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ABSTRACT

Recently, Arumugam et al. (2023) developed a constitutive relation for the response of isotropic inhomogeneous compressible elastic solids
in order to describe the response of the trabecular bone. Since porous solids such as bones, cement concrete, rocks, metallic alloys, etc., are
anisotropic, in this short note we develop a constitutive relation for such bodies that exhibit transverse isotropy and also having two preferred
directions of symmetry. Another characteristic of bones is that they exhibit different response characteristics in tension and compression, and
hence any constitutive relation that is developed has to be capable of describing this. Also, the material moduli depend on both the density and
the mean value of the stress (mechanical pressure), as is to be expected in a porous solid. In the constitutive relation that is developed in this
paper, though the stress and the linearized strain appear linearly in the constitutive relation, the relationship is nonlinear. We also derive the
response of such solids when undergoing uniaxial extension and compression, simple shear and torsion.

1. Introduction

Materials such as bones are porous and the porosity affects their mechanical response (see Bell et al. (1999), Helgason et al.
(2008), McCalden, McGeough, Barker, and Court-Brown (1993), Schaffler and Burr (1988) and Vanleene, Rey, and Tho (2008))
and such a porous structure is essential for the flow of interstitial fluids (see Cardoso, Fritton, Gailani, Benalla, and Cowin (2013))
within the bones. Moreover, the pore structure varies over the body, and thus such a body needs to be described by a constitutive
relation for an inhomogeneous compressible elastic body. The material moduli of porous elastic bodies are assumed to depend on
the porosity, even when such bodies are undergoing small strains. Since porosity is related to the density, that is, more the porosity
the lower the local density and vice-versa, the material moduli depending on the porosity is tantamount to the material moduli
depending on the density. While such a situation is possible in nonlinear Cauchy elastic bodies (see Cauchy (1823, 1828)), and
in Green elastic bodies (see Green (1842)) as they are a sub-class of Cauchy elastic bodies, it is not possible in the linearization
of Cauchy elasticity under the assumption that the displacement gradient is small, as dependence on the density would make the
material moduli depend on the trace of the linearized strain in virtue of the balance of mass, and the resulting approximation would
involve nonlinear terms in the linearized strain that are to be ignored. However, as shown by Rajagopal (2021), the dependence of
the material moduli in the porosity and hence density and thereby the trace of the linearized strain is possible in the linearization
of the class of implicit elastic bodies introduced by Rajagopal (see Rajagopal (2003, 2007, 2010, 2011)).

The response of many bones is anisotropic (see Dong and Guo (2004), Hosseini, Maquer, and Zysset (2017), Kersh et al. (2013),
Larsson et al. (2014) and Yassine and Hamade (2018)) thus necessitating the constitutive relation to reflect this characteristic.
Furthermore, bones exhibit nonlinear response characteristics even within the context of small displacement gradients (see Morgan,

* Corresponding author.
E-mail address: rogbusta@ing.uchile.cl (R. Bustamante).

https://doi.org/10.1016/j.ijengsci.2023.104005
Received 24 November 2023; Received in revised form 8 December 2023; Accepted 8 December 2023

Available online 19 December 2023
0020-7225/© 2023 Elsevier Ltd. All rights reserved.


https://www.elsevier.com/locate/ijengsci
https://www.elsevier.com/locate/ijengsci
mailto:rogbusta@ing.uchile.cl
https://doi.org/10.1016/j.ijengsci.2023.104005

K.R. Rajagopal and R. Bustamante International Journal of Engineering Science 195 (2024) 104005

Yeh, Chang, and Keaveny (2001))! and complicating matters further, bones exhibit different response in tension and compression
even when subject to small strains (see Rohl, Larsen, Linde, Odgaard, and Jorgensen (1991)), like rocks.>

Arumugam, Alagappan, Bird, Moreno, and Rajagopal (2023) developed a class of constitutive relations to describe the response
of porous isotropic inhomogeneous compressible elastic bodies whose material moduli depend on the mean value of the stress
(mechanical pressure’) and the density. Bustamante and Rajagopal (2022a) developed implicit constitutive relations to describe
the response of homogeneous isotropic compressible elastic bodies and then obtained approximations based on the displacement
gradients being small. Also, recently, Bustamante and Rajagopal (2022b) developed constitutive relations for response of anisotropic
porous elastic bodies that are transversely isotropic and that have two preferred directions of symmetry.® They first developed
general constitutive relations that are valid for large deformation gradients, and then they obtained linearization based on the
assumption that the displacement gradients are small, the constitutive relation being nonlinear in the stress. However, as the
linearized constitutive relations in both these studies contain many constants, the aim of this study is to try and reduce the number
of material moduli that appear in the constitutive relations but yet have sufficient robustness to capture the response exhibited by
the material under consideration.

The starting point for the studies in Arumugam et al. (2023) and Bustamante and Rajagopal (2022a, 2022b) are the implicit
constitutive relations to describe the response of elastic bodies introduced by Rajagopal (2003, 2007, 2010).° Here, we introduce
a sub-class of the constitutive relations developed in Bustamante and Rajagopal (2022a) for porous solids that are transversely
isotropic or that have two preferred directions of symmetry, wherein the Cauchy stress and the linearized strain appear linearly.
Also, the material moduli that appear in the constitutive relation depend on the density and the mean value of the stress. It is
important to recognize that care has to be exercised with regard to the linearization of implicit constitutive relations (see Rajagopal
(2018)) as the operations of linearization and inversion do not commute.

The paper is arranged in the following manner: In Section 2 the basic equations for the kinematics of a continuum media implicit
constitutive relations are given. In Section 3 implicit constitutive relations are presented for porous transversely isotropic bodies, in
the case of small gradient of displacement field. In Section 4 implicit relations for bodies with two preferred directions of symmetry
are obtained. In Section 5 some simple boundary value problems are studied for the case of transversely isotropic bodies. The note
ends with some final remarks in the final Section 6.

2. Preliminaries

Let kx(#) and k,(%) denote the reference and current configurations at time ¢ of an abstract body #. Let X and x denote the
position of a typical particle p € 4, in the reference configuration and current configuration, respectively. Let

x=x(X,1n) (€8]
denote the motion of the body that is one to one, and sufficiently smooth to make all the derivatives taken, meaningful. Let
ox ou
=x-X, F=-=Z2, ==, 2
v X 'Tox @

where u, F, Vu denote the displacement, deformation gradient and displacement gradient, respectively. The linearized strain ¢ is
defined through

£ = 3(Vu+ Vuh) 3
The balance of mass

pr =pdetF, @
where pg, p are the densities in the reference and current configuration, reduces to

pr~ p(l +tre), 5)

under the assumption of small displacement gradient, in virtue of the Cayley-Hamilton theorem.

1 This display of nonlinear response even within the context of small strains is observed in ceramics, rocks, metallic alloys, see Lydon and Balendran (1986),
Munro (2004), Nguyen, Beaucour, Ortola, and Noumowé (2014) and Pauw (1960) for cement concrete, Hao et al. (2005), Li, Morris, Nagasako, Kuramoto,
and Chrzan (2007), Saito et al. (2003), Sakaguch, Niinomi, and Akahori (2004), Sakaguchi, Niinomi, Akahori, Takeda, and Toda (2005), Talling, Dashwood,
Jackson, Kuramoto, and Dye (2008), Withey et al. (2008) and Zhang, Li, Jia, Hao, and Yang (2009) for metallic alloys, Luo and Stevens (1999) and Zhang,
Gao, Elias, Dong, and Chen (2014), for ceramics, Hirose, Tanaka, Tanaki, and Asami (2004), Manoylov, Borodich, and Evans (2013) and Kovacik (1999), for
sintered materials, and Cristescu (2012) for rocks.

2 That rocks exhibit different response characteristics in tension and compression has been well documented (see Fuenkajorn and Klanphumeesri (2010),
Haimson and Tharp (1974), Johnson and Rasolofosaon (1996) and Patel and Martin (2018)) Bustamante and Ortiz (2021) and Sundaram and Corrales (1980)).

3 The concept of pressure has been often times misused in mechanics (see Rajagopal (2003)).

4 (Classification of anisotropy for implicit bodies, which includes implicit elastic bodies as a special subclass, can be found in Rajagopal (2015).

5 The constitutive relations developed in Rajagopal (2003, 2007, 2010) appeal to standard representation theorems (see Spencer (1971)). Rajagopal and
Saccomandi (2022) developed a constitutive relation that is linear in the stress and the linearized strain, starting from a generalization of the Blatz-Ko constitutive
relation, on purely physical grounds.
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The left and right Cauchy—Green tensors B and C are defined respectively through
B=FF'=V2, C=F'F=0% (6)
where U and V are the stretches that appear in the polar-decomposition theorem
F =RU = VR, @)

where R is an orthogonal transformation.

The above brief kinematical definitions suffice for our purpose. A detailed discussion of kinematics can be found in Truesdell
(1977) and Truesdell and Noll (2004).

Let us consider the class of implicit elastic bodies introduced by Rajagopal (2003) through

§(p, T,F,X) = 0. (8)
Frame-indifference requires that

f(p,RTTR, C,X) = 0. 9

3. Transversely anisotropic porous solids
Let a denote a preferred direction for the body with regards to its response in the current configuration. It follows that Spencer
(1971)

aol+ ;T + 0y T? + ;B + @y B2 + a5(TB + BT) + a(T>B + BT?) + a7(TB? + B>T) + ag(T°B? + B’T?) + apa ® a
+ aj[a ® (Ta) + (Ta) ® a] + a;; [a ® (T?a) + (T?a) ® a] + a;,[a @ (Ba) + (Ba) ® a] + a;;[a ® (B%a) + (B%a) ® a] = 0, (10)

where the «;, i =0,1,2,...,13 depend on the density p and the invariants

I =ttT, L=tr(T?, L=tr(T?), I,=trB, Is=trB?), Is=tr(B%), I;=tr(TB), I =tr(T’B), 1)
Iy =tr(TB%), [I,,=1tr(T*B?), I;,=a-(Ta), I,=a-(T?a), I;=a-(Ba), I,=a-(B%), 12)
I;s=a-[(TB+BT)al, I;5=a-[(T?B>+B>T?al). 13)

The above constitutive relation is totally inapplicable as we have as many as 14 material functions ¢;, i =0,1,2,..., 13, depending
on 16 variables plus the density! We have to cull the constitutive relation down so that it can capture the physical phenomenon
of interest, using the minimum number of material constants. In view of the constitutive relation used in Arumugam et al. (2023)
having had some success in describing experimental data, we could make the following choice for a transversely isotropic material
to describe transversely isotropic bones undergoing small deformations® in which ¢ and T appear linearly:

A+ A4 trDe+ pi(1 + Atre)T + (1 + Astre)(tr T+ f3[A4tr e + Astr T + Ag(tre)(tr T) + A;a - (Ta) + Aga - (a)la®@a
+ (1 + Agtre)[a @ (Ta) + (Ta) @ a] + f5(1 + Aptr T)[a @ (ea) + (ea) @ a] = 0. (14)

Even the above constitutive relation involves too many material constants that can be determined within the context of a reasonable
experimental program. Hence, a more reasonable choice might be

(1+ atrDe + (1 + ytre)T + (1 + ytre)(tr TI + f3[Aa - (Ta) + ya - (ea)]a ®@ a + fy[a ® (Ta) + (Ta) ® a]
+ fs[a® (ea) + (ea) @ a] = 0, (15)

with 7 constants 4, y, f;, i = 1,2,3,4,5. When p; = , = 5 = 0 the constitutive relation (15) reduces to that studied in Arumugam
et al. (2023).” When in addition A = 0, the constitutive relation reduces to the one studied by Erbas, Kaplunov, and Rajagopal (2013),
Itou, Kovtunenko, and Rajagopal (2021, 2022), Murru and Rajagopal (2021a, 2021b), PrGi$a, Rajagopal, and Wineman (2022) and
Vajipeyajula, Murru, and Rajagopal (2023a, 2023b). Simplifying the constitutive relation any further might render it useless with
regard to describing transversely isotropic solids undergoing small strains as even in the case of classical linearized elasticity, a
classical transversely isotropic Green elastic solid is described by 5 material constants.

6 The representation provided in Bustamante and Rajagopal (2022a) is not the complete representation for general implicit elastic bodies that are transversely
isotropic or have two preferred directions of symmetry. Also, when one linearizes (10) under the assumption of small displacement gradient we have to replace
B by I+ 2¢, and then ignore terms that are not linear in &.

7 This constitutive relation (14), when f;, §, and s equal to zero, was also studied within the context of inhomogeneous bodies by Alagappan, Arumugam,
and Rajagopal (2023).
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4. Implicit elastic body with two preferred directions of symmetry
We shall not provide a general representation and then derive a simplified constitutive relation. Instead, we directly provide a
constitutive relation for a porous elastic body in which both the linearized strain and the Cauchy stress appear linearly, namely:
I+ arT)e+ (1 +ytre)T + fr(1 + ytre)(tr DI+ fra @ a + f,[a @ (Ta) + (Ta) @ a] + fs[a ® (ea) + (ea) @ a]
+ fsb @b+ p;[b & (Tb) + (Tb) @ b] + fz[b ® (eb) + (eb) ® b] = 0, (16)

where a, b are the two preferred directions in the current configuration, and f;, §; can depend linearly in T and &, whose expressions
are not shown here for the sake of brevity. It is also important to know that above constitutive relation is not the complete
constitutive relation, wherein the linearized strain and the Cauchy stress appear linearly. Even this simple constitutive relation (16)
has at least as many as 10 constants. It might not be possible to reduce the number of material constants further as the orthotropic
classical linearized elastic is characterized by 12 constants in the case of Cauchy elastic bodies and 9 constants in the case of Green
elastic bodies.

5. Boundary value problems

In this section we study some simple boundary value problems. For the sake of brevity we only consider the implicit constitutive
relation for porous transversely isotropic solids (15). For real bone, a and other material properties can depend on the position
x (inhomogeneous solids), but for simplicity for the examples to be shown in this section, we assume that a and other material
properties do not depend on x. We shall not solve any of the boundary value problems numerically as we cannot corroborate the
same as there is no experimental data available to do so. However, our calculations can be used in the future were such experiments
are to be available.

5.1. Uniform extension/compression of a cylinder

We study the behavior of the cylinder
0<r<r,, 0<60<2r, 0<z<L, a7rn
where (r, 0, z) are cylindrical coordinates. We assume:
T=oc,e,Re, a=e,. (18)

We assume that the above stress causes the strain distribution € = /e, @ e, +£,e ® ey + 3¢, ®e.. It follows from (15) and (18) that
&, = £, then using the notation ¢, = ¢, and ¢; = ¢, thus

e=¢.(e,Qe.+e, Qe +e.e,Qe,, (19)
where ¢, and ¢, are constants. Using (19) and (18) in (15) after some manipulations we obtain:
e,(1+ A0)+ (1 + Pl +yQ2e, + € )]0, + P3(ye, + Ao,) + 240, + 2P56, =0, €.(1+ Ao,) + (1 +7Q2e, +€,)]o, =0. (20)

These two relations can be used to obtain ¢, and ¢, in terms of o,.
5.2. Simple shear stress in a slab

In this section we study the behavior of the slab

L L
- <x;<—, i=1,2,3, 21)

x5 <=
subject to simple shear, where we assume the presence of the stress tensor

T=1(e, ®e,+e, Qe)), (22)
where 7 is constant. As well as this We assume

a = cosde| + sinJe,. (23)

Considering the above expressions for the stress and a we assume that

3
£= Zeiei®e,~+612(e1 Qe +e, Qe 24)

i=1
Replacing (22)-(24) in (15) it is possible to show that £; = 0 and:
€1 + Py cos> 9[22z sin 9 cos 9 + y(e; cos? 9+ &, sin? 9 + 2€1, sin § cos 9)] + 2,7 cos Isin 9 + 2fs(e; cos> 9 + £, cos Isin ) = 0, (25)

&+ sin® 9[247 sin 9 cos 9 + y (e cos> 9 + £, sin® 9 + 2&, sin I cos 9)] + 2,7 cos Isin I + 2P5(ey sin® 9 + 1, cos Isind) = 0, (26)
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€10+ P11+ y(g; + €)1z + f5 cos I sin Y[2Az sin  cos I + y (g cos® I + &, sin? 9 + 2€1, sin§ cos 9)] + fu7
+Ps5[e, + (€] + €5)cos IsinI] = 0. (27)

The above 3 relations can be used to find ¢;, £, and ¢, in terms of 7 for different angles 9.
5.3. Torsion of a cylinder

In the above two problems we assumed homogeneous distributions for the stresses and strains. The above two problems can be
used to fit the material constants from experiments. In the problem studied in this section we have inhomogeneous distributions for
the stresses and strains.

Let us consider the cylinder described in (17) with the stress tensor

T=o0.r)e. Qe +oy(re, @ey+o,(re, e, +15,(r)(e, e, +e Qe,). (28)
For the above stress tensor to satisfy the equation of equilibrium without body forces we need
d
oy = a(m,). (29)
We assume that the above stress tensor causes the displacement field
u, =u(r), ug=krz, u,=(4,—1)z, (30)
where k, 4, are positive constants. It follows that the linearized strain tensor takes the form
du, u, kr
£= e e, + ~€ Rey+ (A, —De, ®e, + E(QQ e, +e;®e,). (€]
For the vector a we consider 3 cases, namely:
a=e, a=e), a=e,. (32)
Using (28), (31) and (32) in (15) we obtain the following relations:
Case a =e, : In this case we get (using the notation u: for %’):
u u
W[1+ Ao, + 05+ 0.)] + By [1 +r () + Lo - 1)]a,+ﬁ2 [1 7 () + Lod - 1)] (0, + 0y +0,)

+p; (u;y + A6,) + 2P0, + 2ﬂ5u; =0, (33)

%[1+/1((7,+0'9+(71)]+ﬂ1 [1+y(u;+?+/11—1)]69+ﬂ2[1+y(u:+%+/11—1>]((7,+0'9+<71) -0, (34)

(A = DI + A0, + 05 + 0,)] + ) [1+y<u£+ur—r+/11—l>]az+ﬂ2 [1+y(u;+MTr+/11—1)](0',+0'9+0'z) =0, (35
and

kr , U,
T+ s+ Ao, + 0 + 01+ Pasye + By [1 +r (u+ Ld, - 1)] 75, = 0. (36)

Case a = ¢, : In this problem we obtain:

’ o, W r o, W _
ull+ Ao, +opg+0)l+p |1 +y u,+T+AZ—1 o, +p|1+y ur+7+/lz—1 (6,+09g+0,) =0, (37)

Uy r o, Y r o, U
7[1+/1((7,+0'9+az)]+ﬂ1 1+y ur+7+/lz—l og+ P |1+y ur+7+/11—1 (6, +0y+0,)

u, u,
+Bs (7}/ +404) +2a00 + 25 = 0, (38)

%[1 + A0, + 0 + 0] + By [1 +r (u+ "7 +a, - 1)] o, + Patys +ﬁ5% =0, (39)
and we also get the same relation (35).
Case a = e, : In this final case we have:
(4. = DI + A0, + 05 + 0.)] + B, [1+y(u;+”r—’+/12— 1)] 0.+ by [l+y<u:+%+lz— 1)] (6, +0p+0.)
+ f3lAo, + (A4, = D1+ 2p40, +2p5(4, — 1) = 0, (40)

and we obtain the same relations (34), (37) and (39).
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In each case we have 4 relations, from which we can find o,(r), 6,(r), 7y,(r) and u,(r). For example, in the case a = e, from (39)
and (40) we can find 7,, and o, in terms of o,, 6y = %(ro‘,), u, and u/ (for the sake of brevity we do not show the relevant
expressions explicitly here, as they are very long). Replacing them in (34) and (37) we obtain two first order coupled nonlinear
ordinary differential equations for u,.(r) and o,(r). About boundary conditions, we can assume u,(0) = 0 and 5,(0) = 0. We do not try
to solve such nonlinear equations here, since we do not have numerical values for the different material constants in (15).

6. Concluding remarks

In this short note we have provided constitutive relations for the response of porous transversely isotropic and porous orthotropic
elastic bodies. We have developed the system of equations for three boundary value problems, uniaxial extension/compression,
simple shear and torsion, but we have not solved any of the boundary value problems using these constitutive relations as the
material moduli, which appear in these constitutive relations are not available, and such a study would be at best a parametric
study as no systematic experimental program has been carried out using which data the utility of the constitutive relation can be
assessed. While we have discussed idealized simple boundary value problems such as uniform extension/compression, simple shear
and torsion of transversely isotropic porous elastic bodies in this short paper, we plan to carry out a study of such a body in a
realistic geometry that is pertinent to a human bone in a subsequent study.
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