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Objective: Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly
used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health re-
cords (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing
PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in
clinical care.

Methods: We searched PubMed, Scopus, and Web of Science for studies written in English between 1,/1,/2000 and
12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized
information related to the study purpose, patient population, type/source/amount of unstructured PRO data,
linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs.

Results: Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and
mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some
studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or
developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different lin-
guistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs.
Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non-
neural ML algorithms embedded in NLP.

Conclusions: This study supports the potential utility of different NLP/ML techniques in processing unstructured
PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured
PROs is dominant, deploying novel neural ML-based methods is warranted.

1. Introduction

Patient-reported outcomes (PROs) provide information about a pa-
tient's physical, psychological, somatic symptoms, daily functional sta-
tus, health-related quality-of-life (HRQOL), and satisfaction with
healthcare services that facilitate clinical decision-making and outcome
evaluation [1]. PROs are conventionally assessed through validated

questionnaires or semi-structured interviews. However, these methods
may not capture the full patient experience as their responses are bound
by predetermined items. Additionally, it is challenging to collect PRO
data from patients during time-limited clinical encounters [2]. There-
fore, finding effective approaches to assess, retrieve, and extract already
available, unstructured PRO data from alternative sources, e.g., medical
notes in electronic health records (EHRs), is important [3].
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Fig. 1. Flow diagram of included articles.

PRO data in EHRs are often stored in an unstructured and free-text
format (e.g., symptom narratives in a physician note) and cannot be
directly used in clinical tasks (e.g., disease prediction, classification).
Natural language processing (NLP) and machine learning (ML) can turn
unstructured PROs into a quantitative or structured format for clinical
use [4]. The application of NLP/ML techniques in clinical settings in-
cludes text pre-processing (e.g., tokenization, lemmatization, or stem-
ming from the corpus), linguistic feature extraction for clinical
narratives (e.g., encoding, detecting affirmed/negated expressions), and
clinical applications [5]. Given the significant expansion of EHR eco-
systems and the development of novel NLP/ML techniques over the past
decade, the interest in processing unstructured PROs from clinical nar-
ratives through automatic or semi-automatic NLP/ML pipelines of free-
text-based PROs is emerging [6,7].

Previous reviews have described the application of NLP/ML methods
for automatic extraction of non-PRO clinical narratives (e.g., disease
progression, adverse drug reactions, medications, and treatments) from
EHRs [5,8], yet review studies of NLP/ML techniques on unstructured
PROs are limited. One review article investigated NLP techniques to
extract symptom information through patient-authored data collected
from social media (e.g., Twitter, WebMD, and Reddit) [9]. Another re-
view article collected the applications of NLP in analyzing symptom-

only data documented in EHRs [10]. However, these studies mainly
focus on the traditional rule-based NLP methods to process symptom
data, followed by non-neural ML-based classifiers (e.g., support vector
machine, logistic regression classifier), rather than novel neural network
(e.g., Convolutional Neural Networks [CNN], Recurrent Neural Network
[RNN]) or large language models (e.g., Generative pre-trained trans-
former [GPT], Bidirectional Encoder Representations from Transformers
[BERT]) to analyze associations of PROs and clinical outcomes.

With the recent advances in NLP/ML techniques, this study aimed to
summarize research applying NLP/ML for processing and analyzing
unstructured PRO data collected in EHRs. Specifically, we evaluated
studies that analyzed unstructured PROs for clinical care or research, the
type of unstructured PRO data, and the uniqueness of NLP/ML systems/
toolkits and techniques to process unstructured PROs. In contrast to
previous review studies [9,10], the findings from this study will improve
our clinical insights of using NLP/ML techniques to process EHR-based
unstructured PROs in a broader category (including symptom, func-
tioning, and quality-of-life), together with other clinical parameters for
clinical application.
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2. Methods
2.1. Data retrieval

We searched studies written in English between January 1st, 2000
and December 31st, 2020 through PubMed, Scopus, and Web of Science.
Following the guideline of the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses, we identified 693 studies from PubMed,
739 from Scopus, and 886 from Web of Science (Fig. 1). The search
strategies are reported in Supplementary Table S1.

2.2. Article selection

Among the 2318 studies identified from these three databases, 979
non-duplicate studies were retained for the title and abstract screening.
Studies were considered for inclusion if they 1) focused on unstructured
PRO data in EHRs or medical notes, and 2) used NLP techniques or
applications accompanied by ML algorithms to extract or process un-
structured PRO data. Studies were excluded if they 1) did not apply
NLP/ML techniques, 2) were non-empirical studies (e.g., case reports,
commentary), 3) were non-EHR-based studies (e.g., patient-authored
data collected from social media), 4) were survey-based studies con-
taining quantitative PRO data, 5) were previous systematic review
studies or E-pub ahead of print, and/or 6) focused on non-chronic dis-
ease topics (e.g., infectious disease/vaccination). Based on these criteria,
the first author (JAS) and the senior author (ICH) independently
reviewed the title and abstract of all 979 studies retrieved from the
literature search and retained 151 studies. Subsequently, the same two
authors reviewed the full-text articles, resolved any discrepancies, and
selected 79 studies for inclusion in this study (Fig. 1).

2.3. Data extraction and summary

We implemented the following steps to collect data from the original
articles: 1) the first author (JAS) manually extracted data from the 79
studies and documented information in a database, 2) the senior author
(ICH) reviewed all of the extracted information in the database, 3) both
co-authors met to confirm the extracted data through reviewing each of
the original articles included in this study, and 4) the second author (XH)
adjudicated the discrepancy raised by the first and senior authors, and
reviewed information summarized in the tables for identifying any er-
rors. For each selected study, the characteristics of the study sample, the
objective of the study, the type/format, size, and unit of unstructured
PRO data, specific PRO content, and NLP/ML systems/toolkits and lin-
guistic features used to process PRO data were abstracted and reported.

3. Results
3.1. Study characteristics

Supplementary Table S2 displays the characteristics of 79 studies
selected for inclusion in this systematic review. These studies included
various participant sample sizes, ranging from 22 to 267,855, and
different disease diagnoses, including any type (n = 24) [7,11-33],
chronic disease (n = 18) [6,34-50], mental illness (n = 23) [51-73],
cancer (n = 8) [74-81], and others (n = 6). The majority of studies (n =
73) focused on adults, six on pediatrics [19,25,38,54,82,83], and one on
both adult and pediatric patient populations [7]. Most of the PRO
narrative data were primarily obtained from inpatient or outpatient
EHRs (n = 75), while several studies relied on the open data re-
positories/resources (e.g., MIMIC-III; n = 4) [24,33,35,50] and the na-
tional database (e.g., Taiwan's National Health Insurance Research
Database; n = 1) [72]. Narrative data from both inpatient settings (e.g.,
admission notes, discharge summaries, nursing narratives, emergency
department documents, intensive care unit reports; n = 56) and outpa-
tient settings (e.g., primary care documents, psychiatric evaluation
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notes; n = 35) were generated by healthcare professionals. The number
of PRO narrative documents/grammatical units for NLP/ML analysis
ranged from 100 to 5.3 million. Approximately 85 % of the studies were
based on English-based EHRs (USA: 66 %, UK: 15 %, and Canada, Island,
and Australia: 4 %), 10 % from Chinese-based EHRs (China: 7 % and
Taiwan: 3 %), and 5 % from EHRs with other languages (Danish: 3 %,
Swedish: 1 %, and Egyptian Arabic: 1 %).

The structure of the free-text PRO documents included keywords/
phrases, sentences, paragraphs, or the entire document/medical note.
Different vocabulary systems representing standardized clinical terminol-
ogies or nomenclatures (e.g., Systematized Nomenclature of Medicine-
Clinical Terms [SNOMED-CT] (n = 10) [35,42-44,47,56,57,60,73,781,
Unified Medical Language  System [UMLS] n = 17)
[12,17,25,26,31,33,36,42-45,47,59,64,74,76,82], Logical Observation
Identifiers Names and Codes [LOINC] (n = 1) [18], Diagnostic and Statis-
tical Manual of Mental Disorder [DSM] (n = 4) [20,59,60,73], International
Classification of Diseases [ICD]-codes (n = 27) [7,11,15,17
-20,23,28,34-36,38,40,42,43,50,53,54,61-63,67,68,83-85]) were used to
extract the representation of unstructured PROs. Among 37 studies that
used a rule-based NLP approach, 14 adopted an extant rule-based NLP
system, and 21 created study-specific/custom rules to extract the repre-
sentation of unstructured PROs. Additionally, 24 studies used clinical/
medical dictionaries to incorporate the standard clinical terminologies (e.g.,
LOINC, UMLS, SNOMED-CT) or created custom or study-specific terms/
concepts  [12,14,16,28-31,34,37-40,55,58-60,64,66,69,70,72,74,77,78]
for extracting unstructured PROs.

3.2. Main objectives of the NLP/ML application in analyzing PRO data

Table 1 summarizes the features of studies that used NLP/ML tech-
niques to process unstructured PRO data. Most of the studies used NLP/
ML algorithms to identify or extract unstructured PROs from clinical
narratives (n = 74 studies), assign or classify extracted PRO information
into specific PRO domains (n = 16), phenotype unstructured PROs to
capture specific PRO features (n = 9), and classify co-occurrence of
multiple PRO problems (e.g., symptom clustering; n = 5). Some studies
used NLP/ML techniques to analyze unstructured PRO to predict the risk
of disease progression or adverse medical events (n = 22), develop/
validate NLP/ML pipelines for analyzing unstructured PROs (n = 19),
test associations with clinical outcomes (n = 5), and stratify or group
patients for delivering tailored healthcare services per distinct patterns
of PRO problems (n = 3).

3.3. Domains of unstructured PROs included in EHRs

Supplementary Table S3 displays the domains of unstructured PROs
documented in EHRs that were extracted by NLP/ML approaches. The
most popular documented PRO domains were psychological symptoms
(e.g., anxiety, depression, stress; 57.0 % of 79 studies), followed by
general symptoms (e.g., fatigue, pain, insomnia; 49.4 %), and physical
symptoms in the digestive/gastrointestinal (e.g., bloating, constipation,
diarrhea; 43.0 %), neurocognitive symptoms (e.g., arousal, attention
problem, dysarthria; 41.8 %), respiratory (e.g., cough, sneezing, dys-
pnea; 38.0 %), cardiovascular (e.g., cardiac problem, angina, swelling of
arms and legs; 29.1 %), metabolic/hormonal symptoms (e.g., obese,
weight loss; 29.1 %), and dermatologic (e.g., itching, edema, rashes;
20.3 %) organ systems. Several PRO domains (e.g., symptoms in the
head/neck, musculoskeletal, urinary, sexual/reproductive organ sys-
tems; physical and social functioning) were documented by <20 % of
the studies.

3.4. Types and methods for linguistic features
Table 2 provides examples of linguistic feature types derived from

unstructured PROs: 1) lexical, 2) syntactic, 3) semantic, and 4) contex-
tual features. Lexical features address the word-level characteristics of
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clinical narratives primarily using n-grams (e.g., uni- and bi-grams)
representing the concept of unstructured PROs [51,57,61,74]. Syntac-
tic features address the phrase, clause, sentences, and part-of-speech
tagging [12,31,45,56,82]. While syntactic features represent grammat-
ical patterns (e.g., noun and adjective/adverb phrases) [31,45], se-
mantic features focus on the meaning of words and terms, typically
defined in a custom dictionary, controlled medical terminology, or
lexicon (e.g., LOINC, SNOMED-CT, UMLS) [31,39,51,59,62]. Repre-
senting the relevance of specific words to individual texts, as opposed to
their prevalence in a corpus, is another method used to process semantic
features and semantic keywords for clustering the symptoms [62].
Contextual features address the relative or absolute characteristics of
unstructured PROs by considering the linguistic components (i.e.,
words, phrases, and sentences) neighboring around words or phrases of
interest rather than searching keywords of unstructured PROs
[6,7,22,51,76]. One study shows that subject terms (e.g., “mother”,
“patient”), negation terms (e.g., “does not”), hypothetical terms (e.g.,
“if”), temporal terms (e.g., “previously”, “when”), and termination
terms (e.g., “however”) were examples of contextual analytic features
[39]. Another study labeled the contextual feature as “if-clause” for the
text “I recommended nitroglycerin if he should develop chest pain” [22].

3.5. NLP systems/toolkits for processing unstructured PROs

Table 3 displays the NLP systems/toolkits used to process unstruc-
tured PROs in EHRs, inclusive of 14 generic (e.g., ConText, FMA, GATE,
Hiedel Time, MALLET, NegEX, SUTime) and 11 clinical (e.g., MedLEE,
TextHunter, v3NLP, cTAKES, ClinREAD, Clamp, MetaMap) systems/
toolkits. Techniques utilized under each system/toolkit were mostly
rule-based NLP (n = 15 techniques), followed by hybrid NLP (n = 6
techniques) and non-neural ML algorithms embedded in NLP (n = 4
techniques). The rule-based approach uses rules created by experts to
categorize or label unstructured PRO data [71,86], and some studies
validated the rules with unstructured data from different patient sam-
ples and subsequently applied the rules to the new samples [87]. ML-
based approaches often train established classification algorithms with
statistical inference techniques through previously annotated text-
corpus [13]. Once ML algorithms learn the unstructured data of a new
system, they can be applied to other lexical, semantic, and contextual
meanings without referring to any rules [88]. In contrast, the hybrid
approach adopts both rule- and ML-based methods, and integrates
expert-generated, ruled-based systems to guide ML algorithms to
perform the analysis [16,45,58]. Fifteen NLP systems/toolkits were rule-
based (e.g., generic toolkits: ConText, FMA, Heidel Time, NegEX,
Protégé, SUTime, Tagger_Date Normalizer plugin, and Wordnet; clinical
toolkits: CliX NLP, ClinREAD, MetaMap, MTERMS, MedEx, NLP-PAC,
and v3NLP). Specific non-neural ML-embedded systems/toolkits
included MALLET and GENSIM with R, and hybrid systems/toolkits
included GATE, TextHunter, Clamp, cTAKES, MedLEE, and MedTagger.
A full list of references is in Supplementary Table S4.

3.6. NLP/ML techniques for processing unstructured PROs

Table 4 reports the 3-step NLP/ML methods to process unstructured
PROs from EHR clinical narratives: Step 1 is data pre-processing (n = 60
studies), Step 2 is feature extraction and representations (n = 69
studies), and Step 3 is data analysis (n = 61 studies, including 39 using
non-neural NLP/ML methods and 22 using neural NLP/ML methods).
The step-by-step process was also summarized in Fig. 2. The most
common techniques for data pre-processing were annotation and text
tokenization. The most common techniques for feature extraction and
representations were rule-based NLP, affirmation/negation detection,
and word2vec/bag-of-words. Regarding NLP/ML analytic methods, the
most common non-neural ML methods were SVM, decision tree, and
CRF. In contrast, commonly used neural NLP/ML methods included
CNN, RNN (e.g., Bi-Long Short-Term Memory [Bi-LSTM]), and ANN (e,

Table 1
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Purpose of NLP/ML applications for analyzing PRO data among the 79 studies
included in the systematic review.

Classifications Specific roles of Task description N %
NLP/ML tasks
Information Total 74 937
extraction/text PRO content Detect or identify PRO 47  59.5
identification detection, keywords or
identification, terminologies from free
extraction text
PRO annotation Perform semi- 37 46.8
automated or manual
annotation for PROs in
free text
PRO affirmation/ Declare whether 38 48.1
negation detection ~ symptoms or symptom-
related outcomes exist
or equivalent
expression or negative
statement for having
symptoms
Vocabulary Map or assign PROs or 13 16.5
mapping PRO-related
vocabulary words to
appropriate indexes or
labels
Classification/ Total 26 329
phenotyping/ PRO classification Assign or classify 16 20.3
clustering extracted PROs into
specific categories
PRO phenotyping Indicate specific 9 114
characteristics of single
or multiple PROs
features
PRO clustering Identify two or more 5 6.3
PROs that are related to
each other or co-occur
Develop or validate  Total 19 241
NLP/ML Development of Develop new NLP/ML 10 12.7
pipelines NLP/ML pipelines pipelines or build NLP
software
Evaluation/ Evaluate and validate 12 15.2
validation the performances of
NLP system/pipeline
Risk prediction or Total 25 316
stratification for Risk prediction Predict the risk of 22 278
clinical outcomes outcomes using
extracted PROs based
on unstructured
narratives
Risk stratification Identify the right level 3 3.8
of care and services for
distinctive subgroups
of patients.
Investigate Total 5 6.3
associations Relationship Detect semantic 5 6.3
between PROs detection associations or

and clinical
outcomes

relationships between
unstructured PROs

Each study may include multiple study purposes and NLP/ML tasks.

g., feed forward network [FFN]). As an example of the way neural NLP/
ML methods are used in clinical settings, the novel contextual embed-
dings of the BERT model use a context-based representation of chief
complaints to predict specific signs/symptoms (e.g., pain, cognitive
confusion) labeled by the experts and map semantically similar chief
complaints to nearby points of vector space [7]. A full list of references
was provided in Supplementary Table S5.

4. Discussion
This systematic review study focuses on PRO-related studies and the

findings have a significant contribution to the literature by summarizing
the NLP/ML applications in PROs (e.g., classification, phenotyping, and
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Table 2
Examples of frequently used linguistic features.

Artificial Intelligence In Medicine 146 (2023) 102701

Levels of Methods
linguistic

features

Description

Some example methods explained in selected studies

Numerical characteristics of tokens in text
documents, such as token count and length.

Lexical
features

Syntactic
features

Patterns of sentence structures defined by
language grammar.

Semantic
features

Linguistic units of meaning-holding
components that represent word meaning,
such as lexicon definitions, dependency
between tokens, and semantic networks.

Contextual
features

Linguistic neighboring components (e.g.,
word, phrase, or sentence) of tokens or
sentences that represent similar semantic
meanings.

embeddings

N-gram (e.g., uni- and bi-grams), capitalization
(uppercase, title case), stemming, lemmatization,
stopwords removal, lexicon, word embeddings

Part-of-speech (POS) tags, constituency grammar,
dependency grammar

Semantic definitions from lexicons (LOINC,
SNOMED-CT, UMLS, etc.), relative temporal words
(next, later, until etc.), absolute temporal expressions
(a.m., p.m., etc.), meaning of the numbers (doses,
levels), de-identification, topics of the section

Affirmation/negation detection, complex temporal
relations, discourse structure, line position, order of
sections, implicit context dependent information,
feature representations from pre-trained neural

“Stop-words removal (e.g., ‘is’, ‘an’, ‘the’, etc.),
stemming, and number to string conversation.”
[Banerjee, 2019]

“Lexical variances in the extraction rules [i.e.,
misspellings (e.g., obese* instead of obsessive)].”
[Chandran, 2019]

“N-grams represent concepts of serious mental illness
symptomatology.” [Jackson, 2018]

“Text processing included lower casing; removal of
punctuation, stop words, and numbers; word
stemming; and tokenization.” [Obeid, 2020]

“POS tagger and multi-word term identification to
identify symptoms and non-symptoms were used.”
[Divita, 2017]

“POS tags in conjunction with knowledge engineering
features generated to build a sentence classifier.”
[Jackson, 2017]

“Syntactic phrases representative of patients' functional
status including noun phrases (e.g. ‘patient’),
prepositional phrases (e.g. ‘with pain’), and adjective/
adverb phrases (e.g. ‘very tired’) using two reference
standards.” [Pakhomov, 2011]

“Syntactic patterns of concept phrases were mined from
continuous, non-permuted forms of synonyms, and
these patterns were used to detect discontinuous and/
or permuted concept phrases.” [Torii, 2018]
“Semantic variances in terms of obsessive and
compulsive in the extraction (alternative meanings
beyond their definition in the context of Obsessive
Compulsive Symptoms (OCS)).” [Chandran, 2019]
“Semantic keywords identifying the Altered mental
status cluster of symptoms in the context of pulmonary
embolism.” [Obeid, 2019]

“UMLS semantic networks which are relevant to
clinical findings were used” [Torii, 2018]

“The symptom dictionary was based on UMLS, which
includes a semantic network.” [Le, 2018]
“Distinguishing between instances where a patient is
described as experiencing a particular symptom from
instances where the texts state that the patient is not
experiencing that symptom, or where it is someone else
(e.g. a friend or relative) who is experiencing that
specific symptom.” [Chandran, 2019]

“The ‘conditional’ context label is considered when the
term is mentioned in the following context (e.g., ‘I
recommended nitroglycerin if he should develop chest
pain’).” [Pakhomov, 2008]

“Depending on the context, weight gain could indicate
either fluid accumulation because of worsening heart
failure or an improvement in appetite because of
decreased gut edema associated with a higher dose of
diuretics.” [Leiter, 2020]

“Subject terms (e.g., ‘mother’, ‘patient’), negation
terms (e.g., ‘does not’), hypothetical terms (e.g., ‘if’),
temporal terms (e.g., ‘previously’) and termination
terms (e.g., ‘however’).” [Igbal, 2017]

clustering; PRO-based risk prediction and stratification for clinical out-
comes), the available NLP systems or toolkits, and NLP/ML pipelines (e.
g., preprocessing, feature extraction and representations, and data
analysis using non-neural or neural ML methods). Among 79 selected
studies, most studies (>90 %) used NLP/ML techniques for extracting
free-text PRO data, followed by predicting the risk of adverse events (30
%), classifying, phenotyping or clustering PROs (20 %), and testing as-
sociations between PROs and clinical outcomes (8 %). Given the chal-
lenges of using standard surveys to assess PROs in busy clinics, as well as
well-described barriers to PRO instrument application into routine
clinical care [2], NLP/ML application provides a convenient mechanism
to integrate PROs available in EHRs into clinical workflows for clinical
decision-making [89].

We found that different types/units of unstructured PROs (e.g.,
keyword/phrase, sentence, paragraph, entire document/note) were
used in NLP/ML analyses. Vocabularies from standard clinical termi-
nologies or nomenclatures (e.g., SNOMED-CT, UMLS, LOINC, DSM-5,
and ICD-codes) were commonly used to process unstructured PROs.
These rule-based systems (e.g., ontologies, medical terminologies) were
typically used to identify the meaning of the words and terms from free-
text PROs [90]. SNOMED-CT is deemed the most comprehensive com-
puter collection of medical terms and medical relationships [91]. The
feasibility of mapping other medical terminologies (e.g., ICD-9 or ICD-
10 codes) to the SNOMED-CT makes the translation between different
terminology systems feasible. To achieve semantic interoperability [90].
many studies used medical vocabulary systems to map PRO words or
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Table 3
The reported NLP systems or toolkits".
Systems/toolKkits Full names Purposes” NLP/ML Techniques®
Generic toolkits
ConText N/A Feature extraction and representation: sentence classification Rule-based NLP
FMA Freetext Matching Algorithm Preprocessing: annotation Rule-based NLP
Feature extraction and representation: information extraction
GATE General Architecture for Text Preprocessing: tokenization, sentence splitting, POS tagging, Hybrid NLP: rule-based, non-neural ML
Engineering annotation (support vector machine; SVM, WEKA
Feature extraction and representation: named entity recognition ML)
(NER), information extraction
Data analysis: sentence classification
GENSIM (R) GENSIM Feature extraction and representation: topic modeling and word Non-neural ML

Heidel Time

MALLET

NegEX

Punkt Sentence
Tokenizer

Protégé

NLTK (Python)

SUTime

Tagger_Date
Normalizer

plugin
TextHunter

WordNet

Clinical NLP toolkits
Clamp

cTAKES

CliX NLP
ClinREAD

MedLEE

MedTagger

MetaMap

MTERMS

MedEx
NLP-PAC

v3NLP

High quality rule-based extraction and
normalization of temporal expressions
MAchine Learning for LanguagE Toolkit
N/A

nltk.tokenize.punkt module

Natural Language Toolkit

Stanford NLP annotator

Not available

N/A

N/A

Clinical Language Annotation,
Modeling, and Processing Toolkit

clinical Text Analysis and Knowledge
Extraction System

Clinical NLP tools for SNOMED-CT

Rapid Clinical Note Mining for New
Languages

Medical Language Extraction and
Encoding System Processing System

N/A

N/A

Medical Text Extraction, Reasoning and
Mapping System

Medication Information Extraction
System for Clinical Narratives

NLP algorithms for Predetermined
Asthma Criteria

Not available

embedding

Preprocessing: tagging, normalization

Feature extraction and representation: information extraction
Feature extraction and representation: document classification,
clustering, topic modeling, information extraction

Feature extraction and representation: affirmation/negation
detection

Preprocessing: tokenization

Feature extraction and representation: ontology editor or framework

Preprocessing: text tokenization, stemming, stop word removal,
classification, clustering, POS tagging, parsing, and semantic
reasoning

Preprocessing: annotation, recognizing and normalizing time
expressions (TIMEx)

Preprocessing: tagging, normalization

Preprocessing: tokenization, stemming, POS tagging

Feature extraction and representation: information extraction
Data analysis: automated concept identification

Lexical database for NLP (ontology)

Preprocessing: tokenization, POS tagging, annotation, sentence
boundary detection, section header identification

Feature extraction and representation: assertion, negation, NER,
UMLS encoder

Data analysis: sentence boundary detection, section header
identification, classification

Preprocessing: sentence boundary detection, tokenization, parsing,

dictionary lookup annotation, normalization, POS tagging
Feature extraction and representation: affirmation/negation

detection, named section identification, NER, information extraction

Data analysis: classification of medical information

Feature extraction and representation: processing system based on

SNOMED-CT

Preprocessing: tokenization, POS tagging, vocabulary mapping
Feature extraction and representation: NER

Preprocessing: parsing

Feature extraction: clinical entities extraction, assertions

Data analysis: word disambiguation, classification of medical
information, generate rules for classifying medical conditions
Preprocessing: tokenization, POS tagging

Feature extraction and representation: information extraction,
assertion, negation

Data analysis: sentence detection, concept identification, patient
level risk factor classification

Preprocessing: vocabulary mapping, parsing, tokenization, POS
tagging, sentence boundary determination

Feature extraction and representation: lexical lookup of input words
in the SPECIALIST lexicon — an information extraction system based

on UMLS

Preprocessing: parsing, tokenization, POS tagging, vocabulary
mapping, information extraction

Feature extraction and representation: affirmation/negation
detection

Preprocessing: tokenizer, tagging, semantic tagger, parsing, encoding

Feature extraction and representation: information extraction
Feature extraction and representation: information extraction,
affirmation/negation detection

Preprocessing: annotation

Feature extraction and representation: information extraction

Rule-based NLP

Non-neural ML

Rule-based NLP

Non-neural ML

Rule-based NLP

Non-neural ML

Rule-based NLP

Rule-based NLP

Hybrid NLP: rule-based, non-neural ML
(SVM based “batch learning™)

Rule-based NLP

Hybrid NLP: rule-based NLP, non-neural
ML (conditional random fields, CRF).

Hybrid NLP: rule-based NLP, non-neural
ML (CRF, SVM)

Rule-based NLP
Rule-based NLP
Hybrid NLP: rule-based NLP, non-neural

ML (CRF, SVM)

Hybrid NLP: rule-based NLP, non-neural
ML (WEKA ML)

Rule-based NLP

Rule-based NLP

Rule-based NLP
Rule-based NLP

Rule-based NLP

@ See Supplementary Table S4 for a list of references.
Y The purpose of NLP systems,/toolkits used to process unstructured PROs.
¢ Hybrid NLP approach uses both rule-based and ML-based methods.
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terminologies [13,17,25,28,36,37,40,44,53,57,62,76,78]. Additionally,
to account for disease-specific content, some studies created dictionaries
for incorporating existing clinical terminologies and/or added new ter-
minologies to complement the functionality of extant rule-based or vo-
cabulary systems [12,14,16,28-31,37-40,55,60,64,69,72]. In the
clinical setting, PRO data are often created by clinicians through
handwriting or typing in an unstructured format and stored in EHRs, and
then coders follow medical terminologies (e.g., ICD diagnosis code,
SNOMED-CT, UMLS) or vocabulary systems to map or annotate the
unstructured data into the structured format. Our review study details
the implementation of different NLP/ML techniques for transforming
unstructured PROs into vectorized structured formats, together with the
ML techniques for clinical use (e.g., disease prediction).

The studies included in our review used 14 generic and 11 clinical
NLP systems/toolkits to process unstructured PRO data and transformed
information into structured PROs. NLP systems/toolkits typically
transfer unstructured PROs into numerically computable information
through pre-processing free-text PRO and clinical data, extracting spe-
cific features of the data, and then data normalization (i.e., converting a
token into its base form). The systems/toolkits for free-text PRO pro-
cessing included rule-based NLP, ML-based, or hybrid approaches.
Practically, NLP/ML techniques were commonly used for feature ex-
tractions and representation (n = 70), and nearly half of these studies (n
= 37) relied on rule-based methods [6,16,17,20-22,25-28,30,31,33~
36,39,45,49-51,55,56,58-60,64,70-72,74,76,80,81,83-85]. However,
the rule-based method is not efficient because it requires manual

Table 4
The 3-step NLP/ML application and corresponding techniques among the 79
studies included in the systematic review®.

Steps and techniques N %

Step 1: preprocessing 60 759
Annotation 38 481
Text tokenization 36 45.6
Remove stop-words 18 228
Part-of-speech (POS) tagging 16 203
Normalization 14 177
Lemmatization/stemming 12 15.2

Step 2: feature extraction and representations 69 873
Rule-based NLP 37  46.8
Affirmation/negation detection 33 41.8
Word2vec/bag-of-words 23 29.1
Named entity recognition (NER) 16 203
N-gram (Term frequency-inverse document frequency [TF-IDF], 15 19.0

Document-term matrix [DTM], Term-document matrix [TDM])

Latent Dirichlet allocation (LDA) for topic modeling 5 6.3
Latent semantic indexing (LSI) 1 1.3
Knowledge graph 1 1.3
Step 3: data analysis (non-neural ML) 39 494

—

NWWoOO®®OoON®
N
(=)}

Support vector machine (SVM)

Decision tree (DT)

Conditional random fields (CRF)

Logistic regression classifier

Naive Bayesian

Random forest (RF)

K-means clustering

K-nearest neighborhood (KNN)

Boosting (e.g., Light gradient boosting machine [LightGBM],
eXtreme gradient boosting [XGBoost])

Linear regression classifier 2 2.5
Bagging 1 1.3
Step 3: data analysis (neural ML) 22 278
Convolutional neural network (CNN) 10 127
Recurrent neural network (RNN) (e.g., Bi-LSTM, GRU, Glove) 10 127
Artificial neural network (ANN) (e.g., Feed forward network [FFN]) 7 8.9
Transformer (e.g., BERT, Bio-BERT) 3 3.8
Auto-encoder 3 3.8
Embeddings from language model (ELMo) 1 1.3
Others 2 2.5

Abbreviations: Bi-LSTM, Bi-Long Short-Term Memory; BERT, Bidirectional
Encoder Representations from Transformers.
# See Supplementary Table S5 for a list of references.

Artificial Intelligence In Medicine 146 (2023) 102701

extraction of knowledge that may involve trial-and-error [92].
Furthermore, the accuracy of the rule-based model depends on appro-
priate and available rules and domain expertise. Few studies included in
our present review found comparable or superior performance of ML-
based or hybrid approaches (e.g., accuracy, precision, recall, F1) to
that of the rule-based NLP approach [51,53,74,75]. Technically, ML-
based or hybrid approaches learn the patterns between phrases and
sentences, which improves accuracy and generalizability in representing
clinical narratives beyond rule-based approaches [16,45,58].

Modern neural network-based ML algorithms (e.g., RNN,
transformer-style model) are a breakthrough for processing unstruc-
tured clinical narratives. Several studies in our review reported better
performance of newer neural network-based ML algorithms (e.g., BERT,
GPT-3) compared to traditional NLP or other neural network-based ML
algorithms (e.g., ELMo, Bi-LSTM) [7,24,53]. The superior performance
of the BERT model to other NLP/ML methods is because the BERT model
uses effective pre-training methods (i.e., masked language modeling and
next sentence prediction) and deploys multiple transformer layers to
account for contextual information of natural language [93]. The BERT
model has been shown to effectively capture linguistic features (i.e.,
syntactic, semantic, contextual features) [94]. In comparison, the
traditional feature extraction and representation methods (e.g., bag-of-
words, NER, n-gram) require domain knowledge to design complex
feature engineering with less generalizability [95]. As a result, the se-
mantic features derived from the BERT model may incorporate more
contextualized meanings of words than traditional NLP models when
contexts of words vary. Recently, clinical BERT models (e.g., Bio-BERT,
Cancer-BERT, and BlueBERT) have been developed, which continue
fine-tune BERT models through the corpus of PubMed, MIMIC, or other
clinical sources, to meet different purposes [96]. These findings suggest
the usefulness of domain-specific neural network-based ML methods for
processing unstructured PROs in the future.

While this review collects studies prior to 2021, we have covered the
state-of-the-art NLP models (e.g., RNN, Bio-BERT, and Cancer-BERT)
and those techniques have not been changed in PRO-related studies
since 2020. The recent rise of deep learning approaches typically brings
novel embedding techniques that can jointly integrate lexical, syntactic,
semantic, and contextual patterns into unified vectors, which signifi-
cantly reduces labor expenses and domain knowledge requirements of
feature engineering and design. The core idea of developing embedding
techniques is to use context to define language and therefore train
embedding models (i.e., neural networks). Co-occurrence, word pre-
diction, and neighboring sentence matching are useful approaches
[94,97] to obtain the embedding models for PRO research. Studies
building deep learning models [6,14,50,53,55,62] for PRO assessment
benefit from the power and flexibility of embedding techniques to
represent features from token to document levels [7,24,50,53,96].
Those studies have demonstrated their success in embedding techniques
to learn representative features of free-text data in PRO research, such as
phenotype inference [50], information extraction [14], and diagnosis
[53]. Nevertheless, ML models trained on word embeddings output ta-
bles of weights can make debugging missed predictions more chal-
lenging compared to the models trained on simpler linguistic features.

Though various NLP systems/toolkits used to analyze unstructured
PROs from clinical narratives have been reported [22,27,45,48,67,81],
the validity of using unstructured PROs derived from clinical narratives
versus standard PRO surveys remains unclear. The standard PRO sur-
veys may likely measure generic PRO concepts across all patients,
whereas unstructured PROs from clinical narratives can capture patient-
unique PROs that may not be included in the standard PRO surveys.
Several studies in our review used PRO data collected from the survey to
evaluate the validity of NLP/ML pipelines for unstructured PROs
[22,43,45,67]. Agreement of PRO data between data collected from self-
reports and EHR-based unstructured PROs analyzed with NLP/ML
ranged from a range of 67-82 % [45]. A similar finding (63-75 %
agreement) was found in the patient responses to standard surveys



J.-a. Sim et al.

Artificial Intelligence In Medicine 146 (2023) 102701

Feature Engineering

Unstructured PRO
& Clinical Data

S
(>

Database

NLP Preprocessing

—)

+ Tokenization

* Remove stop-words

« Part-of-speech tagging

* Normalization

* Vocabulary mapping

* Annotation

* Lemmatization/
Stemming

—

Feature Extraction & Representation

« Named Entity Recognition (NER)
« Affirmation/ negation

» Word2vec

» N-gram(TF-IDF, DTM/TDM)

+ Topic Modeling

« Latent Semantic Indexing (LSI)

* Rule-based

+ Knowledge Graph

« Attificial Neural Net (ANN) or Feed Forward Network (FFN)

+ Recurrent Neural Network (RNN), Bi-Long Short-Term Memory (Bi-LSTM)
« Convolutional Neural Net (CNN)

+ Embeddings from Language Model (ELMo)

« Transformer (BERT, BioBERT, RoBERT, etc)

Structured
PRO Features

Database

Data Analysis

Non-Neural ML

« Decision Tree (DT)

+ K-Nearest Neighborhood (KNN)
« Support Vector Machine (SVM)

« Logistic Regression

+ K-means Clustering

« Naive Bayesian

+ Random Forest (RF)

« Conditional Random Field (CRF)
« Ensemble

Neural ML

Fig. 2. NLP/ML pipeline for processing unstructured PRO data in EHRs.

versus unstructured symptom data (e.g., chest pain, dyspnea, cough)
documented in the physicians' medical notes [22]. Several studies have
noted the value of unstructured PROs as anchors in predicting or
correlating various clinical outcomes (e.g., disease onset, suicidal idea-
tion, readmission, mortality) [20,30,33,59,61,68,79,83]. These findings
suggest that unstructured PROs may be a surrogate for the standard PRO
surveys [93].

The findings of this review study have important implications for
future clinical research and care. Although NLP/ML techniques are
evolving, successful NLP/ML application requires the implementation of
integrated platforms that seamlessly interconnect EHR functionality and
NLP/ML algorithms to facilitate clinical interpretation. Evidence shows
that integrating unstructured PROs into EHRs likely improves cancer
survivorship care by predicting late effects based on worsening symp-
toms and other clinical data [7,21,30,33,44,61,63,75,79,84]. However,
there is a critical need to find novel platforms/systems for integrating
unstructured PROs into EHRs and using NLP/ML techniques to annotate
unstructured PROs. Further effort is warranted to create meaningful
PRO scores from free-text narratives based on the features derived from
NLP/ML to be comparably interpretable to scores from standard PRO
surveys.

There are implementation barriers to collecting and integrating un-
structured PROs from EHRs for NLP/ML applications. The major barriers
include technical complexity, system interoperability, and concerns
about the quality of unstructured clinical narratives (e.g., fragmented or
incomplete words or sentences to represent a patient's health status or
symptoms) in EHRs [98]. Adopting the Common Data Model or Com-
mon Data Warehouse to enhance model portability [99] may improve
the collection of standard and high-quality unstructured PRO data from
clinical narratives. Instead of relying on text-based PRO data, alternative
methods include the use of speech or voice recognition systems for
collecting unstructured PROs and developing audio-based NLP/ML
pipelines to automatically analyze PRO information from patient-doctor
conversations in clinics. There are different ways to manage
conversation-based PROs: 1) using NLP/ML algorithms to automatically
annotate and analyze the conversation-based PROs and 2) using soft-
ware to transcribe voice data, followed by NLP/ML to annotate and

analyze the transcribed data. If systems were set up appropriately,
acoustic recordings of clinical interactions would involve less paperwork
and be less prone to data collection artifacts. However, compared to text,
audio contains richer information (e.g., prosody) that humans process
together with lexical meaning to alter language's propositional content.
For example, an ironic phrasing of “yeah, that medication worked”
captured in audio would be interpreted as a declaration of efficacy if it
were simply converted into text. Once the voice-based PRO data are
annotated, the NLP/ML pipelines could be applied for data analysis and
clinical application. Few-shot learning, or prompting, could also be used
to improve parts of PRO prediction by significantly augmenting the
amount of relevant ground truth training data [100].

This review study contains some limitations. First, several selected
studies did not report specific information to meet our inclusion criteria
(e.g., frequently used linguistic features); therefore, the results may not
fully reflect the status of NLP/ML applications in unstructured PROs.
Second, we did not evaluate the quality of the selected studies because
the standards or guidelines for evaluating NLP/ML applications in un-
structured PROs have yet been established. Finally, we included studies
that were published by the end of 2020, while NLP/ML techniques
evolve day by day. However, to our best knowledge, our study has
covered the latest trends and techniques of applying NLP/ML techniques
(e.g., BERT) for researching unstructured PROs. We are aware of large
generative language models (e.g., ChatGPT), however, those newer
generative Al techniques have not been applied in recent PRO-related
studies.

While the NLP revolution, specifically generative Al, has taken place
in the past 2-3 years, our literature search until 2023 found no instances
of generative Al being applied to unstructured PROs. Large language
models become the promising direction for future PROs studies, and
contemporary NLP techniques (e.g., BERT or GPT) discussed in this re-
view study can provide a solid background for future PROs research.
One notable example of generative Al is ChatGPT (e.g., GPT-4 developed
by OpenAl) which aims to generate a patient summary using informa-
tion provided by clinicians or patients and to facilitate interactive text-
based communication with users. It is important to note that although
ChatGPT can address potential bias in the training data, it has not
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undergone a comprehensive fine-tuning and validation process for PROs
and other medical data. Moreover, its integration into EHRs for anno-
tating and analyzing vast amounts of unstructured PROs in medical
notes remains uncertain [101-103]. Currently, ChatGPT is valuable for
providing a PRO summary based on the data provided by clinicians or
patients, but it should not be relied upon for clinical interpretation or
decision-making until empirical studies establish its validity. We believe
the methods and resources of traditional NLP/ML reported in this review
will be valuable to inform the generative NLP approaches (e.g., GPT) of
how to incorporate domain knowledge and promote evidence-based
PRO inferences from unstructured medical data. Our present recom-
mendation is to employ established, validated NLP/ML approaches for
feature extraction, including rule-based or neural machine/deep
learning algorithms, and utilize NLP systems/toolkits for the analysis of
unstructured PROs within EHRs.

5. Conclusion

This systematic review study reports the usefulness of NLP/ML
techniques in processing unstructured PRO data. Currently, using the
established rules to annotate unstructured PROs through NLP/ML sys-
tems/toolkits is the dominant method, though the use of novel neural
ML-based methods is increasing. Transformer NLP/ML models (e.g.,
BERT) are the most cutting-edge and dominating techniques to process
unstructured PROs in EHRs. Although we did not come across any
studies utilizing generative large language models like ChatGPT for
extracting and analyzing unstructured PROs and integrated into EHRs,
the rapid advancements in generative Al offer a potential opportunity
for future exploration and evaluation in this area.
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