters.

Fig. 1 presents a comparison between the experimental data and the
nonlinear elastic model, utilizing the parameter values listed in Table 1.
For the linearized elastic model, we set the parameters 4,, 4,, and 45
to zero. The figure provides clear evidence of the nonlinear behavior
exhibited by trabecular bone, particularly at small strains. The modulus
gradually decreases until reaching a strain of 2.5%. Beyond this point,
the experimental data indicate signs of material failure and data beyond
the failure point are not included in the figure. We notice that at a strain
of 2.5%, the predictions of the classical linearized elastic constitutive
relation are off by as much as 40%, on the other hand, the constitutive
relation (8) provides very good agreement with experimental data.
So far we have used one experimental curve (in tension) and fit the
parameter y. We use this same value of y to predict the response
in compression and once again we find excellent agreement with the
experimental data (see Fig. 2).

2.5. Relation between E and py for human vertebral bone

In order to model the inhomogeneity due to variations in the refer-
ence density, following [47,48], the relation between Young’s modulus
and reference density is expressed as

E(pr(X)) = 2210 pr(X) (10)

where py (g/cc) is apparent density in reference configuration and E is
in MPa. While any inhomogeneity could be directly expressed in terms
of Young’s modulus E(X), expressing E(X) in terms of pg(X) allows
for the determination of pp(X) (and in turn E(X)) from clinical and
experimental images of bone. Eq. (10) is a statistical regression fit for

a minimal number of parameters can be seen as a twofold objective: first,
to reduce the discrepancy between the observed data and the predictions
generated by the model, and second, to simultaneously minimize the norms
of these parameters.

those in the linear material.

human vertebral bone data. In the regression fit, there is significant
variation or scatter in E for a given pz (> = 0.62, 41 data samples).
Accordingly, the predictions are expected to match for a group of
human vertebral bone samples in an average sense rather than for each
sample individually. Moreover, the reference density for experimental
data in Fig. 1 is not known. In Table 1, we have fit E = 200 MPa,
corresponding to an apparent density of 0.09 g/cc (based on relation
(10)).

Stress—strain relationship, in both tension and compression, pre-
dicted by the constitutive relation (8) for different apparent densities
(relation (10)) is shown in Fig. 2. By design, stress-strain relation
based on constitutive relation (8) displays decrease in modulus for both
tension and compression. While there seems to be good agreement
with regard to experimental data as evidenced in Figs. 1 and 2 for
this specific boundary value problem, it is necessary to validate the
constitutive relation under consideration of a sequence of boundary
value problems in order to ascertain the efficacy and robustness of the
constitutive relation.

We solve a series of boundary value problems involving inclusions,
holes and notches to determine if the results make qualitative sense
from a physical viewpoint. But this will not suffice, we need to sys-
tematically solve boundary value problems that can be corroborated
against experiments that can be performed.

3. Finite element formulation
3.1. Some preliminary numerical considerations

Consider a domain Q5 c RY with boundary 9. Let the displace-
ment field u in the body correspond to body force f and boundary
traction Tn = g acting over a boundary I'y. Displacements are specified
on the remaining portion of the boundary, i.e., u = up on I'y =
0Qz — T'y.

In the finite element method, we seek to find approximate solutions
of the static equilibrium equations u € H'(£2), such that the equation

/T(u)~e(v)dV—/f~vdV—/ g-vdS=0 1n
Q Q I'y
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Bone Stress-Strain Relationship Prediction
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Fig. 2. Model prediction.

is satisfied for all test functions v € H'(£2) satisfying the displacement
boundary condition on I'p. Typically, a Galerkin FE discretization
with piecewise quadratic element for the spatial approximation of
displacements u is used (see [46] for example).

The linearized strain e(v)’ in Eq. (11) is defined through Eq. (3). In
such formulation, it is necessary to express stress T explicitly in terms
of e(u). In this study, we directly solve Eq. (8) in a weak sense using a
mixed two-field formulation.

3.2. Mixed two-field finite element formulation

Consider a domain Q2 C RY with boundary 02,. Let the displace-
ment field u in the body correspond to body force f and boundary
traction Tn = g acting over a boundary I'y. Displacements are specified
on the remaining portion of the boundary, i.e., u = up on I'y =
0Qg — Iy.

Writing Eq. (8) in the form F(zr,e) = 0, approximate solutions of
the static equilibrium equations are obtained using the finite element
method. Specifically, we seek to find doublets u € H'(Q) and 7 €
H°() such that the equations:

/ F(r,e)) 7, dV =0 12)
Q

/r-e(v)dV—/f~vdV—/ g-v dS=0
Q Q I'y

are satisfied for all test functions v € H'(Q) satisfying displacement
boundary condition on I', and 7, € H 0Q).

The geometry was meshed with tetrahedral elements. We used a
Galerkin FE discretization with piecewise linear elements for the spatial
approximation of displacements u and discontinuous Galerkin elements
to approximate r. Additionally, constraints were applied to prevent
rigid body motion. Automatic differentiation tools from FEniCS [49]

13)

7 Balance of angular momentum is enforced in the use of symmetric strain
tensor e(v) as a test function, instead of the gradient of v as a test function,
for stress.

were used for computational implementation. For plotting the results,
solutions were projected onto piecewise linear elements.

The results were cross-validated against test cases from both a prior
FEniCS implementation by [46] and an in-house Abaqus implemen-
tation. Mesh size was selected to ensure that results remained stable
to within a 0.5% margin. Regions near inhomogeneities, holes, and
notches were further refined. The largest mesh sizes employed were on
the order of 0.3 mm, a scale similar to the typical pixel size of 0.36 mm
in clinical CT images (as seen in, for instance, [11]). Further numerical
investigations are warranted to comprehensively address convergence
rates.

After verifying the computational procedure, we study many bound-
ary value problems involving simple compression of a dogbone shaped
sample.

4. Illustrative boundary value problems

We investigate a dogbone shaped sample of length 20 mm (along
the y-direction) and thickness of 1 mm. The sample has a width of
5 mm at the ends and 4 mm at the center, as illustrated in Fig. 3(a).
In our simulations, the body is centered at the origin, the body force f
was set to zero, and displacement boundary conditions are prescribed
on the top and bottom surfaces (S,,, and Sy,,,,) in the y-direction.
Lateral displacements are left unconstrained on the top and bottom
surfaces. Rest of the lateral surfaces (S,,,,) of the body are traction
free.® Specifically,

lu], = [upl, on surface Siop> Shottom as
[TN], =0 on surface S,,,, Sprom as
[TN], =0 on surface S,,,. Sporom 16

8 Enforcing this is not as straightforward as shown here if the problem
were solved in Eulerian coordinates as typically done for problems in fluid
mechanics (see [50], for example). Enforcing this is also not straightforward
if mean value of stress is introduced as a new variable as done in case of some
Mixed Three-Field formulations.
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(a) Homogeneous dogbone sample.

Homogeneous Domain

Stress Oyy (Mpa)
o
(4]

Classical Linearized Theory
Constitutive Relation (8) ——

-2.5 -2 -1.5

-1 -0.5 0

Strain €y (%)

(b) Comparison of results between the linearized elastic body and the body described by constitutive

relation (8).

Fig. 3. Results for homogeneous domain.

[TN], =0 on surface S ora a7
[TN], =0 on surface Syeqq (18)
[TN],=0 on surface S .ra (19)

To ensure meaningful comparisons of the response of the classical
linearized theory and constitutive relation (8), we maintained the same
boundary conditions for both the cases. Specifically, [up], was set to
be 2.25E—4 (m) with appropriate sign on top and bottom surfaces
corresponding to a global strain of 2.25% in the longitudinal direction
in all cases except for the cases where strains produced by the above
displacement were too high thereby possibly violating the small strain

restriction. For the cases with a hole or a notch, [u pl, was set to be
0.75E—4 (m) at the top and bottom surfaces. For the cases with a
weaker lateral square inclusion, [uj], was set to be 1.875E—4 (m) at
the top and bottom surfaces.

4.1. Homogeneous dogbone sample

Compression results for a representative point from the homoge-
neous dogbone sample is shown in Figs. 3(b) and 4. We notice a stark
distinction between the response of the linearized elastic body and the
porous body that is described by the constitutive relation (8), far less
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(b) Constitutive Relation (8)

(d) Constitutive Relation (8)

Fig. 4. Comparison of stress field o,, (top row) and ¢,, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.

stress is required to produce the same strain (that is, the porous body
becomes softer as it deforms).

4.2. Inhomogeneous dogbone samples

To examine the impact of location of the inhomogeneity (in this
case location of different density) on the damage/failure of the dogbone

sample, we employed identical geometries featuring different inhomo-
geneous regions as illustrated in Figs. 5(a) (inhomogeneity in the center
of the dogbone), 7(a) (less dense central square inclusion), 9(a) (less
dense lateral square inclusion), 11(a) (denser circular inclusion), 13(a)
(denser semi-circular lateral inclusion), 15(a) (central hole), and 17(a)
(lateral notch). Modulus values along with corresponding reference
density values for different types of inhomogeneties are shown in
Table 2.
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(a) Inhomogeneous domain.

Inhomogeneity in the Central Region (10% Less Dense)

Classical Linearized Theory: Damaged Region

Classical Linearized Theory: Normal Region
05 | Constitutive Relation (8): Damaged Region
Constitutive Relation (8): Normal Region
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(b) Comparison of results between the linearized elastic body and the body described by constitutive
relation (8).

Fig. 5. Inhomogeneity in the center of the dogbone.

Table 2

Reference density values used for various simulation cases.

Parameter Normal value Lower density Lower density Higher density
Inclusion 1 Inclusion 2 Inclusion

E (MPa) 200 180 100 300

Corresponding p, from relation (10) (g/cc) 0.09 0.08 0.045 0.14
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(d) Constitutive Relation (8)

Fig. 6. Comparison of stress field o,, (top row) and ¢, (bottom row) for the two cases. The displacement field (prescribed boundary condition) is the same in both cases.

Figs. 5(b), 7(b), 9(b), 11(b), 13(b), 15(b), and 17(b) present a com-
parison between stresses and strains obtained for classical linearized
theory and constitutive relation (8) for different cases. The spatial
distribution of stresses and strains corresponding to when the maximum
boundary displacements (applied equally for both the linearized and
nonlinear cases) are imposed are shown in Figs. 6, 8, 10, 12, 14, 16,
and 18.

For the chosen value of reference density changes in Table 2,
stress concentration factors significantly differed between the linearized
and nonlinear cases for the geometry with the hole and notch. Stress
concentration factor is defined as the ratio between longitudinal stress
(e,,) near the hole and longitudinal stress (0,,) at the far field. Stress
concentration factor variations with respect to prescribed displacement
at the boundary are shown in Figs. 19(a) and 19(b).



J. Arumugam et al.

International Journal of Non-Linear Mechanics 161 (2024) 104664

(a) Less dense central square inclusion.

Square Inclusion at the Center of the Body (50% Less Dense)

0
Classical Linearized Theory‘: Inclusion hegion
05 |- Classical Linearized Theory: Normal Region |
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(b) Comparison of results between the linearized elastic body and the body described by constitutive

relation (8).

Fig. 7. Less dense central square inclusion.

4.2.1. Inhomogeneity in the center of the dogbone
See Figs. 5 and 6.

4.2.2. Less dense central square inclusion in dogbone sample
See Figs. 7 and 8.

4.2.3. Less dense lateral square inclusion in dogbone sample
See Figs. 9 and 10.

4.2.4. Denser circular inclusion in dogbone sample
See Figs. 11 and 12.

4.2.5. Denser semi-circular lateral inclusion in dogbone sample
See Figs. 13 and 14.

4.2.6. Dogbone sample with a central hole
See Figs. 15 and 16.

4.2.7. Dogbone sample with a semi-circular notch
See Figs. 17-19.
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(d) Constitutive Relation (8)

Fig. 8. Comparison of ¢,, (top row) and ¢,, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.

5. Discussions and conclusions

Our study reveals notable disparities in the prediction of the strains
and the stresses between the linearized constitutive relation and our
constitutive relation (8) for the bone. The constitutive relation we are
employing is able to predict the response of trabecular bone in the

11

homogeneous dog bone sample much better than the linearized elastic
constitutive relation. Since the linearized constitutive relation over-
predicts the stress required by over 40% to produce a strain of around
2.5%, we would be making a serious error in thinking that the bone

could take a lot higher load than it can for engendering the same strain.
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(a) Less dense lateral square inclusion.

Lateral Square Inclusion (50% Less Dense)
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Classical Linearized Theory: Normal Region
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(b) Comparison of results between the linearized elastic body and the body described by constitutive

relation (8).

Fig. 9. Less dense lateral square inclusion.

The study underscores the importance of capturing nonlinearity
exhibited by trabecular bone, accurately. In orthopedic applications,
strains typically remain below 3%, and thus one might overlook the
effects of nonlinearity in the response of the body and incorrectly
conclude that the linearized elastic constitutive relation ought to apply.
However, our findings emphasize the significance of considering non-
linear behavior even at these low strain levels. Although lower stresses
in the nonlinear material may initially seem advantageous in terms of
factors of safety in design and analysis, it is important to note that
this aspect has potential drawbacks. For instance, lower stresses can

12

exacerbate stress shielding in orthopedic implants, leading to adverse
physiological effects such as bone atrophy.

Furthermore, variations in mechanical properties, such as the modu-
lus, resulting from differences in reference density can also significantly
influence the state of stress and strain in the bone. In our study, we used
data from just one experiment to determine the material properties of
the bone. In order for us to have sufficient faith in the applicability of
the constitutive relation, it is imperative for us to fit the predictions of

our constitutive relation vis-a-vis other experimental data.
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(a) Classical Linearized Theory (b) Constitutive Relation (8)

(c) Classical Linearized Theory (d) Constitutive Relation (8)

Fig. 10. Comparison of ¢,, (top row) and ¢,, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.
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(a) Denser circular inclusion.

Central Circular Inclusion with 50% Higher Density

0 T T T
Classical Linearized Theory: Inclusion Region
Classical Linearized Theory: Normal Region
Constitutive Relation (8): Inclusion Region
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(b) Comparison of results between the linearized elastic body and the body described by constitutive
relation (8).

Fig. 11. Dogbone Sample with a denser circular inclusion.
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(c) Classical Linearized Theory (d) Constitutive Relation (8)

Fig. 12. Comparison of ¢,, (top row) and ¢,, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.
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(a) Denser semi-circular lateral inclusion.

Denser Semi-circular Region with 50% Higher Density
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(b) Comparison of results between the linearized elastic body and the body described by constitutive
relation (8).

Fig. 13. Dogbone Sample with a denser semi-circular lateral inclusion.
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— 1.6e+05 — 1.6e+05

(a) Classical Linearized Theory (b) Constitutive Relation (8)

(c) Classical Linearized Theory (d) Constitutive Relation (8)

Fig. 14. Comparison of ¢,, (top row) and ¢,, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.

17



J. Arumugam et al. International Journal of Non-Linear Mechanics 161 (2024) 104664

(a) Geometry with a central hole.

Central Hole

Classical Linearized Theory: Region Near Hole
Classical Linearized Theory: Region Far Away
0.5 Constitutive Relation (8): Region Near Hole
Constitutive Relation (8): Region Far Away

T /
o
\E/ 2 /

>
& I Y4
® 25
Qo
3 /

-3

. /

Strain Eyy (%)

(b) Comparison of results between the linearized elastic body and the body described by constitutive
relation (8).

Fig. 15. Dogbone sample with a central hole.
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Fig. 16. Comparison of stress field o,, (top row) and ¢, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.
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(a) Geometry with a semi-circular notch.

Lateral Semi-Circular Notch
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(b) Comparison of results between the linearized elastic body and the body described by constitutive
relation (8).

Fig. 17. Geometry with a semi-circular notch.
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(a) Classical Linearized Theory (b) Constitutive Relation (8)

(c) Classical Linearized Theory (d) Constitutive Relation (8)

Fig. 18. Comparison of stress field o,, (top row) and ¢,, (bottom row) for the two cases. Prescribed displacement boundary condition is the same in both the cases.
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(b) Geometry with a semi-circular notch.

Fig. 19. Stress concentration factor.
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