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A B S T R A C T   

Objective: Natural language processing (NLP) combined with machine learning (ML) techniques are increasingly 
used to process unstructured/free-text patient-reported outcome (PRO) data available in electronic health re
cords (EHRs). This systematic review summarizes the literature reporting NLP/ML systems/toolkits for analyzing 
PROs in clinical narratives of EHRs and discusses the future directions for the application of this modality in 
clinical care. 
Methods: We searched PubMed, Scopus, and Web of Science for studies written in English between 1/1/2000 and 
12/31/2020. Seventy-nine studies meeting the eligibility criteria were included. We abstracted and summarized 
information related to the study purpose, patient population, type/source/amount of unstructured PRO data, 
linguistic features, and NLP systems/toolkits for processing unstructured PROs in EHRs. 
Results: Most of the studies used NLP/ML techniques to extract PROs from clinical narratives (n = 74) and 
mapped the extracted PROs into specific PRO domains for phenotyping or clustering purposes (n = 26). Some 
studies used NLP/ML to process PROs for predicting disease progression or onset of adverse events (n = 22) or 
developing/validating NLP/ML pipelines for analyzing unstructured PROs (n = 19). Studies used different lin
guistic features, including lexical, syntactic, semantic, and contextual features, to process unstructured PROs. 
Among the 25 NLP systems/toolkits we identified, 15 used rule-based NLP, 6 used hybrid NLP, and 4 used non- 
neural ML algorithms embedded in NLP. 
Conclusions: This study supports the potential utility of different NLP/ML techniques in processing unstructured 
PROs available in EHRs for clinical care. Though using annotation rules for NLP/ML to analyze unstructured 
PROs is dominant, deploying novel neural ML-based methods is warranted.   

1. Introduction 

Patient-reported outcomes (PROs) provide information about a pa
tient's physical, psychological, somatic symptoms, daily functional sta
tus, health-related quality-of-life (HRQOL), and satisfaction with 
healthcare services that facilitate clinical decision-making and outcome 
evaluation [1]. PROs are conventionally assessed through validated 

questionnaires or semi-structured interviews. However, these methods 
may not capture the full patient experience as their responses are bound 
by predetermined items. Additionally, it is challenging to collect PRO 
data from patients during time-limited clinical encounters [2]. There
fore, finding effective approaches to assess, retrieve, and extract already 
available, unstructured PRO data from alternative sources, e.g., medical 
notes in electronic health records (EHRs), is important [3]. 
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PRO data in EHRs are often stored in an unstructured and free-text 
format (e.g., symptom narratives in a physician note) and cannot be 
directly used in clinical tasks (e.g., disease prediction, classification). 
Natural language processing (NLP) and machine learning (ML) can turn 
unstructured PROs into a quantitative or structured format for clinical 
use [4]. The application of NLP/ML techniques in clinical settings in
cludes text pre-processing (e.g., tokenization, lemmatization, or stem
ming from the corpus), linguistic feature extraction for clinical 
narratives (e.g., encoding, detecting affirmed/negated expressions), and 
clinical applications [5]. Given the significant expansion of EHR eco
systems and the development of novel NLP/ML techniques over the past 
decade, the interest in processing unstructured PROs from clinical nar
ratives through automatic or semi-automatic NLP/ML pipelines of free- 
text-based PROs is emerging [6,7]. 

Previous reviews have described the application of NLP/ML methods 
for automatic extraction of non-PRO clinical narratives (e.g., disease 
progression, adverse drug reactions, medications, and treatments) from 
EHRs [5,8], yet review studies of NLP/ML techniques on unstructured 
PROs are limited. One review article investigated NLP techniques to 
extract symptom information through patient-authored data collected 
from social media (e.g., Twitter, WebMD, and Reddit) [9]. Another re
view article collected the applications of NLP in analyzing symptom- 

only data documented in EHRs [10]. However, these studies mainly 
focus on the traditional rule-based NLP methods to process symptom 
data, followed by non-neural ML-based classifiers (e.g., support vector 
machine, logistic regression classifier), rather than novel neural network 
(e.g., Convolutional Neural Networks [CNN], Recurrent Neural Network 
[RNN]) or large language models (e.g., Generative pre-trained trans
former [GPT], Bidirectional Encoder Representations from Transformers 
[BERT]) to analyze associations of PROs and clinical outcomes. 

With the recent advances in NLP/ML techniques, this study aimed to 
summarize research applying NLP/ML for processing and analyzing 
unstructured PRO data collected in EHRs. Specifically, we evaluated 
studies that analyzed unstructured PROs for clinical care or research, the 
type of unstructured PRO data, and the uniqueness of NLP/ML systems/ 
toolkits and techniques to process unstructured PROs. In contrast to 
previous review studies [9,10], the findings from this study will improve 
our clinical insights of using NLP/ML techniques to process EHR-based 
unstructured PROs in a broader category (including symptom, func
tioning, and quality-of-life), together with other clinical parameters for 
clinical application. 

Records identified from:
PubMed (n = 693)
Web of Science (n = 886)
Scopus (n = 739)

Records removed before 
screening: (n = 2,318)

Duplicate records removed
(n = 1,339)

Records screened for title and
abstract (n = 979)

Records excluded* (n = 828)
Not an NLP study (n = 479)
Not focused on PRO (n = 140)
Not an empirical study (n = 87)
Not medical field (n = 70)
Systematic review (n = 48)
Survey/qualitative study (n = 
28)
Not EHR based (n = 24)

Reports sought for retrieval
(n = 151)

Reports not retrieved (n = 64)
Not focused on unstructured 
PROs (n = 37)
Not an NLP study (n = 12)
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Survey/qualitative study (n = 4)
Not EHR based (n = 3)
Systematic review (n = 2)
Not an empirical study (n = 1)
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(n = 87)

Reports excluded* (n = 8)
Patient-authored text such as 
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Not an empirical study (n = 2)
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Fig. 1. Flow diagram of included articles.  
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2. Methods 

2.1. Data retrieval 

We searched studies written in English between January 1st, 2000 
and December 31st, 2020 through PubMed, Scopus, and Web of Science. 
Following the guideline of the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses, we identified 693 studies from PubMed, 
739 from Scopus, and 886 from Web of Science (Fig. 1). The search 
strategies are reported in Supplementary Table S1. 

2.2. Article selection 

Among the 2318 studies identified from these three databases, 979 
non-duplicate studies were retained for the title and abstract screening. 
Studies were considered for inclusion if they 1) focused on unstructured 
PRO data in EHRs or medical notes, and 2) used NLP techniques or 
applications accompanied by ML algorithms to extract or process un
structured PRO data. Studies were excluded if they 1) did not apply 
NLP/ML techniques, 2) were non-empirical studies (e.g., case reports, 
commentary), 3) were non-EHR-based studies (e.g., patient-authored 
data collected from social media), 4) were survey-based studies con
taining quantitative PRO data, 5) were previous systematic review 
studies or E-pub ahead of print, and/or 6) focused on non-chronic dis
ease topics (e.g., infectious disease/vaccination). Based on these criteria, 
the first author (JAS) and the senior author (ICH) independently 
reviewed the title and abstract of all 979 studies retrieved from the 
literature search and retained 151 studies. Subsequently, the same two 
authors reviewed the full-text articles, resolved any discrepancies, and 
selected 79 studies for inclusion in this study (Fig. 1). 

2.3. Data extraction and summary 

We implemented the following steps to collect data from the original 
articles: 1) the first author (JAS) manually extracted data from the 79 
studies and documented information in a database, 2) the senior author 
(ICH) reviewed all of the extracted information in the database, 3) both 
co-authors met to confirm the extracted data through reviewing each of 
the original articles included in this study, and 4) the second author (XH) 
adjudicated the discrepancy raised by the first and senior authors, and 
reviewed information summarized in the tables for identifying any er
rors. For each selected study, the characteristics of the study sample, the 
objective of the study, the type/format, size, and unit of unstructured 
PRO data, specific PRO content, and NLP/ML systems/toolkits and lin
guistic features used to process PRO data were abstracted and reported. 

3. Results 

3.1. Study characteristics 

Supplementary Table S2 displays the characteristics of 79 studies 
selected for inclusion in this systematic review. These studies included 
various participant sample sizes, ranging from 22 to 267,855, and 
different disease diagnoses, including any type (n = 24) [7,11–33], 
chronic disease (n = 18) [6,34–50], mental illness (n = 23) [51–73], 
cancer (n = 8) [74–81], and others (n = 6). The majority of studies (n =
73) focused on adults, six on pediatrics [19,25,38,54,82,83], and one on 
both adult and pediatric patient populations [7]. Most of the PRO 
narrative data were primarily obtained from inpatient or outpatient 
EHRs (n = 75), while several studies relied on the open data re
positories/resources (e.g., MIMIC-III; n = 4) [24,33,35,50] and the na
tional database (e.g., Taiwan's National Health Insurance Research 
Database; n = 1) [72]. Narrative data from both inpatient settings (e.g., 
admission notes, discharge summaries, nursing narratives, emergency 
department documents, intensive care unit reports; n = 56) and outpa
tient settings (e.g., primary care documents, psychiatric evaluation 

notes; n = 35) were generated by healthcare professionals. The number 
of PRO narrative documents/grammatical units for NLP/ML analysis 
ranged from 100 to 5.3 million. Approximately 85 % of the studies were 
based on English-based EHRs (USA: 66 %, UK: 15 %, and Canada, Island, 
and Australia: 4 %), 10 % from Chinese-based EHRs (China: 7 % and 
Taiwan: 3 %), and 5 % from EHRs with other languages (Danish: 3 %, 
Swedish: 1 %, and Egyptian Arabic: 1 %). 

The structure of the free-text PRO documents included keywords/ 
phrases, sentences, paragraphs, or the entire document/medical note. 
Different vocabulary systems representing standardized clinical terminol
ogies or nomenclatures (e.g., Systematized Nomenclature of Medicine- 
Clinical Terms [SNOMED-CT] (n = 10) [35,42–44,47,56,57,60,73,78], 
Unified Medical Language System [UMLS] (n = 17) 
[12,17,25,26,31,33,36,42–45,47,59,64,74,76,82], Logical Observation 
Identifiers Names and Codes [LOINC] (n = 1) [18], Diagnostic and Statis
tical Manual of Mental Disorder [DSM] (n = 4) [20,59,60,73], International 
Classification of Diseases [ICD]-codes (n = 27) [7,11,15,17 
–20,23,28,34–36,38,40,42,43,50,53,54,61–63,67,68,83–85]) were used to 
extract the representation of unstructured PROs. Among 37 studies that 
used a rule-based NLP approach, 14 adopted an extant rule-based NLP 
system, and 21 created study-specific/custom rules to extract the repre
sentation of unstructured PROs. Additionally, 24 studies used clinical/ 
medical dictionaries to incorporate the standard clinical terminologies (e.g., 
LOINC, UMLS, SNOMED-CT) or created custom or study-specific terms/ 
concepts [12,14,16,28–31,34,37–40,55,58–60,64,66,69,70,72,74,77,78] 
for extracting unstructured PROs. 

3.2. Main objectives of the NLP/ML application in analyzing PRO data 

Table 1 summarizes the features of studies that used NLP/ML tech
niques to process unstructured PRO data. Most of the studies used NLP/ 
ML algorithms to identify or extract unstructured PROs from clinical 
narratives (n = 74 studies), assign or classify extracted PRO information 
into specific PRO domains (n = 16), phenotype unstructured PROs to 
capture specific PRO features (n = 9), and classify co-occurrence of 
multiple PRO problems (e.g., symptom clustering; n = 5). Some studies 
used NLP/ML techniques to analyze unstructured PRO to predict the risk 
of disease progression or adverse medical events (n = 22), develop/ 
validate NLP/ML pipelines for analyzing unstructured PROs (n = 19), 
test associations with clinical outcomes (n = 5), and stratify or group 
patients for delivering tailored healthcare services per distinct patterns 
of PRO problems (n = 3). 

3.3. Domains of unstructured PROs included in EHRs 

Supplementary Table S3 displays the domains of unstructured PROs 
documented in EHRs that were extracted by NLP/ML approaches. The 
most popular documented PRO domains were psychological symptoms 
(e.g., anxiety, depression, stress; 57.0 % of 79 studies), followed by 
general symptoms (e.g., fatigue, pain, insomnia; 49.4 %), and physical 
symptoms in the digestive/gastrointestinal (e.g., bloating, constipation, 
diarrhea; 43.0 %), neurocognitive symptoms (e.g., arousal, attention 
problem, dysarthria; 41.8 %), respiratory (e.g., cough, sneezing, dys
pnea; 38.0 %), cardiovascular (e.g., cardiac problem, angina, swelling of 
arms and legs; 29.1 %), metabolic/hormonal symptoms (e.g., obese, 
weight loss; 29.1 %), and dermatologic (e.g., itching, edema, rashes; 
20.3 %) organ systems. Several PRO domains (e.g., symptoms in the 
head/neck, musculoskeletal, urinary, sexual/reproductive organ sys
tems; physical and social functioning) were documented by <20 % of 
the studies. 

3.4. Types and methods for linguistic features 

Table 2 provides examples of linguistic feature types derived from 
unstructured PROs: 1) lexical, 2) syntactic, 3) semantic, and 4) contex
tual features. Lexical features address the word-level characteristics of 

J.-a. Sim et al.                                                                                                                                                                                                                                   



Artificial Intelligence In Medicine 146 (2023) 102701

4

clinical narratives primarily using n-grams (e.g., uni- and bi-grams) 
representing the concept of unstructured PROs [51,57,61,74]. Syntac
tic features address the phrase, clause, sentences, and part-of-speech 
tagging [12,31,45,56,82]. While syntactic features represent grammat
ical patterns (e.g., noun and adjective/adverb phrases) [31,45], se
mantic features focus on the meaning of words and terms, typically 
defined in a custom dictionary, controlled medical terminology, or 
lexicon (e.g., LOINC, SNOMED-CT, UMLS) [31,39,51,59,62]. Repre
senting the relevance of specific words to individual texts, as opposed to 
their prevalence in a corpus, is another method used to process semantic 
features and semantic keywords for clustering the symptoms [62]. 
Contextual features address the relative or absolute characteristics of 
unstructured PROs by considering the linguistic components (i.e., 
words, phrases, and sentences) neighboring around words or phrases of 
interest rather than searching keywords of unstructured PROs 
[6,7,22,51,76]. One study shows that subject terms (e.g., “mother”, 
“patient”), negation terms (e.g., “does not”), hypothetical terms (e.g., 
“if”), temporal terms (e.g., “previously”, “when”), and termination 
terms (e.g., “however”) were examples of contextual analytic features 
[39]. Another study labeled the contextual feature as “if-clause” for the 
text “I recommended nitroglycerin if he should develop chest pain” [22]. 

3.5. NLP systems/toolkits for processing unstructured PROs 

Table 3 displays the NLP systems/toolkits used to process unstruc
tured PROs in EHRs, inclusive of 14 generic (e.g., ConText, FMA, GATE, 
Hiedel Time, MALLET, NegEX, SUTime) and 11 clinical (e.g., MedLEE, 
TextHunter, v3NLP, cTAKES, ClinREAD, Clamp, MetaMap) systems/ 
toolkits. Techniques utilized under each system/toolkit were mostly 
rule-based NLP (n = 15 techniques), followed by hybrid NLP (n = 6 
techniques) and non-neural ML algorithms embedded in NLP (n = 4 
techniques). The rule-based approach uses rules created by experts to 
categorize or label unstructured PRO data [71,86], and some studies 
validated the rules with unstructured data from different patient sam
ples and subsequently applied the rules to the new samples [87]. ML- 
based approaches often train established classification algorithms with 
statistical inference techniques through previously annotated text- 
corpus [13]. Once ML algorithms learn the unstructured data of a new 
system, they can be applied to other lexical, semantic, and contextual 
meanings without referring to any rules [88]. In contrast, the hybrid 
approach adopts both rule- and ML-based methods, and integrates 
expert-generated, ruled-based systems to guide ML algorithms to 
perform the analysis [16,45,58]. Fifteen NLP systems/toolkits were rule- 
based (e.g., generic toolkits: ConText, FMA, Heidel Time, NegEX, 
Protégé, SUTime, Tagger_Date Normalizer plugin, and Wordnet; clinical 
toolkits: CliX NLP, ClinREAD, MetaMap, MTERMS, MedEx, NLP-PAC, 
and v3NLP). Specific non-neural ML-embedded systems/toolkits 
included MALLET and GENSIM with R, and hybrid systems/toolkits 
included GATE, TextHunter, Clamp, cTAKES, MedLEE, and MedTagger. 
A full list of references is in Supplementary Table S4. 

3.6. NLP/ML techniques for processing unstructured PROs 

Table 4 reports the 3-step NLP/ML methods to process unstructured 
PROs from EHR clinical narratives: Step 1 is data pre-processing (n = 60 
studies), Step 2 is feature extraction and representations (n = 69 
studies), and Step 3 is data analysis (n = 61 studies, including 39 using 
non-neural NLP/ML methods and 22 using neural NLP/ML methods). 
The step-by-step process was also summarized in Fig. 2. The most 
common techniques for data pre-processing were annotation and text 
tokenization. The most common techniques for feature extraction and 
representations were rule-based NLP, affirmation/negation detection, 
and word2vec/bag-of-words. Regarding NLP/ML analytic methods, the 
most common non-neural ML methods were SVM, decision tree, and 
CRF. In contrast, commonly used neural NLP/ML methods included 
CNN, RNN (e.g., Bi-Long Short-Term Memory [Bi-LSTM]), and ANN (e, 

g., feed forward network [FFN]). As an example of the way neural NLP/ 
ML methods are used in clinical settings, the novel contextual embed
dings of the BERT model use a context-based representation of chief 
complaints to predict specific signs/symptoms (e.g., pain, cognitive 
confusion) labeled by the experts and map semantically similar chief 
complaints to nearby points of vector space [7]. A full list of references 
was provided in Supplementary Table S5. 

4. Discussion 

This systematic review study focuses on PRO-related studies and the 
findings have a significant contribution to the literature by summarizing 
the NLP/ML applications in PROs (e.g., classification, phenotyping, and 

Table 1 
Purpose of NLP/ML applications for analyzing PRO data among the 79 studies 
included in the systematic review.  

Classifications Specific roles of 
NLP/ML tasks 

Task description N % 

Information 
extraction/text 
identification 

Total   74  93.7 
PRO content 
detection, 
identification, 
extraction 

Detect or identify PRO 
keywords or 
terminologies from free 
text  

47  59.5 

PRO annotation Perform semi- 
automated or manual 
annotation for PROs in 
free text  

37  46.8 

PRO affirmation/ 
negation detection 

Declare whether 
symptoms or symptom- 
related outcomes exist 
or equivalent 
expression or negative 
statement for having 
symptoms  

38  48.1 

Vocabulary 
mapping 

Map or assign PROs or 
PRO-related 
vocabulary words to 
appropriate indexes or 
labels  

13  16.5 

Classification/ 
phenotyping/ 
clustering 

Total   26  32.9 
PRO classification Assign or classify 

extracted PROs into 
specific categories  

16  20.3 

PRO phenotyping Indicate specific 
characteristics of single 
or multiple PROs 
features  

9  11.4 

PRO clustering Identify two or more 
PROs that are related to 
each other or co-occur  

5  6.3 

Develop or validate 
NLP/ML 
pipelines 

Total   19  24.1 
Development of 
NLP/ML pipelines 

Develop new NLP/ML 
pipelines or build NLP 
software  

10  12.7 

Evaluation/ 
validation 

Evaluate and validate 
the performances of 
NLP system/pipeline  

12  15.2 

Risk prediction or 
stratification for 
clinical outcomes 

Total   25  31.6 
Risk prediction Predict the risk of 

outcomes using 
extracted PROs based 
on unstructured 
narratives  

22  27.8 

Risk stratification Identify the right level 
of care and services for 
distinctive subgroups 
of patients.  

3  3.8 

Investigate 
associations 
between PROs 
and clinical 
outcomes 

Total   5  6.3 
Relationship 
detection 

Detect semantic 
associations or 
relationships between 
unstructured PROs  

5  6.3 

Each study may include multiple study purposes and NLP/ML tasks. 
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clustering; PRO-based risk prediction and stratification for clinical out
comes), the available NLP systems or toolkits, and NLP/ML pipelines (e. 
g., preprocessing, feature extraction and representations, and data 
analysis using non-neural or neural ML methods). Among 79 selected 
studies, most studies (>90 %) used NLP/ML techniques for extracting 
free-text PRO data, followed by predicting the risk of adverse events (30 
%), classifying, phenotyping or clustering PROs (20 %), and testing as
sociations between PROs and clinical outcomes (8 %). Given the chal
lenges of using standard surveys to assess PROs in busy clinics, as well as 
well-described barriers to PRO instrument application into routine 
clinical care [2], NLP/ML application provides a convenient mechanism 
to integrate PROs available in EHRs into clinical workflows for clinical 
decision-making [89]. 

We found that different types/units of unstructured PROs (e.g., 
keyword/phrase, sentence, paragraph, entire document/note) were 
used in NLP/ML analyses. Vocabularies from standard clinical termi
nologies or nomenclatures (e.g., SNOMED-CT, UMLS, LOINC, DSM-5, 
and ICD-codes) were commonly used to process unstructured PROs. 
These rule-based systems (e.g., ontologies, medical terminologies) were 
typically used to identify the meaning of the words and terms from free- 
text PROs [90]. SNOMED–CT is deemed the most comprehensive com
puter collection of medical terms and medical relationships [91]. The 
feasibility of mapping other medical terminologies (e.g., ICD-9 or ICD- 
10 codes) to the SNOMED–CT makes the translation between different 
terminology systems feasible. To achieve semantic interoperability [90]. 
many studies used medical vocabulary systems to map PRO words or 

Table 2 
Examples of frequently used linguistic features.  

Levels of 
linguistic 
features 

Description Methods Some example methods explained in selected studies 

Lexical 
features 

Numerical characteristics of tokens in text 
documents, such as token count and length. 

N-gram (e.g., uni- and bi-grams), capitalization 
(uppercase, title case), stemming, lemmatization, 
stopwords removal, lexicon, word embeddings 

“Stop-words removal (e.g., ‘is’, ‘an’, ‘the’, etc.), 
stemming, and number to string conversation.” 
[Banerjee, 2019] 
“Lexical variances in the extraction rules [i.e., 
misspellings (e.g., obese* instead of obsessive)].” 
[Chandran, 2019] 
“N-grams represent concepts of serious mental illness 
symptomatology.” [Jackson, 2018] 
“Text processing included lower casing; removal of 
punctuation, stop words, and numbers; word 
stemming; and tokenization.” [Obeid, 2020] 

Syntactic 
features 

Patterns of sentence structures defined by 
language grammar. 

Part-of-speech (POS) tags, constituency grammar, 
dependency grammar 

“POS tagger and multi-word term identification to 
identify symptoms and non-symptoms were used.” 
[Divita, 2017] 
“POS tags in conjunction with knowledge engineering 
features generated to build a sentence classifier.” 
[Jackson, 2017] 
“Syntactic phrases representative of patients' functional 
status including noun phrases (e.g. ‘patient’), 
prepositional phrases (e.g. ‘with pain’), and adjective/ 
adverb phrases (e.g. ‘very tired’) using two reference 
standards.” [Pakhomov, 2011] 
“Syntactic patterns of concept phrases were mined from 
continuous, non-permuted forms of synonyms, and 
these patterns were used to detect discontinuous and/ 
or permuted concept phrases.” [Torii, 2018] 

Semantic 
features 

Linguistic units of meaning-holding 
components that represent word meaning, 
such as lexicon definitions, dependency 
between tokens, and semantic networks. 

Semantic definitions from lexicons (LOINC, 
SNOMED-CT, UMLS, etc.), relative temporal words 
(next, later, until etc.), absolute temporal expressions 
(a.m., p.m., etc.), meaning of the numbers (doses, 
levels), de-identification, topics of the section 

“Semantic variances in terms of obsessive and 
compulsive in the extraction (alternative meanings 
beyond their definition in the context of Obsessive 
Compulsive Symptoms (OCS)).” [Chandran, 2019] 
“Semantic keywords identifying the Altered mental 
status cluster of symptoms in the context of pulmonary 
embolism.” [Obeid, 2019] 
“UMLS semantic networks which are relevant to 
clinical findings were used” [Torii, 2018] 
“The symptom dictionary was based on UMLS, which 
includes a semantic network.” [Le, 2018] 

Contextual 
features 

Linguistic neighboring components (e.g., 
word, phrase, or sentence) of tokens or 
sentences that represent similar semantic 
meanings. 

Affirmation/negation detection, complex temporal 
relations, discourse structure, line position, order of 
sections, implicit context dependent information, 
feature representations from pre-trained neural 
embeddings 

“Distinguishing between instances where a patient is 
described as experiencing a particular symptom from 
instances where the texts state that the patient is not 
experiencing that symptom, or where it is someone else 
(e.g. a friend or relative) who is experiencing that 
specific symptom.” [Chandran, 2019] 
“The ‘conditional’ context label is considered when the 
term is mentioned in the following context (e.g., ‘I 
recommended nitroglycerin if he should develop chest 
pain’).” [Pakhomov, 2008] 
“Depending on the context, weight gain could indicate 
either fluid accumulation because of worsening heart 
failure or an improvement in appetite because of 
decreased gut edema associated with a higher dose of 
diuretics.” [Leiter, 2020] 
“Subject terms (e.g., ‘mother’, ‘patient’), negation 
terms (e.g., ‘does not’), hypothetical terms (e.g., ‘if’), 
temporal terms (e.g., ‘previously’) and termination 
terms (e.g., ‘however’).” [Iqbal, 2017]  
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Table 3 
The reported NLP systems or toolkitsa.  

Systems/toolkits Full names Purposesb NLP/ML Techniquesc 

Generic toolkits 
ConText N/A Feature extraction and representation: sentence classification Rule-based NLP 
FMA Freetext Matching Algorithm Preprocessing: annotation 

Feature extraction and representation: information extraction 
Rule-based NLP 

GATE General Architecture for Text 
Engineering 

Preprocessing: tokenization, sentence splitting, POS tagging, 
annotation 
Feature extraction and representation: named entity recognition 
(NER), information extraction 
Data analysis: sentence classification 

Hybrid NLP: rule-based, non-neural ML 
(support vector machine; SVM, WEKA 
ML) 

GENSIM (R) GENSIM Feature extraction and representation: topic modeling and word 
embedding 

Non-neural ML 

Heidel Time High quality rule-based extraction and 
normalization of temporal expressions 

Preprocessing: tagging, normalization 
Feature extraction and representation: information extraction 

Rule-based NLP 

MALLET MAchine Learning for LanguagE Toolkit Feature extraction and representation: document classification, 
clustering, topic modeling, information extraction 

Non-neural ML 

NegEX N/A Feature extraction and representation: affirmation/negation 
detection 

Rule-based NLP 

Punkt Sentence 
Tokenizer 

nltk.tokenize.punkt module Preprocessing: tokenization Non-neural ML 

Protégé  Feature extraction and representation: ontology editor or framework Rule-based NLP 
NLTK (Python) Natural Language Toolkit Preprocessing: text tokenization, stemming, stop word removal, 

classification, clustering, POS tagging, parsing, and semantic 
reasoning 

Non-neural ML 

SUTime Stanford NLP annotator Preprocessing: annotation, recognizing and normalizing time 
expressions (TIMEx) 

Rule-based NLP 

Tagger_Date 
Normalizer 
plugin 

Not available Preprocessing: tagging, normalization Rule-based NLP 

TextHunter N/A Preprocessing: tokenization, stemming, POS tagging 
Feature extraction and representation: information extraction 
Data analysis: automated concept identification 

Hybrid NLP: rule-based, non-neural ML 
(SVM based “batch learning”) 

WordNet N/A Lexical database for NLP (ontology) Rule-based NLP  

Clinical NLP toolkits 
Clamp Clinical Language Annotation, 

Modeling, and Processing Toolkit 
Preprocessing: tokenization, POS tagging, annotation, sentence 
boundary detection, section header identification 
Feature extraction and representation: assertion, negation, NER, 
UMLS encoder 
Data analysis: sentence boundary detection, section header 
identification, classification 

Hybrid NLP: rule-based NLP, non-neural 
ML (conditional random fields, CRF). 

cTAKES clinical Text Analysis and Knowledge 
Extraction System 

Preprocessing: sentence boundary detection, tokenization, parsing, 
dictionary lookup annotation, normalization, POS tagging 
Feature extraction and representation: affirmation/negation 
detection, named section identification, NER, information extraction 
Data analysis: classification of medical information 

Hybrid NLP: rule-based NLP, non-neural 
ML (CRF, SVM) 

CliX NLP Clinical NLP tools for SNOMED-CT Feature extraction and representation: processing system based on 
SNOMED-CT 

Rule-based NLP 

ClinREAD Rapid Clinical Note Mining for New 
Languages 

Preprocessing: tokenization, POS tagging, vocabulary mapping 
Feature extraction and representation: NER 

Rule-based NLP 

MedLEE Medical Language Extraction and 
Encoding System Processing System 

Preprocessing: parsing 
Feature extraction: clinical entities extraction, assertions 
Data analysis: word disambiguation, classification of medical 
information, generate rules for classifying medical conditions 

Hybrid NLP: rule-based NLP, non-neural 
ML (CRF, SVM) 

MedTagger N/A Preprocessing: tokenization, POS tagging 
Feature extraction and representation: information extraction, 
assertion, negation 
Data analysis: sentence detection, concept identification, patient 
level risk factor classification 

Hybrid NLP: rule-based NLP, non-neural 
ML (WEKA ML) 

MetaMap N/A Preprocessing: vocabulary mapping, parsing, tokenization, POS 
tagging, sentence boundary determination 
Feature extraction and representation: lexical lookup of input words 
in the SPECIALIST lexicon – an information extraction system based 
on UMLS 

Rule-based NLP 

MTERMS Medical Text Extraction, Reasoning and 
Mapping System 

Preprocessing: parsing, tokenization, POS tagging, vocabulary 
mapping, information extraction 
Feature extraction and representation: affirmation/negation 
detection 

Rule-based NLP 

MedEx Medication Information Extraction 
System for Clinical Narratives 

Preprocessing: tokenizer, tagging, semantic tagger, parsing, encoding 
Feature extraction and representation: information extraction 

Rule-based NLP 

NLP-PAC NLP algorithms for Predetermined 
Asthma Criteria 

Feature extraction and representation: information extraction, 
affirmation/negation detection 

Rule-based NLP 

v3NLP Not available Preprocessing: annotation 
Feature extraction and representation: information extraction 

Rule-based NLP  

a See Supplementary Table S4 for a list of references. 
b The purpose of NLP systems/toolkits used to process unstructured PROs. 
c Hybrid NLP approach uses both rule-based and ML-based methods. 
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terminologies [13,17,25,28,36,37,40,44,53,57,62,76,78]. Additionally, 
to account for disease-specific content, some studies created dictionaries 
for incorporating existing clinical terminologies and/or added new ter
minologies to complement the functionality of extant rule-based or vo
cabulary systems [12,14,16,28–31,37–40,55,60,64,69,72]. In the 
clinical setting, PRO data are often created by clinicians through 
handwriting or typing in an unstructured format and stored in EHRs, and 
then coders follow medical terminologies (e.g., ICD diagnosis code, 
SNOMED-CT, UMLS) or vocabulary systems to map or annotate the 
unstructured data into the structured format. Our review study details 
the implementation of different NLP/ML techniques for transforming 
unstructured PROs into vectorized structured formats, together with the 
ML techniques for clinical use (e.g., disease prediction). 

The studies included in our review used 14 generic and 11 clinical 
NLP systems/toolkits to process unstructured PRO data and transformed 
information into structured PROs. NLP systems/toolkits typically 
transfer unstructured PROs into numerically computable information 
through pre-processing free-text PRO and clinical data, extracting spe
cific features of the data, and then data normalization (i.e., converting a 
token into its base form). The systems/toolkits for free-text PRO pro
cessing included rule-based NLP, ML-based, or hybrid approaches. 
Practically, NLP/ML techniques were commonly used for feature ex
tractions and representation (n = 70), and nearly half of these studies (n 
= 37) relied on rule-based methods [6,16,17,20–22,25–28,30,31,33– 
36,39,45,49–51,55,56,58–60,64,70–72,74,76,80,81,83–85]. However, 
the rule-based method is not efficient because it requires manual 

extraction of knowledge that may involve trial-and-error [92]. 
Furthermore, the accuracy of the rule-based model depends on appro
priate and available rules and domain expertise. Few studies included in 
our present review found comparable or superior performance of ML- 
based or hybrid approaches (e.g., accuracy, precision, recall, F1) to 
that of the rule-based NLP approach [51,53,74,75]. Technically, ML- 
based or hybrid approaches learn the patterns between phrases and 
sentences, which improves accuracy and generalizability in representing 
clinical narratives beyond rule-based approaches [16,45,58]. 

Modern neural network-based ML algorithms (e.g., RNN, 
transformer-style model) are a breakthrough for processing unstruc
tured clinical narratives. Several studies in our review reported better 
performance of newer neural network-based ML algorithms (e.g., BERT, 
GPT-3) compared to traditional NLP or other neural network-based ML 
algorithms (e.g., ELMo, Bi-LSTM) [7,24,53]. The superior performance 
of the BERT model to other NLP/ML methods is because the BERT model 
uses effective pre-training methods (i.e., masked language modeling and 
next sentence prediction) and deploys multiple transformer layers to 
account for contextual information of natural language [93]. The BERT 
model has been shown to effectively capture linguistic features (i.e., 
syntactic, semantic, contextual features) [94]. In comparison, the 
traditional feature extraction and representation methods (e.g., bag-of- 
words, NER, n-gram) require domain knowledge to design complex 
feature engineering with less generalizability [95]. As a result, the se
mantic features derived from the BERT model may incorporate more 
contextualized meanings of words than traditional NLP models when 
contexts of words vary. Recently, clinical BERT models (e.g., Bio-BERT, 
Cancer-BERT, and BlueBERT) have been developed, which continue 
fine-tune BERT models through the corpus of PubMed, MIMIC, or other 
clinical sources, to meet different purposes [96]. These findings suggest 
the usefulness of domain-specific neural network-based ML methods for 
processing unstructured PROs in the future. 

While this review collects studies prior to 2021, we have covered the 
state-of-the-art NLP models (e.g., RNN, Bio-BERT, and Cancer-BERT) 
and those techniques have not been changed in PRO-related studies 
since 2020. The recent rise of deep learning approaches typically brings 
novel embedding techniques that can jointly integrate lexical, syntactic, 
semantic, and contextual patterns into unified vectors, which signifi
cantly reduces labor expenses and domain knowledge requirements of 
feature engineering and design. The core idea of developing embedding 
techniques is to use context to define language and therefore train 
embedding models (i.e., neural networks). Co-occurrence, word pre
diction, and neighboring sentence matching are useful approaches 
[94,97] to obtain the embedding models for PRO research. Studies 
building deep learning models [6,14,50,53,55,62] for PRO assessment 
benefit from the power and flexibility of embedding techniques to 
represent features from token to document levels [7,24,50,53,96]. 
Those studies have demonstrated their success in embedding techniques 
to learn representative features of free-text data in PRO research, such as 
phenotype inference [50], information extraction [14], and diagnosis 
[53]. Nevertheless, ML models trained on word embeddings output ta
bles of weights can make debugging missed predictions more chal
lenging compared to the models trained on simpler linguistic features. 

Though various NLP systems/toolkits used to analyze unstructured 
PROs from clinical narratives have been reported [22,27,45,48,67,81], 
the validity of using unstructured PROs derived from clinical narratives 
versus standard PRO surveys remains unclear. The standard PRO sur
veys may likely measure generic PRO concepts across all patients, 
whereas unstructured PROs from clinical narratives can capture patient- 
unique PROs that may not be included in the standard PRO surveys. 
Several studies in our review used PRO data collected from the survey to 
evaluate the validity of NLP/ML pipelines for unstructured PROs 
[22,43,45,67]. Agreement of PRO data between data collected from self- 
reports and EHR-based unstructured PROs analyzed with NLP/ML 
ranged from a range of 67–82 % [45]. A similar finding (63–75 % 
agreement) was found in the patient responses to standard surveys 

Table 4 
The 3-step NLP/ML application and corresponding techniques among the 79 
studies included in the systematic reviewa.  

Steps and techniques N % 

Step 1: preprocessing  60  75.9 
Annotation  38  48.1 
Text tokenization  36  45.6 
Remove stop-words  18  22.8 
Part-of-speech (POS) tagging  16  20.3 
Normalization  14  17.7 
Lemmatization/stemming  12  15.2 

Step 2: feature extraction and representations  69  87.3 
Rule-based NLP  37  46.8 
Affirmation/negation detection  33  41.8 
Word2vec/bag-of-words  23  29.1 
Named entity recognition (NER)  16  20.3 
N-gram (Term frequency–inverse document frequency [TF-IDF], 
Document-term matrix [DTM], Term-document matrix [TDM])  

15  19.0 

Latent Dirichlet allocation (LDA) for topic modeling  5  6.3 
Latent semantic indexing (LSI)  1  1.3 
Knowledge graph  1  1.3 

Step 3: data analysis (non-neural ML)  39  49.4 
Support vector machine (SVM)  18  22.8 
Decision tree (DT)  6  7.6 
Conditional random fields (CRF)  9  11.4 
Logistic regression classifier  8  10.1 
Naïve Bayesian  6  7.6 
Random forest (RF)  6  7.6 
K-means clustering  3  3.8 
K-nearest neighborhood (KNN)  3  3.8 
Boosting (e.g., Light gradient boosting machine [LightGBM], 
eXtreme gradient boosting [XGBoost])  

2  2.5 

Linear regression classifier  2  2.5 
Bagging  1  1.3 

Step 3: data analysis (neural ML)  22  27.8 
Convolutional neural network (CNN)  10  12.7 
Recurrent neural network (RNN) (e.g., Bi-LSTM, GRU, Glove)  10  12.7 
Artificial neural network (ANN) (e.g., Feed forward network [FFN])  7  8.9 
Transformer (e.g., BERT, Bio-BERT)  3  3.8 
Auto-encoder  3  3.8 
Embeddings from language model (ELMo)  1  1.3 
Others  2  2.5 

Abbreviations: Bi-LSTM, Bi-Long Short-Term Memory; BERT, Bidirectional 
Encoder Representations from Transformers. 

a See Supplementary Table S5 for a list of references. 
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versus unstructured symptom data (e.g., chest pain, dyspnea, cough) 
documented in the physicians' medical notes [22]. Several studies have 
noted the value of unstructured PROs as anchors in predicting or 
correlating various clinical outcomes (e.g., disease onset, suicidal idea
tion, readmission, mortality) [20,30,33,59,61,68,79,83]. These findings 
suggest that unstructured PROs may be a surrogate for the standard PRO 
surveys [93]. 

The findings of this review study have important implications for 
future clinical research and care. Although NLP/ML techniques are 
evolving, successful NLP/ML application requires the implementation of 
integrated platforms that seamlessly interconnect EHR functionality and 
NLP/ML algorithms to facilitate clinical interpretation. Evidence shows 
that integrating unstructured PROs into EHRs likely improves cancer 
survivorship care by predicting late effects based on worsening symp
toms and other clinical data [7,21,30,33,44,61,63,75,79,84]. However, 
there is a critical need to find novel platforms/systems for integrating 
unstructured PROs into EHRs and using NLP/ML techniques to annotate 
unstructured PROs. Further effort is warranted to create meaningful 
PRO scores from free-text narratives based on the features derived from 
NLP/ML to be comparably interpretable to scores from standard PRO 
surveys. 

There are implementation barriers to collecting and integrating un
structured PROs from EHRs for NLP/ML applications. The major barriers 
include technical complexity, system interoperability, and concerns 
about the quality of unstructured clinical narratives (e.g., fragmented or 
incomplete words or sentences to represent a patient's health status or 
symptoms) in EHRs [98]. Adopting the Common Data Model or Com
mon Data Warehouse to enhance model portability [99] may improve 
the collection of standard and high-quality unstructured PRO data from 
clinical narratives. Instead of relying on text-based PRO data, alternative 
methods include the use of speech or voice recognition systems for 
collecting unstructured PROs and developing audio-based NLP/ML 
pipelines to automatically analyze PRO information from patient-doctor 
conversations in clinics. There are different ways to manage 
conversation-based PROs: 1) using NLP/ML algorithms to automatically 
annotate and analyze the conversation-based PROs and 2) using soft
ware to transcribe voice data, followed by NLP/ML to annotate and 

analyze the transcribed data. If systems were set up appropriately, 
acoustic recordings of clinical interactions would involve less paperwork 
and be less prone to data collection artifacts. However, compared to text, 
audio contains richer information (e.g., prosody) that humans process 
together with lexical meaning to alter language's propositional content. 
For example, an ironic phrasing of “yeah, that medication worked” 
captured in audio would be interpreted as a declaration of efficacy if it 
were simply converted into text. Once the voice-based PRO data are 
annotated, the NLP/ML pipelines could be applied for data analysis and 
clinical application. Few-shot learning, or prompting, could also be used 
to improve parts of PRO prediction by significantly augmenting the 
amount of relevant ground truth training data [100]. 

This review study contains some limitations. First, several selected 
studies did not report specific information to meet our inclusion criteria 
(e.g., frequently used linguistic features); therefore, the results may not 
fully reflect the status of NLP/ML applications in unstructured PROs. 
Second, we did not evaluate the quality of the selected studies because 
the standards or guidelines for evaluating NLP/ML applications in un
structured PROs have yet been established. Finally, we included studies 
that were published by the end of 2020, while NLP/ML techniques 
evolve day by day. However, to our best knowledge, our study has 
covered the latest trends and techniques of applying NLP/ML techniques 
(e.g., BERT) for researching unstructured PROs. We are aware of large 
generative language models (e.g., ChatGPT), however, those newer 
generative AI techniques have not been applied in recent PRO-related 
studies. 

While the NLP revolution, specifically generative AI, has taken place 
in the past 2–3 years, our literature search until 2023 found no instances 
of generative AI being applied to unstructured PROs. Large language 
models become the promising direction for future PROs studies, and 
contemporary NLP techniques (e.g., BERT or GPT) discussed in this re
view study can provide a solid background for future PROs research. 
One notable example of generative AI is ChatGPT (e.g., GPT-4 developed 
by OpenAI) which aims to generate a patient summary using informa
tion provided by clinicians or patients and to facilitate interactive text- 
based communication with users. It is important to note that although 
ChatGPT can address potential bias in the training data, it has not 

Fig. 2. NLP/ML pipeline for processing unstructured PRO data in EHRs.  
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undergone a comprehensive fine-tuning and validation process for PROs 
and other medical data. Moreover, its integration into EHRs for anno
tating and analyzing vast amounts of unstructured PROs in medical 
notes remains uncertain [101–103]. Currently, ChatGPT is valuable for 
providing a PRO summary based on the data provided by clinicians or 
patients, but it should not be relied upon for clinical interpretation or 
decision-making until empirical studies establish its validity. We believe 
the methods and resources of traditional NLP/ML reported in this review 
will be valuable to inform the generative NLP approaches (e.g., GPT) of 
how to incorporate domain knowledge and promote evidence-based 
PRO inferences from unstructured medical data. Our present recom
mendation is to employ established, validated NLP/ML approaches for 
feature extraction, including rule-based or neural machine/deep 
learning algorithms, and utilize NLP systems/toolkits for the analysis of 
unstructured PROs within EHRs. 

5. Conclusion 

This systematic review study reports the usefulness of NLP/ML 
techniques in processing unstructured PRO data. Currently, using the 
established rules to annotate unstructured PROs through NLP/ML sys
tems/toolkits is the dominant method, though the use of novel neural 
ML-based methods is increasing. Transformer NLP/ML models (e.g., 
BERT) are the most cutting-edge and dominating techniques to process 
unstructured PROs in EHRs. Although we did not come across any 
studies utilizing generative large language models like ChatGPT for 
extracting and analyzing unstructured PROs and integrated into EHRs, 
the rapid advancements in generative AI offer a potential opportunity 
for future exploration and evaluation in this area. 

Funding statement 

The research reported in this manuscript was supported by the U.S. 
National Cancer Institute under award numbers U01CA195547 (Hud
son/Ness), R01CA238368 (Huang/Baker), and R01CA258193 (Huang/ 
Yasui), and National Science Foundation IIS-2245920 (Huang). The 
content is solely the responsibility of the authors and does not neces
sarily represent the official views of the funding agencies. 

CRediT authorship contribution statement 

Conceptualization: Jin-ah Sim, I-Chan Huang; Data curation: Jin-ah 
Sim; Funding acquisition: Melissa M. Hudson, Justin N. Baker, I-Chan 
Huang; Methodology: Jin-ah Sim, Xiaolei Huang, Christopher M. Stew
art, I-Chan Huang; Project administration: I-Chan Huang; Resources: I- 
Chan Huang; Supervision: I-Chan Huang; Visualization: Jin-ah Sim; 
Writing - original draft preparation: Jin-ah Sim, I-Chan Huang; Writing - 
review & editing: Xiaolei Huang, Madeline R. Horan, Christopher M. 
Stewart, Leslie L. Robison, Melissa M. Hudson, Justin N. Baker, I-Chan 
Huang; All authors have read and agreed to the submitted version of the 
manuscript. 

Declaration of competing interest 

All co-authors declare no conflict of interest. 

Data availability 

Extracted data for this systematic review is available upon request. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.artmed.2023.102701. 

References 

[1] Wilson IB, Cleary PD. Linking clinical variables with health-related quality of life. 
A conceptual model of patient outcomes. JAMA 1995;273:59–65. 

[2] Foster A, Croot L, Brazier J, Harris J, O’Cathain A. The facilitators and barriers to 
implementing patient reported outcome measures in organisations delivering 
health related services: a systematic review of reviews. J Patient Rep Outcomes 
2018;2:46. 

[3] Alzu’bi AA, Watzlaf VJM, Sheridan P. Electronic health record (EHR) abstraction. 
Perspect Health Inf Manag 2021;18:1g. 

[4] Kong HJ. Managing unstructured big data in healthcare system. Healthc Inform 
Res 2019;25:1–2. 

[5] Gonzalez-Hernandez G, Sarker A, O’Connor K, Savova G. Capturing the patient’s 
perspective: a review of advances in natural language processing of health-related 
text. Yearb Med Inform 2017;26:214–27. 

[6] Leiter RE, Santus E, Jin Z, Lee KC, Yusufov M, Chien I, et al. Deep natural 
language processing to identify symptom documentation in clinical notes for 
patients with heart failure undergoing cardiac resynchronization therapy. J Pain 
Symptom Manage 2020;60(948–58):e3. 

[7] Chang D, Hong WS, Taylor RA. Generating contextual embeddings for emergency 
department chief complaints. JAMIA Open 2020;3:160–6. 

[8] Kreimeyer K, Foster M, Pandey A, Arya N, Halford G, Jones SF, et al. Natural 
language processing systems for capturing and standardizing unstructured 
clinical information: a systematic review. J Biomed Inform 2017;73:14–29. 

[9] Dreisbach C, Koleck TA, Bourne PE, Bakken S. A systematic review of natural 
language processing and text mining of symptoms from electronic patient- 
authored text data. Int J Med Inform 2019;125:37–46. 

[10] Koleck TA, Dreisbach C, Bourne PE, Bakken S. Natural language processing of 
symptoms documented in free-text narratives of electronic health records: a 
systematic review. J Am Med Inform Assoc 2019;26:364–79. 

[11] Chapman AB, Peterson KS, Alba PR, DuVall SL, Patterson OV. Detecting adverse 
drug events with rapidly trained classification models. Drug Saf 2019;42:147–56. 

[12] Divita G, Luo G, Tran LT, Workman TE, Gundlapalli AV, Samore MH. General 
symptom extraction from VA electronic medical notes. Stud Health Technol 
Inform 2017;245:356–60. 

[13] Fodeh SJ, Finch D, Bouayad L, Luther SL, Ling H, Kerns RD, et al. Classifying 
clinical notes with pain assessment using machine learning. Med Biol Eng Comput 
2018;56:1285–92. 

[14] Gong L, Zhang Z, Chen S. Clinical named entity recognition from Chinese 
electronic medical records based on deep learning pretraining. J Healthc Eng 
2020;2020:8829219. 

[15] Hu BT, Bajracharya A, Yu H. Generating medical assessments using a neural 
network model: algorithm development and validation. JMIR Med Inf 2020;8: 
23–33. 

[16] Ji B, Liu R, Li S, Yu J, Wu Q, Tan Y, et al. A hybrid approach for named entity 
recognition in Chinese electronic medical record. BMC Med Inform Decis Mak 
2019;19:64. 

[17] Karagounis S, Sarkar IN, Chen ES. Coding free-text chief complaints from a health 
information exchange: a preliminary study. AMIA Annu Symp Proc 2020;2020: 
638–47. 

[18] Landi I, Glicksberg BS, Lee HC, Cherng S, Landi G, Danieletto M, et al. Deep 
representation learning of electronic health records to unlock patient 
stratification at scale. Npj Digit Med 2020:3. 

[19] McCoy TH, Wiste AK, Doyle AE, Pellegrini AM, Perlis RH. Association between 
child psychiatric emergency room outcomes and dimensions of psychopathology. 
Gen Hosp Psychiat 2019;59:1–6. 

[20] McCoy TH, Castro VM, Rosenfield HR, Cagan A, Kohane IS, Perlis RH. A clinical 
perspective on the relevance of research domain criteria in electronic health 
records. Am J Psychiatry 2015;172:316–20. 

[21] Owlia M, Dodson JA, King JB, Derington CG, Herrick JS, Sedlis SP, et al. Angina 
severity, mortality, and healthcare utilization among veterans with stable angina. 
J Am Heart Assoc 2019:8. 

[22] Pakhomov S, Jacobsen SJ, Chute CG, Roger VL. Agreement between patient- 
reported symptoms and their documentation in the medical record. Am J Manag 
Care 2008;14:530. 

[23] Shao YJ, Zeng QT, Chen KK, Shutes-David A, Thielke SM, Tsuang DW. Detection 
of probable dementia cases in undiagnosed patients using structured and 
unstructured electronic health records. BMC Med Inform Decis 2019:19. 

[24] Steinkamp JM, Bala W, Sharma A, Kantrowitz JJ. Task definition, annotated 
dataset, and supervised natural language processing models for symptom 
extraction from unstructured clinical notes. J Biomed Inform 2020;102:103354. 

[25] Tang H, Solti I, Kirkendall E, Zhai H, Lingren T, Meller J, et al. Leveraging Food 
and Drug Administration adverse event reports for the automated monitoring of 
electronic health records in a pediatric hospital. Biomed Inform Insights 2017;9 
[1178222617713018]. 

[26] Wang X, Chused A, Elhadad N, Friedman C, Markatou M. Automated knowledge 
acquisition from clinical narrative reports. AMIA Annu Symp Proc 2008:783–7. 

[27] Wang L, Wang Q, Bai H, Liu C, Liu W, Zhang Y, et al. EHR2Vec: representation 
learning of medical concepts from temporal patterns of clinical notes based on 
self-attention mechanism. Front Genet 2020;11:630. 

[28] Yehia E, Boshnak H, AbdelGaber S, Abdo A, Elzanfaly DS. Ontology-based clinical 
information extraction from physician’s free-text notes. J Biomed Inform 2019; 
98:103276. 

[29] Zhang ZC, Zhang Y, Zhou T, Pang YL. Medical assertion classification in Chinese 
EMRs using attention enhanced neural network. Math Biosci Eng 2019;16: 
1966–77. 

J.-a. Sim et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.artmed.2023.102701
https://doi.org/10.1016/j.artmed.2023.102701
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0005
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0005
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0010
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0010
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0010
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0010
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0015
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0015
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0020
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0020
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0025
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0025
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0025
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0030
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0030
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0030
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0030
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0035
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0035
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0040
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0040
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0040
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0045
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0045
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0045
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0050
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0050
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0050
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0055
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0055
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0060
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0060
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0060
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0065
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0065
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0065
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0070
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0070
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0070
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0075
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0075
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0075
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0080
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0080
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0080
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0085
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0085
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0085
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0090
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0090
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0090
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0095
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0095
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0095
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0100
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0100
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0100
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0105
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0105
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0105
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0110
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0110
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0110
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0115
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0115
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0115
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0120
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0120
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0120
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0125
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0125
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0125
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0125
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0130
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0130
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0135
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0135
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0135
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0140
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0140
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0140
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0145
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0145
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0145


Artificial Intelligence In Medicine 146 (2023) 102701

10

[30] Zhang H, Ni W, Li J, Zhang J. Artificial intelligence-based traditional Chinese 
medicine assistive diagnostic system: validation study. JMIR Med Inform 2020;8: 
e17608. 

[31] Torii M, Yang Elly W, Doan Son. A preliminary study of clinical concept detection 
using syntactic relations. AMIA Annu Symp Proc 2018;2018:1028. 

[32] Wang Y, Yu Z, Chen L, Chen Y, Liu Y, Hu X, et al. Supervised methods for 
symptom name recognition in free-text clinical records of traditional Chinese 
medicine: an empirical study. J Biomed Inform 2014;47:91–104. 

[33] Ye JC, Yao L, Shen JH, Janarthanam R, Luo Y. Predicting mortality in critically ill 
patients with diabetes using machine learning and clinical notes. BMC Med 
Inform Decis 2020:20. 

[34] Byrd RJ, Steinhubl SR, Sun J, Ebadollahi S, Stewart WF. Automatic identification 
of heart failure diagnostic criteria, using text analysis of clinical notes from 
electronic health records. Int J Med Inform 2014;83:983–92. 

[35] Chan LL, Beers K, Yau AA, Chauhan K, Duffy A, Chaudhary K, et al. Natural 
language processing of electronic health records is superior to billing codes to 
identify symptom burden in hemodialysis patients. Kidney Int 2020;97:383–92. 

[36] Chase HS, Mitrani LR, Lu GG, Fulgieri DJ. Early recognition of multiple sclerosis 
using natural language processing of the electronic health record. BMC Med 
Inform Decis 2017:17. 

[37] Ford E, Carroll J, Smith H, Davies K, Koeling R, Petersen I, et al. What evidence is 
there for a delay in diagnostic coding of RA in UK general practice records? An 
observational study of free text. BMJ Open 2016;6:e010393. 

[38] Geva A, Abman SH, Manzi SF, Ivy DD, Mullen MP, Griffin J, et al. Adverse drug 
event rates in pediatric pulmonary hypertension: a comparison of real-world data 
sources. J Am Med Inform Assoc 2020;27:294–300. 

[39] Iqbal E, Mallah R, Rhodes D, Wu H, Romero A, Chang N, et al. ADEPt, a 
semantically-enriched pipeline for extracting adverse drug events from free-text 
electronic health records. PloS One 2017;12:e0187121. 

[40] Kirk IK, Simon C, Banasik K, Holm PC, Haue AD, Jensen PB, et al. Linking 
glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics 
through EHR data mining. Elife 2019:8. 

[41] McCoy TH, Han L, Pellegrini AM, Tanzi RE, Berretta S, Perlis RH. Stratifying risk 
for dementia onset using large-scale electronic health record data: a retrospective 
cohort study. Alzheimers Dement 2020;16:531–40. 

[42] Nagamine T, Gillette B, Pakhomov A, Kahoun J, Mayer H, Burghaus R, et al. 
Multiscale classification of heart failure phenotypes by unsupervised clustering of 
unstructured electronic medical record data. Sci Rep 2020;10:1–13. 

[43] Pakhomov SS, Hemingway H, Weston SA, Jacobsen SJ, Rodeheffer R, Roger VL. 
Epidemiology of angina pectoris: role of natural language processing of the 
medical record. Am Heart J 2007;153:666–73. 

[44] Pakhomov S, Shah N, Hanson P, Balasubramaniam S, Smith SA. Automatic 
quality of life prediction using electronic medical records. AMIA Annu Symp Proc 
2008;2008:545. 

[45] Pakhomov SV, Shah ND, Van Houten HK, Hanson PL, Smith SA. The role of the 
electronic medical record in the assessment of health related quality of life. AMIA 
Annu Symp Proc 2011;2011:1080–8. 

[46] Park SY, Camilleri M, Packer D, Monahan K. Upper gastrointestinal complications 
following ablation therapy for atrial fibrillation. Neurogastroenterol Motil 2017; 
29. 

[47] Topaz M, Adams V, Wilson P, Woo K, Ryvicker M. Free-text documentation of 
dementia symptoms in home healthcare: a natural language processing study. 
Gerontol Geriatr Med 2020;6 [2333721420959861]. 

[48] Vijayakrishnan R, Steinhubl SR, Ng K, Sun J, Byrd RJ, Daar Z, et al. Prevalence of 
heart failure signs and symptoms in a large primary care population identified 
through the use of text and data mining of the electronic health record. J Card 
Fail 2014;20:459–64. 

[49] Wi CI, Sohn S, Rolfes MC, Seabright A, Ryu E, Voge G, et al. Application of a 
natural language processing algorithm to asthma ascertainment. An automated 
chart review. Am J Respir Crit Care Med 2017;196:430–7. 

[50] Yang Z, Dehmer M, Yli-Harja O, Emmert-Streib F. Combining deep learning with 
token selection for patient phenotyping from electronic health records. Sci Rep 
2020;10:1432. 

[51] Chandran D, Robbins DA, Chang CK, Shetty H, Sanyal J, Downs J, et al. Use of 
natural language processing to identify obsessive compulsive symptoms in 
patients with schizophrenia, schizoaffective disorder or bipolar disorder. Sci Rep 
2019;9:1–7. 

[52] Colling C, Khondoker M, Patel R, Fok M, Harland R, Broadbent M, et al. 
Predicting high-cost care in a mental health setting. BJPsych Open 2020;6:e10. 

[53] Dai HJ, Su CH, Lee YQ, Zhang YC, Wang CK, Kuo CJ, et al. Deep learning-based 
natural language processing for screening psychiatric patients. Front Psych 2020; 
11:533949. 

[54] Downs J, Dean H, Lechler S, Sears N, Patel R, Shetty H, et al. Negative symptoms 
in early-onset psychosis and their association with antipsychotic treatment 
failure. Schizophr Bull 2019;45:69–79. 

[55] Geraci J, Wilansky P, de Luca V, Roy A, Kennedy JL, Strauss J. Applying deep 
neural networks to unstructured text notes in electronic medical records for 
phenotyping youth depression. Evid Based Ment Health 2017;20:83–7. 

[56] Jackson RG, Patel R, Jayatilleke N, Kolliakou A, Ball M, Gorrell G, et al. Natural 
language processing to extract symptoms of severe mental illness from clinical 
text: the Clinical Record Interactive Search Comprehensive Data Extraction 
(CRIS-CODE) project. BMJ Open 2017;7:e012012. 

[57] Jackson R, Patel R, Velupillai S, Gkotsis G, Hoyle D, Stewart R. Knowledge 
discovery for deep phenotyping serious mental illness from electronic mental 
health records. F1000Research 2018;7:210. 

[58] Karystianis G, Nevado AJ, Kim CH, Dehghan A, Keane JA, Nenadic G. Automatic 
mining of symptom severity from psychiatric evaluation notes. Int J Methods 
Psychiatr Res 2018;27. 

[59] Le DV, Montgomery J, Kirkby KC, Scanlan J. Risk prediction using natural 
language processing of electronic mental health records in an inpatient forensic 
psychiatry setting. J Biomed Inform 2018;86:49–58. 

[60] Liu Q, Woo M, Zou X, Champaneria A, Lau C, Mubbashar MI, et al. Symptom- 
based patient stratification in mental illness using clinical notes. J Biomed Inform 
2019;98. 

[61] McCoy Jr TH, Yu S, Hart KL, Castro VM, Brown HE, Rosenquist JN, et al. High 
throughput phenotyping for dimensional psychopathology in electronic health 
records. Biol Psychiatry 2018;83:997–1004. 

[62] Obeid JS, Weeda ER, Matuskowitz AJ, Gagnon K, Crawford T, Carr CM, et al. 
Automated detection of altered mental status in emergency department clinical 
notes: a deep learning approach. BMC Med Inform Decis Mak 2019;19:164. 

[63] Obeid JS, Dahne J, Christensen S, Howard S, Crawford T, Frey LJ, et al. 
Identifying and predicting intentional self-harm in electronic health record 
clinical notes: deep learning approach. JMIR Med Inform 2020;8:e17784. 

[64] Parthipan A, Banerjee I, Humphreys K, Asch SM, Curtin C, Carroll I, et al. 
Predicting inadequate postoperative pain management in depressed patients: a 
machine learning approach. PloS One 2019;14:e0210575. 

[65] Patel R, Lloyd T, Jackson R, Ball M, Shetty H, Broadbent M, et al. Mood instability 
is a common feature of mental health disorders and is associated with poor 
clinical outcomes. BMJ Open 2015;5:e007504. 

[66] Patel R, Jayatilleke N, Broadbent M, Chang C-K, Foskett N, Gorrell G, et al. 
Negative symptoms in schizophrenia: a study in a large clinical sample of patients 
using a novel automated method. BMJ Open 2015;5:e007619. 

[67] Perlis R, Iosifescu D, Castro V, Murphy S, Gainer V, Minnier J, et al. Using 
electronic medical records to enable large-scale studies in psychiatry: treatment 
resistant depression as a model. Psychol Med 2012;42:41–50. 

[68] Rumshisky A, Ghassemi M, Naumann T, Szolovits P, Castro VM, McCoy TH, et al. 
Predicting early psychiatric readmission with natural language processing of 
narrative discharge summaries. Transl Psychiatry 2016;6:e921. 

[69] Sorup FKH, Eriksson R, Westergaard D, Hallas J, Brunak S, Ejdrup Andersen S. 
Sex differences in text-mined possible adverse drug events associated with drugs 
for psychosis. J Psychopharmacol 2020;34:532–9. 

[70] Viani N, Kam J, Yin L, Verma S, Stewart R, Patel R, et al. Annotating temporal 
relations to determine the onset of psychosis symptoms. Stud Health Technol 
Inform 2019;264:418–22. 

[71] Viani N, Kam J, Yin L, Bittar A, Dutta R, Patel R, et al. Temporal information 
extraction from mental health records to identify duration of untreated psychosis. 
J Biomed Semantics 2020;11:2. 

[72] Wu CS, Kuo CJ, Su CH, Wang SH, Dai HJ. Using text mining to extract depressive 
symptoms and to validate the diagnosis of major depressive disorder from 
electronic health records. J Affect Disorders 2020;260:617–23. 

[73] Zhou L, Baughman AW, Lei VJ, Lai KH, Navathe AS, Chang F, et al. Identifying 
patients with depression using free-text clinical documents. Stud Health Technol 
2015;216:629–33. 

[74] Banerjee I, Li K, Seneviratne M, Ferrari M, Seto T, Brooks JD, et al. Weakly 
supervised natural language processing for assessing patient-centered outcome 
following prostate cancer treatment. JAMIA Open 2019;2:150–9. 

[75] Forsyth AW, Barzilay R, Hughes KS, Lui D, Lorenz KA, Enzinger A, et al. Machine 
learning methods to extract documentation of breast cancer symptoms from 
electronic health records. J Pain Symptom Manage 2018;55:1492–9. 

[76] Heintzelman NH, Taylor RJ, Simonsen L, Lustig R, Anderko D, 
Haythornthwaite JA, et al. Longitudinal analysis of pain in patients with 
metastatic prostate cancer using natural language processing of medical record 
text. J Am Med Inform Assoc 2013;20:898–905. 

[77] Hyun S, Johnson SB, Bakken S. Exploring the ability of natural language 
processing to extract data from nursing narratives. Comput Inform Nurs 2009;27: 
215–23 [quiz 24-5]. 

[78] Hong JC, Fairchild AT, Tanksley JP, Palta M, Tenenbaum JD. Natural language 
processing for abstraction of cancer treatment toxicities: accuracy versus human 
experts. JAMIA Open 2020;3:513–7. 

[79] Jensen K, Soguero-Ruiz C, Oyvind Mikalsen K, Lindsetmo RO, Kouskoumvekaki I, 
Girolami M, et al. Analysis of free text in electronic health records for 
identification of cancer patient trajectories. Sci Rep 2017;7:46226. 

[80] Tamang S, Patel MI, Blayney DW, Kuznetsov J, Finlayson SG, Vetteth Y, et al. 
Detecting unplanned care from clinician notes in electronic health records. 
J Oncol Pract 2015;11:e313–9. 

[81] Weegar R, Kvist M, Sundström K, Brunak S, Dalianis H. Finding cervical cancer 
symptoms in Swedish clinical text using a machine learning approach and NegEx. 
AMIA Annu Symp Proc 2015;2015:1296. 

[82] Deleger L, Brodzinski H, Zhai H, Li Q, Lingren T, Kirkendall ES, et al. Developing 
and evaluating an automated appendicitis risk stratification algorithm for 
pediatric patients in the emergency department. J Am Med Inform Assoc 2013;20: 
e212–20. 

[83] McCoy TH, Pellegrini AM, Perlis RH. Research domain criteria scores estimated 
through natural language processing are associated with risk for suicide and 
accidental death. Depress Anxiety 2019;36:392–9. 

[84] Hane CA, Nori VS, Crown WH, Sanghavi DM, Bleicher P. Predicting onset of 
dementia using clinical notes and machine learning: case-control study. JMIR 
Med Inf 2020:8. 

[85] Shah AD, Bailey E, Williams T, Denaxas S, Dobson R, Hemingway H. Natural 
language processing for disease phenotyping in UK primary care records for 

J.-a. Sim et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0150
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0150
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0150
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0155
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0155
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0160
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0160
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0160
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0165
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0165
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0165
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0170
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0170
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0170
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0175
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0175
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0175
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0180
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0180
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0180
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0185
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0185
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0185
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0190
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0190
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0190
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0195
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0195
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0195
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0200
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0200
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0200
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0205
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0205
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0205
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0210
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0210
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0210
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0215
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0215
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0215
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0220
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0220
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0220
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0225
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0225
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0225
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0230
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0230
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0230
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0235
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0235
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0235
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0240
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0240
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0240
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0240
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0245
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0245
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0245
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0250
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0250
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0250
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0255
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0255
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0255
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0255
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0260
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0260
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0265
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0265
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0265
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0270
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0270
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0270
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0275
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0275
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0275
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0280
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0280
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0280
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0280
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0285
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0285
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0285
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0290
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0290
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0290
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0295
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0295
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0295
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0300
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0300
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0300
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0305
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0305
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0305
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0310
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0310
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0310
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0315
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0315
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0315
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0320
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0320
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0320
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0325
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0325
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0325
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0330
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0330
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0330
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0335
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0335
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0335
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0340
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0340
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0340
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0345
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0345
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0345
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0350
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0350
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0350
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0355
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0355
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0355
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0360
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0360
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0360
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0365
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0365
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0365
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0370
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0370
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0370
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0375
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0375
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0375
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0380
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0380
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0380
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0380
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0385
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0385
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0385
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0390
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0390
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0390
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0395
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0395
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0395
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0400
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0400
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0400
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0405
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0405
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0405
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0410
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0410
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0410
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0410
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0415
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0415
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0415
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0420
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0420
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0420
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0425
http://refhub.elsevier.com/S0933-3657(23)00215-4/rf0425


Artificial Intelligence In Medicine 146 (2023) 102701

11

research: a pilot study in myocardial infarction and death. J Biomed Semantics 
2019;10:20. 

[86] Liu H, Gegov A, Cocea M. Rule-based systems: a granular computing perspective. 
Granular Comput 2016;1:259–74. 

[87] Aubaid AM, Mishra A. A rule-based approach to embedding techniques for text 
document classification. Appl Sci 2020;10:4009. 

[88] Khurana D, Koli A, Khatter K, Singh S. Natural language processing: state of the 
art, current trends and challenges. Multimed Tools Appl 2023;82(3):3713–44. 

[89] Velupillai S, Suominen H, Liakata M, Roberts A, Shah AD, Morley K, et al. Using 
clinical natural language processing for health outcomes research: overview and 
actionable suggestions for future advances. J Biomed Inform 2018;88:11–9. 

[90] Tayefi M, Ngo P, Chomutare T, Dalianis H, Salvi E, Budrionis A, et al. Challenges 
and opportunities beyond structured data in analysis of electronic health records. 
WIREs Comput Stat 2021;13:e1549. 

[91] Gaudet-Blavignac C, Foufi V, Bjelogrlic M, Lovis C. Use of the systematized 
nomenclature of medicine clinical terms (SNOMED CT) for processing free text in 
health care: systematic scoping review. J Med Internet Res 2021;23:e24594. 

[92] Cronin R, Fabbri D, Denny J, Rosenbloom S, Jackson G. A comparison of rule- 
based and machine learning approaches for classifying patient portal messages. 
Int J Med Inform 2017;105. 

[93] Lu Z, Sim JA, Wang JX, Forrest CB, Krull KR, Srivastava D, et al. Natural language 
processing and machine learning methods to characterize unstructured patient- 
reported outcomes: validation study. J Med Internet Res 2021;23:e26777. 

[94] Devlin J, Chang M-W, Lee K, Toutanova K. BERT: pre-training of deep 
bidirectional transformers for language understanding. arXiv:181004805. 2018. 

[95] Gasparetto A, Marcuzzo M, Zangari A, Albarelli A. A survey on text classification 
algorithms: from text to predictions. Information 2022;13:83. 

[96] Zhou S, Wang N, Wang L, Liu H, Zhang R. CancerBERT: a cancer domain-specific 
language model for extracting breast cancer phenotypes from electronic health 
records. J Am Med Inform Assoc 2022;29:1208–16. 

[97] Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J. Distributed representations 
of words and phrases and their compositionality. Adv Neural Inf Process Syst 
2013;26. 

[98] Ajami S, Arab-Chadegani R. Barriers to implement electronic health records 
(EHRs). Mater Sociomed 2013;25:213–5. 

[99] Schneeweiss S, Brown JS, Bate A, Trifirò G, Bartels DB. Choosing among common 
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