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A B S T R A C T

A unified linear theory that includes forced reconnection as a particular case of Alfvén resonance is presented.
We consider a generalized Taylor problem in which a sheared magnetic field is subject to a time-dependent
boundary perturbation oscillating at frequency 𝜔0. By analyzing the asymptotic time response of the system,
the theory demonstrates that the Alfvén resonance is due to the residues at the resonant poles, in the
complex frequency plane, introduced by the boundary perturbation. Alfvén resonance transitions towards
forced reconnection, described by the constant-psi regime for (normalized) times 𝑡 ≫ 𝑆1∕3, when the forcing
frequency of the boundary perturbation is 𝜔0 ≪ 𝑆−1∕3, allowing the coupling of the Alfvén resonances across the
neutral line with the reconnecting mode, as originally suggested in Uberoi and Zweibel, (1999). Additionally,
it is shown that even if forced reconnection develops for finite, albeit small, frequencies, the reconnection rate
and reconnected flux are strongly reduced for frequencies 𝜔0 ≫ 𝑆−3∕5.

1. Introduction

The dynamical formation of boundary layers has long been a prob-
lem of fundamental interest to understand plasma heating in weakly-
collisional magnetized plasmas such as those found in space and in most
laboratory devices. Alfvén resonance and forced magnetic reconnection
are two energy conversion processes mediated by the formation of
boundary layers and, as such, have received much attention in the
past [1–10].

The problem of forced magnetic reconnection, known as the ‘‘Taylor
problem’’, was first investigated analytically by Hahm and Kulsrud [1]
in slab geometry, for an initial sheared magnetic field subject to a
boundary perturbation. They demonstrated that the system evolves
from an initial configuration that preserves the topology of the mag-
netic field, towards a final equilibrium with magnetic islands. This
process can be described by four linear stages, with nonlinear island
dynamics thereafter. The first two stages essentially correspond to
the ideal evolution leading to the growth of a surface current at the
neutral line that increases linearly with time. If resistivity is retained,
the magnetic flux starts to reconnect at the neutral line, increasing
algebraically with time. The system transitions to the resistive regime
proper in the third stage, at around 𝑡 ∼ 𝑆1∕3, where 𝑆 is the Lundquist
number based on the magnetic field shear length and 𝑡 is the time
normalized to the corresponding Alfvén time. The long-time behavior
represents the fourth stage and is described by the constant-psi regime.
The constant-psi regime occurs over a time scale 𝑡 ∼ 𝑆3∕5, during which
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the reconnected flux leads to the formation of magnetic islands due to
the resistive dissipation at the developed boundary layer, by ultimately
reaching a stationary equilibrium.

Alfvén resonance has also been studied for a long time for its role
in plasma heating via resonant absorption, with applications to the
solar corona and tokamak plasmas [11–13]. Alfvén resonance occurs
when the wave is polarized in the plane containing the mean sheared
magnetic field and its gradient. In the presence of an inhomogeneous
magnetic field, normal-mode analysis predicts a continuum spectrum
of singular modes exhibiting a logarithmic singularity at the location
where 𝜔 = 𝑘∥𝑣𝑎(𝑥), 𝑣𝑎(𝑥) being the Alfvén speed and 𝑘∥ the field-aligned
wave vector [6,14]. When resistivity is included, such a singularity also
implies that if the plasma is driven externally, a steady state is achieved
where the wave energy is accumulated and absorbed at the resonant
layer [7].

In 1999, Uberoi and Zweibel [15] pointed out similarities between
forced reconnection and Alfvén resonance, drawing from earlier studies
of Alfvén resonance at the magnetic field neutral line [16]. Indeed, the
current density grows initially linearly with time for Alfvén resonance
and forced reconnection, and resistive effects become important over
a time scale 𝑡 ∼ 𝑆1∕3 in both processes [1,7]. Furthermore, they show
that both processes are described by the same governing equation in
the limit of zero frequency. Since the Alfvén resonance develops an
inner layer 𝛿 that scales as 𝛿 ∼ 𝑆−1∕3 [8], it was reasonably argued
that the transition to forced reconnection should occur for values of
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the frequency of the injected wave 𝜔 ∼ 𝑆−1∕3. However, an explicit
time-dependent solution to the boundary value problem, demonstrating
that Alfvén resonance and forced magnetic reconnection are in fact
intrinsically related, has not yet been determined.

The purpose of this paper is to provide a unified theory that includes
forced reconnection as a particular case of Alfvén resonance. We solve
the time dependent, boundary value problem for both the early and
long time stages of the evolution of the system, by assuming a pertur-
bation of arbitrary frequency 𝜔0 away from the neutral line along the
lines of the Taylor problem.

The paper is organized as follows: in Section 2 we present the model
equations; in Sections 3 and 4 we derive the most general solution to
the time-dependent boundary value problem (in Laplace and Fourier
space) for arbitrary boundary conditions. The solution is derived by
matching the so-called outer solution (Section 3) to the inner layer
solution (Section 4) by applying the asymptotic matching technique;
in Sections 5 and 6 we consider the special case of a standing wave of
arbitrary frequency as boundary condition. We derive, analytically or
by inverting our solutions to time and configuration space with Math-
ematica [17], the explicit space–time solution in the early-time stage
(Section 5), and in the time-asymptotic stage (Section 6). In Section 6,
we discuss how the known solutions for forced reconnection and Alfvén
resonance are both recovered by analyzing in the complex plane the
dominant contributions to the stream function, and we compare our
solutions with linear 2D simulations described in the appendix. Finally,
we discuss our results and provide a summary in Section 7.

2. Model equations and boundary conditions

We consider the two-dimensional resistive magnetohydrodynamic
(MHD) equations for an inviscid and incompressible plasma in slab
geometry. In this model, the unperturbed state is represented by a
stationary plasma with uniform density 𝜌 and anti-symmetric sheared
magnetic field given by

𝑩𝟎(𝑥) = 𝐵0
𝑥

𝑎
𝐲̂, (1)

as is customary for the Taylor problem [1,2,5]. An inhomogeneous
pressure or out-of-plane magnetic field are understood to maintain the
equilibrium. The system is then perturbed at 𝑡 = 0 by a time-dependent
displacement of the boundary at 𝑥 = ±𝑎, represented by a forcing
function 𝛯(𝑦, 𝑡). The resulting perturbed magnetic and velocity fields
are defined in terms of the flux (𝜓) and stream (𝜙) functions given,
respectively, by

𝑩 = ∇𝜓 × 𝐳̂, (2)

𝒗 = ∇𝜙 × 𝐳̂. (3)

To solve the time dependent, initial value problem for 𝜓 and 𝜙, we
perform both a Fourier transform with respect to the 𝑦 variable, and a
Laplace transform in time. The stream and flux functions, 𝜙 and 𝜓 , are
zero at 𝑡 = 0 and the driver is provided by the boundary condition. We
obtain the following set of linearized equations,

𝑔(𝜙̂′′ − 𝑘2𝜙̂) = 𝑖𝑘𝑥(𝜓̂ ′′ − 𝑘2𝜓̂), (4)

𝑔𝜓̂ =
1

𝑆
(𝜓̂ ′′ − 𝑘2𝜓̂) + 𝑖𝑘𝑥𝜙̂, (5)

where prime denotes the derivative with respect to 𝑥, and 𝑔 and
𝑘 are the Laplace and Fourier variables defined with the following
conventions,

𝑓 (𝑔) = (𝑓 ) = ∫
∞

0

𝑓 (𝑡)𝑒−𝑔𝑡𝑑𝑡, (6)

𝑓 (𝑘) =  (𝑓 ) =
1

2𝜋 ∫
∞

−∞

𝑓 (𝑦)𝑒−𝑖𝑘𝑦𝑑𝑦, (7)

for an arbitrary function 𝑓 . For ease of notation, hereafter we will
denote with hats Laplace transforms (therefore functions of 𝑔), which
may or may not depend on the Fourier variable 𝑘. In case of ambiguity,
we will indicate explicitly the variables upon which a given function
depends. Here, length scales have been normalized to the slab width 𝑎,
and time to the Alfvén time defined by 𝜏𝑎 = 𝑎∕𝑣𝑎, where 𝑣𝑎 = 𝐵0∕

√
4𝜋𝜌

is the Alfvén speed. The Lundquist number 𝑆 = 𝑎𝑣𝑎∕𝜂 is the ratio of the
resistive times scale 𝜏𝑟 = 𝑎2∕𝜂 to 𝜏𝑎, 𝜂 being the magnetic diffusivity.

We look for solutions to Eqs. (4)–(5) in the domain 𝑥 = [−1, 1], sub-
ject to a displacement of the boundaries 𝛯̂±(𝑘, 𝑔). The time-dependent
solution for a given Fourier mode will then be obtained by taking the
inverse Laplace transform. The form of the boundary displacement (the
forcing) will be left general for much of the derivation, but it is assumed
periodic in the azimuthal 𝑦 direction and symmetric about the midplane
𝑥 = 0. The general boundary conditions that complete our problem are
therefore represented by

𝜓̂(±1, 𝑘, 𝑔) = 𝛯̂(𝑘, 𝑔), (8)

𝜙̂(±1, 𝑘, 𝑔) = ±
𝑔

𝑖𝑘
𝛯̂(𝑘, 𝑔), (9)

with Eq. (9) following from the ideal limit of Eq. (5).

3. The time dependent boundary layer problem

Essential to the theories of both forced magnetic reconnection and
Alfvén resonance is the formation of boundary layers about their res-
onant surfaces. We assume that boundary layers develop for |𝑥| ≪ 1.
This means that the regime we are exploring for the Alfvén resonance
is that of a sub-Alfvénic resonant frequency 𝜔0𝜏𝑎 ≪ 1. Therefore, for
𝑆 ≫ 1, the plasma can be assumed to be governed by ideal MHD (or
𝑆 = ∞) except in the immediate vicinity of the boundary layer, which
contains large gradients. In the boundary layer, or inner layer, resistive
MHD must be considered, however, because of the large gradients, one
can assume that 𝜕2∕𝜕𝑥2 ≫ 𝑘2. In this way, Eqs. (4) and (5) can be solved
by breaking the domain into two regions: an ideal ‘‘outer region’’ away
from the boundary layer, and an ‘‘inner layer’’ which contains all the
physics of the problem but is treated as one dimensional. These regions
are then asymptotically matched for a fully general solution valid in the
entire domain.

3.1. The outer region

The region away from the boundary layer where gradients are small
composes much of the plasma and is treated as both ideal and in steady
state. Eqs. (4) and (5) become, under these conditions,

𝜓̂ ′′ = 𝑘2𝜓̂ , (10)

𝜙̂ =
𝑔

𝑖𝑘𝑥
𝜓̂. (11)

The general solution to Eq. (10) that satisfies the boundary condition
given by Eq. (8) and is even in 𝑥 is given by [1]

𝜓̂𝑜𝑢𝑡 = 𝜓̂0(𝑘, 𝑔)

[
cosh(𝑘𝑥) −

sinh(𝑘|𝑥|)
tanh(𝑘)

]
+ 𝛯̂(𝑘, 𝑔)

sinh(𝑘|𝑥|)
sinh(𝑘)

, (12)

where 𝜓̂0(𝑘, 𝑔) = 𝜓̂𝑜𝑢𝑡(𝑥 = 0). The outer solution for 𝜙̂ follows di-
rectly from Eq. (11). The solution (12) consists of two contributions: a
contribution satisfying homogeneous boundary conditions (no forcing)
that takes a time dependent value of amplitude 𝜓̂0(𝑘, 𝑔) at the rational
surface 𝑥 = 0 and an ideal contribution describing a ‘‘screened’’ plasma
response that vanishes at 𝑥 = 0 that satisfies the boundary condition. As
can be seen from Eq. (12), 𝜓̂𝑜𝑢𝑡 exhibits a jump in its derivative which
we define here as

𝛥𝛹 ′ ≡ −
2𝑘

tanh(𝑘)
𝜓̂0 +

2𝑘

sinh(𝑘)
𝛯̂. (13)

The first term on the right-hand-side of Eq. (13) contains the 𝛥′ pa-
rameter that determines the stability to tearing mode of an unforced
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current sheet equilibrium [18], which is negative in this case (thus, the
equilibrium defined by Eq. (1) is stable to tearing mode). The second
term represents the effect of the forcing through the function 𝛯̂.

Close to the origin, the outer solutions for the flux and stream
functions, under series expansion, tend to

𝜓̂𝑜𝑢𝑡(𝑥 → 0) = 𝜓̂0 +
1

2
𝛥𝛹 ′|𝑥|, (14)

𝜙̂𝑜𝑢𝑡(𝑥 → 0) =
𝑔

𝑖𝑘𝑥
𝜓̂0

(
1 +

1

2

𝛥𝛹 ′

𝜓̂0

|𝑥|
)
. (15)

The limit of the outer solution for 𝑥 → 0 expressed by Eqs. (14)
and (15), provides the boundary condition for the inner layer solution
as it tends away from the resonance. We anticipate that the inner
layer equations can be solved for 𝜙̂ by applying a Fourier transform
with respect to the variable 𝑥 [19,20]. With that in mind, it follows
from Eq. (15) that the asymptotic behavior of the Fourier transform of
𝜙𝑜𝑢𝑡(𝑥), denoted as 𝜙̃𝑜𝑢𝑡(𝜃), at large 𝜃 is given by

𝜙̃𝑜𝑢𝑡(𝜃 → ∞) = −
𝑔

𝑘

𝜓0

2

1

𝜃

(
|𝜃| + 1

𝜋
𝛥𝑔

)
, (16)

where from now on we use the tilde ̃[ ] to denote functions in 𝜃 space,
and

𝛥𝑔 ≡ 𝛥𝛹 ′

𝜓̂0

(17)

is the layer response. The asymptotic form in Eq. (16) must be matched
with the inner layer solution.

3.2. The inner layer

In the inner layer, where gradients are large and resistive effects
must be included, Eqs. (4) and (5) are approximated to

𝑔𝜙̂′′ = 𝑖𝑘𝑥𝜓̂ ′′, (18)

𝜓̂ =
1

𝑔𝑆
𝜓̂ ′′ +

𝑖𝑘𝑥

𝑔
𝜙̂, (19)

respectively. Just like Eqs. (4)–(5), the system of Eqs. (18)–(19) admit
solutions for 𝜓̂ and 𝜙̂ with a defined parity. In the following we seek
solutions with 𝜓̂ even in 𝑥 and 𝜙̂ odd, and we will show only the 𝑥 ≥ 0

part of the solutions. The solution in the entire domain can then be
obtained by extension, according to the appropriate parity.

To make the above set of equations analytically tractable, we
Fourier transform in the 𝑥 direction. This approach allows one to reduce
the original fourth order system of differential equations with respect
to the variable 𝑥, to a second order system in 𝜃 that is analytically
solvable [21]. In this way, the differential equations in terms of 𝜃 are

𝜃2𝜙̃ = −
𝑘

𝑔

𝜕

𝜕𝜃
(𝜃2𝜓̃), (20)

(
1 +

𝜃2

𝑔𝑆

)
𝜓̃ = −

𝑘

𝑔

𝜕

𝜕𝜃
𝜙̃. (21)

From the definition 𝐽𝑧 = −∇2𝜓 ≈ 𝜃2𝜓̃ and Eq. (21), we derive the
following expression for 𝐽𝑧 in terms of 𝜙̃,

𝐽𝑧 = −
(𝑆𝑘)1∕3

𝑄

𝜃2

(1 +
𝜃2

(𝑆𝑘)2∕3𝑄
)

𝑑

𝑑𝜃
𝜙̃, (22)

where we have introduced the normalized Laplace variable

𝑄 =
𝑔𝑆1∕3

𝑘2∕3
. (23)

Next, by dividing Eq. (20) by 𝜃2, differentiating it with respect to 𝜃,
and making use of Eq. (22), we find an expression entirely in terms of
the current density

𝜃2
𝑑

𝑑𝜃

(
(𝑆𝑘)2∕3

𝜃2
𝑑

𝑑𝜃
𝐽𝑧

)
= 𝑄2

(
1 +

𝜃2

(𝑆𝑘)2∕3𝑄

)
𝐽𝑧. (24)

Finally, with the change of variable

𝑧 =

√
𝑄𝜃2

(𝑆𝑘)2∕3
, (25)

and with the ansatz 𝐽𝑧(𝑧) = 𝑒
−
𝑧

2 𝑓 (𝑧) (based on the expected behavior
of the solution by taking the limit 𝑧 ≫ 1 of Eq. (24)), Eq. (24) takes the
form of Kummer’s confluent hypergeometric equation for the function
𝑓 (𝑧):

𝑧𝑓 ′′ +
(
−
1

2
− 𝑧

)
𝑓 ′ −

(𝑄3∕2 − 1)

4
𝑓 = 0. (26)

The solution to Kummer’s equation that is well behaved for 𝑧 →

∞ [21] is the Tricomi confluent hypergeometric function 𝑈 (𝑎, 𝑏, 𝑧) [22].
In terms of this function, the solution to Eq. (24) for the current density
takes the form

𝐽𝑧 = 𝐴𝑒
−
𝑧

2 𝑈

(
(𝑄3∕2 − 1)

4
,−

1

2
, 𝑧

)
, (27)

where 𝐴 is an amplitude to be determined via asymptotic matching. By
using the recurrence properties of the exponential and of the function
𝑈 (𝑎, 𝑏, 𝑧), together with Eq. (20) upon substitution of 𝐽𝑧 = 𝜃2𝜓̃ , we
determine the inner layer solution for 𝜙̃ as:

𝜙̃𝑖𝑛 =
2𝐴

(𝑆𝑘)2∕3𝑄1∕4

𝑒
−
𝑧

2√
𝑧

[
𝑈

(
(𝑄3∕2 − 1)

4
,
1

2
, 𝑧

)
−

1

2
𝑈

(
(𝑄3∕2 − 1)

4
,−

1

2
, 𝑧

)]
.

(28)

In the limit of small 𝜃 (or large 𝑥), the solution to be asymptotically
matched with Eq. (16) is

𝜙̃𝑖𝑛
𝜃→0

=
2
√
𝜋𝐴

(𝑆𝑘)2∕3𝑄1∕4

1

𝜃

⎛⎜⎜⎜⎝

𝑄5∕4

(𝑄3∕2 + 1)

(𝑆𝑘)1∕3

𝛤

(
𝑄3∕2+1

4

) −
2

𝛤

(
𝑄3∕2−1

4

) 𝜃
⎞⎟⎟⎟⎠

(29)

with 𝛤 the Euler Gamma function.

4. The matched inner layer solution

The most general matched inner layer solution is determined by
Eq. (28) with the following amplitude 𝐴 determined by asymptotic
matching,

𝐴 =
𝜓̂0(𝑘, 𝑔)

8
√
𝜋

𝑄5∕4(𝑆𝑘)1∕3𝛤

(
(𝑄3∕2 − 1)

4

)
, (30)

with

𝜓̂0(𝑘, 𝑔) = 𝛯̂(𝑘, 𝑔)

2𝑘

sinh[𝑘]

𝛥𝑔 +
2𝑘

tanh[𝑘]

≡ 𝛯̂(𝑘, 𝑔)
𝛥𝑓

𝛥𝑔 − 𝛥0
, (31)

and

𝛥𝑔 = −2𝜋(𝑆𝑘)1∕3
𝑄5∕4

(𝑄3 − 1)

𝛤

(
(𝑄3∕2−1)

4
+ 1

)

𝛤

(
(𝑄3∕2−1)

4
+

1

2

) . (32)

Here 𝛥𝑓 =
2𝑘

sinh 𝑘
and 𝛥0 = −

2𝑘

tanh 𝑘
, with 𝛥0 being the conventional jump

of the derivative of 𝜓̂𝑜𝑢𝑡 at the origin (the 𝛥′ parameter of the tearing
mode).

Eq. (28), together with Eqs. (30)–(32), completely describes the
stream function for both forced magnetic reconnection and Alfvén
resonance, and it includes the full time evolution from the early stages,
𝑡 ≪ 𝑆1∕3, when the evolution is essentially ideal and the boundary layer
is being formed, all the way to the long-time behavior determined by
resistivity.

We note that Eq. (28) includes as special cases the eigenfunc-
tions that describe the ideal kink, the resistive kink (also referred to
as non constant-psi regime for reconnection in slab geometry) and
the ordinary tearing mode (constant-psi regimes) under appropriate
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asymptotic expansions [20,21,23,24].1 The important difference is that
here we are solving for the time-dependent problem rather than the
eigenvalue problem and, therefore, 𝑔 is a variable; additionally, we
include the effect of a general forcing function at the boundary through
the function 𝛯̂ by allowing not only (forced) reconnection, but also
Alfvén resonances.

The solution given in Eq. (28) will now be considered for two
distinct stages of the dynamical evolution of the system. The early-
time ideal regime corresponds to the limit 𝑄 ≫ 1 (𝑡 ≪ 𝑆1∕3). The
time-asymptotic resistive regime, when resistivity has allowed for the
formation of a finite width boundary layer, corresponds to the limit
𝑄 ≪ 1 (𝑡 ≫ 𝑆1∕3). These two stages, which forced reconnection and
Alfvén resonance have in common, are naturally recovered through two
asymptotic expansions of the general solution (28) with respect to the
parameter 𝑄. The transition between the ideal and the resistive regimes
occurs for 𝑄 ∼ 1, or for times 𝑡 ∼ 𝑆1∕3. Thus, with Eq. (28) we recover
the expected time scales.

To make progress, and to provide a specific solution to discuss how
forced reconnection and Alfvén resonances are recovered from Eq. (28)
in the two aforementioned stages, we will consider a specific boundary
forcing given by a standing wave of the following form,

𝛯(𝑦, 𝑡) = 𝛯0 cos(𝜔0𝑡) cos(𝑘0𝑦), (33)

of small amplitude 𝛯0. The Fourier and Laplace transformed boundary
condition is, therefore,

𝛯̂(𝑘, 𝑔) =
𝛯0

2

𝑔

(𝑔2 + 𝜔2
0
)

[
𝛿(𝑘 − 𝑘0) + 𝛿(𝑘 + 𝑘0)

]
. (34)

Even though we specialize our results to the forcing in (33), the validity
of our discussion holds in general.

5. The ideal regime

The ideal solution can be recovered from the general solution given
by Eq. (28) by taking the limit 𝑄 ≫ 1 (or 𝑔 ≫ 𝑆−1∕3) and, simultane-
ously, 𝑧∕𝑄3∕2 ≪ 1. The leading order contributions, after imposing the
appropriate parity for the stream function, yield

𝜙̃(𝜃, 𝑘, 𝑔) =
𝜓̂0

2

𝑒
−

𝑔

|𝑘| 𝜃

𝜃
. (35)

Under this limit, 𝛥0 ≪ 𝛥𝑔 and is thus neglected. Then, 𝜓̂0 takes the form

𝜓̂0 = 𝛯̂
𝛥𝑓

𝛥𝑔

with

𝛥𝑔 = −𝜋
𝑘

𝑔
.

The inverse Fourier transform with respect to 𝜃 of Eq. (35) is:

𝜙̂(𝑥, 𝑘, 𝑔) = 𝑖𝜓̂0 arctan

(|𝑘|
𝑔
𝑥

)
. (36)

The solution in Eq. (36) just recovered can be derived also by solving
Eqs. (20)–(21) by imposing 𝑆 = ∞ (e.g., [5]). The branch cuts and
poles of this solution, assuming the forcing given by the standing wave
in Eq. (34), is reported in Fig. 1. The poles introduced by the boundary
condition 𝛯̂(𝑘, 𝑔), in green, provide the long-time finite frequency
response which drives the Alfvén resonance. The orange branch cut
arises from the complex arctangent contribution and is responsible for
the forced reconnection solution when 𝜔0 → 0.

For the standing wave boundary condition, the ideal stream func-
tion can be inverted analytically by following the Bromwich contour

1 We note a typo on equation (31) of [20].

Fig. 1. The branches and poles of the ideal solution (36) for the standing wave
boundary forcing (34) are shown here in the complex plane. In black is the Bromwich
contour for the inverse Laplace transform. The poles introduced by a finite frequency
forcing determine the resonant response and are represented in green. The branch cut
of the complex arctan is represented in orange and it contributes to the ideal stage of
the forced reconnection solution. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

represented in Fig. 1. The solution in terms of the variables 𝑥, 𝑦, and 𝑡
is given by

𝜙 = −𝛷

{
cos(𝜔0𝑡)

[
𝐶𝐼(𝑧+) − 𝐶𝐼(𝑧−) + ln

(
𝑧−

𝑧+

)]

−
2 sin(𝑘0𝑥𝑡)

𝜔0𝑡
+ sin(𝜔0𝑡)

[
𝑆𝐼(𝑧+) + 𝑆𝐼(𝑧−)

]}
,

(37)

where

𝑧± = (𝑘0𝑥 ± 𝜔0)𝑡, 𝛷 =
𝛯0

𝜋

𝜔0 sin[𝑘0𝑦]

sinh[𝑘0]
, (38)

and 𝑆𝐼(𝑧±), 𝐶𝐼(𝑧±) are the sine and cosine integral functions, respec-
tively. We see that for 𝜔0 ≠ 0 we recover the expected logarithmic
singularity at the resonant site, where the phase velocity of the driven
boundary perturbation, 𝑣𝑝ℎ = 𝜔0∕𝑘0, is equal to the local Alfvén speed.
The logarithmic contribution to the stream function originates from
the residues at the poles 𝑔 = ±𝜔0, while the sine and cosine integrals
arise from evaluating the jump of the Laplace integral across the branch
cut. For long times, the contribution of the logarithmic response to the
resonant poles dominates over that of the sine and cosine integrals,
which initially provide much of the oscillatory behavior of the solution.
In the limit 𝜔0 → 0, Eq. (37) describes forced reconnection at the
neutral line and recovers the results of [1].

The ideal current density can be found either from (22) in the limit
of infinite 𝑆 or from the asymptotic expansion of (27). In either case,
the ideal current density for a generic boundary condition is

𝐽𝑧 =
𝜓0

2

𝑘

𝑔

(
𝑔

|𝑘| 𝜃 + 1

)
𝑒
−

𝑔

|𝑘| 𝜃 , (39)

and in the case of the standing wave boundary condition the ideal
current density can be inverted to obtain

𝐽𝑧 = −𝛯0
2

𝜋

𝑘4
0
cos(𝑘0𝑦)

sinh(𝑘0)

𝑥2𝑡

(𝑘2
0
𝑥2 − 𝜔2

0
)

[
cos(𝑘0𝑥𝑡) +

(𝑘2
0
𝑥2 − 3𝜔2

0
)

(𝑘2
0
𝑥2 − 𝜔2

0
)

sin(𝑘0𝑥𝑡)

𝑘0𝑥𝑡

+
2𝜔3

0

𝑘2
0
𝑥2𝑡

sin(𝜔0𝑡)

(𝑘2
0
𝑥2 − 𝜔2

0
)

]
.

(40)
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For 𝑡 ≪ 1 Eq. (40) is given by

𝐽𝑧 = −𝛯0
4

𝜋

𝑘2
0
cos(𝑘0𝑦)

sinh(𝑘0)
𝑡

[
1 +

1

6
(𝑘2

0
𝑥2 + 𝜔2

0
)𝑡2

]
+ (𝑡4). (41)

As can be seen from Eq. (41), the current density’s amplitude increases
linearly with time regardless of the forcing frequency to lowest order.
As time goes by, the more general Eq. (40) recovers the result of [1] for
𝜔0 = 0, where the amplitude of 𝐽𝑧 increases linearly with time at 𝑥 = 0,
and it is localized in a region whose width decreases as 1∕𝑡. Outside the
origin, the current density’s amplitude still increases linearly with time
but its spatial behavior is highly oscillatory. For 𝜔0 ≠ 0, the current
density at the origin is a purely oscillating function. For long times,
however, it grows faster than linear near the resonant point where it
builds up by eventually leading to a singularity.

6. The resistive regime

We separate now the discussion of the time-asymptotic behavior,
corresponding to 𝑄 ≪ 1, into two cases: the case of small or zero fre-
quency, 𝜔0 ≪ 𝑆−1∕3, for which we expect to describe forced magnetic
reconnection, and the case of high frequency 𝜔0 ≫ 𝑆−1∕3.

6.1. Forced reconnection

In the limit 𝑄 ≪ 1 (or 𝑔 ≪ 𝑆−1∕3𝑘2∕3) Eq. (28) with Eq. (30)
approximates to

𝜙̃ = −
𝛤 [

3

4
]

2𝜋
𝜓0

𝑔

𝑘

(
1

|𝑘|
√

𝑔

𝑆
𝜃2

)1∕4

𝐾 1
4

(
1

|𝑘|
√

𝑔

𝑆

𝜃2

2

)
, (42)

where 𝐾𝜈 is the modified Bessel function of the second kind. This is
colloquially known as the constant-psi regime, or phase D of [1]. In
this limit, both 𝛥𝑔 and 𝛥0 are retained in 𝜓̂0 with 𝛥𝑔 approximated to

𝛥𝑔 =
√
2(
𝑔5𝑆3

𝑘2
)1∕4𝛤 (3∕4)2. (43)

From the definition of 𝛥𝑔 , we observe the time scale 𝑡 ∼ 𝑆3∕5 after
which reconnection reaches a steady state [1,2]. The flux function at
the origin 𝜓̂0, given below, is consistent with that found by [1,2], albeit
for different boundary conditions,

𝜓̂0 =

2𝑘

sinh(𝑘)
𝛯̂

√
2(
𝑔5𝑆3

𝑘2
)1∕4𝛤 (3∕4)2 + 2

𝑘

tanh(𝑘)

. (44)

The stream function in Eq. (42) can be inverted from Fourier
space to configuration space yielding, for the standing wave boundary
condition, the following result,

𝜙̂ = 𝛯0

√
𝜋

2
𝛤 (

3

4
)
sin(𝑘0𝑦)

sinh(𝑘0)

𝑔2

(𝑔2 + 𝜔2
0
)

(
𝑘0

√
𝑆

𝑔

)3∕4

×
√
𝑥

⎛⎜⎜⎜⎝

𝐼1∕4

(
𝑘0

√
𝑆

𝑔

𝑥2

2

)
− 𝐿1∕4

(
𝑘0

√
𝑆

𝑔

𝑥2

2

)

√
2(
𝑔5𝑆3

𝑘2
0

)1∕4𝛤 (3∕4)2 + 2
𝑘0

tanh(𝑘0)

⎞⎟⎟⎟⎠
,

(45)

where 𝐼𝜈 is the modified Bessel function of the first kind and 𝐿𝜈 is the
modified Struve function. The branch and poles of this solution with
the Bromwich contour are sketched in Fig. 2. The green poles represent
once more the resonant contributions of the forcing that merge with the
branch cut, represented in red, in the limit of 𝜔0 → 0. The blue poles
are the roots of the denominator in the last term in Eq. (45). It is noted
that we recover the same branches and poles as [1], but in their case
the resonant poles of the boundary overlap with the branch cut at 𝑔 = 0.

To find the time dependent stream function in this regime, we
use Mathematica to numerically take the inverse Laplace transform
of Eq. (45) about the Bromwich contour just discussed. In the limit
𝜔0 → 0, the contributions to the integral are the residues of Eq. (45)

Fig. 2. The branches and poles of the constant-psi solution (45) are shown here in the
complex plane. In green are the resonant poles of the boundary condition, in blue the
singular contributions of the 𝑔5∕4 root, and in red is the branch of the Modified Bessel
and Struve functions which extends from 𝑔 = −∞ to 𝑔 = 0. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

evaluated at the 𝑔5∕4 poles (the blue poles in Fig. 2) and the jump across
the branch extending from 𝑔 = −∞ to 𝑔 = 0. For small but non zero
frequencies 𝜔0, we must include also the contribution of the residues
at 𝑔 = ±𝑖𝜔0, which add an oscillatory contribution to the solution that
is non-negligible for 𝑡→ ∞.

The resulting stream function 𝜙(𝑥, 𝑦, 𝑡) is compared with results from
a numerical simulation in Fig. 3, where dashed lines correspond to the
theoretical solutions and solid lines correspond to results from ab-initio
numerical simulations. Details on the numerical code can be found
in Appendix. The constant-psi solution is represented by the purple,
cyan and green colors for 𝜔0 = 0, 𝜔0 = 0.0002, and 𝜔0 = 0.002,
respectively, where we have fixed 𝑦 = 𝜋∕2 and 𝑡 = 3000, which is
sufficiently long compared to the resistive time scale 𝑡 ∼ 𝑆1∕3. The
chosen frequencies all satisfy the condition 𝜔0 ≪ 𝑆−1∕3 and, as can
be seen, the solution corresponding to the constant-psi regime matches
very well with the simulation results for each frequency.

The current density is found by taking the inverse Fourier transform
of (22) in the limit 𝑄 ≪ 𝜃2

𝐽𝑧 = −(𝑆𝑘)∫
∞

−∞

𝑒𝑖𝑥𝜃
𝑑

𝑑𝜃
𝜙̃, (46)

which is identically

𝐽𝑧 = −𝑖(𝑆𝑘)𝑥𝜙̂(𝑥, 𝑘, 𝑔), (47)

from the definition of the Fourier transform. By using the appropriate
𝜙̂ for this limit for constant-psi (from Eq. (45) in Fourier 𝑘 space) 𝐽𝑧 is
given by

𝐽𝑧 = 𝛯0

√
𝜋

2
𝛤 (

3

4
)
𝑘0 cos(𝑘0𝑦)

sinh(𝑘0)

𝑔2𝑆

(𝑔2 + 𝜔2
0
)

(
𝑘0

√
𝑆

𝑔
𝑥2
)3∕4

×

⎛⎜⎜⎜⎝

𝐼1∕4

(
𝑘0

√
𝑆

𝑔

𝑥2

2

)
− 𝐿1∕4

(
𝑘0

√
𝑆

𝑔

𝑥2

2

)

√
2(
𝑔5𝑆3

𝑘2
0

)1∕4𝛤 (3∕4)2 + 2
𝑘0

tanh(𝑘0)

⎞⎟⎟⎟⎠
.

(48)

We note that the current density has the same branches and poles as
the stream function in Eq. (45), outlined in Fig. 2. The current 𝐽𝑧 can
thus be found as a function of time by computing the inverse Laplace
transform over the same contour as we did for 𝜙.

In principle, Eq. (48) describes also the current density at the
origin under an appropriate limit by expanding the Modified Bessel and
Struve functions, 𝐼1∕4 and 𝐿1∕4 respectively, for small arguments. For
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Fig. 3. The time-asymptotic solution for the stream function 𝜙(𝑥, 𝑦, 𝑡) (dashed lines) compared with numerical simulations (solid lines). The dashed green, cyan, and purple lines
are the inverse Laplace transformed constant-psi solutions, Eq. (45), for 𝜔0 = 0.002, 𝜔0 = 0.0002, and 𝜔0 = 0, respectively. These solutions are best seen in the inset plot, showing
an enlarged picture of the region around the neutral line. The dashed blue and red lines are the inverse Laplace transformed Alfvén resonance solutions, Eq. (51), for 𝜔0 = 0.1

and 𝜔0 = 0.05, respectively. The constant-psi solution for 𝜔0 = 0.1 has been also plotted (dotted line) to demonstrate the breakdown of the constant-psi solution as the system
transitions towards Alfvén resonance for increasing frequencies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

simplicity, to find the current density at 𝑥 = 0 required to calculate
the reconnection rate, we follow the method adopted in other works
by employing the relation

𝐽𝑧(0, 𝑦, 𝑡) = 𝑆
𝜕𝜓0

𝜕𝑡
= 𝑆−1(𝑔𝜓̂0), (49)

obtainable from (46) by imposing 𝑥 = 0 in the exponential, making use
of the relationship of 𝜙̃ and 𝜓̃ , Eq. (19), and, finally, by applying the
limit 𝑄 ≪ 𝜃2. We have also assumed here that reconnection has been
developed sufficiently such that 𝜓 is approximately constant across
the layer, as is the case for the constant-psi approximation. For the
boundary condition employed in this paper, Eq. (49) yields,

𝐽𝑧(0, 𝑦, 𝑔) = −𝛯0

2𝑘0 cos(𝑘0𝑦)

sinh(𝑘0)

𝑔2𝑆

(𝑔2 + 𝜔2
0
)

⎛
⎜⎜⎜⎝

1√
2(

𝑔5𝑆3

𝑘2
0

)1∕4𝛤 (3∕4)2 + 2
𝑘0

tanh(𝑘0)

⎞
⎟⎟⎟⎠
.

(50)

We now evaluate numerically its inverse Laplace transform via the
Bromwich contour in Fig. 2 (using Mathematica) to calculate the re-
connection rate 𝑅(𝑡) = 𝐽𝑧(0, 𝑡)∕𝑆 at a given position 𝑦.

The time evolution of the reconnection rate 𝑅(𝑡) in the cases of
𝜔0 = 0 and 𝜔0 = 0.002 is plotted in Fig. 4, left and middle panels, where
we compare 𝑅 from the 2D simulation (orange dashed line) with the
ideal (blue) and constant-psi (green) solutions. The reconnection rate
behaves as expected for the zero frequency case, (left panel): it initially
grows linearly with time as described by the ideal solution and for 𝑡 ≫
𝑆1∕3 it follows the constant-psi solution. After times much longer than
the reconnection time scale 𝑡 ∼ 𝑆3∕5, the reconnection rate approaches
zero as the flux function at the origin reaches a steady state. The
reconnection rate has a first peak in the intermediate regime, between
the ideal and constant-psi regimes, when the resistive layer forms at
𝑡 ∼ 𝑆1∕3. In the case of a small but non zero frequency (middle panel),
the reconnection rate follows an analogous evolution but, over a longer
time scale, instead of reaching a steady state the reconnection rate
oscillates in response to the boundary driver. The fact that the small but
non zero frequency case also gives rise to reconnection is not surprising,
as discussed in the Introduction, and was analyzed previously by [25]
for the eigenvalue problem and by [26] in the study of the interaction
of resonant magnetic perturbations with rotating plasmas. In a later
section we discuss in more details the effects of finite frequency on
reconnection.

6.2. Transition to Alfvén resonance

In the previous subsection, we analyzed the constant-psi regime of
Eq. (28) for small frequencies (𝜔0 ≪ 𝑆−1∕3). As discussed, when 𝜔0 ≪

𝑆−1∕3 the solution corresponding to the constant-psi regime matches
very well with the simulation results. However, as the frequency is
increased beyond 𝜔0 ∼ 𝑆−1∕3, the agreement diverges and the constant-
psi solution breaks down. This is shown for example by the dotted
blue line in Fig. 3, that represents the constant-psi solution but for a
high frequency case, 𝜔0 = 0.1; as can be seen, the dotted line does not
reproduce simulation results, which are represented by the solid blue
line. Therefore, for large frequencies we must consider a different limit
to describe Alfvén resonance.

For large frequencies, 𝜔0 ≫ 𝑆−1∕3, the residues at the resonant poles
of the boundary driver, represented in green in Fig. 2, contribute to the
time-asymptotic response of the system. The contributions from both
the jump at the branch cut and the residues at the poles located in the
region ℜ(𝑔) < 0 have vanishing contributions for 𝑡 → ∞. Additionally,
if the frequency is large enough such that 𝜔0 ≫ 𝑆−1∕3𝑘2∕3, one cannot
use the asymptotic expansion of Eq. (28) and (30) for 𝑄 ≪ 1 to
evaluate the residues at 𝑔 = ±𝑖𝜔0, as it was done for small frequency.
Instead, one should use the asymptotic expansion for 𝑄 ≫ 1 to calculate
the residues at those poles, except this time by retaining resistive
corrections. As gradients become strong around the resonant point, the
effects of resistivity will be to resolve and smooth out the logarithmic
singularity of the ideal solution. Performing the same expansion for
𝑄 ≫ 1 as with the ideal case but by retaining higher-order terms in
𝑧∕𝑄3∕2 ≪ 1, we find that the stream function can be approximated by

𝜙̃(𝜃, 𝑦, 𝑔) =
𝜓̂0

2

1

𝜃
𝑒
−

𝑔

|𝑘| 𝜃
(
1+

1
6
𝜃2

𝑔𝑆

)
+

(
𝜃5

𝑔𝑆2

) [
1 + 

(
𝜃2

𝑔𝑆

)]
, (51)

which recovers the ideal solution in the limit of infinite 𝑆, as well
as the same exponential dependence found in [9] in the context of
normal mode analysis. As just discussed, in the time asymptotic limit,
the dominant contribution is given by the residues evaluated at the
resonant poles of the boundary condition, which in our particular case
give

𝜙̃(𝜃, 𝑦, 𝑡) = 𝑖
𝛯0

𝜋

𝜔0 sin(𝑘0𝑦)

sinh(𝑘0)
sin

(
𝜔0(𝑡 −

𝜃

𝑘0
)

)
𝑒
−

1
6

𝜃3

𝑆𝑘0

𝜃
. (52)

To find the spatio-temporal stream function we finally used Math-
ematica to evaluate the inverse Fourier transform from 𝜃 to 𝑥 of
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Fig. 4. The left and middle panels show the reconnection rate as a function of time from numerical simulations compared with the two asymptotic solutions: the ideal solution,
Eq. (40) divided by 𝑆 in blue, and the inverse Laplace transform of the constant-psi solution, Eq. (49) in green. We show results for 𝜔0 = 0 (left panel) and 𝜔0 = 0.002 (middle
panel). In the right panel, the simulated current density for 𝜔0 = 0.1 has been plotted at the resonant site. It is compared with the same ideal solution (blue color) and with the
resistive solution given by the inverse Fourier transform of Eq. (54) (green color). The parameters used here are 𝑆 = 106, 𝑘0 = 1, 𝑦 = 𝜋∕2. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Eq. (52). The resulting solution for 𝜔0 = 0.1 and 𝜔0 = 0.05 is reported
in Fig. 3, dashed blue and red lines, and compared with simulation
results represented by the solid blue and red lines. It is apparent that
Eq. (51), when Fourier-inverted, captures the long-time behavior of
Alfvén resonances. We see that the contribution of the resistivity is both
to remove the logarithmic singularity and to provide a finite width to
the resonant boundary layer. The boundary layer, as can be seen by
inspection of Eq. (52), scales as 𝛿 ∼ 𝑆−1∕3.

The current density is evaluated from the expansion of (27) while
maintaining higher orders in the exponential,

𝐽𝑧(𝜃, 𝑘, 𝑔) =
𝜓0

2

𝑘

𝑔

(
𝑔

|𝑘| 𝜃 + 1

)
𝑒
−

𝑔

|𝑘| 𝜃
(
1+

1
6
𝜃2

𝑔𝑆

)

. (53)

Again we evaluate the residues at the resonant poles of the boundary
condition to find the long time behavior, yielding the following solution
to be numerically inverted from 𝜃 to configuration space,

𝐽𝑧(𝜃, 𝑦, 𝑡) = −
𝛯0

𝜋

𝑘0 cos(𝑘0𝑦)

sinh(𝑘0)
𝑒
−

1
6

𝜃3

𝑆𝑘0

(
cos(𝜁 ) − sin(𝜁 )

𝜔0

𝑘0
𝜃

)
, (54)

where 𝜁 = 𝜔0(𝑡 −
𝜃

𝑘0
). The current density at the resonant site, found

through numerical inversion of (54), has been plotted in the right frame
of Fig. 4. Just like with the reconnection rate for small frequencies, we
see very good agreement between the ideal solution and the numerical
simulation up to nearly 𝑡 ∼ 𝑆1∕3. Over longer time scales, the system
reaches a steady-state due to resistive dissipation, and the solution
in Eq. (54) provides the correct time-asymptotic behavior where an
oscillating steady-state is reached.

Figs. 3 and 4 together demonstrate the transition from Alfvén reso-
nance to forced magnetic reconnection as 𝜔0 varies from 𝜔0 ≫ 𝑆1∕3 to
𝜔0 ≪ 𝑆1∕3. As the frequency approaches zero, the resonant sites shifts
towards the neutral line, since Alfvén resonance necessarily occurs
where the phase velocity of the driver is equal to the local Alfvén speed,
𝜔0∕𝑘 = 𝑣𝑎(𝑥). When the resonant layers, which are located on either
side of the neutral line, overlap across the neutral line as a consequence
of their finite widths, the resonance couples with the reconnection
mode. The subsequent section discusses the effect of finite frequency
on such a coupling.

6.3. Discussion: scalings laws and effect of finite frequency on reconnection

To further understand the effect of finite frequency on forced re-
connection, in this section we analyze two sets of scalings predicted by
the theory. The first set is the scaling of the width 𝛿 of the boundary
layer for forced reconnection and Alfvén resonance as functions of the
Lundquist number 𝑆. The second set is the scaling of the constant-psi
reconnection rate and reconnected flux at the neutral line as functions
of the driving frequency 𝜔0.

Through inspection of the current density equation in the constant-
psi regime which describes forced reconnection, Eq. (48), we find the
theoretical scaling law for 𝛿. For this regime we assume the scaling

𝑔 ∼ 𝑆−3∕5, found from the poles in the denominator. Upon substitution
of 𝑔 for 𝑆 in Eq. (48) we find the argument of the Modified Bessel and
Struve functions to be of order unity when 𝑥 ∼ 𝑆−2∕5. This indicates
a layer width scaling 𝛿 ∼ 𝑆−2∕5, which is the known scaling for this
process [1].

For Alfvén resonance we perform the same analysis of its equivalent
current density equation, applicable for large driving frequencies 𝜔0 ≫

𝑆−1∕3, Eq. (54). For this scaling we need only the argument of the
exponential to determine the inner layer width dependence on 𝑆. We
see that the argument is of order unity when 𝜃 ∼ 𝑆1∕3 which is
indicative of a layer width scaling 𝛿 ∼ 𝑆−1∕3, as expected [7–9].

Although it is not possible to provide a theoretical solution for the
intermediate regime when 𝑄 ∼ 1 (which characterizes the region at
which our approximations mismatch with simulation in Fig. 4), we
can nevertheless use the general solution given in Eq. (28) to infer
the expected 𝛿. From the definition of the parameter 𝑄, Eq. (23), the
scaling 𝑔 ∼ 𝑆−1∕3 naturally emerges. Replacing 𝑔 ∼ 𝑆−1∕3 in Eq. (28) we
find the argument of the Tricomi confluent hypergeometric functions of
Eq. (28), 𝑧 =

√
𝑄𝜃∕(𝑆𝑘)2∕3, is of order 1 for 𝜃 ∼ 𝑆1∕3 or 𝛿 ∼ 𝑆−1∕3.

The regime 𝑄 ∼ 1, which corresponds to 𝑡 ∼ 𝑆1∕3, applies to both
Alfvén resonance and forced reconnection. In particular, it shows that
forced reconnection starts off in the non-constant-psi regime, as first
discussed in [1], before continuing on through the constant-psi. Thus,
we see that when resistivity becomes important at 𝑡 ∼ 𝑆1∕3 both
forced reconnection and Alfvén resonance exhibit the same layer width,
allowing for their coupling, when the forcing frequency is sufficiently
small.

We make now analytical predictions of how the reconnection rate
and the reconnected flux scale with the forcing frequency 𝜔0. We
conduct this analysis under the constant-psi regime, i.e., 𝑅 is calculated
by using Eq. (49) divided by 𝑆, and (44) is used for 𝜓0, that in this
approximation represents the reconnected flux at 𝑥 = 0.

For frequencies 𝜔0 ≪ 𝑆−3∕5, the system has time to evolve from the
ideal to the constant-psi regime almost unaffected by the oscillating
driver, and we expect that for such low frequencies both 𝑅 and 𝜓0

are unaffected by 𝜔0. When the frequency approaches the inverse of
the constant-psi time scale, which is around the time when the peak in
reconnection occurs (see Fig. 4), we expect the reconnection process to
be affected by the finite frequency driver. Now, in the frequency range
𝑆−3∕5 ≪ 𝜔0 ≪ 𝑆−1∕3 one can neglect the term 𝛥0 = 2𝑘0∕ tanh(𝑘0) in
the denominator of Eqs. (44) and (49). Additionally, as demonstrated
previously, as 𝜔0 increases the contribution to the long time solution
is provided by residues at 𝑔 = ±𝑖𝜔0. By analyzing under this light
the residues of the inverse Laplace transforms of Eqs. (44) and (49) at
𝑔 = ±𝑖𝜔0, it can be shown that the expected scalings are 𝑅 ∼ 𝜔

−1∕4

0
and

𝜓0 ∼ 𝜔
−5∕4

0
. This would suggest that although 𝜔0 ∼ 𝑆−1∕3 determines

the transition from forced reconnection to Alfvén resonance, the recon-
nection rate is reduced in the range of frequencies 𝑆−3∕5 ≪ 𝜔0 ≪ 𝑆−1∕3.
For frequencies larger than 𝜔0 ≫ 𝑆−1∕3 reconnection is completely
suppressed by the Alfvén resonance.
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Fig. 5. Plots of the reconnection rate and reconnected flux as functions of 𝜔0 evaluated at the time of maximum reconnection rate in the constant-psi regime, for 𝑆 = 108. They
are calculated from the inverse Laplace transforms of Eq. (49), divided by 𝑆, and Eq. (44), which are applicable for 𝜔0 ≪ 𝑆−1∕3. The red (left most) line in each plot indicates
𝜔0 = 𝑆−3∕5. The orange (middle) line indicates the location of half maximum half width of 𝜓0. The green (right most) line indicates 𝜔0 = 𝑆−1∕3. In the frequency range beyond the
half-width of 𝜓0 but below 𝜔0 = 𝑆−1∕3, we observe a power law scaling 𝑅 ∼ 𝜔−0.25

0
and 𝜓0 ∼ 𝜔−1.23

0
. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

To measure the effect of finite frequency on reconnection, in Fig. 5
we show the plot of the normalized, maximum reconnection rate 𝑅
and corresponding reconnected flux function 𝜓0 as functions of 𝜔0 in
the left and right panel, respectively, for 𝑆 = 108. As explained above,
the constant-psi regime was assumed in making these plots. Therefore,
we used Eq. (49), divided by 𝑆, for 𝑅 and (44) for 𝜓0, and calculated
their inverse Laplace transforms at the time for which the reconnection
rate is at its maximum. With the vertical red, orange and green (left,
central, and right) lines, we mark 𝜔0 = 𝑆−3∕5, the half-width of 𝜓0, and
𝜔0 = 𝑆−1∕3. As can be seen, the predicted scalings of 𝑅 ∼ 𝜔

−1∕4

0
and

𝜓0 ∼ 𝜔
−5∕4

0
are very closely matched in Fig. 5, in which we found power

law scalings of 𝑅 ∼ 𝜔−0.25
0

and 𝜓0 ∼ 𝜔−1.23
0

for the reconnection rate and
reconnected flux, respectively, shown by the fits with the dashed line.
That is we find, as expected, a strong suppressing effect on reconnection
for frequencies less than the transition frequency 𝜔0 ∼ 𝑆−1∕3 and higher
than 𝜔0 ∼ 𝑆−3∕5.

7. Summary and conclusions

In this paper we have derived and analyzed the general solution to
the resistive, linearized MHD equations (Eqs. (4)–(5)) describing the
evolution in time of a plasma with a sheared magnetic field (Eq. (1))
subjected to an oscillatory boundary perturbation turned on at time
𝑡 = 0 (Eqs. (8)–(9)). Through asymptotic matching, we determined
the spatial dependence (Eq. (28)) and the amplitude (Eq. (30)) of the
general solution for the perturbed stream function in the inner layer.
Such a solution shows explicitly that the key parameter to describe
different regimes in the evolution of the system, as well as the transition
from forced reconnection to Alfvén resonance, is 𝑄 = 𝑔𝑆1∕3𝑘−2∕3.
We have then discussed two asymptotic limits of Eq. (28), 𝑄 ≫ 1

and 𝑄 ≪ 1, and we demonstrated that our theory describes Alfvén
resonance when the frequency of the forcing is 𝜔0 ≫ 𝑆−1∕3, and forced
reconnection for small to zero frequency, 𝜔0 ≪ 𝑆−1∕3. Spatio-temporal
solutions have been derived for a standing wave boundary condition,
given in Eq. (33), which we compared with linear simulations.

In the ideal limit, defined by 𝑄 ≫ 1 and 𝑧∕𝑄3∕2 ≪ 1 (up to
first order), our general solution recovers that of forced reconnection
for 𝜔0 = 0; for 𝜔0 ≠ 0, our solution describes Alfvén resonance. In
particular, the known logarithmic singularity at the resonance point
where 𝜔0∕𝑘 = 𝑣𝑎(𝑥) is due to the residues at the poles of the boundary
driver, and contribute to the time-asymptotic response of the system,
as can be seen from the Bromwich contour in Fig. 1.

The non-ideal time-asymptotic response of the system corresponds
to 𝑄 ≪ 1. We have provided the corresponding asymptotic expansion of

the inner layer stream function for 𝑄 ≪ 1, by recovering the constant-
psi solution that describes forced reconnection for times 𝑡 ≫ 𝑆1∕3. The
corresponding Bromwich contour is shown in Fig. 2.

For large frequencies, the time-asymptotic response is dominated by
the residues at the forcing frequency (see Fig. 2), and if the condition
𝜔0𝑆

1∕3𝑘−2∕3 ≫ 1 is satisfied, then a different expansion of the stream
function for their evaluation is required. In this case, the solution
is given by the asymptotic expansion of the inner layer solution for
𝑄 ≫ 1 with terms in 𝑧∕𝑄3∕2 ≪ 1 retained to higher order. This regime
represents Alfvén resonance in the time-asymptotic limit.

A comparison of the theoretical predictions and numerical simula-
tions is given in Figs. 3 and 4, testing our model’s ability to capture
both forced reconnection and Alfvén resonance. We show that for large
frequencies the resonant poles of the boundary driver were sufficiently
far from zero (accordingly, the resonant points are far from the neutral
point) and a pair of anti-symmetric resonances, of width 𝛿 ∼ 𝑆−1∕3, are
clearly defined in that case. As these poles are brought towards 𝜔0 = 0

(the resonant points approach the neutral point 𝑥 = 0) in the small
frequency limit, the widths of the resonant layers overlap across 𝑥 = 0

by coupling to the reconnection mode. The rate of reconnection and
its signatures are strongest when the poles overlap entirely, that is for
𝜔0 = 0.

Finally, we demonstrated that our solution recovers known scalings
of the resonant layer 𝛿 as a function of the Lundquist number 𝑆
under specific limits. Additionally, we demonstrated new scalings of
the reconnection rate and reconnected flux as functions of the driving
frequency of the boundary condition. In Fig. 5 we show that, in the
constant-psi regime, the maximum reconnection rate and reconnected
flux are largest for frequencies less than 𝜔0 ≲ 𝑆−3∕5 and is reduced
at larger frequencies until reconnection is completely suppressed for
𝜔0 ≫ 𝑆−1∕3.

We conclude that forced reconnection is indeed a particular case of
Alfvén resonant absorption and there is a transition from Alfvén reso-
nance to forced reconnection when the forcing frequency 𝜔0 ≪ 𝑆−1∕3.
However, the reconnection rate and reconnected flux are strongly
reduced for 𝜔0 ≫ 𝑆−3∕5. When the forcing frequency is 𝜔0 ≫ 𝑆−1∕3,
Alfvén resonance decouples from the reconnecting mode and the for-
mation of resonant layers away from the neutral line effectively shields
reconnection.

Here we have studied the interaction between Alfvén resonances
and forced reconnection by considering an idealized symmetric forcing
away from the neutral line. However, our approach is general and
provides the first step for further investigations of resonances in diverse
environments and within different plasma models. In particular, more
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realistic perturbations can be considered, such as asymmetric and
impulsive. This type of forcing is especially of interest for reconnection
onset at Earth’s magnetopause. In this regard, recent observations from
the MMS spacecraft within Earth’s magnetosphere [27] have identified
reconnection events taking place at electron scales, termed electron-
only reconnection [28,29]. By building on prior investigations into
forced reconnection within the EMHD framework [30], our approach
can be extended to investigate the effect of a time-dependent forcing
on electron-only reconnection, with applications to reconnection onset
within Earth’s magnetosphere. Additionally, our unified approach holds
potential implications for studying the transition from wave-based to
reconnection-based coronal heating scenarios [13,31], which will be
explored in future work.
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Appendix. Numerical simulations

The numerical code used to validate our analytical solutions is
a 2D incompressible MHD code. The normalized equations that we
integrated are:

𝜕𝜓

𝜕𝑡
= 𝑥

𝑑𝜙

𝑑𝑦
+

1

𝑆
∇2𝜓 (A.1)

𝜕𝛺

𝜕𝑡
= −𝑥

𝑑

𝑑𝑦
∇2𝜓 (A.2)

where 𝛺 = −∇2𝜙 is the vorticity. We impose a boundary condition at
𝑥 = ±1 with small amplitude given by:

𝜓(𝑥 = ±1, 𝑦, 𝑡) = 𝛯0 cos(𝑘0𝑦) cos(𝜔0𝑡)
[
1 −

(
1 +

𝑡

𝜏

)
𝑒−𝑡∕𝜏

]
, (A.3)

𝜙(𝑥 = ±1, 𝑦, 𝑡) = ±𝛯0

sin(𝑘0𝑦)

𝑘0

{(
𝑡

𝜏

)2

𝑒−𝑡∕𝜏 cos(𝜔0𝑡)

−𝜔0 sin(𝜔0𝑡)
[
1 −

(
1 +

𝑡

𝜏

)
𝑒−𝑡∕𝜏

]}
,

(A.4)

with 𝜏 being a small growth parameter, following [2]. The code is
periodic in the 𝑦 direction, where the Fast Fourier Transform is used
to calculate spatial derivatives. The 𝑥 direction is non-periodic and a
finite difference scheme of the sixth order is used to calculate spatial
derivatives [32]. We use an explicit Runge–Kutta of the third order to
advance in time. We impose the 2/3 rule for dealiasing with respect to
the periodic variable, and a pseudo-spectral filter in 𝑥 [32]. Simulations
are performed by using a grid 𝐿𝑥 × 𝐿𝑦 = [−1, 1] × [0, 2𝜋] with mesh
points 𝑁𝑥 × 𝑁𝑦 = 512 × 32 for 𝑆 = 104, 𝑁𝑥 × 𝑁𝑦 = 1024 × 32 for

𝑆 = 105, 𝑁𝑥 ×𝑁𝑦 = 2048 × 16 for 𝑆 = 106, and 𝑁𝑥 ×𝑁𝑦 = 4096 × 16 for
𝑆 = 107, with 𝑁𝑥 chosen to resolve their respective boundary layers. In
all simulations we have fixed 𝜏 = 0.001, 𝛯0 = 0.001, and wavenumber
𝑘0 = 1 while varying 𝑆 and the frequency 𝜔0.
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