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Abstract—Various backdrivable lower-limb exoskeletons have
demonstrated the electromechanical capability to assist volitional
motions of able-bodied users and people with mild to moderate
gait disorders, but there does not exist a control framework that
can be deployed on any joint(s) to assist any activity of daily life
in a provably stable manner. This paper presents the modular,
multi-task optimal energy shaping (M-TOES) framework, which
uses a convex, data-driven optimization to train an analytical
control model to instantaneously determine assistive joint torques
across activities for any lower-limb exoskeleton joint configura-
tion. The presented modular energy basis is sufficiently descrip-
tive to fit normative human joint torques (given normative feed-
back from signals available to a given joint configuration) across
sit-stand transitions, stair ascent/descent, ramp ascent/descent,
and level walking at different speeds. We evaluated controllers
for four joint configurations (unilateral/bilateral, hip/knee) of
the modular M-BLUE exoskeleton on eight able-bodied users
navigating a multi-activity circuit. The two unilateral conditions
significantly lowered overall muscle activation across all tasks
and subjects (p < 0.001). In contrast, bilateral configurations
had a minimal impact, possibly attributable to device weight
and physical constraints.

Index Terms—Robotics, optimization, passivity-based control.

I. INTRODUCTION

EXOSKELETONS on the market today in rehabilitation
applications, such as the ReWalk Personal [1] and Wan-

dercraft Atalante X [2], provide complete assistance with
highly-geared actuators that track pre-defined reference tra-
jectories. While these designs are appropriate for severe im-
pairments like paraplegia, they hinder users from populations

This work was supported by the National Institute of Biomedical Imaging
and Bioengineering of the NIH under Award Number R01EB031166 and by
the National Science Foundation under Award Number 1949869. The content
is solely the responsibility of the authors and does not necessarily represent
the official views of the NIH or NSF.

Jianping Lin is with the State Key Laboratory of Mechanical System and
Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China. He was with the Department of Robotics, University
of Michigan, Ann Arbor, MI 48109, USA (Email: jplin@ieee.org).

Gray C. Thomas is with the Department of Mechanical Engineering,
Texas A&M University, College Station, TX 77843, USA. He was with the
Department of Robotics, University of Michigan, Ann Arbor, MI 48109, USA
(Email: gthomas@tamu.edu).

Nikhil V. Divekar is with the Department of Robotics, University of
Michigan, Ann Arbor, MI 48109, USA (Email: ndivekar@umich.edu).

Vamsi Peddinti is with the Department of Electrical and Computer En-
gineering, University of Michigan, Ann Arbor, MI 48109, USA (Email:
vamsi.speddinti@gmail.com).

Robert D. Gregg (Corresponding Author) is with the Department of
Robotics, University of Michigan, Ann Arbor, MI 48109, USA (Email:
rdgregg@umich.edu).

with full or remnant volitional control over their limbs. Highly-
geared actuators introduce high mechanical impedance at the
joint and therefore impede the operator’s ability to move the
device under their own power (i.e., backdrive the actuators).
Although these actuators can still achieve normative joint
motions through position control methods for a variety of tasks
[3], [4], these predefined patterns inevitably conflict with the
user’s desired motion. Thus, the conventional actuation and
control approach for exoskeletons has recently given way to
alternative approaches for assisting remnant voluntary ability.

Low-impedance actuation systems [5], such as quasi-direct-
drive actuators [6]–[10] and series elastic actuators [11]–
[14], are enabling a paradigm shift from task-specific, posi-
tion control to task-agnostic, torque control approaches that
deliver partial rather than complete assistance to the user.
These backdrivable designs allow augmentation of voluntary
human motion [8], [15], compensation for human-exoskeleton
mass/inertia [16], [17], and direct amplification of human
strength [18]. Our group recently developed an open-source
hardware platform called the modular backdrivable lower-limb
unloading exoskeleton (M-BLUE) [10], which exemplifies the
field’s trend toward lighter, minimalist structures for attaching
quasi-direct drive actuators to people. As backdrivable ex-
oskeleton designs become increasingly capable and versatile,
there arises a greater need for generalizable control methods
that operate reliably across the core activities of daily life,
allow for adjustment of the control behavior, avoid instability,
and can be deployed on different lower-limb joint configura-
tions (such as the hip and/or knee of the M-BLUE system).

Machine learning with human biomechanical data has en-
abled several control approaches for backdrivable exoskele-
tons with varying degrees of generalizability. For example, a
recurrent neural network enabled stair climbing with a knee
exoskeleton in [19] but did not consider other activities. Deep
learning has been used to directly estimate biological hip
moments consistently across multiple activities without explic-
itly detecting the activity (making it task-agnostic), but this
method required extensive device-specific training data [20].
The gait analysis field has similarly investigated methods to
estimate joint torques and ground reaction forces from inertial
sensors [21]. While neural networks can estimate continuous
gait phase to control the timing of a predefined assistive
torque profile [22], [23], secondary task classifiers [24] are
typically required to adapt assistance appropriately between
tasks. Generally speaking, these black-box strategies based on
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machine learning offer no guarantees of safety and stability,
especially outside the training dataset, requiring extensive
training and validation for every exoskeleton application.

Analytical alternatives to learning approaches include phase
estimators, which determine the timing for pre-defined torque
profiles. However, model-based phase estimators are currently
limited to walking [25] or a continuum of ramp walking tasks
[26]. The latter case demonstrated the potential to track both
phase and task variables (like stride length and ground incline)
in order to apply task-appropriate ankle torque, but applica-
tions have been limited to a narrow set of periodic walking
behaviors. A model-free alternative, adaptive oscillators [27],
[28] offer the ability to track any periodic task with provable
convergence properties. However, the periodicity assumption
limits non-steady-state tasks outside of the laboratory [29],
and adaptive oscillators cannot automatically adapt the torque
profile to be task-appropriate. Despite having analytical guar-
antees, these methods do not sufficiently generalize across
activities to seamlessly augment voluntary human motion.

Another analytical control method known as energy shaping
augments the plant dynamics to correspond to a new system
Lagrangian (or, equivalently, Hamiltonian) energy function
when the loop is closed [30], [31]. Considering the human-
exoskeleton system as the plant, energy-shaping controllers
provide assistive torques that augment the user’s perceived
dynamics while they remain in control of their joint kinematics
[6], [32], [33]. However, underactuated systems like lower-
limb exoskeletons can only achieve closed-loop dynamics that
satisfy a set of nonlinear partial differential equations called
the matching conditions, which determine the achievable form
of the closed-loop system’s energy and the existence of a
corresponding feedback law. Our prior works derived solutions
to the matching conditions for exoskeletons of increasing
complexity, starting from a unilateral ankle-only system [34],
and advancing through a unilateral ankle-knee system in
several stages: first handling known [35] or unknown [36]
ground-contact conditions, then adding passive velocity feed-
back [32], ground reaction force feedback [37], and global
angle information [33]. This last approach was also extended
to a bilateral hip exoskeleton with a unified stance/swing
controller [38]. Each additional feature necessitated restruc-
turing the matching conditions and the parameterization of
target energies to satisfy these conditions. The most recent
of these methods reshape a port-Hamiltonian representation
of the dynamics according to the theory of interconnection
and damping assignment passivity-based control (IDA-PBC)
[39], [40]. While potential-energy-shaping methods can be
designed intuitively, e.g., through gravity compensation [35] or
virtual model control [41], the complex energy targets needed
for task-agnostic biological torque estimation are better suited
to being optimized across multi-activity able-bodied datasets
[32], [33], [38]. While these methods successfully generalized
across activities, their matching conditions were limited to
specific joint configurations.

To facilitate wide deployment across backdrivable exoskele-
tons, the latest energy shaping framework in [33] must be
further generalized to optimize task-agnostic energy shapes
for arbitrary lower-limb joint configurations. Because the prior

solution to the matching conditions is unique to exoskeletons
at the beginning or end of a leg’s kinematic chain, the frame-
work in [33] cannot be implemented on many of the unilateral
or bilateral joint configurations of M-BLUE. In addition, this
controller was designed to switch discretely when contact with
the ground is detected, which makes it difficult to handle the
multi-contact scenarios in bilateral exoskeleton configurations.
Other limitations of [33] include a fully centralized controller
that cannot facilitate distributed computation across bilateral
knee configurations, a lack of adjustability in situations where
user feedback directly contradicts the dataset’s prescribed hu-
man torque, and an optimization that requires generic solvers
rather than computationally efficient convex optimization.

This paper addresses the above limitations through a gen-
eralized, modular version of the multi-task optimized energy
shaping (M-TOES) framework that can be readily deployed
on the different joint configurations of M-BLUE and other
exoskeletons. The contributions of this paper are summarized
as follows. First, we extend our previous port-Hamiltonian
control method [33] by adding the key features of modular
energy bases, convex penalties on incorrect torque sign, and
unification of stance and swing controllers by use of insole
force sensors. A convex, data-driven optimization trains an
analytical control model to instantaneously estimate assistive
joint torques across multiple activities for any lower-limb joint
configuration. The presented modular energy basis is suffi-
ciently descriptive to fit normative human joint torques (given
normative feedback from signals available to a given joint
configuration) across sit-stand transitions, stair ascent/descent,
ramp ascent/descent, and level walking at different speeds.
Second, we rigorously analyze the behavior of the target
energy resulting from these controllers, including all possible
power leaks due to practical relaxations of the matching
conditions and passivity (introducing two additional sources
of power leak beyond [33]). Third, we deploy the modular
control method on four different configurations of the M-
BLUE system (unilateral hip, bilateral hip, unilateral knee,
and bilateral knee), demonstrating stability, task flexibility, and
muscle effort reductions with N = 8 able-bodied participants
performing the primary activities of daily life.

II. MODULAR, MULTI-TASK OPTIMIZED ENERGY
SHAPING (M-TOES)

This section introduces our lower-body sagittal-plane model
of the human-exoskeleton system using a port-Hamiltonian
formulation, and revisits interconnection and damping assign-
ment passivity-based control (IDA-PBC) in the context of
the ipsilateral leg of the model. We proceed by coupling
the two legs together, enabling the consideration of energy
shaping for the entire model, and accommodating various
configurations of assisted joints and available sensors. We
offer a modular solution to the matching conditions, taking
into account contact constraints. Additionally, we define an
optimization that will efficiently produce the corresponding
multi-task control law for each possible configuration. Fig. 1
provides a visual summary of the overall design process,
illustrating the ultimate feedback loop within our proposed
human-exoskeleton system.
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Fig. 1. Diagram of the control design process leading to the ultimate feedback
loop of a human leg wearing an energy-shaping exoskeleton. Here, τhum
represents the total human input, τexo represents the exoskeleton input, τ =
τhum + τexo represents the combined human-exoskeleton input, and q, p, and
vGRF correspond to generalized coordinates, conjugate momenta, and vertical
ground reaction force, respectively. The input of the exoskeleton controller
includes basis functions ξi satisfying the matching condition (Section II-C)
and linear coefficients κi returned by the optimization problem (Section II-F).
The exoskeleton controller operates without human intent or task recognition.
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Fig. 2. Model of the human and exoskeleton lower-body system comprising
linked monopods. COP denotes the center of pressure. IRF denotes inertial
reference frame. Monopods are linked by equal and opposite wrench at torso.
Controller is presented in the frame of the ipsilateral monopod.

A. Port-Controlled Hamiltonian Dynamics

We model each leg of the human-exoskeleton system as a
4-link sagittal plane monopod that starts from a floating foot
and has three revolute joints (Fig. 2). This model is sufficient
for our study where the actuator is assumed to be aligned
with the joint in the sagittal plane. During the ipsilateral heel
contact phase, the inertial reference frame is coincident with
the position of the ipsilateral heel (sx,sy). The global ipsilateral
heel angle φ is defined with respect to the vertical axis. The
ankle, knee, and hip angles of the ipsilateral leg are denoted θa,
θk, and θh, respectively, while the contralateral side follows
the same convention with the additional subscript ‘C’ (i.e.,
θCa, θCk, θCh). The same convention is used to denote the
contralateral heel position (sCx, sCy) and global foot angle
φC. The model’s masses and moments of inertia reflect the
combination of the human and exoskeleton masses.

The dynamics of the ipsilateral and contralateral monopod
models are linked by an interaction wrench at the hip center
F = [ fx, fy,τz]

T that acts equal and opposite on their respective
torso bodies. The six degree-of-freedom ipsilateral monopod
model has the generalized coordinates

q = [sx,sy,φ ,θa,θk,θh]
T ∈ R6,

in the 6-dimensional configuration space Q (Fig. 2). The
conjugate momenta p = M(q)q̇ ∈ R6 are defined by the
positive-definite inertia matrix M(q) ∈ R6×6 and the velocity
vector q̇. The port-controlled Hamiltonian dynamics can be
characterized by the Hamiltonian H = H(q, p) : T ∗Q → R,
with T ∗Q = {(q, p) | q ∈ Q, p ∈ T ∗

q Q} = R6 ⊕ R6 (the
cotangent bundle of Q), through the equations[

q̇
ṗ

]
=

[
06×6 I6×6
−I6×6 06×6

]
∇H+

[
06×1

τ +AT λ

]
, (1)

where the skew-symmetric matrix above is known as the
interconnection matrix. The Hamiltonian function H =
1
2 pT M−1(q)p +V (q) is given by the kinetic plus potential
energy V (q)∈R. The gradient ∇H= [∂qH,∂pH]T is a column
vector in R12 with ∂qH,∂pH ∈ R1×6 as row vectors.

Jacobian matrix A ∈ Rc×6 maps the ground reaction force
(GRF) vector λ ∈Rc (acting at the heel) into equivalent joint
torques in (1) (see [42]), where c is the number of constraints
when the monopod is in stance. Given the holonomic contact
constraints aℓ(q) = 0c×1 as shown in Fig. 3 (see [35]), the
matrix A is derived via A(q) = ∂qaℓ = [Aℓ(q),0c×3]. Here, the
subscript ℓ ∈ {heel,flat, toe} indicates the contact configura-
tion. Noting that the time derivative of aℓ is given by ȧℓ =
Aq̇ = A(∂pH)T ≡ 0, the Lagrange multiplier λ representing
the GRF vector can be obtained by solving

d
dt
[A(∂pH)T ] = 0 → ∂q[A(∂pH)T ]q̇+∂p[A(∂pH)T ]ṗ = 0

for λ = (A∂
2
pHAT )−1

(
−∂q[A(∂pH)T ](∂pH)T

+A∂
2
pH[(∂qH)T − τ]

)
,

where ∂ 2
pH=M−1 ∈R6×6 denotes the second-order derivative

of H with respect to p. Note that functional dependencies are
omitted to simplify notation here and throughout the paper.

The vector of joint torques τ ∈R6 aggregates the monopod’s
exoskeleton input τexo =Bu and human input τhum =Gv+JT F ,
with the Jacobian matrix J mapping the interaction wrench F
into the monopod dynamics. The control inputs u∈Rm and v∈
R3 respectively represent the exoskeleton and human torques
(at the ankle, knee, and/or hip joints), which are mapped into
the dynamics via matrices B ∈ R6×m and G ∈ R6×3, where m
denotes the number of exoskeleton actuators with 1 ≤ m ≤ 3.
The system is underactuated with the number of generalized
coordinates larger than the number of control inputs (6 ≥ m).

B. The Matching Conditions of the Monopod Controller

Assume we have closed the ipsilateral feedback loop for
exoskeleton input u, while the human ipsilateral input v
remains as an input to the Hamiltonian system. We consider
a desired, closed-loop Hamiltonian H̃(p,q) = 1

2 pT M̃−1 p+Ṽ ,
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Fig. 3. Heel contact (left), flat foot (center), and toe contact (right) during
the single-support period of human locomotion. Angle γ is the ground slope
and l f denotes the foot length. This figure is updated from [6].

where Ṽ = V + V̂ represents the new potential energy with
shaping term V̂ . The corresponding gravitational vector is
Ñ = (∂qṼ )T = (∂qV )T +(∂qV̂ )T =N+N̂ ∈R6. Similar to [33],
we set M̃ = M to simplify the matching process and passivity
proof and to avoid complicated calculations of the inertia ma-
trix inverse in the control law. Hence, ∇H̃= ∇H+[∂qV̂ ,0]T .
Instead of modifying the inertia matrix, we achieve velocity-
dependent shaping by modifying the interconnection matrix of
the closed-loop Hamiltonian system.

The desired closed-loop dynamics based on H̃ are[
q̇
ṗ

]
=

[
0 I
−I J2

]
∇H̃+

[
0

τ̃hum +AT λ̃ +Bxux

]
, (2)

where Bx ∈ R6×nu selects the nu degrees of freedom that
are measured but not actuated, and ux represents the power
leak resulting from their use in the control law (relaxing
the matching conditions presented below). Together, these
symbols refine the definition of the exogenous input Tex from
[33] to formalize its restriction to the image space of Bx. The
human inputs v, F are mapped into the closed-loop dynamics
by matrices G̃, J̃ in τ̃hum = G̃v+ J̃T F . The skew-symmetric
matrix J2 =−JT

2 = (∂qQ)T −∂qQ ∈ R6×6 represents the extra
shaping degree-of-freedom from the interconnection structure
of the IDA-PBC method [32], where Q(q) ∈ R6 is a smooth
vector-valued function within the artificial gyroscopic terms
QT (∂pH)T . The closed-loop GRFs in (2) are represented by

λ̃ = (A∂
2
p2HAT )−1{−∂q[A(∂pH)T ](∂pH)T

+A∂
2
p2H[(∂qH̃)T − J2(∂pH)T − G̃v− J̃T F −Bxux]}.

Based on standard results in [31], Hamiltonian systems (1)
and (2) match if we have

τ − G̃v− J̃T F = Bu+✭✭✭✭✭✭✭✭✭✭
Gv+ JT F −Gv− JT F

=−(∂qH̃)T +(∂qH)T + J2(∂pH)T +AT (λ̃ −λ )+Bxux,

where we choose the closed-loop mappings G̃ = G and J̃ =
J such that the human inputs v and F disappear from the
matching condition and control law as in [6]. By plugging in
GRFs λ and λ̃ and following the steps in [32], we have

Bλ u = Xλ [−(∂qH̃)T +(∂qH)T + J2(∂pH)T +Bxux], (3)

where Xλ = I−ATWA∂ 2
pH∈R6×6, W =(A∂ 2

pHAT )−1 ∈Rc×c,
and Bλ = Xλ B. The corresponding matching condition is

0 = B⊥
λ

Xλ [−(∂qH̃)T +(∂qH)T + J2(∂pH)T +Bxux], (4)

where B⊥
λ
∈ R(6−m)×6 is any full-rank left annihilator of Bλ

(satisfying B⊥
λ

Bλ = 0). Note that the as-of-yet unspecified ux
relaxes this matching condition. For example, it allows for
∂q[H̃−H] to have non-zero values corresponding to the global
angles measured by the IMUs. Because the global angles lack
actuators to physically apply input ux, the target energy shape
is not perfectly achieved, i.e., there is a power leak from the
target energy as discussed in Section II-D.

We can simplify the matching condition (4) by first decom-
posing matrix M into four sub-matrices as in [32]:

M =

[
M1 M2
MT

2 M4

]
,

where M1 ∈ R3×3 corresponds to the floating base joints
(sx,sy,φ) and M4 ∈R3×3 corresponds to the joints (θa,θk,θh).
Then we obtain

M−1 =

[
∆−1 −∆−1M2M−1

4
−M−1

4 MT
2 ∆−1 M−1

4 +M−1
4 MT

2 ∆−1M2M−1
4

]
,

where ∆ = M1−M2M−1
4 MT

2 ∈R3×3. As a result, we have W =
(Aℓ∆

−1AT
ℓ )

−1 and Xλ can be expressed as

Xλ =

[
I3×3 −Zλ Zλ M2M−1

4
03×3 I3×3

]
,

where Zλ = AT
ℓ WAℓ∆

−1 ∈ R3×3. Let B = [0,bT ]T , where
b ∈ R3×m and rank(b) = m, and plug in Xλ to obtain Bλ =
[bT M−1

4 MT
2 ZT

λ
,bT ]T . Bλ has the corresponding left annihilator

B⊥
λ
=

[
I3×3 −Zλ M2M−1

4
0(3−m)×3 b⊥

]
,

where b⊥ ∈ R(3−m)×3 is the (full-rank) left annihilator of b,
i.e., b⊥b = 0. Plugging B⊥

λ
and Xλ into (4), we have

0 =

[
I3×3 −Zλ 03×3
0(3−m)×3 b⊥

]
·

[−(∂qH̃)T +(∂qH)T + J2(∂pH)T +Bxux]

=

[
I3×3 −Zλ 03×3
0(3−m)×3 b⊥

]
[−Ñ +N + J2M−1 p+Bxux]. (5)

The solution (5) of the matching condition gives the feasible
structure of the closed-loop system.

Similarly, the six degree-of-freedom contralateral monopod
has the generalized coordinates

qC = [sCx,sCy,φC,θCa,θCk,θCh]
T ∈ R6.

The port-controlled Hamiltonian dynamics can be character-
ized by the Hamiltonian HC =H(qC, pC) =

1
2 pT

CM−1
C pC +VC

with NC = (∂qCVC)
T through the equations[

q̇C
ṗC

]
=

[
06×6 I6×6
−I6×6 06×6

]
∇HC +

[
06×1

τC +AT
CλC

]
,

where τC ∈R6 aggregates the exoskeleton input τCexo = BCuC
with uC ∈RmC and the human input τChum = GCvC−JT

C F with
the Jacobian matrix JC. The constraint matrix is AC ∈ RcC×6

. The desired closed-loop dynamics based on Hamiltonian
H̃C = 1

2 pT
CM−1

C pC +ṼC, where ṼC =VC +V̂C, are given by[
q̇C
ṗC

]
=

[
0 I
−I JC2

]
∇H̃C +

[
0

GCvC − JT
C F +AT

Cλ̃C +BCxuCx

]
,

with the exogenous input BCxuCx ∈ R6.
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C. The Matching Conditions of the Bipedal Controller

Considering both monopod models together, we have a com-
bined bipedal Hamiltonian HB =H+HC = 1

2 pT
BM−1

B pB+VB,
with combined vectors qB = [qT ,qT

C]
T , pB = [pT , pT

C]
T ∈ R12

and MB =

[
M 0
0 MC

]
, NB = (∂qBVB)

T = [∂qB(V +VC)]
T =

[NT ,NT
C ]

T . The open-loop dynamics are given by[
q̇B
ṗB

]
=

[
012×12 I12×12
−I12×12 012×12

]
∇HB +

[
012×1

τB +AT
BλB

]
,

where

τB︷︸︸︷[
τ

τC

]
=

BB︷ ︸︸ ︷[
B 0
0 BC

] uB︷ ︸︸ ︷[
u

uC

]
+

τHB︷ ︸︸ ︷
GB︷ ︸︸ ︷[

G 0
0 GC

] vB︷︸︸︷[
v

vC

]
+

JT
B︷ ︸︸ ︷[

JT

−JT
C

]
F ,

subject to the kinematic constraint JBq̇B = 0. This constraint
pertains to the velocity of the torso point, which can be defined
in two ways: either with respect to the ipsilateral monopods,
based on q, or the contralateral monopods, based on qC. Under
this constraint, the velocity of the torso point remains consis-
tent. The GRFs are given by λB = [λ T ,λ T

C ]T ∈ Rc+cC with

AT
B =

[
AT 0
0 AT

C

]
∈ R12×(c+cC). The bipedal human torques,

denoted by τHB, consist of both the ipsilateral and contralateral
human joint inputs vB and the interaction wrench F .

The closed-loop combined dynamics based on Hamiltonian
H̃B = H̃+ H̃C = 1

2 pT
BM−1

B pB +ṼB are given by[
q̇B
ṗB

]
=

[
0 I
−I JB2

]
∇H̃B +

[
0

τ̃HB +AT
Bλ̃B +BBxuBx

]
, (6)

where λ̃B = [λ̃ T , λ̃ T
C ]T ∈ Rc+cC , BBx =

[
Bx 0
0 BCx

]
, and uBx =[

uT
x uT

Cx
]T . Similar to the monopod case, we choose the

closed-loop mapping matrices in τ̃HB such that the human
inputs disappear from the matching condition and control
law. The skew-symmetric interconnection structure is now

JB2 =

[
J2 0
0 JC2

]
.

The open-loop and desired combined systems match if

BBuB =−(∂qBH̃B)
T +(∂qBHB)

T + JB2(∂pBHB)
T

+AT
B(λ̃B −λB)+BBxuBx,

which does not depend on the human inputs τHB. Plugging
GRFs into the matching condition above, we have

BBλ uB =XBλ [−(∂qBH̃B)
T +(∂qBHB)

T

+ JB2(∂pBHB)
T +BBxuBx], (7)

where

XBλ =


Xλ︷ ︸︸ ︷

I −ATWA∂
2
pH 0

0

XCλ︷ ︸︸ ︷
I −AT

CWCAC∂
2
pC
HC

 ∈ R12×12

BBλ = XBλ BB =

[
Xλ B 0

0 XCλ BC

]
∈ R12×(m+mC).

The matching condition corresponding to (7) becomes

0 = B⊥
Bλ

XBλ [−(∂qBH̃B)
T +(∂qBHB)

T

+ JB2(∂pHB)
T +BBxuBx], (8)

where B⊥
Bλ

∈ R(12−m−mC)×12 is the (full-rank) left annihilator
of BBλ , i.e., B⊥

Bλ
BBλ = 0. Following the previous matrix

decomposition and simplification, we have

B⊥
Bλ

=


I3×3 −Zλ M2M−1

4 0 0
0(3−m)×3 b⊥ 0 0

0 0 I3×3 −ZCλ MC2M−1
C4

0 0 0(3−mC)×3 b⊥C


Plugging B⊥

Bλ
, XBλ into (8), the matching condition becomes

0 =


I3×3 −Zλ 0 0 0
0(3−m)×3 b⊥ 0 0

0 0 I3×3 −ZCλ 0
0 0 0(3−mC)×3 b⊥C

 · (9)

[
− (∂qBH̃B)

T +(∂qBHB)
T + JB2(∂pBHB)

T +BBxuBx

]
,

which shows the feasible modular structure of the closed-loop
system using underactuated energy shaping control, i.e., U :=
[∂qB(HB−H̃B)]

T +JB2(∂pBHB)
T +BBxuBx must be in the null

space of B⊥
Bλ

XBλ . We find a solution to (9) by recognizing that
we can only shape U to be in the range space of BB.

Rewriting (7) and plugging in the solution of (9), we have

0 = XBλ (BBuB −U ).

By making BBuB = U , the above equation is satisfied. A
solution exists for BBuB =U since BBB+

B U =U [43], where
B+

B = (BT
BBB)

−1BT
B. The solution is unique since BB has full

column rank. From this, we obtain the simplified control law
that is independent of the GRFs:

uB = B+
B U = B+

B [NB − ÑB + JB2M−1
B pB +BBxuBx], (10)

with the assumption that

BB =

[
0 bT 0 0
0 0 0 bT

C

]T

and the corresponding left pseudoinverse

B+
B =

[
bT b 0

0 bT
CbC

]−1 [0 bT 0 0
0 0 0 bT

C

]
.

Although the null space of B+
B ∈ R(m+mC)×12 is not empty,

uB is generally non-zero due to U ∈ range(BB) designed
according to (9) and the full column rank matrices b,bC.

Note that the energy shaping framework can be applied
to the bipedal model with an arbitrary configuration of as-
sisted joints. Considering the simple example of bilateral
knee exoskeletons (m = mC = 1, a symmetric single-joint
configuration), we have b = bC =

[
0 1 0

]T and b⊥ = b⊥C =[
1 0 0
0 0 1

]
. By zeroing the unactuated rows of NB − ÑB +

JB2M−1
B pB + BBxuBx from (10), i.e., those associated with

(sx,sy,φ ,θa,θh,sCx,sCy,φC,θCa,θCh), this expression is in the
range space of BB and thus in the null space of B⊥

Bλ
XBλ ,

satisfying the matching condition (9) with the flexibility to
design the skew-symmetric matrix JB2 and ÑB.
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D. Control Law with Relaxed Passivity and Stability
Our control objective is to offer partial torque assistance

while allowing the human to control their kinematics across
activities. Ultimately, it is the human’s responsibility to main-
tain stability, whether through joint impedance control [44]
or other means. Our control method leverages the passivity
property to ensure that stabilization does not become more
difficult due to exoskeleton interaction. Energetic passivity is
formally defined in [45] as follows.

Definition II.1. Consider a general mechanical system

ẋ = f (x,u), y = h(x,u), (11)

where x ∈Rn, u ∈Rp is the input and y ∈Rp is the output. Let
E(x) : Rn →R be a continuously differentiable, positive semi-
definite function, then the system (11) is passive from input u
to output y if Ė(x) = ∂E

∂x f (x,u)≤ yT u.

By strict use of energy shaping control, the target Hamil-
tonian will satisfy ḢB ≤ q̇T

BτHB, or, in other words, serve as
a passivity certificate for the closed loop system with respect
to the remaining human input (ensuring the human controls
energy injection). However, for various practical reasons, we
introduce relaxations to this property, which we describe
together through a “power leak,”

˙̃HB ≤

human input︷ ︸︸ ︷
q̇T

BτHB +

power leaks︷ ︸︸ ︷
q̇T

BT̃Bex , (12)

where T̃Bex represents the ‘leak’ torque vector. The three
contributions to this leak are 1) use of global angle information
without associated actuators (i.e., relaxing matching conditions
using the exogenous input BBxuBx), 2) use of vertical ground
reaction force to scale torques, and 3) nonlinear negative power
tapering which lets the human, rather than the exoskeleton,
store mechanical energy in behaviors like initiating a squat.

The first modification replicates the trick introduced in [33].
Normally, the use of the global information from IMUs to de-
fine a change in the Hamiltonian results in q-partial derivatives,
or torques, that cannot be produced by the underactuated input.
This means the target behavior cannot be achieved by the
underactuated input. However, by introducing an exogenous
input that directly cancels these unachievable torques, we can
instead say that the target system has been achieved with
a power leak due to the fictitious exogenous input. Since
the target system is not perfectly achieved, the underactuated
control law can generate non-zero net work where the power
leak accounts for the opposite of the non-zero net work. The
exogenous input which achieves this cancellation was first
introduced as Tex in [33], with the restriction to the image
space of BBx implied but not formally stated.

Vertical ground reaction force (vGRF) scaling prevents
excessive torque as weight transfers from the assisted leg to
the contralateral leg during double support [46]. This scaling
G (vGRF,ξ ) is defined via the sigmoid functions, where

G (vGRF,ξ ) =
w

∑
i

αi[κi1gst(vGRF)+κi2gsw(vGRF)+κi3]ξi,

gst :=
vGRF

1+ e−a·(vGRF−b)
, gsw :=

e−a·(vGRF−b)

1+ e−a·(vGRF−b)
,

with scalar constants κi1,i2,i3 and the linear combination ξ =

∑
w
i αiξi of w vectors ξi ∈ R12. The incorporation of vGRF

scaling is an essential aspect of our proposed control scheme.
Depending on the defined basis in Section II-E, the vGRF
scaling can take the form of either gst(vGRF) or gsw(vGRF),
and is utilized to ensure a smooth transition between the stance
and swing phases. This approach also enables us to employ
a single controller for both the stance and swing phases,
replacing the hybrid control scheme presented in [33].

The negative power tapering strategy is included for the
comfort of the subjects. The controller can perform negative
work (which can then be released as positive work), and such
behavior is key to energetic passivity. However, based on the
feedback from some subjects during pilot testing, negative
work assistance was undesirable during certain phases of stair
descent, ramp descent, and stand-to-sit transitions. Therefore,
we apply a negative power tapering strategy, where control
torques τ producing negative power are scaled down by the
pointwise operator F : Rm → Rm defined by

Fi(τ) =

{
e−β∥τi·θ̇i∥ · τi, if τiθ̇i < 0
τi, otherwise

(13)

where τi is the ith joint control torque, θ̇i is the ith joint velocity
and β is the tapering coefficient.

Altogether, the control law (10) satisfying (7)-(9) becomes

uB = B+
B (−N̂B + JB2M−1

B pB + T̃Bex) (14)

= B+
B F

(
G (vGRF,−N̂B + JB2M−1

B pB +BBxuBx)
)
.

This control law is independent of the human inputs and
dependent on velocity via the conjugate momenta pB.

To extend our previous port-Hamiltonian control paradigm
in [33, Eq. (2)], we redefine the exogenous input as

T̃Bex = F
(
G (vGRF,−N̂B + JB2M−1

B pB +BBxuBx)
)

+(N̂B − JB2M−1
B pB),

which now includes the composite “power leak” associated
with the combination of unactuated global variables, vGRF
scaling, and negative power tapering. As a result, we can
still satisfy matching condition (9) and use the target dynamic
equation to describe the system while incorporating the (unac-
tuated) global variables φ and φC into the actuated part of N̂B
and JB2M−1

B pB. Given the similar structure of (6) as in [33],
relaxed input-output passivity is summarized as follows.

Proposition II.1. If the new potential energy shaping term V̂B
is continuously differentiable, then the closed-loop system (6)
is passive with two input ports: the human input with effort
τHB and flow q̇B, and the power leak port with effort T̃Bex and
flow q̇B.
Proof. The detailed proof is in [33], Proposition 3.1.

Moreover, if the human is assumed to modulate joint
impedance [6], [44] and provide the exogenous input T̃Bex,
stability can be shown in the sense of Lyapunov.

Proposition II.2. Consider the closed-loop system (6) with
equilibrium point (q⋆B,0) where the forces along the shaped



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, JULY 2024 7

potential energy balance the muscular forces and the GRFs,
i.e., NB + N̂B − τHB − AT

Bλ̃B(q⋆B,0)− T̃Bex = 0. This equilib-
rium point is stable in the sense of Lyapunov given human
input τHB =−Kpe−Kd ė− T̃Bex, where the constant diagonal
matrices Kp, Kd are positive semi-definite, and e = qB − q̄B
represents the difference between qB and the human’s constant
set-point vector q̄B.
Proof. The detailed proof is in [33], Proposition 3.2.

E. Constructing a Modular Basis for the Controller

To guarantee satisfaction of our matching conditions, we
simply parameterize our controller (our target energy and tar-
get interconnection matrix) using a functional basis where each
element satisfies the conditions. This section demonstrates how
such a basis can be built using simple primitives. For example,
we use the sine-cosine primitive, Bsc(x) = (sin(x), cos(x)), to
express behavior resembling the gravitational potential energy
of a pendulum. But to more fully express the potential for a
single joint to modify potential energy, we expand this. The
following single degree of freedom Hamiltonian modification
primitive describes potential energy alterations that only affect
one active joint, qx, with one unactuated angle reference φx
(i.e., a global angle measured by an IMU) available:

∆H1grav(qx,φx) =
(

qx,
1
2

q2
x , Bsc(qx),

1
2
Bsc(2qx)

qxBsc(φx), Bsc(φx +qx),
1
2
Bsc(φx +2qx)

)
α1grav.

In our notation, to use this basis for the ipsilateral knee we
would substitute qx = θk and φx = φ +θa. Choosing the target
Hamiltonian as H̃ = H+ ∆H1grav would then result in an
active joint torque and a power leak equal to φ̇x∂φx ∆H1grav.

Adding a second active joint introduces the potential for not
only two copies of the first basis, but also additional coupling
potential energy terms. For example, with one unactuated
angle reference φx we can define the basis

BHh2(qa,qb,φx) =(
Bsc(φx +qa +qb),

1
2
Bsc(φx +2qa +2qb),

Bsc(φx +2qa +qb), Bsc(φx +qa +2qb)
)
,

and with two unactuated angle references,

∆H2grav(qa,qb,φa,φb) =
(
BHh2(qa,qb,0),

BHh2(qa,qb,φa), BHh2(qa,qb,φb)
)

α2grav.

This second unactuated angle reference is typically an IMU
on the other leg.

Multiple joints also introduce the possibility of a non-trivial
interconnection matrix, J2. We have great freedom in parame-
terizing the upper triangular elements of this (skew-symmetric)
matrix. Unlike the modifications to potential energy, the basis
for J2 does not need a power leak through Bxux to make use of
unactuated measurements (like global link angles). Any skew-
symmetric matrix will similarly conserve energy. However,

for simplicity, we parameterize J2(q) to depend on the same
measurements as the two-joint Hamiltonian basis above,

J2(q) =
[

0 j(q)
− j(q) 0

]
, where j(qa,qb,φa,φb) =(

1,Bh1(qa,φa), Bh1(qb,φb), Bh2(qa,qb,0),

Bh2(qa,qb,φa), Bh2(qa,qb,φb)
)

α2gyro.

Here, the single degree of freedom helper basis is

Bh1(qa,φx) =
(

qa, Bsc(qa), Bsc(2qa), Bsc(φx),

Bsc(qa +φx), Bsc(2qa +φx)
)
,

the helper basis for combinations of two joints (and one inertial
reference) is

Bh2(qa,qb,φx) =
(
Bsc(φx +qa +qb), Bsc(φx +2qa +2qb),

Bsc(φx +2qa +qb), Bsc(φx +qa +2qb)
)
.

These primitives are then combined to create bases for the
control law. For example, the law we apply for a bilateral
single-joint exoskeleton configuration with measurements qx,
q̇x, φx, and vGRFx denoting actuated angle, actuated joint
angular rate, unactuated angle (global angle reference), and
vertical component of the ground reaction force for each side
x ∈ a,b, we define the basis for the control torque as

Bu(qa,qb,φa,φb,vGRFa,vGRFb, q̇a, q̇b) = (15)(
D1 D2 0 0 C1 C2
0 0 D3 D4 C3 C4

)
,

where the decoupled terms are

D1 = gst(vGRFa)∂qa∆H1grav(qa,φa),

D2 = gsw(vGRFa)∂qa∆H1grav(qa,φa),

D3 = gst(vGRFb)∂qb∆H1grav(qb,φb),

D4 = gsw(vGRFb)∂qb∆H1grav(qb,φb),

and the coupled terms are

C1 = ∂qa∆H2grav(qa,qb,φa,φb), C2 = j(qa,qb,φa,φb)q̇b,

C3 = ∂qb ∆H2grav(qa,qb,φa,φb), C4 =− j(qa,qb,φa,φb)q̇a.

For the single-joint unilateral case, only D1 and D2 would
be needed to construct the basis. While the inclusion of global
angle references into the design complicates the expression of
a simple pattern for scaling this basis to larger configurations
of joints, the essential technique is to include terms like D1 and
D2 for each joint, and to leave the interconnection terms free of
the influence of the vGRF. The restriction of the basis to those
degrees of freedom which are either actuated (qx terms) or
measured but unactuated (φx terms) is enough to guarantee the
satisfaction of our relaxed matching conditions. The selection
of basis functions in our paper is based on a grid search. We
determine the number of basis functions in Section II-F by
applying “L1 regularization.”
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F. Design Optimization

In [33], we formed multiple basis functions for the shaping
terms in (3) and optimized their coefficients to fit weight-
normalized able-bodied joint torque data (given able-bodied
input data) over a broad set of activities. The parameters were
obtained by running “fmincon” with sequential quadratic
programming in MATLAB. In this paper, we re-design the opti-
mization problem to fit with “CVX [47]”, which calculates the
parameters more efficiently and enforces disciplined convex
programming rules [48].

Similar to [33], we design −N̂B +JB2M−1
B pB +BBxuBx as a

linear combination of the basis functions {ξ1,ξ2, . . . ,ξw} with
the constant coefficients α ∈ Rw and vGRF scaling G , where
w basis functions ξi ∈ R12 follow the structure of (9). The
control law (14) is thus given as

uB = B+
B F

(
G (vGRF,α1ξ1 + · · ·+αwξw)

)
= F

(
Bu(q, p,vGRF)κ

)
,

where Bu(q, p,vGRF) ∈ R(m+mC)×w̄, κ ∈ Rw̄.
As mentioned in [9], an assistive torque profile proportional

to the average biological torque may not be the optimal assis-
tance torque for human subjects. Moreover, based on feedback
from the subjects during pilot testing, biomimetic knee exten-
sion during late stance resists the subjects lifting their legs.
Instead of fitting the target joint torques to normalized able-
bodied joint torques as in [33], we optimize the constant coef-
ficients κ so the outputs of control law U =Bu(q, p,vGRF)κ
best fit a weighted combination Y = Γ1Yh + Γ2Yg + Γ3Y0 of
the normalized able-bodied joint torques Yh, gravity-shaping
joint torques Yg, and zero (passive) joint torques Y0, where
Γ1 +Γ2 +Γ3 = I are diagonal weighting matrices for different
phases. The optimization problem is defined as

min
κ,t1,t2,S j

t1 +Λ1t2 +Λ2 ∑
j

1T S j (16)

subject to

∑
j
||U j(q j, p j,κ,vGRF)−Yj)||

W j
2 ≤ t1, ∥κ∥Ws

1 ≤ t2,

−Yj ⊙U j(q j, p j,κ,vGRF)≤ S j, S j ≥ 0, ∀ j,

where the subscript j represents the number of different lo-
comotor tasks, including level-ground walking, ramp walking,
stair climbing, and stand-to-sit. The state vectors q j, p j ∈Rn×9

comprise samples over time (n total) for the given task j. The
two-norm of a vector with weighting matrix W is denoted as
∥·∥W

2 . Hyperparameters employed in the optimization problem
are established through a grid search process.

The objective function comprises three parts, where scalar
t1 corresponds to the least squares error of the exoskeleton
control inputs U j ∈ R(m+mC)n and the target joint torques
Yj ∈ R(m+mC)n, with the weighting diagonal matrix Wj of
different tasks. Scalar t2 represents “L1 regularization” to
enforce sparsity in the model by zeroing the least important
parameters in vector κ , which avoids over-fitting and improves
the prediction of untrained tasks as in [33]. The third part 1T S j
(different from [33]) corresponds to the cost of opposite signs
between the exoskeleton control torques and the target torques

Fig. 4. M-BLUE hip-only and knee-only exoskeleton configurations worn by
a healthy user (with an unpowered ankle brace in the knee-only configuration
to support the mass of the knee actuator).

to emphasize the importance of assisting rather than resisting
human torques. Vector S j ∈ Rn represents the slack for the
sign difference, and c = a⊙ b denotes the pointwise product
with ci = aibi. The terms Λi weight the different costs.

We use “CVX [47]” in MATLAB to find the optimal
solution κ∗. Leveraging kinematic and kinetic data from
nine subjects across different walking conditions [49] and
stand-to-sit transitions [50] allows our controller to adapt
more effectively and minimize sensitivity to variations in the
movements of different users. The vGRFs during locomotion
tasks in [49], [50] are normalized by body weight. The
training gaits include level treadmill walking at 0.5, 1.5m/s,
ascending/descending ramps with inclines of 5.2◦, 11◦, and
ascending/descending stairs with step height of 4, 7 inch
[49]. The corresponding controller provides assistance torques
τexo = F (Bu(q, p,vGRF)κ∗) ·Weight ·LOA%, where LOA%
(level-of-assistance) scales down the controller to a desired
fraction of normative torque. The optimal parameters κ∗ are
ultimately used in the real-time implementation presented next.

III. EXPERIMENTAL METHODS

In this section, we implement the M-TOES controller on the
M-BLUE exoskeleton system, and present the experimental
methods for validating different configurations with healthy
human subjects performing multiple activities of daily life.

A. Hardware Implementation

The controller was implemented on bilateral and unilateral
knee or hip configurations of M-BLUE in Fig. 4 (see [10]
for details). Each knee and hip module weighs 2.36 kg and
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2.15 kg, respectively, including the battery (470 g). M-BLUE
combines commercial off-the-shelf orthoses with a quasi-direct
drive actuator—the T-motor AK80-9 which comprises a high-
torque electric motor with an internal 9:1 plenary gearbox.
This actuator is highly backdrivable with less than 0.5 Nm
static backdrive torque. It can provide 9 Nm continuous torque
and 18 Nm peak torque according to the manufacturer, though
our bench-top calibration in [10] verified up to 30 Nm peak
torque using the Dephy FASTER ActPack driver.

M-BLUE was powered by a 24 V, 2 Amp-hour Kobalt
powertool battery (∼ 470 g) attached to a 3D printed adapter
mounted on the side of each orthosis. The high-level control
loop ran at ∼ 200 Hz on a Raspberry Pi 4B for each leg, where
bilateral configurations communicated through ZeroMQ, a
TCP-based package. Sagittal-plane joint angles and global seg-
ment angles were measured by two 6-axis IMUs (3DM-GX5-
25, LORD Microstrain) attached to the brace straps around
each limb segment. Soft-tissue and strap compliance caused
vibrations when using the actuator encoders in the feedback
loop, due to differences between the measured exoskeleton
joint angle and the actual human joint angle. To address this
issue, we utilized IMU-based joint measurements (difference
between the global angles of adjacent segments), with IMUs
positioned on the frontal thigh and shank to minimize the
impact of assistive torque in the sagittal plane.

The vGRF was measured by a commercial footwear sensor
(IEE Smart Footwear) placed underneath the shoe insole.
Similar to zero-order hold, a parallel thread was created to read
vGRF continuously at ∼ 55 Hz, which avoided slowing down
the main control loop at 200 Hz. The sensor was calibrated
using a predefined calibration procedure before each use to
achieve a final readout normalized to body weight in the same
manner as the vGRFs from the dataset used for the controller
simulation. An infinite impulse response second-order low-
pass filter (50 Hz cutoff frequency) was applied to the vGRF
to reduce noise. The negative power tapering coefficient β

in (13) was adjusted for user comfort during several practice
trials and fixed for all subjects during data collection.

Safety features included hard stops, thermal protectors, soft-
ware interventions, and current limiters. We also implemented
a motor current limiting policy to prevent overheating the
motor windings as described in the Appendix.

B. Human Subject Methods

The study was approved by the Institutional Review Board
at the University of Michigan (HUM00201957). We enrolled
eight able-bodied (AB) human subjects (see Table I) to demon-
strate the ability of M-BLUE with M-TOES to assist multiple
tasks. We assessed muscle activation via wireless EMG (Del-
sys Inc.) of vastus medialis oblique (VMO), rectus femoris
(RF), biceps femoris (BF), gluteus maximus (GLUT), which
function as a knee extensor, knee extensor/hip flexor, knee
flexor, hip extensor, respectively. We used neonatal sensors
for VMO, RF, and BF.

Participants performed the same activities of daily life with
five exoskeleton conditions: bare (no exoskeleton), active bilat-
eral hip exoskeleton (HipB), active unilateral hip exoskeleton

TABLE I
SUBJECT DEMOGRAPHICS

Subject AB01 AB02 AB03 AB04 AB05 AB06 AB07 AB08
Sex M M F M F M F F

Mass (kg) 80 80 60 88 63 70 55 58

P1: Stand-Sit Cycle→Incline→Level 
Transition→Down Stairs→Level
P2: Stand-Sit Cycle→Level→Up 
Stairs→Level Transition→Decline

Fig. 5. AB01 with bilateral knee M-BLUE walked on a circuit. One trial
consists of Part 1 (P1) and Part 2 (P2).

(HipU), active bilateral knee exoskeleton (KneeB), and active
unilateral knee exoskeleton (KneeU). The LOA% for the active
modes was set based on the subjects’ comfort level during
practice trials and fixed for the entire experiment. Each trial
comprised two parts of an activity circuit at a self-selected
speed, as shown in Fig. 5. Part 1 (P1) includes five sections:
stand-sit cycle (SS), followed by incline walking (II, 12◦),
level walking on the platform, stair descent (SD, 6 inch),
and level walking (LL) over ground. Part 2 (P2) reverses
the direction: stand-sit cycle, followed by level walking over
ground, stair ascent (SA, 6 inch), level walking on the
platform, and decline walking (DD, 12◦). All incline/decline
and upstairs/downstairs sections started with the right foot
contacting the ramp/stairs first to get the maximum number of
strides for the right leg (not required for level walking). We
collected 5 trial repetitions for each exoskeleton condition,
providing a minimum of 20 gait cycles of level walking,
10 gait cycles per stairs task, 10 gait cycles per ramp task,
and 10 stand-sit cycles. At least five minutes of acclimation
time was provided for each exoskeleton condition, and a five
minute break was provided between conditions. Subjects were
instructed not to use the handrails except to prevent a fall. A
supplementary video of the experiments is available at [51].

Walking trials were separated into different tasks using a
stopwatch and video recordings, and parsed into gait cycles
by detecting heelstrike with a heel-mounted accelerometer.
Stand-sit cycles were cropped into individual repetitions using
an accelerometer built into the thigh-mounted EMG sensor.
Each muscle’s EMG was demeaned, bandpass filtered (20 -
200 Hz), smoothed with a moving 100 ms window RMS, and
then normalized with respect to the maximum peak of the
ensemble averages (across repetitions for each task/muscle)
of all the active modes [52]. Hence, signals were converted
to a percentage of the maximum voluntary contraction level
(%MVC) for consistent comparison across subjects.

The subject-wise muscular efforts analysis involved a linear
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mixed model (LMM) in MATLAB with restricted maximum
likelihood estimation of parameters. Data from eight subjects
were tabulated with information consisting of muscle effort
change, exoskeleton condition (Bare, HipB, HipU, KneeB,
KneeU), weight, LOA, and gender. We quantified muscular
effort (%MVC.s) by integrating normalized EMG over time
from the beginning to the end of five repeat trials for each
exoskeleton condition [46]. We subtracted the %MVC.s of
active conditions by the %MVC.s of the bare condition to de-
termine the effort change. We defined exoskeleton conditions
as categorical variables and fit a LMM, where the condition,
weight, LOA, and gender are fixed effects:

Effort Change ∼ Controller+Weight+Gender
+(1|Muscle)+(1|Task)+(1|Subject),

where (1|·) represents random effects. Statistical significance
of each fixed effect parameter was determined by a two-tailed
t-test. As a secondary analysis, a LMM without the random
effects of task and muscle,

Effort Change ∼ Controller+Weight+Gender
+(1|Subject),

was applied to each muscle and task separately.
Though our goal was not to strictly reproduce biological

human torque profiles, we analyzed the similarity between our
applied torque and this biomechanical reference. We defined
the cosine similarity metric (SIM) as SIM(A,B) = 100 · (A ·
B)/(∥A∥2 ∥B∥2) %. This similarity was then measured for each
combination of exoskeleton condition and task, comparing
the average human torque at the actuated joint (from the
datasets [49], [50]) to the average applied torque (from our
experiment). This metric was included to compare the behavior
of the applied task-agnostic controller to a well-studied task-
varying reference. We also calculated the average net work
done per joint for each task and condition to investigate the
generation of non-zero net work due to the power leak and
passivity relaxation of the proposed control framework.

To quantify the controller’s synchronization to the user,
we additionally calculated the Pearson correlation coefficient
between the EMG results and the applied exoskeleton joint
torques. The formula of the coefficient for two vectors X ,Y is

ρX ,Y =
E[(X −µX )(Y −µy)]

σxσy
,

where µX ,µY are the mean values and σX ,σY are the standard
deviations. The use of correlation helps account for the un-
known offset between EMG and torque due to co-contraction.

Finally, we compared the kinematics of actuated joints
between unilateral and bilateral conditions to identify any
systematic behavioral changes between these configurations.
We specifically examined overlaid phase plots of the actuated
angles against the global thigh angle for each task.

IV. EXPERIMENTAL RESULTS

This section presents the experimental outcomes of our
study. The bilateral knee condition of participants AB02 and
AB03 were excluded due to a failure in the synchronization

between the left and right Raspberry Pi units. Moreover, the
BF muscle’s EMG data for participant AB04 were excluded
because of a sensor failure, which was detected after the
completion of the experiment.

A. Primary Analysis on Muscle Effort Change

Both of the unilateral configurations (KneeU and HipU)
significantly reduced the muscular effort required to complete
the activity circuit, with statistically significant fixed effects in
our primary LMM (p< 0.001, Fig. 6). The HipU configuration
reduced effort by an average of 2.71 %MVC.s, 95% confidence
interval (CI) [1.16, 4.27]. The KneeU configuration reduced
effort by 3.40 %MVC.s, 95% CI [1.85, 4.95]. There was also
a significant gender effect, a penalty of 3.00 %MVC.s, 95%
CI [0.46,5.55] for women in all exoskeleton–bare comparisons
(p = 0.021). This penalty is comparable in magnitude to the
benefits from the unilateral controllers. Thus, there was only
a net benefit for male subjects. A correlation was observed
between weight and muscular effort, leading to an average
reduction of 0.02 · mass %MVC.s, 95% CI [−0.02, 0.06].
However, this correlation was not statistically significant,
indicating that gender and weight were distinct effects.

The two bilateral configurations (KneeB and HipB) had a
statistically null effect on muscular effort (p> 0.05). Consider-
ing the gender effect, this amounts to a net penalty for women.
No significant effect was found for subject mass (p > 0.05).
The kinematics indicated a slight reduction in global thigh
angle range of motion for bilateral configurations as compared
to unilateral configurations (Fig. 7).

B. EMG-Torque Correlation by Task

Correlation between extensor muscle activation and con-
troller torque was high for the set of non-descent tasks
(excluding SD and DD). As a baseline, normative biological
profiles for hip and knee extension torque (from datasets [49],
[50]) showed a modest to high correlation with our Bare-
mode GLUT and VMO signals (Fig. 8, AB). The correlation
between controller torque and these EMG measurements in
the exoskeleton conditions (HipB, HipU, KneeB, KneeU)
was task-dependent, but in several cases comparable. For the
knee torque and VMO, the tasks of SA, LL, II, and SS
were comparable to the baseline AB correlation. However,
this correlation was markedly lower in SD and DD, the two
decline tasks requiring negative work. Similarly, for the hip
torque and GLUT, the tasks of SA, LL, II, and SS were
of similar correlation to the baseline AB correlation, while
the correlations in SD and DD tasks were even more clearly
reduced, with an inverse correlation for the SD case.

C. EMG and Torque by Task and Condition

The across-subject muscle activation results for each task,
configuration, and muscle offer a very detailed analysis of
the controller’s effect (Table II). Muscle effort comparisons
were made between the bare mode and various exoskeleton
configurations, where a positive value represents each muscle
pair’s effort increment (%MVC) with respect to the bare mode.
These results can be interpreted through the measured control
torques and ensemble-averaged VMO, RF, BF, and GLUT
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EMGs for subject AB01 in Fig. 9 and Fig. 10. Furthermore,
the cosine similarity analysis in Table III indicates agreement
between exoskeleton torques and average human torques in
most cases, noting the controller’s goal was to deliver a
weighted combination of biological and gravity compensation
torques. Agreement was strongest for incline tasks and weakest
for decline tasks (likely due to negative power tapering).
Finally, the average net work analysis in Table IV shows the
knee exoskeleton controllers provided net positive work for
ascent tasks and net negative work for descent tasks, whereas
the hip configurations only provided net positive work (note
that AB hip work is also positive during descent tasks).

Incline walking and stair ascent are primarily associated
with positive power via concentric muscle contractions in
the quadriceps. The exoskeleton was able to facilitate clear
reductions in the quadriceps (RF and VMO) EMG activation
in stance phase (< 50% Cycle, see AB01 in Fig. 9). However,
these quadriceps effort reductions in stair and ramp ascent
tasks were highly variable across all subjects and device
configurations, with bilateral configurations failing to achieve
statistically significant reductions in particular (see Table II).
Observations suggest that the subjects who were less familiar
with the system struggled to anticipate the assistance of the
devices and that the bilateral configurations interfered with
natural motion more than the unilateral configurations. All
configurations provided either knee or hip extension torques
in the stance phase of these tasks, as expected. Unilateral hip
modules (providing hip extension torques) were also capable
of reducing GLUT EMG compared to the bare mode (see
for AB01 in Fig. 9), however this effect was statistically
insignificant across the participants (see Table II).

Stairs descent and decline walking are primarily associated
with negative power and involve eccentric quadriceps contrac-
tions. Commonly, a double peak quadriceps activation profile
occurs in stance; firstly to absorb the impact of heel strike,
and secondly to lower the COM. However, due to the negative
power tapering strategy, all active modes show a minor effect
on EMG reductions compared to the bare mode. Both knee and
hip modules provided minor knee and hip extension torques
during early stance to absorb the impact.

Sit-to-stand and stand-to-sit primarily require knee exten-
sion torques [53], specifically concentric contractions during
sit-to-stand and eccentric contractions during stand-to-sit. All
knee modules provided substantial knee extension torques,
resulting in a noticeable reduction in quadriceps activation
(VMO and RF) for AB01 (see STS in Fig. 9). This effect
appeared in the aggregate results across all subjects by the
KneeU condition, with VMO and RF reduction (p < 0.01),
while the effect was not replicated across the participants for
the KneeB condition (see Table II). Hip modules also were
capable of reducing quadriceps activation during sit-to-stand
(see Fig. 9), however this effect was not detected by the
secondary LMM analysis (see SS in Table II).

Knee flexors like the BF are responsible for lifting the foot
in swing. Knee modules could be expected to assist with this
flexion torque in level walking, however their reproduction of
human-like flexion torques in this task was weak (see negative
knee torque behavior for AB01 in Fig. 10). Across subjects, the
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Fig. 6. Across-subject comparisons of total muscle effort during five rep-
etitions. Combined muscle effort is compared between the bare mode and
different exoskeleton configurations. A positive value represents the total
muscle effort increment with respect to the bare mode. * represents statistical
difference (p < 0.05), ** represents p <= 0.01, *** represents p <= 0.001.

controller was only able to reduce swing-phase BF activation
using knee configurations in the ramp inline task (Table II).
For this task, the controller appears to create a pulse of knee
flexion in late-stance, agreeing with able-bodied torques in
Fig. 10. The controller was also able to reduce BF activation in
the SS task with the KneeU configuration, which is interesting
since the predominant torque in SS is extension with notable
co-contraction (see AB01’s competing BF flexor and RF, and
VMO extensor activation in late SS in Fig. 9).

The assistance torques provided by the hip modules are
capable of reducing the hip extensor EMG (GLUT) for most of
the tasks (see AB01, Fig. 9). This result was also not detectable
in the population, with high variance in the EMG results
(Table II). However, a GLUT EMG penalty with bilateral
knee modules was significant in SA, SD, II (p < 0.001), and
DD, LL (p < 0.01). Interestingly, the effect was much reduced
for the unilateral condition of the knee exoskeleton (KneeU),
with only a penalty in LL being significant (p < 0.01). In
AB01, increased GLUT activation occurs in stance phase for
the KneeB and KneeU conditions (Fig. 9).

V. DISCUSSION

The primary analysis revealed that the task-agnostic ex-
oskeleton was notably beneficial in unilateral configurations
with male users. However, there are three important caveats
to this direct interpretation of the LMM’s statistical test.

The first is the unintended correlation between acclima-
tion experience and gender, which may partially explain the
observed male-specific muscle effort reductions. Specifically,
two male subjects (including AB01) were experienced and
benefited significantly from the device. Experienced users can
anticipate the exoskeleton’s assistance behavior and utilize it
effectively, while inexperienced users tend to co-contract mus-
cles. Unfortunately, the amount of time needed for experiment
setup, switching between different exoskeleton configurations,
and trial repetitions made it impractical to provide more than
20 minutes of acclimation (across all tasks) per exoskeleton
configuration, whereas [54] suggests that 30 minutes may be
necessary for EMG reductions to occur (for a single task).
Additionally, becoming an expert exoskeleton user typically
requires substantial training, around 109 minutes for full
adaptation [55]. We were unable to standardize acclimation
across subjects and configurations, as the pilot subjects had
more extensive acclimation. Based on our observations, it
is likely that increased acclimation would enhance muscle
activation benefits and mitigate the gender-related differences.
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TABLE II
ACROSS-SUBJECT COMPARISONS OF MUSCLE EFFORT CHANGE (MEAN ± STANDARD DEVIATION IN %MVC.S) OVER DIFFERENT CASES.

SA SD DD LL II SS

VMO

KneeB -3.27(15.02) 0.23(10.84) -2.02(8.93) 4.63(2.83) *** -2.97(9.69) -16.87(26.67)
KneeU -6.38(10.86) -4.31(6.24) -3.85(7) 2.08(2.32) * -4.57(6.06) -20.67(18.69) **
HipB 1(6.11) 1.54(6.18) 2.39(4.81) 2.16(2.33) * -0.08(6.98) 6.19(18)
HipU -3.33(6.48) -3.58(3.44) -1.09(4.7) 0.22(2.47) -3.47(6.62) -7.17(17.44)

RF

KneeB -1.27(7.69) 2.78(6.38) -1.84(4.12) 4.01(3.17) ** -1.58(5.88) -16.6(10.21)
KneeU -6.33(6.02) * -6.6(4.61) ** -5.26(3.71) *** 1.13(1.06) -4.98(5.09) * -18.86(9.86) **
HipB -1.96(5.39) -2.51(4.91) 0.08(3.95) 1.47(2.52) -1.41(4.37) 1.12(18.05)
HipU -4.67(9.14) -5.38(3.69) * -2.58(3.19) 0.16(2.38) -2.44(4.35) -1.46(25.46)

BF

KneeB 4.17(10.37) 6.73(5.45) ** 0.2(4.7) 2.22(9.41) 1.05(11.97) -5.8(10.81)
KneeU -0.53(9.41) -0.18(5.07) -1.11(3.56) -1.85(4.81) -5.98(8.12) * -10.65(12.04) *
HipB 1.45(7.05) 4.13(4.05) * 1.47(3.36) 1.42(2.43) -1.36(10.64) 1.4(16.58)
HipU -1.54(8.36) 0.72(3.61) -0.48(3.13) 1.01(1.48) -7.61(7.01) * -7.54(18.38)

GLUT

KneeB 17.73(7.53) *** 9.01(7.87) *** 3.79(3.46) ** 5.41(3.7) ** 10.15(5.5) *** 1.15(12.71)
KneeU 3.15(6.52) 2.52(3.64) 1.43(2.25) 4.79(7.11) ** 3.09(4.99) -0.39(10.27)
HipB 1.27(7.11) 0.49(3.73) -0.79(2.62) 0.64(2.8) 0.37(7.31) -2.05(13.67)
HipU -3.2(5.05) -0.51(2.39) -1.33(2.48) -0.8(1.53) -3.49(4.1) -5.73(10.75)

A positive value represents the total muscle effort increment with respect to the bare mode. * represents statistical difference (p < 0.05), ** represents
p <= 0.01, *** represents p <= 0.001.
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Fig. 8. Across-subject comparisons of the correlation coefficient between the
EMG muscle activation and the applied joint torques for experiment tasks
{stair ascent/descent (6inch), decline/incline (12◦), level ground, stand-sit
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EMG muscle activation (bare) and the normative AB human joint torques was
calculated for illustration. Positive torques represent hip and knee extension.
The overall significance of the correlation coefficients calculated by Fisher’s
method (meta-analysis) shows p < 0.05 across different experiment tasks.

TABLE III
SUBJECT 1 COSINE SIMILARITY ANALYSIS (MEAN ± STANDARD

DEVIATION %).

KneeB KneeU HipB HipU
SA 83.8(14.0) 88.3(5.2) 72.6(5.9) 82.2(5.6)
SD 92.4(4.7) 93.9(3.2) 1.2(18.6) 6.9(7.9)
DD 75.1(7.0) 78.8(4.7) -29.2(18.2) -29.4(4.5)
LL -4.7(27.5) -0.5(14.9) 71.5(5.3) 63.3(16.5)
II 87.3(4.0) 79.0(11.2) 86.9(4.8) 87.6(4.8)
SS 70.8(13.6) 79.4(5.5) 80.1(10.7) 76.7(3.6)

TABLE IV
ACROSS-SUBJECT AVERAGE NET WORK PER JOINT (MEAN ± STANDARD

DEVIATION IN J/KG).

KneeB KneeU HipB HipU
SA 0.36(0.10) 0.39(0.11) 0.51(0.14) 0.44(0.13)
SD -0.18(0.10) -0.19(0.12) 0.00(0.05) 0.04(0.06)
DD -0.16(0.08) -0.16(0.11) 0.11(0.06) 0.11(0.05)
LL 0.07(0.07) 0.12(0.07) 0.25(0.13) 0.24(0.12)
II 0.25(0.13) 0.33(0.16) 0.66(0.25) 0.59(0.25)
SS 0.21(0.08) 0.26(0.08) 0.67(0.23) 0.64(0.20)

Torques are normalized by LOA% and body weight.

Second, the smallest size of the off-the-shelf hip braces was
notably uncomfortable for the shortest participants, which may
have disproportionately affected women compared to men.
This may have led to the 2.65% MVC.s increase in muscle
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effort for women in bilateral hip configurations compared to
a 1.15% MVC.s decrease in muscle effort for men. More-
over, this discomfort likely influenced female participants’
inclination toward lower LOA% values during the tuning
process, which influenced their peak assistance torque. The
overall LOA% for female subjects was 26.47% lower in knee
configurations and 43.48% lower in hip configurations com-
pared to male subjects. This notable gender-based divergence
could potentially explain the distinct muscle effort reductions
observed for males vs. females.

The third caveat pertains to the unmeasured physical effect
of wearing bilateral configurations, which impede out-of-plane
motion and add mass. Specifically, the bilateral configurations

introduced an additional mass of 1.9 kg for the knee exoskele-
tons and 1.7 kg for the hip exoskeletons, as compared to their
unilateral counterparts. The notable increase in GLUT muscle
effort in SA when using KneeB, but not when using KneeU,
may be attributed to the additional mass of the contralateral leg
when it is swinging during gait. While the command torques
were similar between bilateral and unilateral conditions for
the same joints, the observed penalties in muscle activation,
whether direct or indirect, may also be attributed to the form
factor of the device. Participants informally reported that their
motion was notably physically constrained when using the
bilateral configurations. Fig. 7 highlights subtle kinematic
differences between unilateral and bilateral modes, including
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a 26.66% reduction in range of motion for the hip joint and
an 11.33% reduction for the knee joint in bilateral configu-
rations compared to the unilateral ones. These variations in
kinematics can influence muscle activation patterns and result
in varying muscle effort levels. Considering these limitations,
it is possible that a direct interpretation of the primary analysis
may underestimate the controller’s benefits, motivating future
studies with more comfortable and adjustable hardware. In
fact, a related controller implemented on revised bilateral
knee modules successfully reduced quadriceps and hamstrings
EMG effort without a gender penalty [56].

The detailed secondary analyses show the control method
produced helpful torque outputs across tasks and configura-
tions of the device. Among all the active modes, the unilateral
hip module produced the greatest EMG reductions among all
tasks for AB01 as shown in Fig. 9, but muscle effort reduction
was different for each subject over the various M-BLUE con-
figurations. The benefits of the unilateral configurations on RF
and VMO were clear in several tasks. Only AB02, AB03, and
AB04 had greater reductions in muscle efforts in the bilateral
cases over the unilateral cases. This discrepancy may depend
on how subjects acclimate to the various configurations.

During sit-to-stand, we found large reductions in VMO
(knee extensor) and BF (hip extensor) activations with the uni-
lateral knee exoskeleton configuration when compared to bare
mode (see Table II for mean effort changes). The reductions
in VMO and GLUT activations were also aligned with the
exoskeleton assistance torques, as shown in Fig. 8. Although
KneeU and KneeB provided no direct hip assistance torque,
we found a reduction in BF activation, which can be due to a
change of strategy to a more knee-dominant one.

Stair and ramp climbing during stance have similar biome-
chanics to sit-to-stand, whereby knee extension and hip exten-
sion torques are required during early to mid stance to elevate
the body’s center of mass [57]. Accordingly, we found reduc-
tions in VMO and RF activations during early to mid stance
(see Fig. 9 for ensembled EMG averages). The correlation
between dominant muscle EMG and torque profiles in Fig. 8
shows a harmony of the assistive torques with the nervous
system in stair ascent and incline walking. Overall, reductions
in muscle activation aligned with the respective assistance
torque, showing the contribution of M-BLUE towards the net
joint torque. This was made possible by relaxing passivity
with power leak terms (Section II-D) to allow net positive or
negative work over the gait cycle (Table IV).

The above-mentioned results could have been positively or
negatively impacted by insufficient experimental control over
kinematic variability between bare and exoskeleton conditions.
Although the study design aimed to strike a balance between
practicality and experimental control, such as averaging sev-
eral repeat trials to reduce noise, there were unanticipated
aspects of the user experience that may have affected the
results. Specifically, introducing the exoskeleton and its torque
may have influenced the kinematics/kinetics of subjects, po-
tentially altering EMG signals. For example, subjects may
have unconsciously changed their gait style, shifting their load
from the knees to hips or vice versa to leverage (or fight) the
assistance. In subsequent pilot testing, we found that stricter

enforcement of gait style leads to a clearer exoskeleton effect
on muscle effort, suggesting this effect may have been hidden
by kinematic/kinetic variation between conditions in this study.
The observed low peak torque values during ascent tasks
may have contributed to weak EMG trends. To safeguard the
actuator, we limited the torque to 25 Nm, although this level
was never reached during ascent tasks. For example, Fig. 10
illustrates that a torque of around 10 Nm during ascent tasks
led to EMG reduction trends in subject AB01.

Our tests have only covered a subset of the exoskeleton
configurations that are possible in our control framework.
While this paper considered knee and hip joints separately,
the combination of knee and hip joints would introduce even
more predictive power into the basis function set. In fact,
the framework can be deployed to arbitrary uni- or bi-lateral
ankle, knee, and/or hip configurations of M-BLUE. It could
even extend beyond this, to joints out of the sagittal plane like
the frontal plane hip abduction/adduction torque. However, the
success of these unproven cases will depend on the available
sensor signals being sufficiently distinct between tasks to gen-
erate a unique mapping from these signals to task-specific joint
torques. It is also worth noting that the presented controller can
be readily applied to populations with gait kinematics within
our training data distribution, such as elderly individuals.
Future work will consider extending this framework to diverse
patient populations by including population-specific data in the
optimization, enabling applications in rehabilitation.

VI. CONCLUSION

This paper presented a modular solution for task-agnostic
control of a broad class of exoskeletons to assist broad patient
populations in their activities of daily living. The Modular
Multi-Task Optimal Energy Shaping control framework gen-
erates controllers for various configurations of active joints that
optimally account for multiple tasks in human biomechanical
data. A human trial with N = 8 able-bodied participants
demonstrated the potential benefits of the modular exoskeleton
controllers to reduce muscle effort, while identifying remain-
ing challenges to be resolved in future work.
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APPENDIX

The motor safety strategy ran a real-time simulation of the
winding temperature, based on an offline system identification
experiment and a simple model with two temperature states
(see Fig. 11), resulting in an ODE model of the form

Ṫw =
I2
q Rq

Cw
+

Th −Tw

Rw−hCw
, Ṫh =

Tw −Th

Rw−hCh
+

Ta −Th

Rh−aCh
, (17)

where I2
q Rq is the joule heating of the motor windings,

the temperatures of the winding, housing, and ambient are
denoted Tw, Th, and Ta, respectively, and the resistive and
capacitive thermal circuit elements are laid out as diagrammed
in Fig. 11.b. This temperature safety system was used in place
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Fig. 11. Model-based thermal limits were identified using the dynamics of
the winding temperature Tw and case temperature Tc in thermal images (a)
and fit to a thermal circuit model (b), which allowed development of a safety
controller that reduces desired torque (c) in order to provide strict guarantees
on the maximum temperatures (d). Continuous torque of 8.76 Nm only occurs
after the housing reaches 58 degrees, whereas the torque is limited closer to
13.7 Nm in (c) due to high winding temperature with a cool housing.

of the conservative safety limits of the ActPacks by installing
custom firmware without the default I2R safety limits.

To ensure the temperature limits are not breached for any
desired q-axis current, Id

q , we define the true current Iq as

Iq =
√

Sσ̄h
σ̃h
(Th)S

σ̄w
σ̃w
(Tw)Id

q , (18)

in terms of the following soft-limiting function:

Sσ̄
σ̃ (T ) =


1 T ≤ σ̃

σ̄−T
σ̄−σ̃

σ̃ < T < σ̄

0 T ≥ σ̄

. (19)

This law provides a formal safety guarantee while also avoid-
ing sudden shut-offs of power to the device.

Lemma A.1. The set of safe temperatures,

T = {(Th,Tw) | Ta ≤ Th ≤ σ̄h, Ta ≤ Tw ≤ σ̄w},

is invariant under any control law that satisfies Tw = σ̄w =⇒
Iq = 0 (including the proposed temperature safety control law),
so long as Ta ≤ σ̄h ≤ σ̄w and σ̄w − σ̄h ≤

Rw−h
Rh−a

(σ̄h −Ta).

Proof. Consider the four edges of this rectangular set. At the
edge Tw = Ta, (Th,Tw) ∈ T implies that the two terms in Ṫw
(17) are non-negative, so the state cannot escape T by passing
through this edge. Similarly, at the edge Th = Ta, (Th,Tw)∈T
implies that the first term in Ṫh (17) is non-negative and the
second is zero, again prohibiting escape. At the edge Tw = σ̄w,
(Th,Tw) ∈ T implies

Ṫw
∣∣
Tw=σ̄w

= ✚
✚✚❃

0
I2
q Rq

Cw
+

Th − σ̄w

Rw−hCw
≤ σ̄h − σ̄w

Rw−hCw
≤ 0. (20)

And at the remaining edge Th = σ̄h, (Th,Tw) ∈ T implies

Ṫh
∣∣
Th=σ̄h

=
Tw − σ̄h

Rw−hCh
+

Ta − σ̄h

Rh−aCh
≤ σ̄w − σ̄h

Rw−hCh
+

Ta − σ̄h

Rh−aCh

≤ σ̄h −Ta

Rh−aCh
+

Ta − σ̄h

Rh−aCh
= 0. (21)

Thus, since the state of the system cannot escape any boundary
of T , T is an invariant set.

In practice, this means that we can guarantee the upper
winding temperature limit, σ̄w, (80 C) and the upper housing
temperature limit, σ̄h, (70 C) are never breached without any
knowledge of rest of the controller or human actions. The
soft limits at σ̃w = 70 C and σ̃h = 60 C soften the loss
of torque when we get to the temperature limits (Fig. 11.c-
d demonstrates this behavior in simulation). In practice, the
housing temperature is relatively low in our experiments, due
to the breaks we provide the subjects. We used a temperature
sensor on the actuator module’s logic board to provide an
estimate for Th, which we used in place of the simulation
estimate of this value for the purposes of limiting current,
since this is more reliable in the event of a software restart.
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