

1 Soft-tissue fossilization illuminates the stepwise evolution of the ray-finned fish brain
2 Rodrigo T. Figueroa^{1-2*}, Luiz Carlos Weinschütz³, Sam Giles⁴, Matt Friedman¹⁻²
3 1 – Department of Earth and Environmental Sciences, University of Michigan, North University Building,
4 1100 North University Ave., Ann Arbor, Michigan, 48109, USA
5 2 – Museum of Paleontology, University of Michigan , Biological Sciences Building, 1105 North University
6 Ave., Ann Arbor, Michigan, 48109, USA
7 3 – Centro Paleontológico da Universidade do Contestado, CENPALEO, Av. Presidente Nereu Ramos
8 1071, Jardim Moinho, Mafra, Santa Catarina, 89806-076, Brazil.
9 4 – School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15
10 2TT, Birmingham, UK
11 *rtfiguer@umich.edu; Twitter: @rodrigoichthys
12 **Keywords:** Neuroanatomy, Actinopterygii, Paleozoic, telencephalon, Permo-Carboniferous
13 **This PDF file includes:**
14 Main Text
15 Figures 1 to 4
16
17 Temporary reviewer CT data access:
18 <https://www.dropbox.com/scl/fo/6mt3j047t804zbwnjgajl/h?rlkey=70njfqwle5wqf18dr5aq5vq6&dl=0>
19
20

21 **Summary**

22 A complex brain is central to the success of backboned animals. However, direct evidence
23 bearing on vertebrate brain evolution comes almost exclusively from extant species, leaving
24 substantial knowledge gaps. Although rare, soft-tissue preservation in fossils can yield unique
25 insights on patterns of neuroanatomical evolution. Paleontological evidence from an
26 exceptionally preserved Pennsylvanian (ca. 318 Ma) actinopterygian, *Coccocephalus*, calls into
27 question prior interpretations of ancestral actinopterygian brain conditions. However, ordering
28 and timing of major evolutionary innovations such as an everted telencephalon, modified
29 meningeal tissues, and hypothalamic inferior lobes remain unclear. Here we report two distinct
30 actinopterygian morphotypes from the latest Carboniferous-earliest Permian (~299 Ma) of Brazil
31 that show extensive soft-tissue preservation of brains, cranial nerves, eyes and potential
32 cardiovascular tissues. These fossils corroborate inferences drawn from *Coccocephalus*, while
33 adding new information about neuroanatomical evolution. Skeletal features indicate that one of
34 these Brazilian morphotypes is more closely related to living actinopterygians than the other,
35 which is also reflected in soft-tissue features. Significantly, the more crownward morphotype
36 shows a key neuroanatomical feature of extant actinopterygians—an everted telencephalon—that
37 is absent in the other morphotype and *Coccocephalus*. All preserved Paleozoic actinopterygian
38 brains show broad similarities including an invaginated cerebellum, hypothalamus inferior lobes,
39 and a small forebrain. In each case, preserved brains are substantially smaller than the
40 enclosing cranial chamber. The neuroanatomical similarities shared by this grade of Permo-
41 Carboniferous actinopterygians reflect probable primitive conditions for actinopterygians,
42 providing a revised model for interpreting brain evolution in a major branch of the vertebrate tree
43 of life.

44

45 **Introduction**

46 The vertebrate brain is specialized and distinct from that of other animal groups¹. Jawed
47 vertebrates (gnathostomes) show broad conservation of major brain regions^{1,2}, but there is wide
48 structural and developmental variation within the group³ generally ascribed to differences in
49 ecology and behavior. Among living gnathostomes, the roughly 30,000 species of ray-finned
50 (actinopterygian) fishes display many neuroanatomical innovations^{1,4} with profound variation in
51 the size of brain regions across lineages^{1,5,6}. This diversity of brains mirrors the variety of ray-
52 finned fishes as a whole, reflecting over 350 million years of evolution in a range of aquatic
53 habitats^{7,8}.

54 Extant animals provide abundant information about brain structure, but important gaps in
55 our understanding remain. First, the vast majority of living ray-finned fishes belong to Teleostei,
56 which contains roughly 98% of all extant actinopterygian species⁷. Crown teleosts are
57 geologically young, first appearing in the fossil record^{9,10} roughly 200 million years after the
58 origin of crown actinopterygians and nearly 300 million years after ray-finned fishes diverged
59 from their lobe-finned sister lineage⁹. Non-teleost actinopterygians provide critical details about
60 neuroanatomical evolution deeper in the ray-finned fish tree, but these depauperate groups
61 often display highly specialized morphologies. Given that early-diverging living ray-finned fishes
62 are highly specialized^{7,11,12} there are standing questions on the order and timing of important
63 morphological innovations such as telencephalic eversion, bulging of the cerebellum, and the
64 development of hypothalamus inferior lobes and modified tela choroidea tissues. Second, while
65 actinopterygians have a rich fossil record, few fossils provide evidence for patterns of brain
66 evolution. Cranial endocasts generally represent the only evidence bearing on the
67 neuroanatomy of extinct species, but the constraints they provide are indirect. Furthermore,
68 there is evidence from several vertebrate lineages that endocasts have a varying degree of fit to
69 brain anatomy^{13–16} and thus neuroanatomical evidence derived directly from fossil endocasts
70 should be considered with care.

71 The recent description of a fossil brain in a late Carboniferous ray-finned fish¹⁷, combined with
72 earlier reports of a comparable preservation in a contemporary chondrichthyan^{18,19}, suggests
73 that fossilized neuroanatomy might be more common than widely assumed. However, the
74 absence of additional extinct comparators limits the impact of these known examples. Here we
75 report new instances of three-dimensional preservation of brains and other soft tissues in ray-
76 finned fishes from the early Permian (Cisuralian, ~298.9–272.9 Ma) Lontras Shale of Brazil, a
77 deposit regarded as a *Konservat-Lagerstätte*²⁰. Two distinct actinopterygian morphotypes,
78 differentiated by osteological structure, preserve brains, eyes, and other soft tissues. These
79 specimens challenge interpretations of the evolutionary timing and sequence of innovations in
80 the ray-finned fish brain, illustrating the significance of three-dimensionally preserved soft
81 tissues for comparative studies.

82

83 **Results**

84 **Lontras Shale ray-finned fishes.**

85 The Lontras Shale comprises dark, laminated shales that preserve compressed but
86 essentially complete, articulated specimens^{20,21}. Sideritic concretions within these shales
87 contain three-dimensionally preserved skulls²². Specimens preserved within concretions show

88 two distinct taphonomic modes: one where skulls are fully perfused with matrix, and a second
89 where matrix infill within the skull is absent. Micro-computed tomography (μ CT) of concretions
90 encompassing both taphonomic modes reveals skeletal anatomy plus soft-tissue structures
91 within and around the braincase and optic capsules. Two different ray-finned fish morphotypes,
92 distinguished on the basis of major osteological traits across the mandibular, hyoid, and
93 branchial arches, as well as the braincase (Figure 1), show soft-tissue preservation. For each of
94 these features, Morphotype I shows a derived state relative to Morphotype II based on
95 comparison with well-preserved Late Devonian taxa that branch from the actinopterygian
96 stem²³. Osteological data suggests that Morphotype I is closely related to more crownward
97 forms (e.g., the Triassic *†Australosomus*), while CP 584 resembles more stemward taxa from
98 the Devonian and Carboniferous. Taken together with *†Coccocephalus wildi*, these three
99 examples appear to represent a grade on the actinopterygian stem.

100 Each morphotype is represented by multiple specimens (see START Methods).
101 However, most of our account focuses on two specimens: CP 065 for Morphotype I and CP 584
102 for Morphotype II (Figure 1, Figure S1). Specimens from this unit show two distinct taphonomic
103 types (complete infill of the cranial cavity by matrix; and dissolution of matrix within the cranial
104 cavity). Although the specimens chosen to represent each morphotype here (CP 065 and CP
105 584) are preserved in different modes, additional specimens from both morphotypes encompass
106 these two preservation types. Additional specimens (CP 1343, CP 6573) are too incomplete to
107 be assigned to a morphotype but display partial soft-tissue preservation. Precise taxonomic
108 assessment of these two morphotypes is challenging. Previously described taxa from the
109 Lontras Shale are, like many Paleozoic actinopterygians, based on poor type material^{21,22} that
110 do not permit us to either assign the morphotypes to existing taxa or alternatively propose new
111 ones. We therefore leave our specimens in open nomenclature pending revision of the Lontras
112 actinopterygian fauna.

113

114 **Comparative anatomy of fossil morphotypes.**

115 The two fossil morphotypes can be differentiated on the basis of osteological features, some of
116 which indicate that these morphotypes are likely affiliated with different parts of the
117 actinopterygian stem. Morphotype I is distinguished by bearing two ceratohyal ossifications
118 (anterior and posterior), a dorsomesial process on the palatoquadrate for articulation with the
119 braincase without a notch or foramen, large and posterodorsally directed uncinate processes of

120 the epibranchials, a fossa bridgei that is constrained above the level of the inner ear, and a
121 common midline canal for the olfactory nerves. Morphotype II, on the other hand, shows a
122 single ceratohyal ossification, a semilunar notch on the palatoquadrate marking the
123 basipterygoid articulation, small and dorsally directed uncinate processes of the epibranchials, a
124 wide and well-developed fossa bridgei that extends from the level of the posterodorsal
125 fontanelle to the level of the anterodorsal fontanelle, and paired canals for the olfactory nerves.
126 All the conditions found in Morphotype I are in agreement with a more crownward placement
127 relative to both Morphotype II and *Coccocephalus wildi*, based on information from well-
128 preserved Late Devonian and Triassic taxa^{23–25}. Additionally, these two morphotypes differ in
129 several additional traits of more ambiguous polarity including parasphenoid geometry in lateral
130 view (curved dorsally in Morphotype I versus horizontal in Morphotype II), size and shape of the
131 anterodorsal fontanelle (large and oval in Morphotype I, smaller and slit-like in Morphotype II),
132 and proportions of the skeletal labyrinth (external semicircular canal anteroposteriorly long with
133 anterior and posterior limbs at an obtuse angle in Morphotype I compared to Morphotype II)

134

135 **Fossil brain anatomy.**

136 The brain occupies a small portion of the endocranial cavity in both morphotypes, in agreement
137 with †*Coccocephalus*¹⁷ and contrary to widespread assumptions^{26–28}. It appears more closely
138 associated with the endocranial wall in specimens of Morphotype I due to the preservation of
139 possible meningeal tissues, which appears to be absent in Morphotype II/CP 584, although this
140 could be due to preservation (Figures 2–3). Both morphotypes show clear division of the
141 forebrain, midbrain, and hindbrain, with the midbrain representing the largest division. Cranial
142 nerves from all three regions reaching foramina on the endocranial wall. The gross anatomy of
143 these fossil brains generally corresponds with that of both extant ray-finned fishes¹ and the older
144 stem actinopterygian †*Coccocephalus wildi*¹⁷.

145

146 *Morphotype I.* Small, poorly preserved olfactory bulbs fused into a single median structure lie
147 anteroventral to the telencephalon (ob, Figure 3). The small telencephalon (te, Figure 3) shows
148 indications of eversion, indicated by its V-shaped cross-section (Fig. S9). A pair of
149 asymmetrically diverging structures extends toward the roof of the telencephalic region of the
150 endocast, possibly representing anterior cerebral veins (acv, Figure 3; main choroidal veins of
151 ref.²⁹).

152 The mesencephalon is well-preserved (Figure 3), with the optic tectum represented as a
153 sheet surrounding the mesencephalic ventricles (Figure S6). In dorsal view, the optic tectum
154 forms diverging elliptical lobes. There is no evidence of a protrusion associated with the torus
155 lateralis on the lateroventral wall of the diencephalon and intraventricular projections associated
156 with a torus longitudinalis or torus semicircularis are not apparent (Figure S2, me), although we
157 cannot rule out that these were present, but of limited size. We cannot identify a cerebral
158 aqueduct connecting the mesencephalic ventricles to the more posterior fourth ventricle. A small
159 internal cavity of the brain lies ventral to the fourth ventricle. This might be the extrameningeal
160 space connected to the infundibulum (Figure S6). Small bumps posterior to the mesencephalon
161 that seem to coalesce represent the cerebellum or corpus cerebelli (Figure 3, Figure S2). The
162 posterior part of the hindbrain is a long stalk of circular cross-section, comprising the
163 myelencephalon and spinal cord (sc, Figure 3, Figure S2).

164 The hypophysis emerges from the ventralmost portion of the diencephalon
165 (hypothalamus) and extends ventrally towards the hypophyseal chamber of the neurocranium.
166 The distal end of the hypophysis bears a small well-differentiated adenohypophysis (adh, Figure
167 3) that lies dorsal to the parasphenoid. The hypothalamus is elongated with large hypothalamic
168 inferior lobes (hil, Figure 3).

169 Cranial nerves are partially visible on both sides of the brain. A single thin, poorly
170 preserved olfactory nerve (I) extends into the olfactory canal of the endocavity. The
171 mesencephalon bears an expansion representing the roots of the optic nerves (II; optic
172 chiasma). At the level of the posteriormost portion of the mesencephalic bulbs, the
173 rhombencephalon bears a nucleus that divides into three separate nerves. These appear to be,
174 from anterior to posterior: the main motor branch of the trigeminal nerve (V), a posterior branch
175 of the facial nerve (VII), and the octavolateralis (VIII) complex. Only two branches of the latter
176 complex are well preserved: one interpreted as the anterior branch of the octavolateralis (aVII)
177 nerve; and a second, posteroventrally directed towards the saccular chamber, interpreted as
178 representing the posterior branch of the octavolateralis (pVII). Other branches are too poorly
179 preserved to identify. The vagus nerve (X, Figure 3, Figure S2) extends from the hindbrain and
180 exits the neurocranium through the otico-occipital fissure (Figure 2). It divides into anteriorly-
181 and posteriorly-directed branches, which are here identified as branchial and visceral rami,
182 respectively.

183 A thin sheet, closely associated with the internal surface of the endocavity, surrounds
184 the brain (mix, Figure 3, Figure S2). It is best developed at the diencephalon-mesencephalon
185 interface and above the rhombencephalon. The membrane connects laterally to the body of the

186 brain, dorsal to most nerve roots, and appears to represent meningeal tissue related to the
187 diencephalic and rhombencephalic tela choroidea.

188

189 *Morphotype II* Brain anatomy for Morphotype II is less clear than for Morphotype I. The poorly
190 preserved telencephalon consists of the left telencephalic bulb (te, Figure 3) and appears to be
191 evaginated, as it is bilobate in cross-section (Figure S1-2). The expanded area of the optic
192 chiasma lies ventral to the telencephalon, immediately posterior to the median optic nerve
193 foramen. The mesencephalon shows similar proportions to Morphotype I (CP 065), but
194 distortion of the mesencephalic ventricles in this specimen suggests taphonomic shrinkage or
195 compression (me, Figure S1-2). Another specimen attributable to Morphotype II (CP 508) shows
196 well-developed mesencephalic ventricles (Figure S2). A possible infundibulum extends more
197 posteriorly than in Morphotype I. The cerebellum bears paired lobes that do not seem to
198 coalesce (Figure 3). Anterodorsal and lateral bands suspend the brain within the endocranial
199 chamber (li_l, li_t, Figure 3), representing possible ligaments (cf. *Polypterus*³⁰).

200 The mesencephalon shows clearly defined—but taphonomically compressed—
201 mesencephalic bulbs forming the optic tectum (Figure S1). Thin separation marking the
202 ventricular wall indicates that ventricles were present in life (Figure S1), but they cannot be
203 reconstructed. The optic nerve (II) lies ventral to the mesencephalic bulbs. A small protrusion
204 that could be the origin of the oculomotor nerve (III) is apparent on the right side of the brain
205 near the optic chiasma.

206 A clearly defined crista cerebellaris (cr; Figure 3) extends from the posteriormost portion
207 of the mesencephalic region towards the spinal cord. Small concavities posterior to the
208 mesencephalic bulbs represent the corpus cerebelli, which appears to be invaginated (Figure
209 S6). The rhombencephalic region of the brain shows the expanded nuclei of the trigeminal
210 nerve (V) and hyomandibular trunk of the anteroventral lateral line and facial nerves (AV + VII_{hy};
211 Figure 3). These display an arrangement like Morphotype I, although they are more robust and
212 occupy a more posterior position in Morphotype II. A nodule-like structure, likely formed
213 from taphonomic torsion of the spinal cord, lies posterior to these nuclei. The robust spinal cord
214 extends to reach the foramen magnum. The vagus and accessory spinal nerves are not
215 preserved.

216 A large soft-tissue structure overlies the spinal cord and extends laterally towards the
217 lateral cranial canal (Figure S5). We consider this structure homologous to the myelencephalic
218 gland of chondrosteans and holosteans^{17,31}.

219

220 *Additional specimens*

221 Other specimens show similar structures to the examples described above, but are less well
222 preserved and do not generally provide additional information on brain anatomy. These include
223 examples of Morphotype I (CP.V 4364, CP.V 7053, CP.V 7227) and Morphotype II (CP 084, CP
224 577).

225

226 *Other preserved soft tissues*

227 Apart from the brains, other soft tissues are apparent to varying degrees (Figures 4-5, Figures
228 S3-5. Many specimens preserve eye lenses (Morphotype I: CP 065, CP.V 4364; Morphotype II:
229 CP 084, CP 508), with some showing more extensive preservation of other features. In CP 084,
230 a thin sheet of tissue embraces the mesial half of the eye lens (Figure 5), likely representing the
231 sclera and retina (Figure 4B, 5B). The mesial face of this sheet bears tuberous structure
232 corresponding to the optic nerve. CP 4364 shows scleral tissue dissociated from the displaced
233 eye lens, but attached to the brain via a robust optic nerve tract. Some specimens show
234 possible evidence of extrinsic eye muscles (Figure S3).

235

236 Gill filaments are well preserved in several specimens (Morphotype I: CP 065; Morphotype II:
237 CP 084; and indeterminate: CP 1343, CP 6573). The gill filaments are short and robust in both
238 morphotypes, attaching to the lateral margin of the elongate ceratobranchials. Some filaments
239 show the area of attachment to the branchial arch in detail (Figure S4).

240

241 Putative cardiovascular elements are poorly preserved in all specimens, with fragments of blood
242 vessels observed in a small number of specimens (Morphotype I: CP 4346, Morphotype II: CP
243 084, CP 584). However, these do not provide any valuable anatomical information (Figure S5 A-
244 C).

245

246 **Discussion**

247 **Placement and polarity of brain character changes.**

248

249 Given the osteological variation and polarity of these characters described above, we interpret
250 these two Brazilian morphotypes to form a grade on the actinopterygian stem together with
251 *Coccocephalus* (Figure 6). Thus, these fossils provide insights on the polarity of important
252 neuroanatomical changes along the actinopterygian stem.

253

254 *Telencephalon eversion versus evagination.* In Morphotype I, the telencephalon displays a
255 dorsolateral expansion and ventral compression towards the area of the optic chiasma, resulting
256 in a V-shaped structure in cross-section (Figure S2). This resembles the everted telencephalon
257 geometry of all extant ray-finned fishes. Morphotype II (e.g. CP 584) and †*Coccocephalus*¹⁷,
258 show a contrasting anatomical condition. In cross-section, the telencephalon of these taxa forms
259 a symmetrical bulge with a central cavity but lacking a ventral compression (Figure S1-2). This
260 is similar to the structure in living sarcopterygians and chondrichthyans, and so is interpreted
261 here as representing a plesiomorphic evaginated telencephalon. We therefore place
262 telencephalic eversion as a feature emerging crownward of †*Coccocephalus* but stemward of
263 CP 065 (Figure 6). More information from late Paleozoic fossil brains will be essential for better
264 understanding the timing of origin of the everted condition found in living ray-finned fishes, but
265 current information points to a late Paleozoic origin for the development of this condition.

266

267 *Hypothalamus inferior lobes.* The presence of a hypothalamus inferior lobe in some specimens
268 challenges the current hypothesis of character polarity. Since a hypothalamus inferior lobe is
269 absent in the earliest diverging lineage of crown ray-finned fishes (i.e., cladistians) it was
270 assumed to be a derived feature of actinopterans (crown ray-finned fishes excluding
271 *Cladistia*^{32,33}). However, its presence in some of the Brazilian specimens, as well as in the older
272 †*Coccocephalus*, challenges this hypothesis. Conditions in these probable stem
273 actinopterygians imply the absence of the hypothalamus inferior lobe in cladistians is a reversal
274 within that lineage rather than retention of a primitive arrangement. The apparent absence of a
275 hypothalamus inferior lobe in some of the Brazilian specimens (e.g. CP 584) is likely due to
276 taphonomy and compression of the soft-tissue against the endocranial wall. Future work should
277 investigate the relationship between the actinopterygian hypothalamus inferior lobe and other
278 hypothalamic projections in lobe-finned fishes and chondrichthyans. This is essential to
279 determine if these independently emerged in several lineages or if instead hypothalamic ventral
280 projections are primitive for crown gnathostomes.

281

282 *Intraventricular projections.* Extant actinopterans show well-differentiated intraventricular
283 projections (torus longitudinalis, torus semicircularis) within the second ventricle. These are
284 unique to the group¹. Cladistians are unique among living ray-finned fishes in lacking a torus
285 longitudinalis and torus semicircularis^{1,34}. All known Permo-Carboniferous actinopterygian brains
286 lack evidence for these intraventricular projections, with all examples showing a homogeneous

287 ventricular margin. Thus, we confirm these intraventricular projections are a derived
288 characteristic of actinopterans.

289

290 *Meningeal tissues.* Aspects of brain suspension within the endocranial cavity are poorly
291 documented among ray-finned fishes. Bjerring³⁰ described intracranial ligaments supporting the
292 brain of *Polypterus senegalus*, while other extant actinopterygians seem to have a well-developed
293 meningeal tissue that suspends the brain within the neurocranial endocavity (Figueroa, pers.
294 obs.). The Brazilian fossils show both conditions, with Morphotype I bearing a well-developed
295 meningeal tissue above the hindbrain and forebrain while Morphotype II lacks any evidence of
296 meningeal tissue but shows ligament-like structures connecting the brain to the endocranial wall.
297 However, it is possible that the absence of a meningeal tissue in Morphotype II is taphonomic, as
298 the main specimen that our description focuses on (CP 584) is preserved without matrix infill
299 within the braincase. Thus, meningeal tissue could have been lost either during fossilization or
300 during dissolution and loss of the matrix infill or. The meningeal tissue preserved in Morphotype I
301 (CP 065) differs from the brain tissue as it is a very delicate and thin sheet of tissue that attaches
302 to the laterodorsal margins of the brain and expands dorsally following the shape of the
303 endocranial cavity.

304 Meningeal tissues with associated hematopoietic organs are present in non-teleost ray-finned
305 fishes excluding cladistians. Past work suggested that similar organs would be present in
306 Paleozoic ray-finned fishes based on the presence of an enlarged area octavolateralis and lateral
307 diverticula near the posterior semicircular canal (referred to as the lateral cranial canal) in some
308 fossils³⁴. A large mass dorsal to the rhombencephalon of Morphotype II (CP 584) is consistent
309 with a myelencephalic gland (Figure S5). This structure is boomerang-shaped in dorsal view and
310 extends laterally towards the lateral cranial canal. The geometry and position of this structure
311 matches the myelencephalic gland of *Lepisosteus*³⁵. Identification of a myelencephalic gland in
312 Morphotype II supports past inferences of its presence in early ray-finned fishes. Its lateral
313 extension is consistent with the well-developed lateral cranial canal found in many Paleozoic ray-
314 finned fishes and early neopterygians^{8,34,36}. Pattern suggests the myelencephalic gland of
315 *Lepisosteus* might more closely resemble the plesiomorphic condition, with the tube-shaped gland
316 of chondrosteans and *Amia* being derived. A myelencephalic gland is absent in *Coccocephalus*,
317 CP 065 and *Polypterus*, which all share a robust rhombencephalic tela choroidea modified as a
318 cisterna spinobulbaris, following the interpretation from Jarvik³⁴. We cautiously suggest the
319 myelencephalic gland arose deep on the actinopterygian stem, with independent variations

320 arising within the crown (Figure 6). This agrees with the wide variability of shape and connectivity
321 of the myelencephalic gland in extant taxa³¹.

322

323 *Anterior cerebral vein*. The anterior cerebral vein emerges at the level of the posterior end of the
324 orbit and arches dorsomesially above the telencephalon^{29,37}. In ray-finned fishes, this vein tends
325 to be well-developed during embryonic and larval stages but is sometimes absent in adults³⁷.
326 Allis³⁸ notes that although the anterior cerebral vein is not noticeable in adult specimens of
327 *Amia*, the paired foramina through which it would pass remain present posterodorsal on the
328 optic capsule wall. In Paleozoic ray-finned fishes (e.g., †*Mimipiscis*, †*Mesopoma*) the canal for
329 the anterior cerebral vein is unpaired and asymmetrical above the telencephalic region of the
330 endocranial cavity^{26,39,40}. In some Devonian sarcopterygians (e.g., †*Eusthenopteron*) paired
331 canals are present, but these lay more anterior at the proximal end of the olfactory tracts³⁴,
332 while in others (e.g., †*Gogonasus andrewsae*) there is a single median canal⁴¹. Morphotype I
333 (acv, Figure 2) and †*Coccocephalus* show paired but asymmetrical anterior cerebral veins that
334 connect to the velum transversum and the orbital sinus before exiting the brain towards the left
335 side of the skull. The asymmetry and position of these veins is consistent with the canal
336 described in Paleozoic ray-finned fishes. However, the presence of two veins in the fossil
337 specimens indicates that the single canal present in Paleozoic forms held two branches of this
338 vein, which in turn agrees with the presence of paired anterior cerebral veins in living ray-finned
339 fishes.

340

341 **Future directions in paleoneurology.**

342 The field of paleoneurology has advanced since its early days^{42–44} through the study of
343 endocasts as proxy for brain anatomy in several vertebrate groups^{26,27,45} and two-dimensional
344 imprints of nerve tissue in some invertebrates^{46,47}. However, endocast data remains limited in
345 providing an external model of the brain at best² and only loose constraints on morphology in
346 taxa where the volume of the brain is small in comparison to that of the endocavity^{48,49}. Three-
347 dimensional preservation of neural soft-tissue structures discovered in fossil fishes by past
348 studies¹⁸ and expanded upon here suggests further tomographic surveys of vertebrates are
349 likely to yield additional examples. Geological context for each of these cases is broadly similar,
350 with fossil skulls preserved in three-dimensions within concretions. Several Paleozoic and early

351 Mesozoic sites yield three-dimensional heads of actinopterygians within concretions^{25,28,50–52},
352 and we are optimistic that further tomographic surveys of this material will yield additional
353 instances of soft tissue preservation. As investigation of other fossils expands the dataset of
354 fossil brains, it might be possible to discern which taphonomic or environmental aspects tend to
355 covary with the preservation of neuroanatomy. This, in turn, can be used to identify material that
356 is most likely to yield soft-tissue structures. Even modest amounts of information on ancient
357 brain anatomy in other branches of the actinopterygian phylogeny—including deeper parts of the
358 actinopterygian stem, the actinopteran stem, and the teleost stem—could provide important new
359 evidence on patterns of neuroanatomical evolution in ray-finned fishes. Examples from other
360 fish lineages have also shown potential for extensive soft-tissue preservation and variation in
361 mode of preservation depending on the type of tissue and position within the body^{18,53,54}. Our
362 results suggest that information from fossil soft tissues can have an impact on our
363 understanding of the evolution of deeply branching lineages, helping to identify patterns of
364 morphological change that would be otherwise impossible to interpret only from extant taxa.

365 The fossils described herein challenge current interpretations of the origin and timing of
366 important morphological innovations, especially within the forebrain. This highlights biases that
367 might arise from reconstructing the phylogenetic history of important morphological innovations
368 based solely on extant species. We expect that with the inclusion of more information on soft
369 tissue anatomy of early vertebrates—gathered from exceptional soft-tissue preservation—we
370 will be able to better understand not only the placement of fossil taxa in relation to the crown,
371 but also revise soft-tissue features of living lineages and determine how far back in geologic
372 time many of these putative synapomorphies of extant clades emerged.

373

374 **Acknowledgments**

375 We thank the Centro Paleontológico da Universidade do Paraná (CENPALEO) for access
376 and loan of fossil specimens for this project. We thank the Agência Nacional de Mineração
377 (ANM) for processing of international loan permits. We thank R Singer and H Lopez-Fernandez
378 for access to UMMZ collections. RT Figueroa was supported by the Department of Earth and
379 Environmental Sciences at the University of Michigan, the Rackham Graduate Predoctoral
380 Fellowship of the University of Michigan and a Society of Systematics Biologist Graduate
381 Student Research Award. S Giles was supported by a Royal Society Dorothy Hodgkin Research
382 Fellowship (DH1600098). This study was partially supported by NSF EAR 2219007 (M
383 Friedman). This study includes data produced at the CTEES facility at the University of

384 Michigan, supported by the Department of Earth and Environmental Sciences and College of
385 Literature, Science and the Arts.

386

387 **Author Contributions:** RT Figueroa designed the project, analyzed data, wrote the manuscript
388 and designed figures; LC Weinschutz helped with specimen selection, processing and access;
389 S Giles and M Friedman designed the project and wrote the manuscript.

390 **Declaration of Interests:** The authors declare no competing interests.

391

392 **Figure legends.**

393 **Figure 1. Comparison of two morphotypes of actinopterygian fishes from the Lontras
394 Shale, Brazil.** Morphotypes differentiated on the basis of osteological traits, showing
395 neurocranium (top), endocast (middle) and hyobranchial apparatus (bottom). c.l, olfactory tract,
396 chy, ceratohyal, fbr, fossa bridgei, hsc, horizontal semicircular canal, psp, parasphenoid, un.p,
397 uncinate processes. Panels not to scale. See also Figures S1-S6.

398

399 **Figure 2. Brain and neurocranial morphology in Permian actinopterygian fishes.**

400 Neurocranium partially removed to show position of brain within the endocavity. Morphotype I
401 (CP 065) and Morphotype II (CP 584) in dorsal (top) and left lateral (bottom) views. Light beige
402 = braincase, dark beige = sliced braincase plane, red = brain, orange = meningeal tissue.
403 a.amp, anterior ampulla, a.ce, auricula cerebelli, adf, anterodorsal fontanelle, c.l, olfactory tract,
404 fm, foramen magnum, hsc, horizontal semicircular canal, me.c, mesencephalic chamber, occ.f,
405 occipital fissure, oct, area octavolateralis, oto, otolith, p.amp, posterior ampulla, pdf,
406 posterodorsal fontanelle, pmy, posterior myodome, psc, posterior semicircular canal, te.c,
407 telencephalic chamber, vc, vestibular chamber. Scale bar = 5 mm for both morphotypes. See
408 also Figures S1, S2, S5, S6.

409

410 **Figure 3. Brain morphology in Permian actinopterygian fishes.** Morphotype I (CP 065) and
411 Morphotype II (CP 584) in dorsal (top) and left-lateral (bottom) view. Line drawings are
412 interpretative schemes based on renders. Red = brain, orange = meningeal tissue. 4v, fourth
413 ventricle, acv, anterior cerebral vein, adh, adenohypophysis, ce, cerebellum, cr, crista
414 cerebellaris, hil, hypothalamus inferor lobe, hyp, hypophysis, lil, longitudinal ligament, lit,
415 transverse ligament, me, mesencephalon, mix, meninx, ob, olfactory bulb, occ, occipital nerves,
416 opt, optic chiasma, sc, spinal cord, te, telencephalon, I, olfactory nerve, III, oculomotor nerve, V,

417 trigeminal nerve, Vmd, mandibular branch of trigeminal, Vmx, maxillary branch of trigeminal, VII,
418 facial nerve, aVII, anterior branch of facial nerve, aVIII, anterior branch of octavolateralis nerve,
419 pVII, posterior branch of octavolateralis nerve, IX, glossopharyngeal nerve, X, vagus nerve, Xbr,
420 branchial branch of vagus nerve, Xv, visceral branch of vagus nerve. Scale bar = 5 mm for both
421 morphotypes. See also Figures S1, S2, S5, S6

422

423 **Figure 4. *In situ* three-dimensional soft tissues preserved of specimens of Morphotype II.**
424 (A) Render of CP 507 showing the brain (red) and eye lenses (gray). (B) Render of the cranium
425 of CP 084 in right-lateral view showing eye soft-tissue. Scale bar = 10 mm. See also Figures
426 S1-S6.

427

428 **Figure 5. Eye morphology in fossil and extant actinopterygians.** (A-C) Morphotype II (CP
429 084), (D-F) *Polypterus senegalus* (UMMZ 195008). (A,D) µCT sagittal section through eye,
430 (B,E) render of right eye in lateral view, (C-F) render of right eye in mesial view. arm, anterior
431 rectus muscle, dom, dorsal obliquus muscle, drm, dorsal rectus muscle, len, lens, prm, posterior
432 rectus muscle, ret, retina, scl, sclera, vom, ventral obliquus muscle, vrm, ventral rectus muscle,
433 II, optic nerve. Scale bar = 10 mm. See also Figure S3.

434

435 **Figure 6. Schematic representation of ray-finned fish brain evolution.** a, corpus cerebelli (0
436 = evaginated; 1 = invaginated; illustrated by sagittal sections through idealized hindbrain), b,
437 modified rhombencephalic meningeal tissue (0 = myelencephalic gland; 1 = cisterna
438 spinobulbaris; illustrated by sagittal sections through idealized hindbrain and spinal cord), c,
439 telencephalon (0 = evaginated, 1 = everted; illustrated by axial sections through idealized
440 telencephalon), d, hypothalamus inferior lobes (0 = present; 1 = absent; illustrated by axial
441 sections through idealized diencephalon). Taxon silhouettes obtained from PhyloPic
442 (<https://www.phylopic.org/>). Extant taxa brain diagrams based on Nieuwenhuys et al¹.

443

444 **STAR Methods**

445

446 **Resource availability**

447 **Lead contact.** Information inquiries and resource requests should be sent to the lead author
448 Rodrigo T. Figueroa (rtfiguer@umich.edu)

449 **Material availability.** Specimens come from the Lontras Shale strata, within the uppermost
450 Campo Mourão Formation of the Paraná Basin, Brazil. Specimens were collected at the

451 'campáleo' outcrop in the south of the city of Mafra, state of Santa Catarina, and are deposited
452 in the paleontological collection of the Centro Paleontológico da Universidade do Contestado
453 (CENPALEO-UnC).

454 **Data and code availability.** Field and collection data are available at the Centro Paleontológico
455 da Universidade do Contestado, Mafra, Santa Catarina, Brazil. Analyzed specimen data is
456 available on Zenodo at 10.5281/zenodo.10552528.

457

458 **Experimental model and subject details**

459 **Geological setting.** Specimens derive from the Lontras Shale sub-section of the Campo
460 Mourão Formation in the Paraná Basin, Brazil. The age of the Lontras Shale unit is estimated
461 between the latest Carboniferous and earliest Permian based on both radiometric dating and
462 biostratigraphy^{47–51}. The Lontras Shale is a stratigraphic marker within the Paraná Basin that is
463 related to a maximum marine flooding event⁵². The lithology, stratigraphy and paleobiota of the
464 Lontras Shale suggest deposition in a restricted marine setting, such as a fjord⁵³. Specimens
465 analyzed here are preserved in three dimensions and within sideritic concretions²². Preservation
466 of specimens varies as in a few examples (e.g. CP 065, CP 508, CP.V 4364) sediment is found
467 within the fossilized skulls, while in others (e.g. CP 577, CP 584) sediment within the fossil
468 seems to have been lost during diagenetic and post-diagenetic processes. In one specimen
469 (CP.V 7053) the sediment within the skull seems to have been recrystallized.

470 **Fossil material.** All fossil specimens analyzed in this work (CP 065, CP.V 4364, CP.V 7053,
471 CP.V 7227, CP 084, CP 508, CP 577, CP 584) were collected in the late Carboniferous to Early
472 Permian Campo Mourão Formation in the surroundings of the city of Mafra, Santa Catarina,
473 Brazil. *Morphotype I*: CP 065, CP.V 4364, CP.V 7053, CP.V 7227; *Morphotype II*: CP 084, CP
474 508, CP 577, CP 584

475 **Extant species material.** This study contains data acquired from ethanol preserved specimens
476 from the University of Michigan Museum of Zoology collection. Figured specimens of *Polypterus*
477 *senegalus* (UMMZ 195008), *Amia calva* (UMMZ 160805, UMMZ, 235291) and *Lepisosteus*
478 *ocellatus* (UMMZ 196974).

479

480 **Methods details**

481 **Specimen Visualization.** The fossil specimens were scanned with the Nikon XT H 225 ST
482 scanner of the CTEES facility in the Department of Earth and Environmental Sciences,
483 University of Michigan. Detailed scan parameters can be found in Table S1. Segmentation of

484 the resulting data was completed in Mimics 25.0 (Materialise, Leuven, Belgium) and further
485 imaging of the obtained .ply 3D models was done in Blender 4.0⁵⁴. Comparative extant species
486 Iodine enhanced µCT data was collected following the guidelines described in Kolmann et al.⁵⁵

487

488 **Quantification and statistical analysis.** No statistical analyses were performed for this work.

489

490 **References**

- 491 1. Nieuwenhuys, R., ten Donkelaar, H.J., and Nicholson, C. (1998). The Central Nervous System
492 of Vertebrates (Springer Berlin Heidelberg) 10.1007/978-3-642-18262-4.
- 493 2. Northcutt, R.G. (2002). Understanding Vertebrate Brain Evolution. Integrative and Comparative
494 Biology 42, 743–756.
- 495 3. Striedter, G.F., and Northcutt, R.G. (2019). Synthesis: Patterns and Principles. In Brains
496 Through Time: A Natural History of Vertebrates, G. F. Striedter and R. G. Northcutt, eds.
497 (Oxford University Press), p. 0. 10.1093/oso/9780195125689.003.0007.
- 498 4. Nieuwenhuys, R. (1982). An overview of the organization of the brain of actinopterygian fishes.
499 Integrative and Comparative Biology 22, 287–310. 10.1093/icb/22.2.287.
- 500 5. Northcutt, R.G., and Wullimann, M.F. (1988). The Visual System in Teleost Fishes:
501 Morphological Patterns and Trends. In Sensory Biology of Aquatic Animals, J. Atema, R. R.
502 Fay, A. N. Popper, and W. N. Tavolga, eds. (Springer), pp. 515–552.
- 503 6. Northcutt, R.G. (2008). Forebrain evolution in bony fishes. Brain Research Bulletin 75, 191–205.
504 10.1016/j.brainresbull.2007.10.058.
- 505 7. Nelson, J.S., Grande, T.C., and Wilson, M.V.H. (2016). Fishes of the World (John Wiley &
506 Sons).
- 507 8. Friedman, M., and Giles, S. (2016). Actinopterygians: the ray-finned fishes—an explosion of
508 diversity. In Evolution of the vertebrate ear : evidence from the fossil record, J. A. Clack, R. R.
509 Fay, and A. N. Popper, eds. (Springer International Publishing), pp. 17–49. 10.1007/978-3-319-
510 46661-3_2.
- 511 9. Friedman, M. (2022). The Macroevolutionary History of Bony Fishes: A Paleontological View.
512 Annual Review of Ecology, Evolution, and Systematics 53, 353–377. 10.1146/annurev-ecolsys-
513 111720-010447.
- 514 10. Arratia, G., and Schultze, H.-P. (2024). The oldest teleosts (Teleosteiomorpha): their early
515 taxonomic, phenotypic, and ecological diversification during the Triassic. Fossil Record 27, 29–
516 53. 10.3897/fr.27.115970.
- 517 11. Allis, E.P. (1922). The Cranial Anatomy of *Polypterus*, with Special Reference to *Polypterus*
518 *bichir*. Journal of anatomy 56, 189-294.43.
- 519 12. Friedman, M. (2015). The early evolution of ray-finned fishes. Palaeontology 58, 213–228.
520 10.1111/pala.12150.
- 521 13. Dutel, H., Galland, M., Tafforeau, P., Long, J.A., Fagan, M.J., Janvier, P., Herrel, A., Santin,
522 M.D., Clément, G., and Herbin, M. (2019). Neurocranial development of the coelacanth and the
523 evolution of the sarcopterygian head. Nature 569, 556–559. 10.1038/s41586-019-1117-3.
- 524 14. Fabbri, M., Mongiardino Koch, N., Pritchard, A.C., Hanson, M., Hoffman, E., Bever, G.S.,
525 Balanoff, A.M., Morris, Z.S., Field, D.J., Camacho, J., et al. (2017). The skull roof tracks the
526 brain during the evolution and development of reptiles including birds. Nat Ecol Evol 1, 1543–
527 1550. 10.1038/s41559-017-0288-2.
- 528 15. Clement, A.M., Nysjö, J., Strand, R., and Ahlberg, P.E. (2015). Brain - Endocast relationship in
529 the Australian lungfish, *Neoceratodus forsteri*, elucidated from tomographic data (Sarcopterygii:
530 Dipnoi). PLoS ONE 10. 10.1371/journal.pone.0141277.

531 16. Clement, A.M., Mensforth, C.L., Challands, T.J., Collin, S.P., and Long, J.A. (2021). Brain
532 Reconstruction Across the Fish-Tetrapod Transition; Insights From Modern Amphibians.
533 *Frontiers in Ecology and Evolution* 9. 10.3389/fevo.2021.640345.

534 17. Figueroa, R.T., Goodvin, D., Kolmann, M.A., Coates, M.I., Caron, A.M., Friedman, M., and
535 Giles, S. (2023). Exceptional fossil preservation and evolution of the ray-finned fish brain.
536 *Nature* 614, 486–491. 10.1038/s41586-022-05666-1.

537 18. Pradel, A., Langer, M., Maisey, J.G., Geffard-Kuriyama, D., Cloetens, P., Janvier, P., and
538 Tafforeau, P. (2009). Skull and brain of a 300-million-year-old chimaeroid fish revealed by
539 synchrotron holotomography. *Proceedings of the National Academy of Sciences of the United*
540 *States of America* 106, 5224–5228. 10.1073/pnas.0807047106.

541 19. Pradel, A. (2010). Skull and brain anatomy of Late Carboniferous Sibyrhynchidae
542 (Chondrichthyes, Iniopterygia) from Kansas and Oklahoma (USA). *Geodiversitas* 32, 595–661.
543 10.5252/g2010n4a2.

544 20. Saldanha, J.P., Del Mouro, L., Horodyski, R.S., Ritter, M. do N., and Schmidt-Neto, H. (2022).
545 Taphonomy and Paleoecology of Lontras Shale Lagerstätte: Detailing the Interglacial Apex of a
546 Late Paleozoic Ice Age Temperate Fjord. *Preprint*, 10.2139/ssrn.4151382
547 10.2139/ssrn.4151382.

548 21. Malabarba, M.C.L. (1988). A new genus and species of stem group actinopteran fish from the
549 Lower Permian of Santa Catarina State, Brazil. *Zoological Journal of the Linnean Society* 94,
550 287–299.

551 22. Hamel, M. (2005). A new lower actinopterygian from the Early Permian of the Paraná Basin ,
552 Brazil. *Journal of Vertebrate Paleontology* 25, 19–26.

553 23. Giles, S., Darras, L., Clément, G., Blieck, A., and Friedman, M. (2015). An exceptionally
554 preserved Late Devonian actinopterygian provides a new model for primitive cranial anatomy in
555 ray-finned fishes. *Proceedings of the Royal Society B: Biological Sciences* 282.
556 10.1098/rspb.2015.1485.

557 24. Giles, S., Feilich, K., Warnock, R.C.M., Pierce, S.E., and Friedman, M. (2023). A Late
558 Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass
559 extinction. *Nat Ecol Evol* 7, 10–19. 10.1038/s41559-022-01919-4.

560 25. Nielsen, E. (1949). Studies on Triassic fishes from East Greenland II. *Australosomus* and
561 *Birgeria* (C.A. Reitzels Forlag).

562 26. Coates, M.I. (1999). Endocranial preservation of a Carboniferous actinopterygian from
563 Lancashire, UK, and the interrelationships of primitive actinopterygians. *Philosophical
564 Transactions of the Royal Society B: Biological Sciences* 354, 435–462.
565 10.1098/rstb.1999.0396.

566 27. Giles, S., and Friedman, M. (2014). Virtual reconstruction of endocast anatomy in early ray-
567 finned fishes (Osteichthyes, Actinopterygii). *Journal of Paleontology* 88, 636–651. 10.1666/13-
568 094.

569 28. Moodie, R.L. (1915). A new fish brain from the coal measures of Kansas, with a review of other
570 fossil brains. *Journal of Comparative Neurology* 25, 135–181. 10.1002/cne.900250203.

571 29. Weiger, T., Lametschwandtner, A., Kotrschal, K., and Krautgartner, W. -D (1988).
572 Vascularization of the telencephalic choroid plexus of a ganoid fish [*Acipenser ruthenus* (L.)].
573 *American Journal of Anatomy* 182, 33–41. 10.1002/AJA.1001820104.

574 30. Bjerring, H.C. (1991). Two Intracranial Ligaments Supporting the Brain of the Brachiopterygian
575 Fish *Polypterus senegalus*. *Acta Zoologica* 72, 41–47. 10.1111/j.1463-6395.1991.tb00314.x.

576 31. van der Horst, C.J. (1925). The myelencephalic gland of *Polyodon*, *Acipenser* and *Amia*.
577 Koninklijke Akademie van Wetenschappen te Amsterdam *Proceedings of the Section of
578 Sciences* 28, 432–442.

579 32. Rustamov, E.K. (2006). Organization of hypothalamic area of diencephalon in the sturgeons. *J
580 Evol Biochem Phys* 42, 342–353. 10.1134/S0022093006030148.

581 33. Schmidt, M. (2020). Evolution of the hypothalamus and inferior lobe in ray-finned fishes. *Brain, Behavior and Evolution* 95, 302–316. 10.1159/000505898.

582 34. Jarvik, E. (1980). Basic structure and evolution of vertebrates (Academic Press).

583 35. Chandler, A.C. (1911). On a lymphoid structure lying over the myelencephalon of *Lepisosteus*. *University of California Publications in Zoology* 9, 85–104. 10.5962/bhl.title.26215.

584 36. Giles, S., Rogers, M., and Friedman, M. (2018). Bony labyrinth morphology in early neopterygian fishes (Actinopterygii: Neopterygii). *J Morphol* 279, 426–440. 10.1002/jmor.20551.

585 37. Bertmar, G. (1965). On the Development of the Jugular and Cerebral Veins in Fishes. *Proceedings of the Zoological Society of London* 144, 87–129. 10.1111/j.1469-7998.1965.tb05168.x.

586 38. Allis, E.P. (1897). The cranial muscle and cranial and first spinal nerves in *Amia calva*. *Journal of Morphology XII*, 487–809.

587 39. Hamel, M.-H., and Poplin, C. (2008). The braincase anatomy of *Lawrenciella schaefferi*, actinopterygian from the Upper Carboniferous of Kansas (USA). *Journal of Vertebrate Paleontology* 28, 989–1006. 10.1671/0272-4634-28.4.989.

588 40. Gardiner, B.G. (1984). The relationship of the palaeoniscid fishes, a review based on new specimens of *Mimia* and *Moythomasia* from the Upper Devonian of Western Australia. *Bull. Br. nat. Hist.* 37, 173–428.

589 41. Holland, T. (2014). The endocranial anatomy of *Gogonasus andrewsae* Long, 1985 revealed through micro CT-scanning. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh* 105, 9–34. 10.1017/S1755691014000164.

590 42. Stensiö, E. (1963). The brain and the cranial nerves in fossil, lower craniate vertebrates. *Skriftet Ulgitt Av Det Norske Videnskaps-Akademi*, 1–120.

591 43. Buchholtz, E.A., and Seyfarth, E.-A. (1999). The gospel of the fossil brain: Tilly Edinger and the science of paleoneurology. *Brain Research Bulletin* 48, 351–361. 10.1016/S0361-9230(98)00174-9.

592 44. Edinger, T. (1964). Recent Advances in Paleoneurology. *Progress in Brain Research* 6, 147–160.

593 45. Zhu, Y., Giles, S., Young, G.C., Hu, Y., Bazzi, M., Ahlberg, P.E., Zhu, M., and Lu, J. (2021). Endocast and Bony Labyrinth of a Devonian “Placoderm” Challenges Stem Gnathostome Phylogeny. *Current Biology* 31, 1112–1118.e4. 10.1016/j.cub.2020.12.046.

594 46. Ma, X., Hou, X., Edgecombe, G.D., and Strausfeld, N.J. (2012). Complex brain and optic lobes in an early Cambrian arthropod. *Nature* 490, 258–261. 10.1038/nature11495.

595 47. Cong, P., Ma, X., Hou, X., Edgecombe, G.D., and Strausfeld, N.J. (2014). Brain structure resolves the segmental affinity of anomalocaridid appendages. *Nature* 513, 538–542. 10.1038/nature13486.

596 48. Watanabe, A., Gignac, P.M., Balanoff, A.M., Green, T.L., Kley, N.J., and Norell, M.A. (2019). Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? *Journal of Anatomy* 234, 291–305. 10.1111/joa.12918.

597 49. Challands, T.J., Pardo, J.D., and Clement, A.M. (2020). Mandibular musculature constrains brain–endocast disparity between sarcopterygians. *Royal Society Open Science* 7, 200933. 10.1098/rsos.200933.

598 50. Schaeffer, B., and Dalquest, W.W. (1978). A Palaeonisciform Braincase from the Permian of Texas, With Comments on Cranial Fissures and the Posterior Myodome. *American Museum Novitates* 2658, 1–15.

599 51. Woodward, A.S. (1910). On some Permo-Carboniferous fishes from Madagascar. *Annals and Magazine of Natural History* 5, 1–6. 10.1080/00222931008692719.

600 52. Pradel, A., Maisey, J.G., Mapes, R.H., and Kruta, I. (2016). First evidence of an intercalar bone in the braincase of “palaeonisciform” actinopterygians, with a virtual reconstruction of a new braincase of *Lawrenciella* Poplin, 1984 from the Carboniferous of Oklahoma. *Geodiversitas* 38, 489–504. 10.5252/g2016n4a2.

632 53. Trinajstic, K., Marshall, C., Long, J., and Bifield, K. (2007). Exceptional preservation of nerve
633 and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. *Biology*
634 Letters 3, 197–200. 10.1098/rsbl.2006.0604.

635 54. Trinajstic, K., Long, J.A., Sanchez, S., Boisvert, C.A., Snitting, D., Tafforeau, P., Dupret, V.,
636 Clement, A.M., Currie, P.D., Roelofs, B., et al. (2022). Exceptional preservation of organs in
637 Devonian placoderms from the Gogo Lagerstätte. *Science* 377, 1311–1314.
638 10.1126/science.abf3289.

639 55. Cagliari, J., Philipp, R.P., Buso, V.V., Netto, R.G., Klaus Hillebrand, P., da Cunha Lopes, R.,
640 Stipp Basei, M.A., and Faccini, U.F. (2016). Age constraints of the glaciation in the Paraná
641 Basin: evidence from new U–Pb dates. *Journal of the Geological Society* 173, 871–874.
642 10.1144/jgs2015-161.

643 56. Valdez Buso, V., Aquino, C.D., Paim, P.S.G., de Souza, P.A., Mori, A.L., Fallgatter, C., Milana,
644 J.P., and Kneller, B. (2019). Late Palaeozoic glacial cycles and subcycles in western
645 Gondwana: Correlation of surface and subsurface data of the Paraná Basin, Brazil.
646 *Palaeogeography, Palaeoclimatology, Palaeoecology* 531, 108435.
647 10.1016/j.palaeo.2017.09.004.

648 57. Griffis, N.P., Montañez, I.P., Mundil, R., Richey, J., Isbell, J., Fedorchuk, N., Linol, B., Iannuzzi,
649 R., Vesely, F., Mottin, T., et al. (2019). Coupled stratigraphic and U-Pb zircon age constraints on
650 the late Paleozoic icehouse-to-greenhouse turnover in south-central Gondwana. *Geology* 47,
651 1146–1150. 10.1130/G46740.1.

652 58. Holz, M., França, A.B., Souza, P.A., Iannuzzi, R., and Rohn, R. (2010). A stratigraphic chart of
653 the Late Carboniferous/Permian succession of the eastern border of the Paraná Basin, Brazil,
654 South America. *Journal of South American Earth Sciences* 29, 381–399.
655 10.1016/j.jsames.2009.04.004.

656 59. Wilher, E., Lemos, V.B., and Scomazzon, A.K. (2016). Associações naturais de conodontes
657 Mesogondolella spp., Grupo Itararé, Cisuraliano da Bacia do Paraná. *Gaea - Journal of*
658 *Geoscience* 9, 30–36. 10.4013/gaea.2016.91.02.

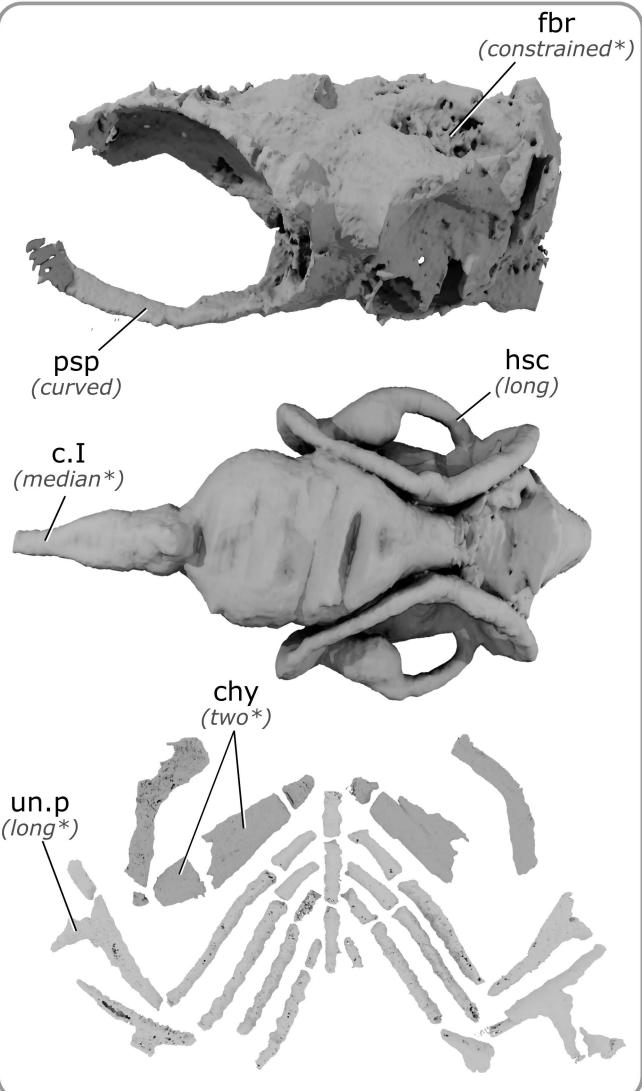
659 60. França, A.B., and Potter, P.E. (1991). Stratigraphy and Reservoir Potential of Glacial Deposits
660 on the Itararé Group (Carboniferous-Permian), Paraná Basin, Brazil. *The American Association*
661 *of Petroleum Geologists Bulletin* 75, 62–85.

662 61. Mouro, L.D., Rakociński, M., Marynowski, L., Pisarzowska, A., Musabelliu, S., Zatoń, M.,
663 Carvalho, M.A., Fernandes, A.C.S., and Waichel, B.L. (2017). Benthic anoxia, intermittent photic
664 zone euxinia and elevated productivity during deposition of the Lower Permian, post-glacial
665 fossiliferous black shales of the Paraná Basin, Brazil. *Global and Planetary Change* 158, 155–
666 172. 10.1016/j.gloplacha.2017.09.017.

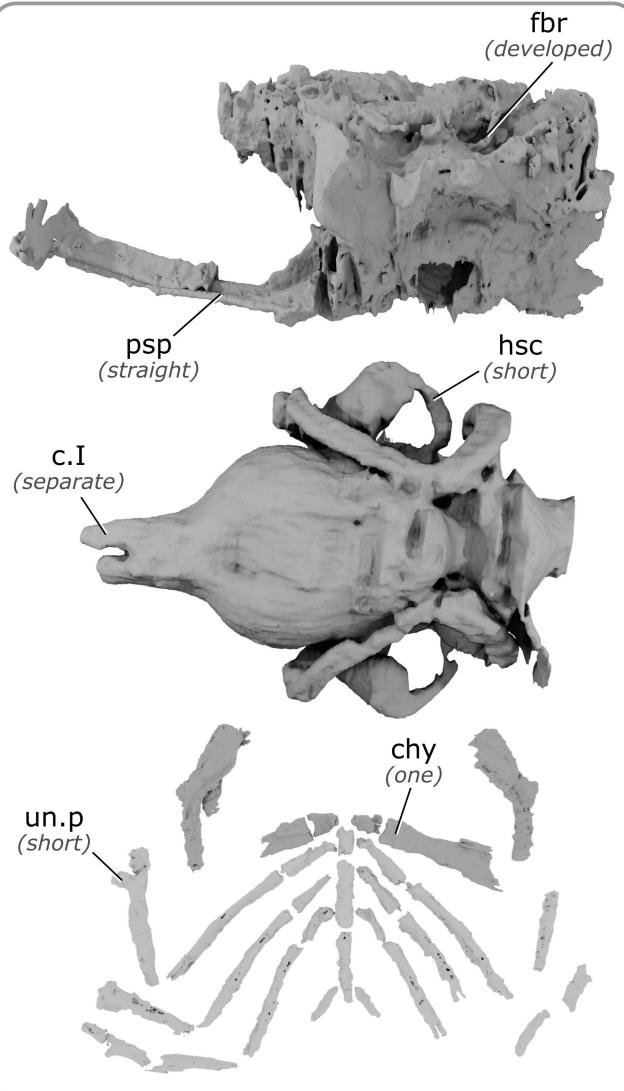
667 62. Garwood, R., and Dunlop, J. (2014). The walking dead: Blender as a tool for paleontologists
668 with a case study on extinct arachnids. *Journal of Paleontology* 88, 735–746. 10.1666/13-088.

669 63. Kolmann, M.A., Nagesan, R.S., Andrews, J.V., Borstein, S.R., Figueroa, R.T., Singer, R.A.,
670 Friedman, M., and López-Fernández, H. (2023). DiceCT for fishes: recommendations for pairing
671 iodine contrast agents with μ CT to visualize soft tissues in fishes. *Journal of Fish Biology* n/a.
672 10.1111/jfb.15320.

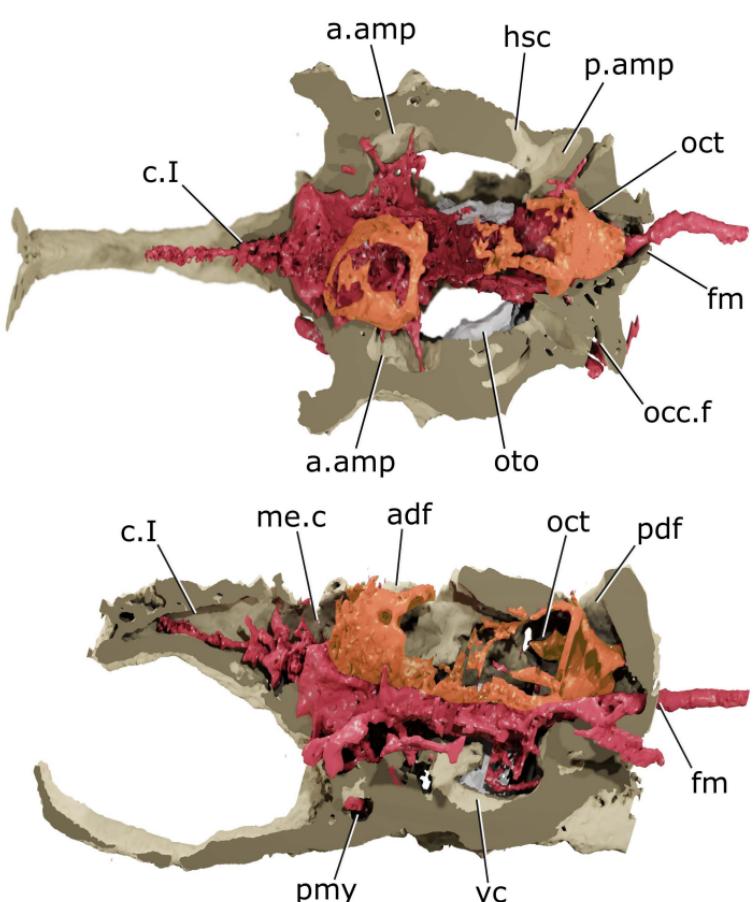
REAGENT or RESOURCE	SOURCE	IDENTIFIER
Biological samples		
<i>Polypterus senegalus</i>	University of Michigan Museum of Zoology	UMMZ 195008
<i>Amia calva</i> (juvenile)	University of Michigan Museum of Zoology	UMMZ 160805
<i>Amia calva</i> (adult)	University of Michigan Museum of Zoology	UMMZ 235291
<i>Lepisosteus ocelatus</i>	University of Michigan Museum of Zoology	UMMZ 196974
Chemicals, peptides, and recombinant proteins		
Ethanol 140 proof	Decon Laboratories Inc.	CAS #64-17-5
Potassium Iodine	Spectrum Chemical MFG Corp.	CAS #7681-11-0
Iodine, Crystalline, 99.5%	thermo scientific	CAS #7553-56-2
Deposited data		
<i>Polypterus senegalus</i>	University of Michigan Museum of Zoology	UMMZ 195008
<i>Amia calva</i> (juvenile)	University of Michigan Museum of Zoology	UMMZ 160805
<i>Amia calva</i> (adult)	University of Michigan Museum of Zoology	UMMZ 235291
<i>Lepisosteus ocelatus</i>	University of Michigan Museum of Zoology	UMMZ 196974
Concretionary fossil specimens	Centro Paleontologico da Universidade do Contestado, CENPALEO	CP 065, CP.V 4364, CP.V 7053, CP.V 7227, CP 084, CP 508, CP 577, CP 584
Specimen and CT data	Zenodo	10.5281/zenodo.10552528
Software and algorithms		
Blender 3D modeling software	https://www.blender.org/	Blender 4.0
Materialise Mimics	https://www.materialise.com/en/healthcare/mimics-innovation-suite/mimics	Mimics 25.0

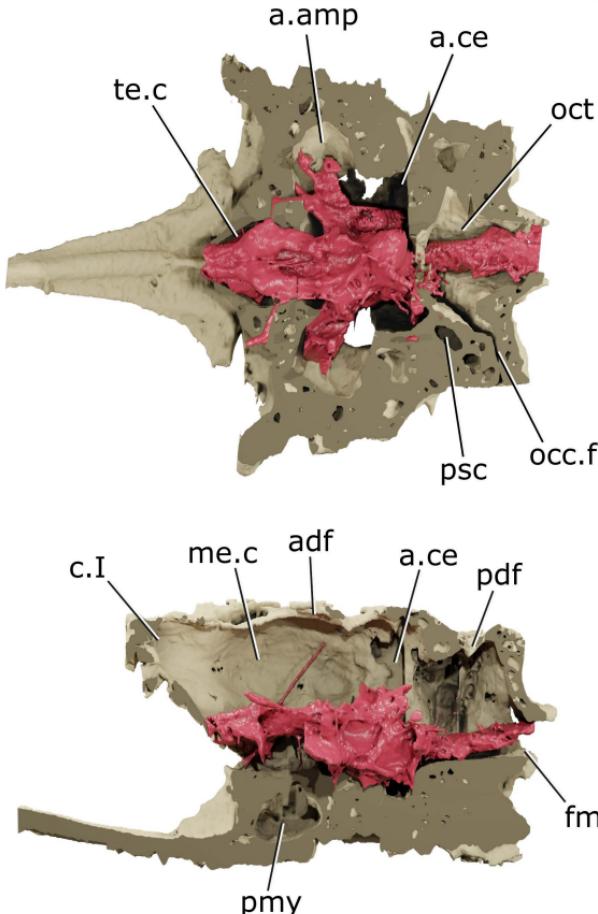

Highlights

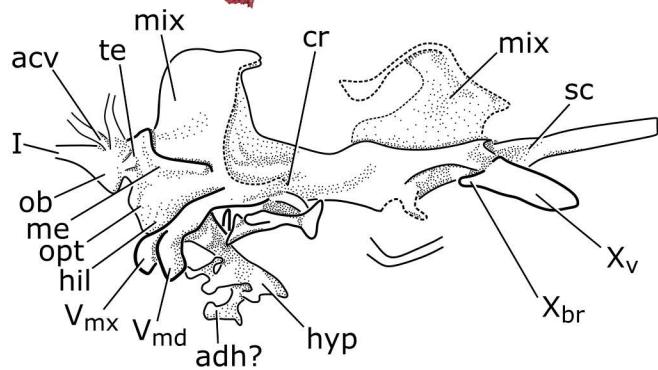
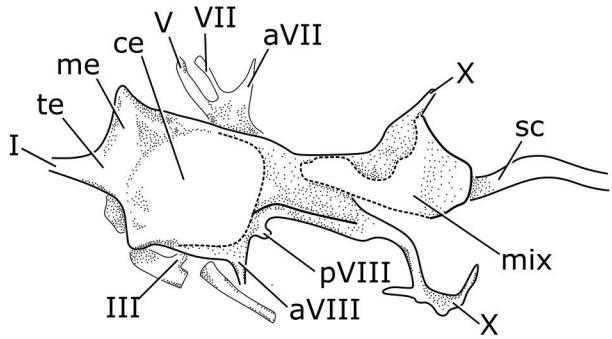
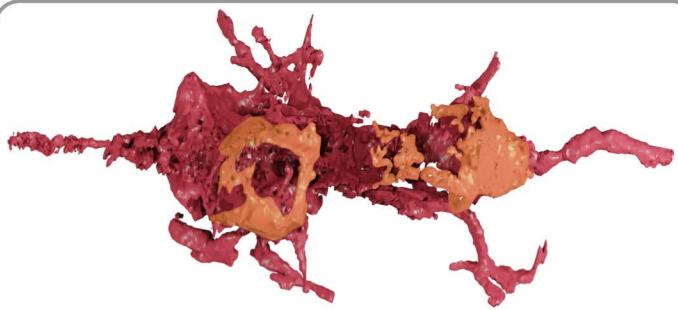
- Soft-tissue preservation is found in late Paleozoic ray-finned fishes from Brazil
- Brain anatomy differs among fossil taxa
- One of these fossils represents the oldest evidence of an everted telencephalon
- The fossil taxa bear a mosaic of 'primitive' and 'derived' characters

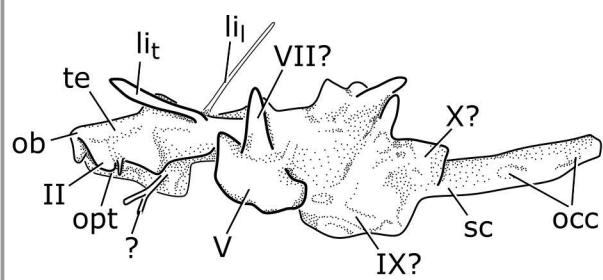
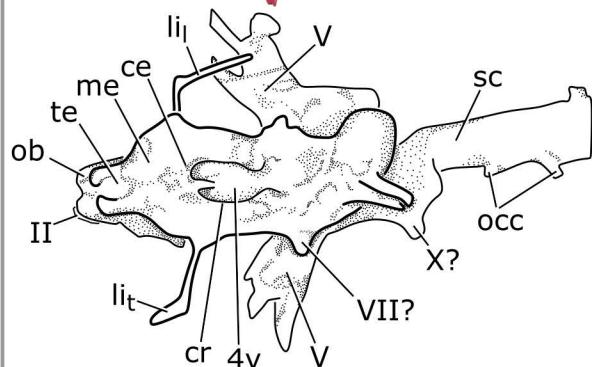

eTOC blurb:

Figueroa *et al.* show that soft-tissue preservation in fossil ray-finned fishes is informative for interpreting evolution of neuroanatomy. Using X-ray micro-tomography, they find key differences in brain morphology among extinct taxa. These fossils indicate a more complex evolutionary history for ray-finned fish brains than previously anticipated.

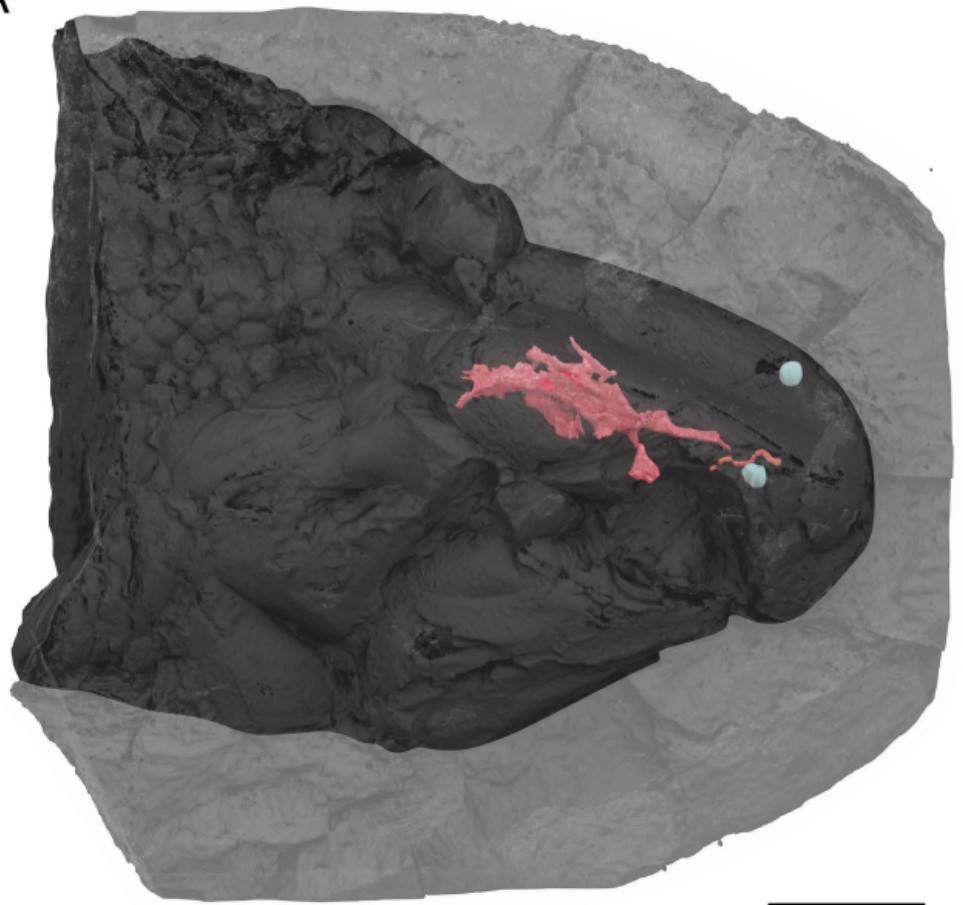

Morphotype I

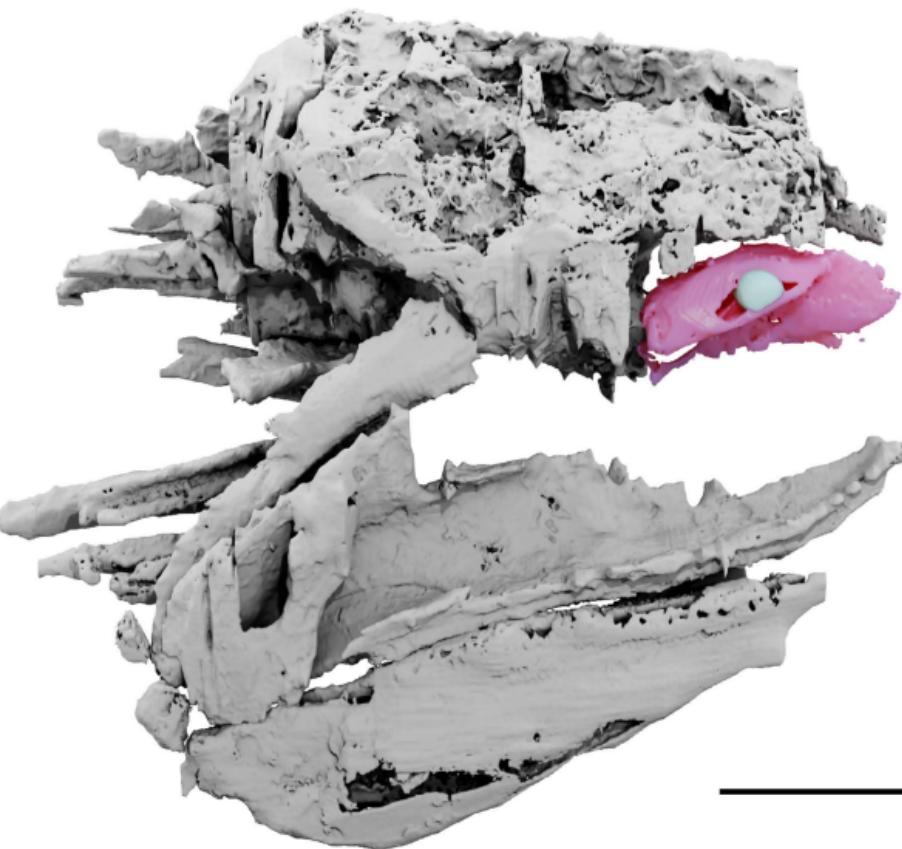

Morphotype II




Morphotype I

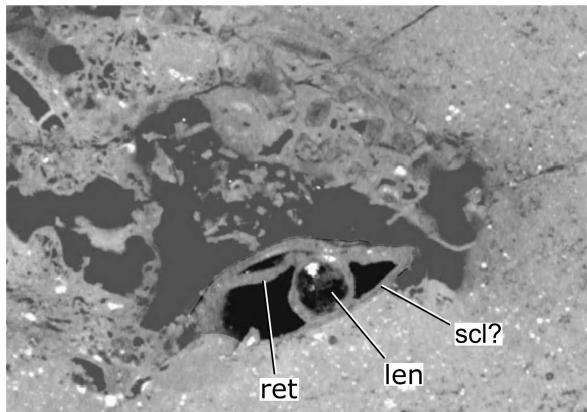



Morphotype II

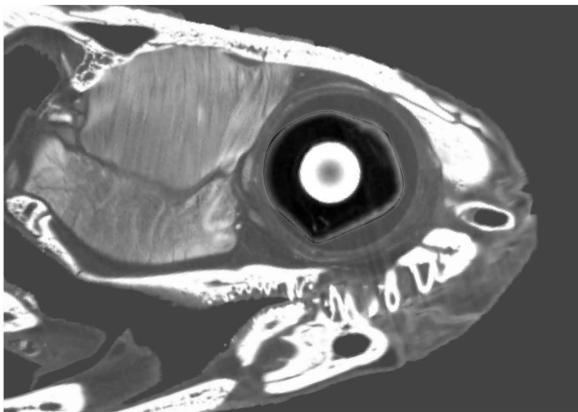

Morphotype I


Morphotype II

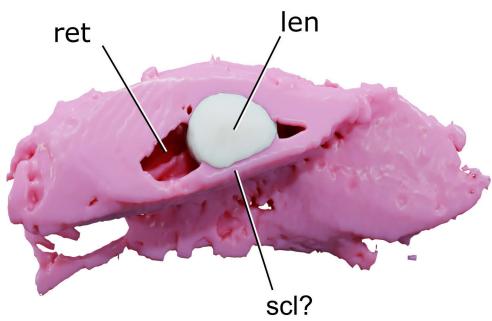
A



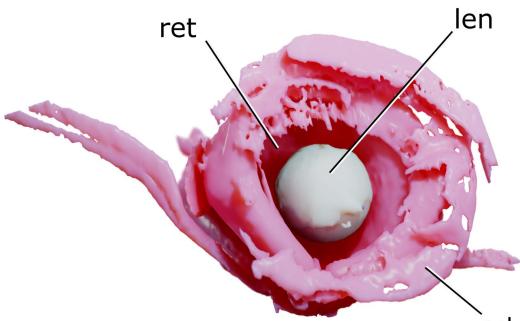
B

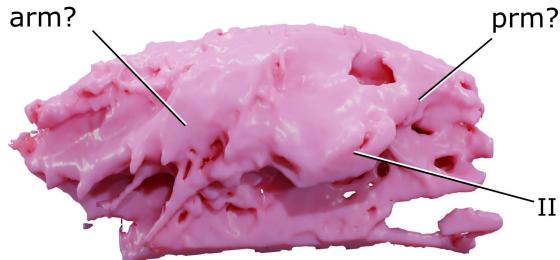

CP 084 (Morphotype II)

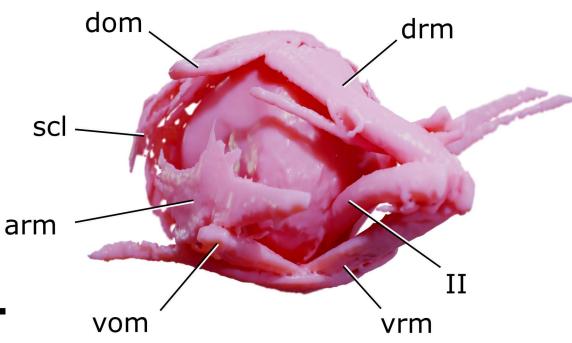
A

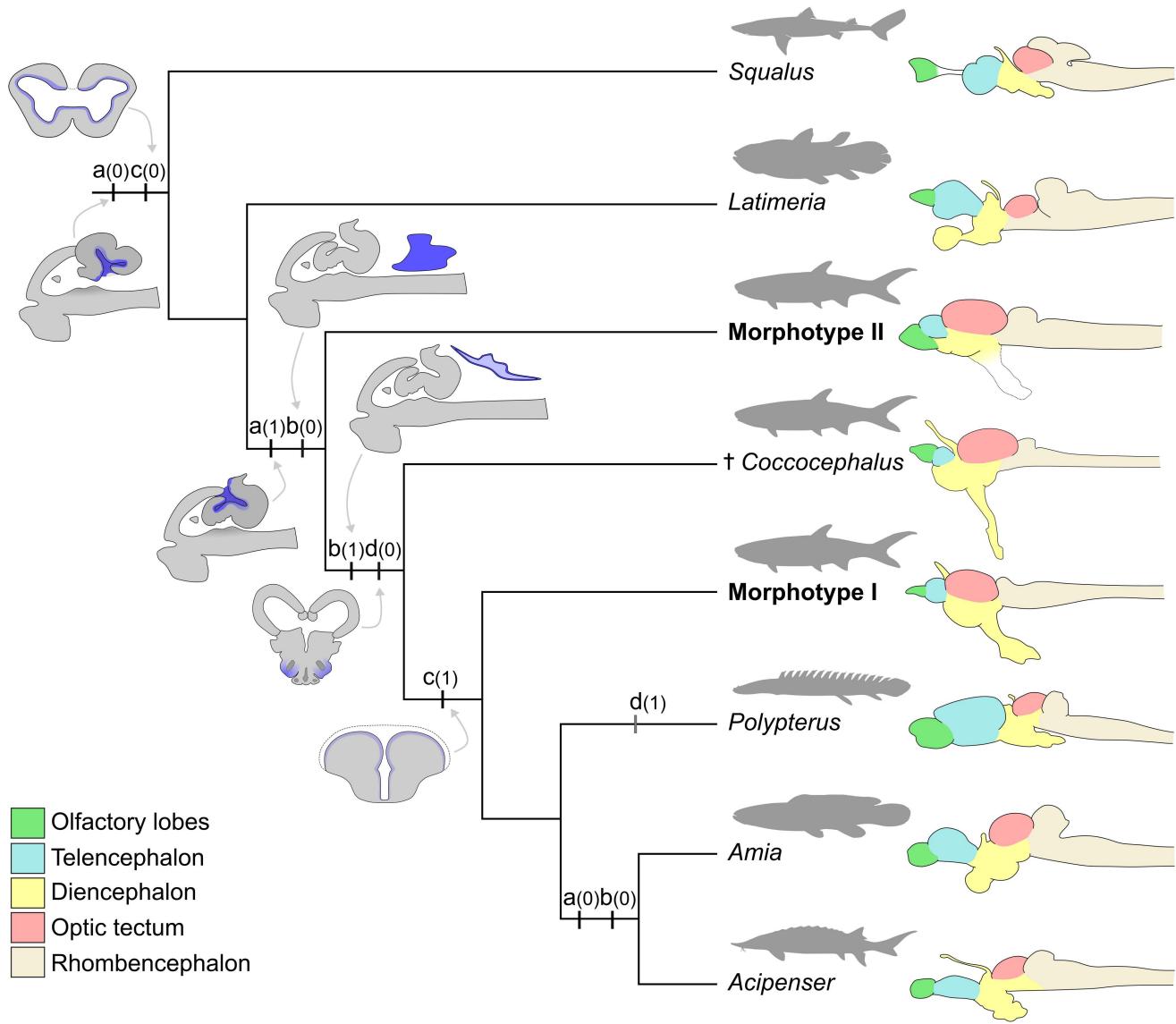


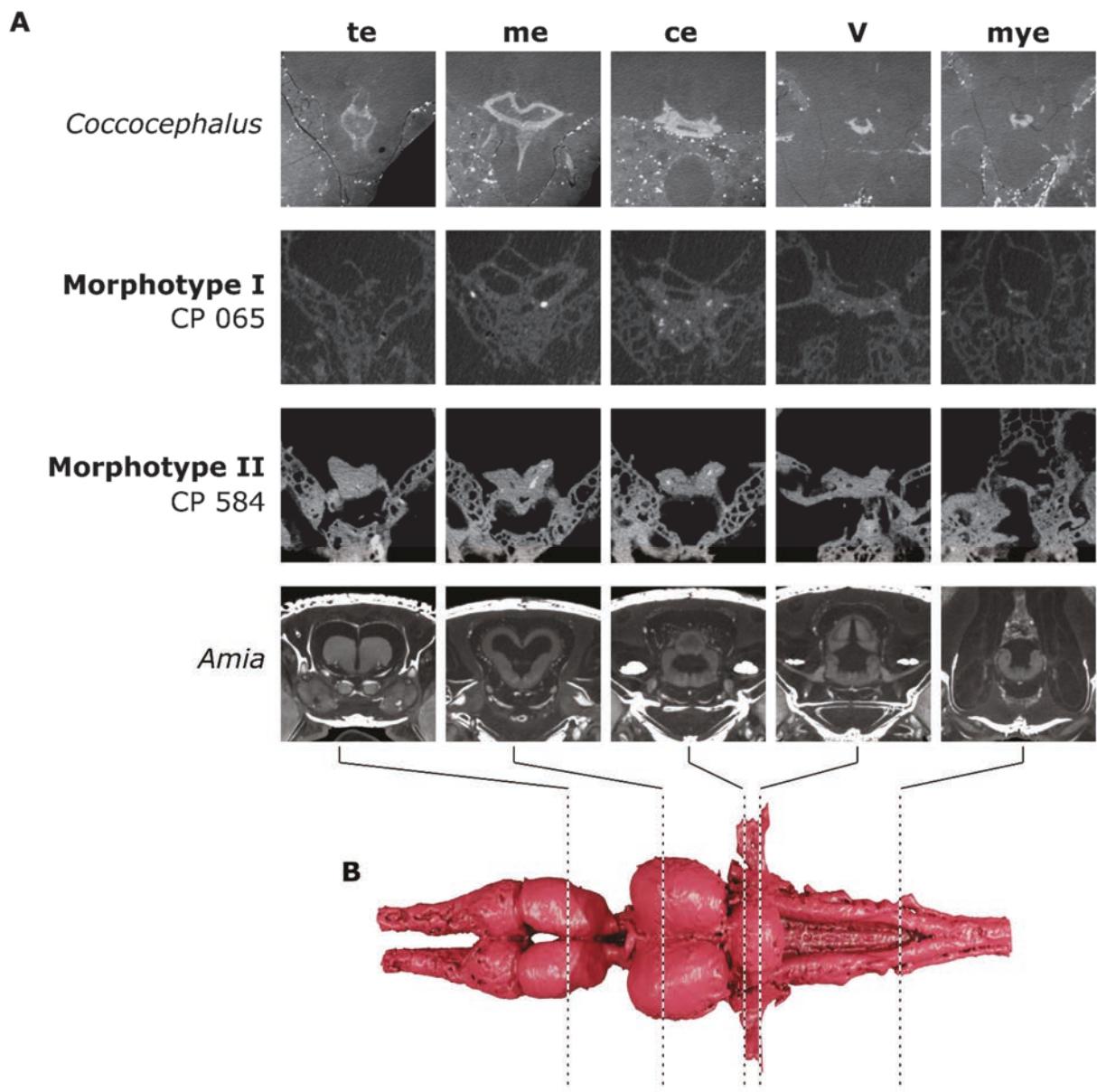
Polypterus senegalus

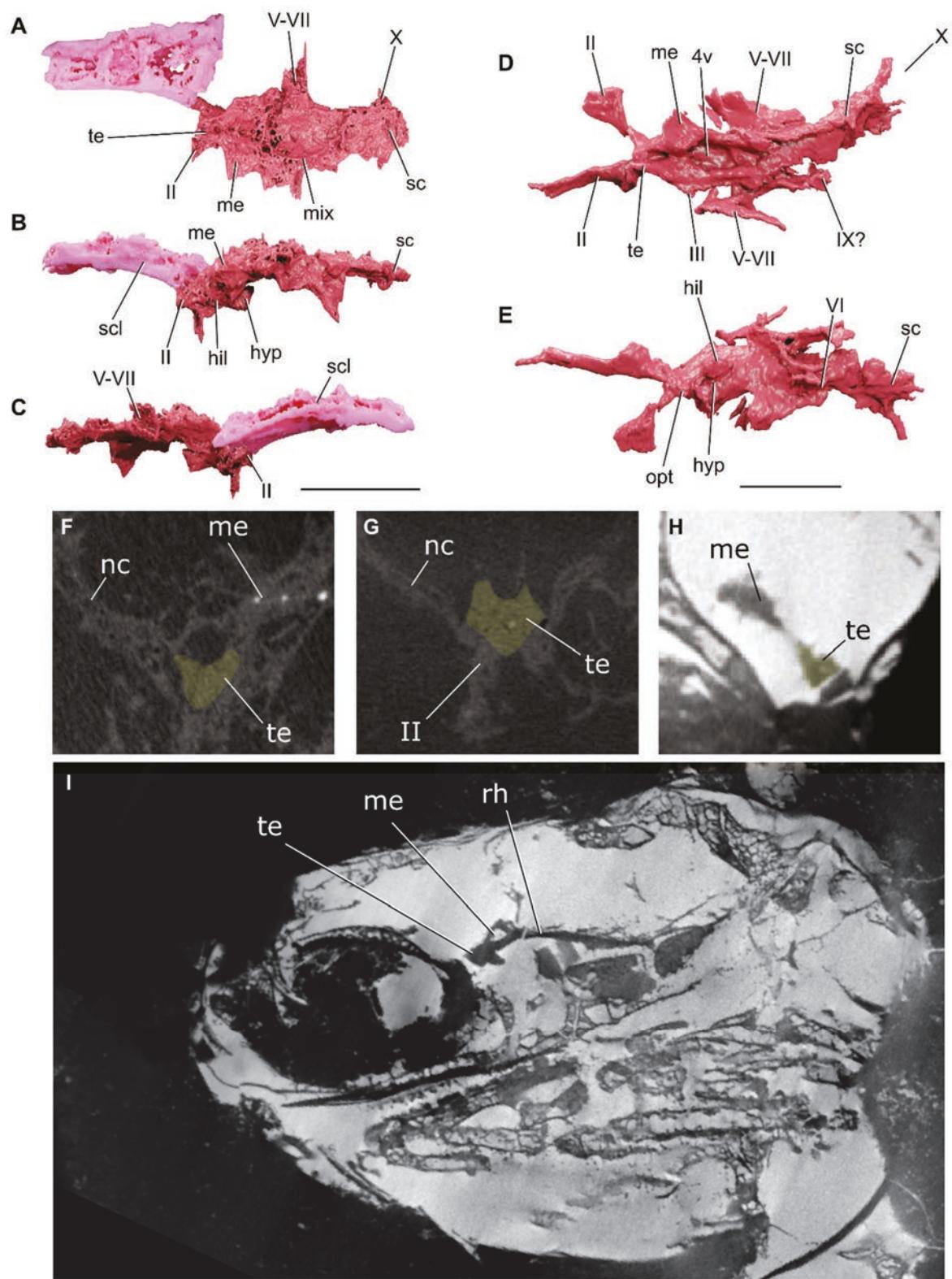

D

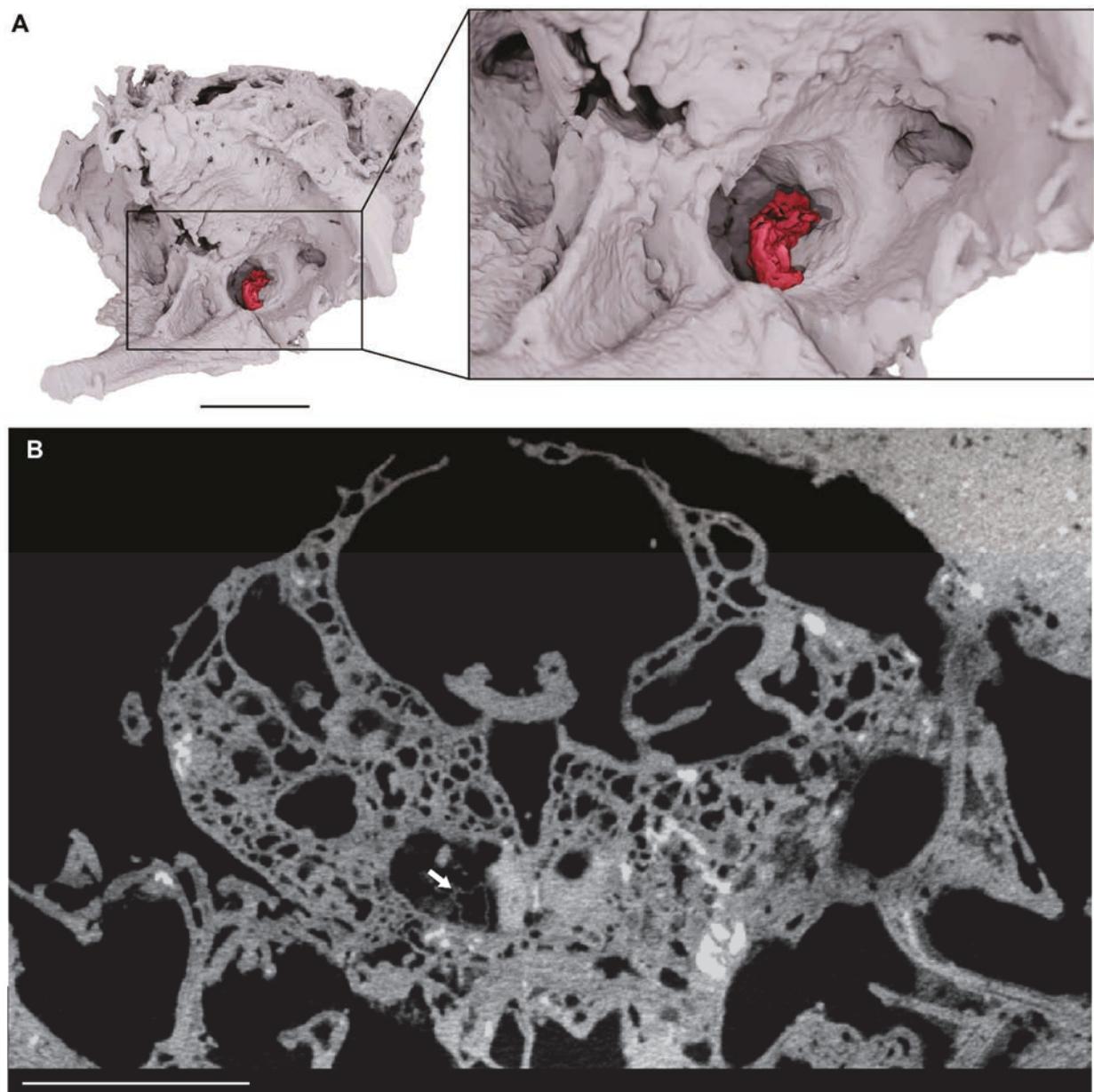

B

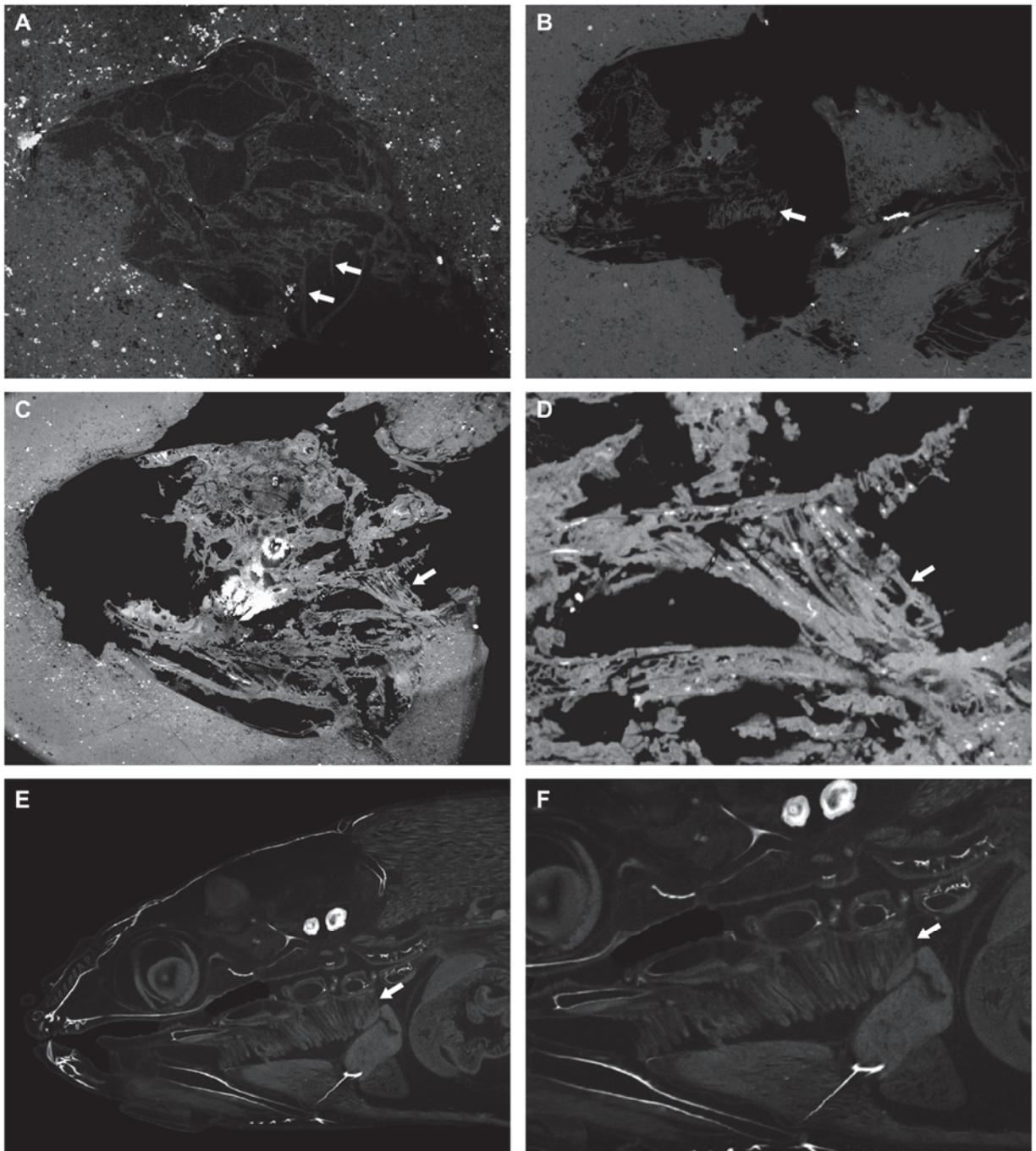

E

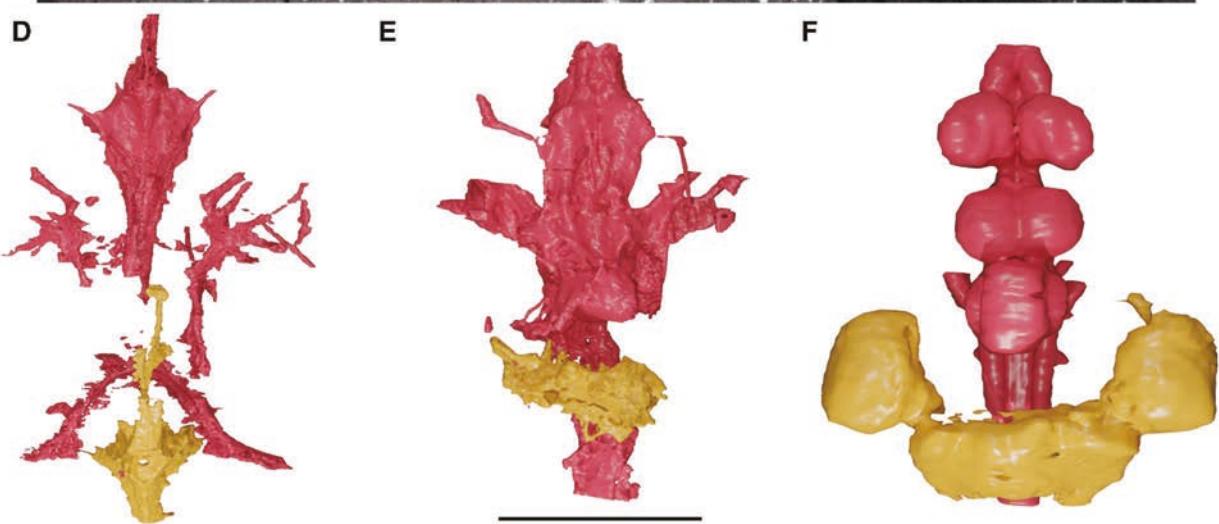
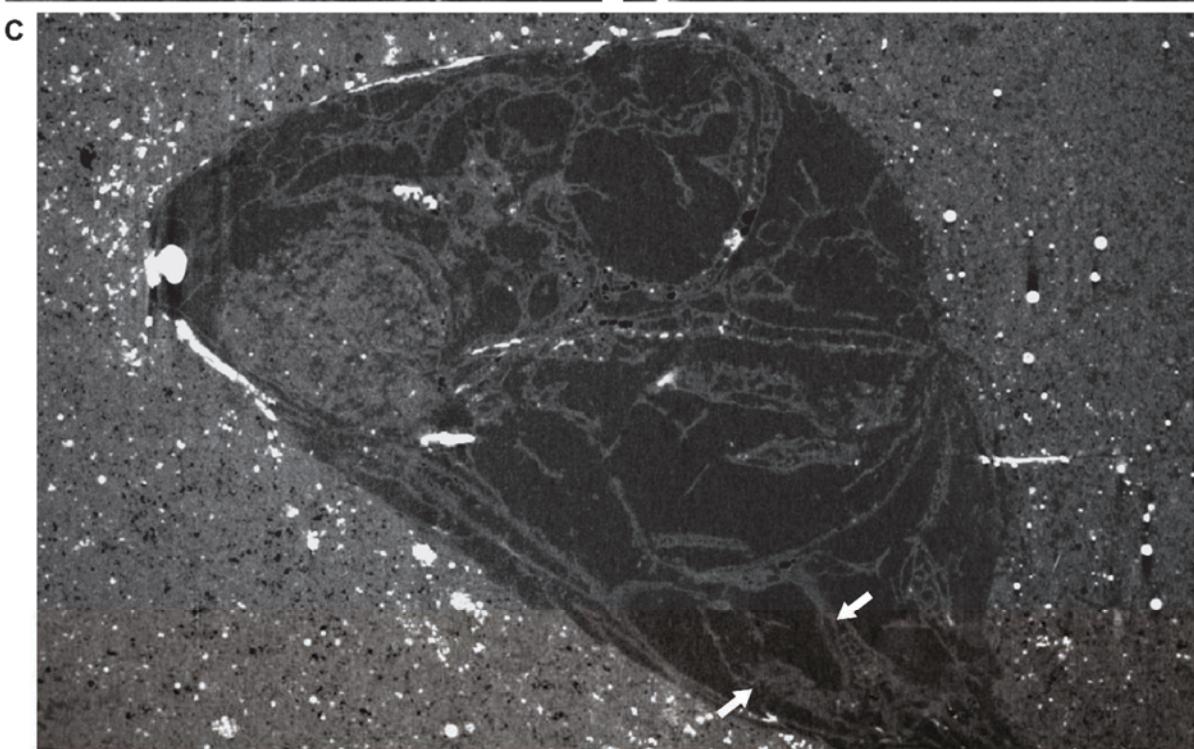
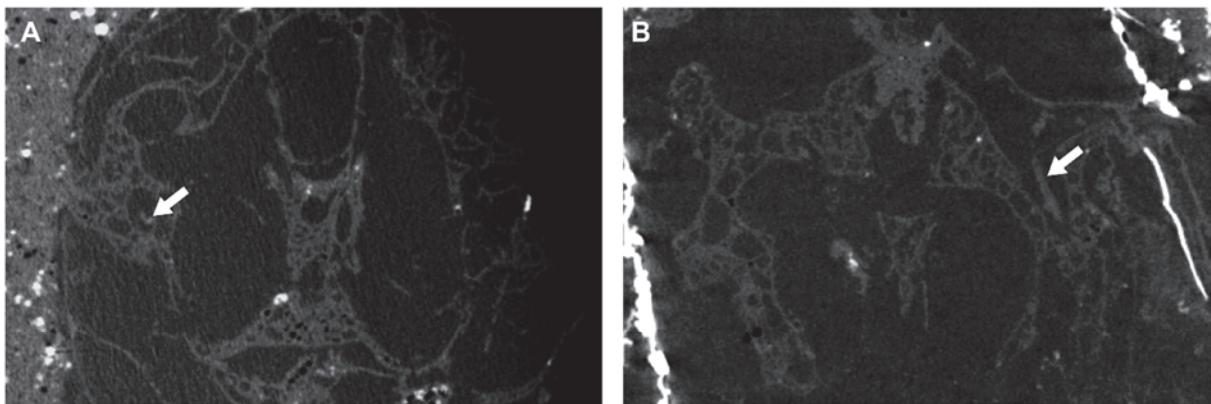



C


F




Figure S1. Anatomical correspondence between brains in Paleozoic actinopterygians and *Amia*, Related to Figure 2. (A) axial sections from μ CT, beginning with more anterior sections. (B) render of the brain of *Amia* showing approximate position of sections. Abbreviations: tel, telencephalon, mes, mesencephalon, ce, cerebellar corpus, V, trigeminal nerve, mye, myelencephalon.




Figure S2. Additional brain material, related to Figures 1-3. (A-C) CP.V 4364 (Morphotype I) in (A) dorsal, (B) left-lateral and (C) right-lateral views; and (D-E) CP 508 (Morphotype II) in (D) dorsal and (E) ventral views. (F-I) μ CT sections (F) CP 065, (G) CP.V 4364, (H) CP 7053, (I) CP 7053. hil, hypothalamus inferior lobe, hyp, hypophysis, me, mesencephalon, mix, meninx, nc, neurocranium, opt, optic chiasma, rh, rhombencephalon, sc, spinal cord, te, telencephalon, II, optic nerve, III, oculomotor nerve, VI, abducens nerve, V-VII, trigeminal nucleus, IX, glossopharyngeal nerve, X, vagus nerve. Scale bars = 5 mm.

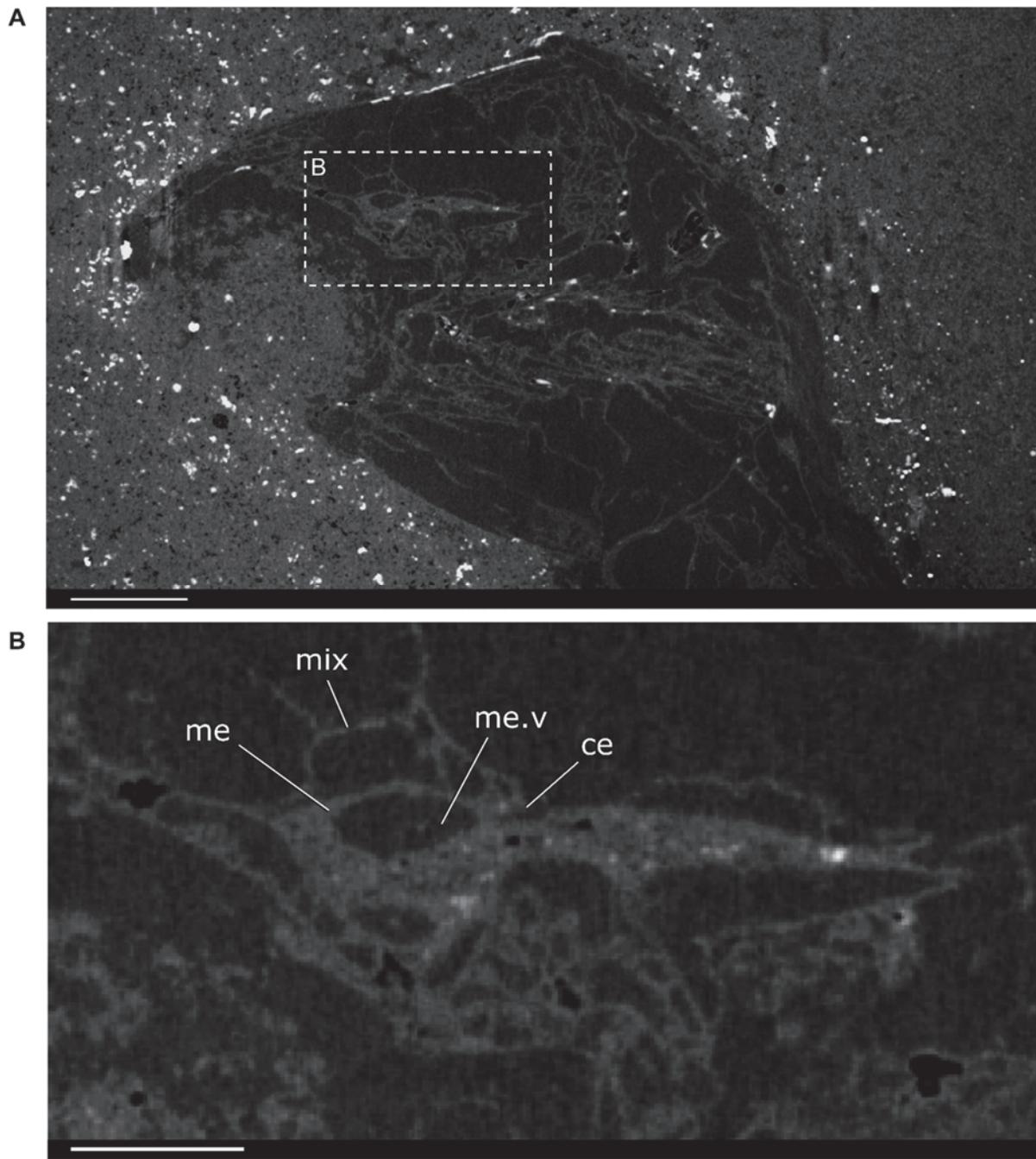

Figure S3. Rectus eye muscle attachment ligament within the posterior myodome of CP 584 (Morphotype II), Related to Figure 5. (A) render of neurocranium (gray) and attachment ligament (red); (B) axial section from μ CT showing the attachment ligament (arrow). Scale bar = 5 mm.

Figure S4. Comparison of gill filaments and lamellae in Permian actinopterygians and *Amia* sp, Related to Figure 4. Based on parasagittal sections derived from μ CT scans. (A-B) Morphotype I (A, CP 065, B, CP 7053). (C-D) Morphotype II (CP 084). E-F, *Amia* (UMMZ 160805). Arrows indicate gill filaments. Not to scale.

Figure S5. Cardiovascular elements preserved in Permian actinopterygians (Morphotype I), Related to Figure 2. (A) Transverse cross-section through the neurocranium of CP 065 showing the jugal vein (arrow); (B) Horizontal section through the neurocranium of CP 4364 showing the jugal vein (arrow); (C) Sagittal section through the skull of CP 065 showing putative heart tissue preservation (arrows). (D-F) Renders of brains (red) and myelencephalic tissue (orange) in dorsal view. (D) †*Coccocephalus*, (E) CP 584 (Morphotype II), (F) *Lepisosteus oculatus* (UMMZ 196974). (A-C) not to scale, Scale bar = 5 mm (D-E) and 10 mm (F).

Figure S6. Parasagittal μCT sections through the head of Morphotype I, Related to Figure 1. (A) highlighting the brain (B). ce, cerebellum, exm, extrameningeal space, me, mesencephalon, me.v, mesencephalic ventricle, mix, meningeal tissue. Scale bar = 5 mm (A); Scale bar = 2 mm (B).

	Energy (kV)	Current (uA)	Exposure (s)	Resolution (mm)	Filter	Filter (mm)	Binning	Projections	Frames/Proj.	Ring art.
CP 065	190	180	4	0.03437	Cu	3	NO	3141	4	YES
CP 584	200	180	4	0.03674	Cu	3	NO	3141	2	YES
CP 084	191	200	2	0.04509	Cu	2	NO	3141	4	YES
CP 508	200	180	4	0.03674	Cu	3	NO	3141	2	YES
CP 577	215	148	2.8	0.02638	Cu	2.5	NO	3141	4	YES
CP.V 4364	200	140	2.8	0.02966	Cu	2	NO	3141	2	YES
CP.V 7053	190	180	4	0.03432	Cu	3	NO	3141	2	YES
CP.V 7227	215	120	2.8	0.02046	Cu	2	NO	3141	4	YES
CP 1343	174	190	4	0.03691	-	-	NO	3141	2	YES
CP 6573	195	120	2.8	0.03295	Cu	2.25	NO	3141	4	YES

Table S1. μ CT scan parameters used for fossil actinopterygians from the Lontras Shale, Related to STAR Methods.