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Abstract

Representing videos as linear subspaces on Grassmann manifolds has made great strides in action recognition prob-
lems. Recent studies have explored the convenience of discriminant analysis by making use of Grassmann kernels.
However, traditional methods rely on the matrix representation of videos based on the temporal dimension and suffer
from not considering the two spatial dimensions. To overcome this problem, we keep the natural form of videos
by representing video inputs as multidimensional arrays known as tensors and propose a tensor discriminant analy-
sis approach on Grassmannian manifolds. Because matrix algebra does not handle tensor data, we introduce a new
Grassmann projection kernel based on the tensor-tensor decomposition and product. Experiments with human action
databases show that the proposed method performs well compared with the state-of-the-art algorithms.

Keywords: Grassmann Discriminant Analysis, Action recognition, Tensor singular value decomposition, Tensor
eigendecomposition.

1. Introduction

Human action recognition has been widely used in many application areas, such as intelligent video surveil-
lance [1], human-computer interfaces [2], and identity recognition [3]. In the literature, many human action recogni-
tion algorithms have been built upon modeling video sequences as linear subspaces [4, 5, 6, 7, 8, 9, 10]. As human
action videos are 3-D data objects capturing both spatial and temporal information from human actions, the high-order
singular value decomposition (HOSVD) provides a way that each mode can be analyzed separately. For example, as
outline in tangent bundle architecture (TB) [7], data tensors were factorized using the HOSVD. Then each factor was
projected onto a tangent space and the intrinsic distance was computed from a tangent bundle for action classification.
Moreover, product Grassmann manifold (PGM) [8] and n-mode generalized difference subspaces (n-mode GDS) [10]
methods consider the geodesic distances on the Grassmann manifold in a different perspective, where the HOSVD
was used to capture information from both spatial and temporal information from human actions.

As the subspaces of a Euclidean space lie on a special type of Riemannian manifolds, the Grassmann manifold,
which has a nonlinear structure, cannot be analyzed using Euclidean geometry. To solve this problem, in [4], the
Projection kernel and the Binet-Cauchy kernel have been introduced to embed the Grassmann manifold into a Hilbert
space which has a Euclidean geometry. Then Grassmann discriminant analysis (GDA) was proposed by using kernel
LDA with the Grassmann kernels. Similarly, graph-embedded Grassmann discriminant analysis (GGDA) method [5]
was proposed based on a graph-embedding framework. Furthermore, an extended family of Grassmann kernels has
been introduced in [11]. Despite their success, both GDA and GGDA rely on the matrix representation of videos
based on the temporal dimension and suffer from not considering the two spatial dimensions. Additionally, as each
video frame needs to be “vectorized” into a column vector, the natural representation of the sample eliminates the
spatial correlation within each sample and leads to the estimation of the large number of parameters.
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Due to these issues, particularly when dealing with higher-order data, there has been a growing interest in multilin-
ear subspace learning (MSL) that keeps the natural representation of the multidimensional arrays (commonly referred
to as tensors). Tensors provide a natural framework for representing higher-order data and the tensor singular value
decomposition (t-SVD) [12, 13, 14] has been widely used as multilinear extension of linear algebra tools. Fundamen-
tal to t-SVD is the defined multiplication operator on third-order tensors (t-product) based upon Fourier theory and an
algebra of circulants [15, 16]. As the t-product is a convolution-like operation that can be implemented using the Fast
Fourier Transform (FFT), variations on the classical t-product have been investigated in [17] where it is shown that a
family tensor-tensor products can be defined directly in a transform domain for an arbitrary invertible linear transform.
Most recently, fast algorithms have been developed for the t-product and t-SVD [18, 19]. Furthermore, the t-product
(and the many variations therein) have been applied to tensor completion [20, 21] and image processing [22, 23].

In this paper, we first introduce the discrete wavelet transform (DWT) based third-order tensor definitions and
mathematical operations using a special structured block matrix that are computationally more efficient compared to
the FFT and the discrete cosine transform (DCT) based third-order operators [24, 25, 17]. To capture the information
from the two spatial dimensions and the temporal dimension of human action videos, we propose the DWT-based
3-mode tensor singular value decomposition (3-mode t-SVDw). In doing so, we obtain multilinear subspaces repre-
senting each mode. We further consider subspaces of each mode separately and generate feature representation in the
Euclidean space. Since matrix algebra does not handle tensor data, we introduce a new well-defined positive definite
Grassmann tensor projection kernel, which is built upon the tensor-tensor decomposition and product, to embed the
Grassmann manifold to a Hilbert space. By doing this, we construct independent vector spaces corresponding each
mode. Finally, we fuse these vector spaces by applying kernel-based multilinear discriminant analysis (KMLDA). As
a result, we demonstrate the proposed framework called tensor Grassmann discriminant analysis (TGDA) by using
Grassmann tensor projection kernel and by applying KMLDA to human action classification problems.

The contributions of the proposed work can be summarized as follows:

• Introduction of an improved version of t-SVD called 3-mode t-SVDw.

• A novel tensor-based Grassmann kernel function and necessary kernel validity conditions are proved.

• A novel formulation for kernel-based multilinear discriminant analysis.

• Competitive classification achievement on human action recognition.

The rest of the paper is organized as follows. In Section 2, we discuss the mathematical foundations of the tensor
operators and the tensor-tensor decomposition. In Section 3, we introduce the proposed method. Section 4 reports our
experimental results, and Section 5 concludes the paper.

2. Mathematical Background

In this section, we define the wavelet transform-based third-order tensor definitions and mathematical operations
using a specially structured block matrix. Fundamental to the results presented in this section is motivated by the tensor
definitions based upon the Fourier theory and the algebra of circulant as outlined in [25, 24, 12, 14, 13, 26, 16, 27, 19].

2.1. Tensor operators

In the wavelet transform, a signal in the time domain is decomposed by passing it through high-pass filter (resulting
in detail coefficients) and low-pass filter (resulting in approximation coefficients) to produce low-pass and high-pass
wavelet coefficients referred to as a “level-1 decomposition”. The low-pass version can be further decomposed by
again passing it to a set of low-pass and high pass filters referred to as “level-2 decomposition”. This process can
be further continued to a pre-defined level as outlined in [28, 29]. While there are many different types of wavelets,
arguably the most common are the Haar wavelet [30] and the Daubechies wavelet [31]. In our work, we use the Haar
wavelet due to its low computation cost and simplicity to apply as compared to other wavelets. The discrete Haar
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wavelet transform can be expressed in matrix form for each level decomposition [32]. Thus, the discrete Haar wavelet
forward transformation matrix for level-1 decomposition can be written as:

H =



h0 h1 0 0 0 · · · 0 0
0 0 h0 h1 0 · · · 0 0
...
...

...
. . .

. . .
...

...
...

0 0 · · · · · · · · · · · · h0 h1
g0 g1 0 · · · · · · · · · 0 0
0 0 g0 g1 0 · · · 0 0
...
...

...
. . .

. . .
...

...
...

0 0 · · · · · · · · · · · · g0 g1


, (1)

where h0 and h1 are scaling function coefficients, whereas g0 and g1 are wavelet function coefficients.
It will be convenient to break a tensorA in Rℓ×m×n up into various slices and to have an indexing on those. The ith

frontal slice will be denotedA(i), the jth horizontal slice will be denotedA( j), and the kth lateral slice will be denoted
A⃗(k). In terms of Matlab indexing notation, this meansA(i) ≡ A(:, :, i),A( j) ≡ A( j, :, :), and A⃗(k) ≡ A(:, k, :).

(a) (b) (c)

Figure 1: (a) Frontal, (b) horizontal, and (c) lateral slices of a third-order tensor.

In order to discuss our new definitions we must first introduce the block matrix that can be diagonalized by the
discrete Haar wavelet transform matrix H (illustrated in (1)). We call this block matrix the “block dwt matrix”, denoted
by bdwt for short. For example, consider the tensorA ∈ Rℓ×m×n with ℓ×m frontal slices then bdwt(A) can be written
as follows:

bdwt(A) =



A(1) A(2) 0 0 · · · 0

A(2) A(1) 0 0 · · ·
...

0 0 A(3) A(4) · · ·
...

0 0 A(4) A(3) . . .
...

...
...

. . .
. . . A(n−1) A(n)

0 0 · · · · · · A(n) A(n−1)


. (2)

A new block-diagonal form (3) can be constructed via left and right multiplication by a DWT matrix (1).

(Hn ⊗ Iℓ) · bdwt(A) · (HT
n ⊗ Im) =


D1

D2
. . .

Dn

 , (3)

where each of the Di is a ℓ ×m matrix, Iℓ is a ℓ × ℓ identity matrix, Im is a m×m identity matrix, Hn is the n× n DWT
matrix defined in (1), HT

n is its transpose, and ⊗ is the Kronecker product.

Definition 1. An element c ∈ R1×1×n is called a tubal-scalar of length n.
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Definition 2. IfA ∈ Rℓ×m×n, then unfold(A) takes tensorA and returns a block ℓn × m matrix.

unfold(A) =


A(1)

A(2)

...
A(n)

 .
The operation that takes unfold(A) back to tensor form is the fold operator:

A = fold
(
unfold(A)

)
.

Definition 3. IfA ∈ Rℓ×m×n, then the unbdwt operator takes matrix bdwt(A) and returns tensorA.

A = unbdwt
(
bdwt(A)

)
.

Definition 4. LetA ∈ Rℓ×m×n and B ∈ Rm×ℓ×n. Then the wavelet product denoted byA ∗w B ∈ Rℓ×ℓ×n is defined as:

A ∗w B = fold(bdwt(A) · unfold(B)),

where “·” is the standard matrix multiplication.

Definition 5. LetA ∈ Rℓ×m×n. Then the tensor transpose of the tensorA denoted byAT ∈ Rm×ℓ×n is defined as:

AT = unbdwt
((

bdwt(A)
)T

)
.

Definition 6. LetA ∈ Rm×m×n. Then the tensor inverse of the tensorA denoted byA−1 ∈ Rm×m×n is defined as:

A−1 = unbdwt
((

bdwt(A)
)−1

)
.

Definition 7. The identity tensor I ∈ Rm×m×n is the tensor whose frontal slice is the m × m identity matrix in the
transform domain,

I = Ĩ ×3 H−1
n ,

where Ĩ(:, :, i) = I for i = 1, . . . , n and I is the m×m identity matrix. Hn is the n×n Haar wavelet level-1 transformation
matrix defined in (1). We note that ×3 is a mode-3 product [33, 17]. This operation has the same effect as taking the
inverse wavelet transform along each tubal-scalar of Ĩ.

Definition 8. The tensor norm used through this paper is the Frobenious norm which for the tensor A ∈ Rℓ×m×n is
given by:

||A||F =

√√√ ℓ∑
i=1

m∑
j=1

n∑
k=1

(
A(i, j, k)

)2
.

Definition 9. An idempotent tensorA ∈ Rm×m×n is the tensor which, when multiplied by itself, yields itself.

A = A ∗w A.

2.2. Wavelet Tensor Eigendecomposition and Singular Value Decomposition

Motivated by the tensor eigendecomposition based on the Fourier transform-based tensor operators in [34], we will
introduce the wavelet tensor eigendecomposition referred to as the t-eigw and the wavelet tensor eigendecomposition
referred to as the t-SVDw using the special block structure and tensor operators given in Section 2.1.

Theorem 1. LetA ∈ Rm×m×n, then the t-eigw of the tensorA can be factored as:

A = P ∗w D ∗w P
−1,

4



where P ∈ Rm×m×n is a non-singular and D ∈ Rm×m×n is a f-diagonal tensor such that the frontal slices are diagonal.
A graphical illustration of the t-eigw is shown in Fig.

Proof. Recall equation (3):

(Hn ⊗ Im) · bdwt(A) · (HT
n ⊗ Im) =


D1

D2
. . .

Dn

 .
To construct the t-eigw, the matrix eigenvalue decomposition is performed on each of the Di as Di = PiΣiP−1

i . Then
we can write: 

D1
. . .

Dn

 =

P1

. . .

Pn



Σ1

. . .

Σn



P−1

1
. . .

P−1
n

 .
Applying (HT

n ⊗ Im) to the left and (Hn ⊗ Im) to the right of each of the block diagonal matrices on the right hand side
results in each being the bdwt structure. We can use the unbdwt operator given in Definition 3 to take them back into
tensor form as following:

P = unbdwt
(
(HT

n ⊗ Im)


P1

. . .

Pn

 (Hn ⊗ Im)
)
,

D = unbdwt
(
(HT

n ⊗ Im)


Σ1

. . .

Σn

 (Hn ⊗ Im)
)
,

P−1 = unbdwt
(
(HT

n ⊗ Im)


P−1

1
. . .

P−1
n

 (Hn ⊗ Im)
)
,

Therefore, that results in the decomposition:

A = P ∗w D ∗w P
−1.

Theorem 2. LetA ∈ Rℓ×m×n, then the t-SVDw of the tensorA can be factored as:

A = U ∗w S ∗w V
T ,

whereU ∈ Rℓ×ℓ×n is a left-orthogonal tensor,V ∈ Rm×m×n is a right-orthogonal tensor and S ∈ Rm×m×n is a f-diagonal
tensor such that the frontal slices are diagonal. A graphical illustration of the t-SVDw is shown in Fig.

Proof. Recall equation (3):

(Hn ⊗ Iℓ) · bdwt(A) · (HT
n ⊗ Im) =


D1

D2
. . .

Dn

 .

5



To construct the t-SVDw, the matrix eigenvalue decomposition is performed on each of the Di as Di = UiΣiVT
i . Then

we can write: 
D1

. . .

Dn

 =

P1

. . .

Pn



Σ1

. . .

Σn



VT

1
. . .

VT
n

 .
Similarly to the proof of Theorem 1, applying (HT

n ⊗ Iℓ) to the left and (Hn ⊗ Im) to the right of each of the block
diagonal matrices on the right hand side results in each being the bdwt structure. We can use the unbdwt operator
given in Definition 3 to take them back into tensor form. Showing U ∗w U

T = UT ∗w U = I and V ∗w V
T =

VT ∗w V = I completes the proof.

For computational efficiency, we can compute both the tensor eigendecomposition and the tensor singular value
decomposition for any invertible transforms using spectral domain operations similar to the computation of the t-
SVD using the FFT in place of spatial domain operations [12, 14, 24, 17, 35]. Previously, the FFT-based tensor
eigendecomposition and tensor singular value decomposition have been introduced in [12, 17, 34]. However, the DWT
has time complexity of O(N), whereas the FFT and DCT are both O(NlogN), hence the DWT provides significant
reduction in computational complexity. TABLE 1 shows the time complexity of the tensor eigendecomposition and
the tensor singular value decomposition of tensor A ∈ Rm×m×n based on three most widely used invertable linear
transforms, it is clearly seen that both the DWT-based tensor eigendecomposition (t-eigw) and the DWT-based tensor
singular value decomposition (t-SVDw) are the fastest method among others.

Table 1: The time complexity of the FFT, DCT, and DWT based tensor eigendecomposition and tensor singular value decomposition.

TensorA ∈ Rm×m×n

FFT O
(
m2nlog(n)

)
DCT O

(
m2nlog(n)

)
DWT O(m2n)

t-eig after FFT O(2m3) t-eig after DCT O(m3) t-eig after DWT O(m3)

t-eig with FFT O
(
m2nlog(n)

)
+ O(2m3) t-eig with DCT O

(
m2nlog(n)

)
+ O(m3) t-eig with DWT O(m2n) + O(m3)

t-SVD after FFT O(2nm3) t-SVD after DCT O(nm3) t-SVD after DWT O(nm3)

t-SVD with FFT O
(
m2nlog(n)

)
+ O(2nm3) t-SVD with DCT O

(
m2nlog(n)

)
+ O(nm3) t-SVD with DWT O(m2n) + O(nm3)

3. Proposed Method

In this section, we first introduce tensor subspaces as elements of a Grassmann manifold. We then introduce a
tensor-based Grassmann kernel function to embed the Grassmann manifold into a Hilbert space. Finally, we turn our
attention to our proposed model for formulating a kernel-based multilinear discriminant analysis in a vector space.

3.1. Representing Subspaces on the Product Manifold

A Grassmann manifold G(d,m) is defined as the set of m dimensional linear subspaces of Rd [36]1. Given a linear
subspace X ∈ Rd×m, which contains an orthonormal set, can be represented as a point on the Grassmann manifold
G(d,m). The collection of all possible permutations of X ∈ Rd×m forms a manifold structure defined by G(d,m).

As outlined in Section 2.2, to construct the t-SVDw, the matrix singular value is performed on each element of the
block diagonal form. A third-order tensorA ∈ Rℓ×m×n can be diagonalized as:

A = U ∗w S ∗w V
T

1Note that while we generally use upper-case calligraphic letters to denote tensors, to keep consistent with the literature, we will denote a
Grassmann manifold using an upper case calligraphic G.
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whereU ∈ Rℓ×ℓ×n andV ∈ Rm×m×n are orthogonal tensors. Each element of an orthogonal tensor is a an orthogonal
matrix in so-called transform domain. Transform domain representation of a tensor can be obtained via left and right
multiplication by a DWT matrix given in (3). Hence, we can write:

(Hn ⊗ Iℓ) · bdwt(U) · (HT
n ⊗ Iℓ) =


U1

U2
. . .

Un

 ,

(Hn ⊗ Im) · bdwt(V) · (HT
n ⊗ Im) =


V1

V2
. . .

Vn

 .
where U1,U2, . . . ,Un are ℓ× ℓ orthogonal matrices (U1,U2, . . . ,Un ∈ O(ℓ)), whereas V1,V2, . . . ,Vn are m×m orthog-
onal matrices (V1,V2, . . . ,Vn ∈ O(m)). Similarly, k dimensional subspaces of these orthogonal tensors (Ū ∈ Rℓ×k×n

and V̄ ∈ Rm×k×n) provide ℓ× k and m× k matrices in the transform domain respectively, where each matrix consists of
a k dimensional orthonormal set. These matrices are elements of G(ℓ, k), and G(m, k). Therefore, an orthogonal tensor
or k dimensional subspace of an orthogonal tensor can be considered as a bundle of the elements of a Grassmann
manifold. It is important to note that all elements of an orthogonal tensor live on the same manifold.

Action videos are multidimensional data and can be naturally represented as third-order data tensors that generally
have two spatial modes and a temporal one. Since action videos provide discriminative information in each mode, each
mode must be analyzed independently [6, 8]. However, one of the fundamental drawbacks associated with computing
the t-SVDw in this fashion is the choice of flattening the data tensor through the bdwt(·) operator. By construction,
bdwt(·) operates on the frontal slices of a third-order tensor (mode-3), however this “choice” is somewhat arbitrary
(e.g. we could just as easily reformulate the problem to operate on horizontal slices (mode-1) or lateral slices (mode-
2)). As such, while we capture correlations in the video data along a specific mode, we neglect the correlations
along other two modes. As shown in Figure 1, there are three ways to slice a third-order tensor. In order to capture
distinct properties from tensor data, we employ the 3-mode t-SVDw that produces three different sets of subspaces by
operating on frontal, horizontal, and lateral slices independently. In order to stick with the tensor operators defined in
Section 2.1, we define swapmodes (·) in Definition 10, which interchanges two modes of a third-order tensor.

Definition 10. Let A ∈ Rℓ×m×n. Then swapmodes(A, a, b) rearranges tensor A by interchanging given mode-a and
mode-b.

swapmodes(A, 1, 3) = B ∈ Rn×m×ℓ,

swapmodes(A, 2, 3) = C ∈ Rℓ×n×m.

As such, we can treat the horizontal and the lateral slices of a third-order tensor as frontal slices using swapmodes (·)
operator. Given a third-order tensorA, the 3-mode t-SVDw decompose tensorA as follows:

t-SVDw(A) = 1U ∗w
1S ∗w

1VT , (4)

t-SVDw(swapmodes(A, 1, 3)) = 2U ∗w
2S ∗w

2VT , (5)

t-SVDw(swapmodes(A, 2, 3)) = 3U ∗w
3S ∗w

3VT , (6)

where the t-SVDw is computed by operating on the frontal slices, the horizontal slices, and the lateral slices of tensor
A respectively. We use 1, 2, and 3 left superscript to denote products of mode-1 t-SVDw, mode-2 t-SVDw, and
mode-3 t-SVDw respectively.

In action recognition studies, the Tucker decomposition is operated on the unfolded modes via matrix unfolding
in which the variation of each mode is captured by the Tucker decomposition [6, 8, 10]. However, for large tensors,
“unfolding” to compute the n-mode product at each mode results in fat matrices dominated by a single dimension.
We can then assume that the dimension of the columns is greater than the dimension of the rows due to the nature
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of matrix unfolding for action videos. This implies that the unfolded matrix only spans the row dimension. Thus,
subspaces that only span row space are used to represent data tensors on a Grassmann manifold. In our approach,
we benefit from representing not only the spaces span row spaces (1V, 2V, 3V), but also the subspaces span column
spaces (1U, 2U, 3U) on Grassmann manifolds.

3.2. Grassmann Tensor Discriminant Analysis
As mentioned earlier, a consistent approach to perform discriminant analysis for linear subspaces is to embed the

Grassmann manifold into a Hilbert space using a Grassmann kernel. While Grassmann kernel functions have been
recently introduced [4, 37, 11], their applicability is limited by the fact that they only operates on matrices (second-
order tensors). In this subsection, we first introduce a positive definite Grassmann kernel function for third-order
subspaces and then formulate a discriminant analysis in an unconventional space provided by this kernel function.

3.2.1. Grassmann Tensor Projection Kernel
LetU1, U2 ∈ Rm×p×ℓ two multilinear subspaces obtained by t-SVDw. It is important to note that both subspaces

belong to the same mode t-SVDw. As illustrated in Equation (3), they can be diagonalized as:

(Hℓ ⊗ Im) · bdwt(U1) · (HT
ℓ ⊗ Ip) =


U11

U12

. . .

U1ℓ

 ,

(Hℓ ⊗ Im) · bdwt(U2) · (HT
ℓ ⊗ Ip) =


U21

U22

. . .

U2ℓ

 ,
where each diagonal element is a m × p matrices. The Frobenius norm is denoted as:

||UT
1 ∗w U2||

2
F =

ℓ∑
k=1

||UT
1k

U2k ||
2
F =

ℓ∑
k=1

tr
(
U1k U

T
1k

U2k U
T
2k

)
.

As outlined in [4, 37, 11], a function k : G(m, p) × G(m, p) −→ R is a Grassmannian kernel if it is well-defined and
positive definite. Therefore:

Proposition 1. The tensor projection kernel

kp(U1,U2) = ||UT
1 ∗w U2||

2
F

is a Grassmann kernel.

Proof. The kernel is well-defined if it satisfies two conditions.
1) Positive definiteness
The positive definiteness follows from the properties of the Frobenius norm. For all Ui, . . . ,Un (the diagonal

elements Uki ∈ G) and c1, · · · , cn(ci ∈ R) for any n ∈ N, we have

∑
i j

cic j ||U
T
i ∗w U j||

2
F =

∑
i j

cic j

ℓ∑
k=1

tr
(
Uik U

T
ik U jk U

T
jk

)
,

= tr
(∑

i j

ℓ∑
k=1

cic jUik U
T
ik U jk U

T
jk

)
=

ℓ∑
k=1

tr
(∑

i j

cic jUik U
T
ik U jk U

T
jk

)
,

=

ℓ∑
k=1

tr
(∑

i

ciUik U
T
ik

)2

=

ℓ∑
k=1

||
∑

i

ciUik U
T
ik ||

2
F ≥ 0.
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2)Invariant to different representation
kp(Ui,U j) = kp(Ui ∗w Yi,U j ∗w Y j) for any Yi,Y j third-order orthogonal tensors.

kp(Ui ∗w Yi,U j ∗w Y j) =
ℓ∑

k=1

||YT
ik UT

ik U jk Y jk ||
2
F ,

=

ℓ∑
k=1

tr
(
YT

jk U
T
jk Uik Yik Y

T
ik UT

ik U jk Y jk

)
,

=

ℓ∑
k=1

tr
(
Y jk Y

T
jk U

T
jk Uik Yik Y

T
ik UT

ik U jk

)
,

=

ℓ∑
k=1

tr
(
UT

jk Uik U
T
ik U jk

)
=

ℓ∑
k=1

tr
(
Uik U

T
ik U jk U

T
jk

)
,

=

ℓ∑
k=1

||UT
ik U jk ||

2
F = ||U

T
i ∗w U j||

2
F = kp(Ui,U j).

3.2.2. Overview of Multilinear Discriminant Analysis
To keep the current work self-contained, we present a brief overview of the work on MLDA outlined in [34].

However, unlike MLDA in [34] (which was based Fourier theory), we use the wavelet transform-based operators and
definitions as outlined in Section 2.

Consider the situation where we have a collection of ℓ image samples, each of size m× n pixels. We can construct
our data tensor A ∈ Rm×ℓ×n where each lateral slice of A (i.e., A⃗(i), for i = 1, 2, . . . , ℓ) is an m × n sample image.
From this construction, the within-class scatter tensor can be written as:

Sw =

c∑
i=1

∑
A⃗( j)∈ci

(A⃗( j) − M⃗(i)) ∗w (A⃗( j) − M⃗(i))T ,

where c is the total number of classes, A⃗( j) ∈ Rm×1×n is the jth lateral slice of class i denoted by ci, and M⃗(i) ∈ Rm×1×n

is the mean of class ci. The transpose operator and the multiplication operator are outlined in Definition 5 and
Definition 4 respectively. We define the between-class scatter tensor as:

Sb =

C∑
i=1

ni(M⃗(i) − M⃗) ∗w (M⃗(i) − M⃗)T ,

whereM is the mean of all data samples and ni is the number of samples in the class i.
The goal is to find a projection tensorU so as to maximize the between-class scatter while minimizing the within-

class scatter (generally written as a scatter ratio). It can be show that the projection tensor in question can be computed
by solving the generalized tensor eigenvalue problem as:

(Sw
−1
∗w Sb) ∗w U = D ∗w U, (7)

where U = [U⃗(1), U⃗(2), . . . , U⃗(k)] ∈ Rm×k×n are the eigenmatrices corresponding to the k largest eigen-tuples of
the diagonal tensor D using the tensor norm defined in Definition 8 and the tensor inverse operation is outlined in
Definition 6. Note that similar to its matrix counterpart, there are at most c − 1 nonzero eigentuples of (7), therefore
the projection space has at most dimension c − 1. The projection tensor U can be obtained via the t-eigw defined in
Section 2.2. Finally, the tensor data A ∈ Rm×ℓ×n can be projected onto the new multilinear subspace U ∈ Rm×k×n

resulting in the new reduced feature tensor.

B = (UT ∗w A) ∈ Rk×ℓ×n. (8)
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Figure 2: Graphical illustration of TGDA.

3.2.3. Proposed Grassmann Tensor Discriminant Analysis
In order to perform a discriminant analysis in the Grassmann manifold, we first map the tensor subspaces of the

Grassmann manifold into a Hilbert space. Assume the third-order multilinear subspaces 1Ui,
2Ui,

3Ui,
1Vi,

2Vi,
3Vi

(for i = 1 · · ·m, m is the total number of samples in the training set) have already computed from the 3-mode t-SVDw
given in (4), (5), and (6). We can compute the gram matrices as:

[Ktrain1 ]i j = kp(1Ui,
1U j),

[Ktrain2 ]i j = kp(2Ui,
2U j),

[Ktrain3 ]i j = kp(3Ui,
3U j),

[Ktrain4 ]i j = kp(1Vi,
1V j),

[Ktrain5 ]i j = kp(2Vi,
2V j),

[Ktrain6 ]i j = kp(3Vi,
3V j),

for all 1Ui,
2Ui,

3Ui,
1Vi,

2Vi,
3Vi in the training set. We can construct our new data tensorAΦ ∈ Rm×m×6 by stacking

the gram matrices as frontal slices:
AΦ(:, :, i) = Ktraini ,

for i = 1, 2, . . . , 6.
The within-class scatter tensor can now be reformulated as:

SΦw =

C∑
i=1

WΦi ∗w C
Φi ∗w C

Φi ∗w (WΦi )T ,

where CΦi ∈ Rk×k×6 is the centering tensor of the ith class which is an idempotent tensor defined in Definition 9.

CΦi = CΦi ∗w C
Φi .

Therefore,

SΦw =

C∑
i=1

WΦi ∗w C
Φi ∗w (WΦi )T ,

where WΦi ∈ Rm×k×6 is the kernel tensor, whose lateral slices are the lateral slices of the kernel tensor AΦ corre-
sponding to ith class. We also use a is a regularizer for making the computation stable:

SΦw = S
Φ
w + σI (9)

where I ∈ Rm×m×6 is the identity tensor and σ is the regularization parameter.
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Definition 11. The tensor CΦ ∈ Rm×m×n is called a centering tensor when right multiplied with a tensor A ∈ Rm×m×n

has the same effect as subtracting the mean of all lateral slices of the tensor and left multiplied with a tensor has the
same effect as subtracting the mean of all horizontal slices of the tensor.

The mean of the lateral slices of the tensorA can be computed as:

M⃗ =
1
k

k∑
i=1

A(i).

To remove the mean M⃗ ∈ Rk×1×n from the tensorA, we subtract the mean from the lateral slices of the tensorA.

Ā = A− M⃗.

CΦ ∈ Rk×k×n is a centering tensor can be written as:

CΦ = I −
1
k
J ,

J = J̃ ×3 H−1
n ,

where J̃ ∈ Rk×k×n is a tensor whose each entry is one, I ∈ Rk×k×n is the identity tensor defined in Definition 7 and
Hn is the n × n Haar wavelet level-1 transformation matrix defined in Equation (1). We remind the reader that ×3 is a
mode-3 product and details can be found in [33, 17]. Multiplication by the centering tensor is a convenient analytical
tool of removing the mean from a tensor.

Ā = A ∗w C
Φ.

The fact that left multiplication removes the mean of the horizontal slices from the tensor can be similarly shown.
The between-class scatter tensor can be written as:

SΦb =

C∑
i=1

(M⃗Φi − M⃗Φ) ∗w (M⃗Φi − M⃗Φ)T , (10)

where M⃗Φi ∈ Rm×1×6 is the mean of the lateral slices of the ith class of the kernel tensor AΦ, whereas M⃗Φ ∈ Rm×1×6

is the mean of the lateral slices of the tensorAΦ.
The projection tensorUΦw can then be computed by solving the generalized tensor eigenvalue problem as:

(SΦw
−1
∗w S

Φ
b ) ∗w U

Φ = DΦ ∗w U
Φ, (11)

where UΦ ∈ Rm×c−1×6 consists of eigenmatrices. Note that there are at most c − 1 nonzero eigen-tuples of (11),
therefore the projection space has at most dimension c − 1.

Assume the multilinear subspaces of the testing inputs 1Ūi,
2Ūi,

3Ūi,
1V̄i,

2V̄i,
3V̄i (for i = 1 · · · n, n is the total

number of samples in the testing set) have already computed from the 3-mode t-SVDw. Therefore, we can compute
the gram matrices for testing set as:

[Ktest1 ]i j = kp(1Ui,
1Ū j),

[Ktest2 ]i j = kp(2Ui,
2Ū j),

[Ktest3 ]i j = kp(3Ui,
3Ū j),

[Ktest4 ]i j = kp(1Vi,
1V̄ j),

[Ktest5 ]i j = kp(2Vi,
2V̄ j),

[Ktest6 ]i j = kp(3Vi,
3V̄ j),

11



We can construct our new data tensor BΦ ∈ Rm×n×6 as:

BΦ(:, :, i) = Ktesti ,

for i = 1, 2, . . . , 6. Finally, the training tensor dataAΦ ∈ Rm×m×6 and the testing training tensor data BΦ ∈ Rm×n×6 can
be projected onto the new multilinear subspaceUΦ ∈ Rm×c−1×6 resulting in the new reduced feature tensor.

ĀΦ = UΦ
T
∗w A

Φ ∈ Rc−1×m×6, (12)

B̄Φ = UΦ
T
∗w B

Φ ∈ Rc−1×n×6. (13)

Once the projections ĀΦ and B̄Φ have been computed, classification is performed via nearest neighbor search for the
closest match using the Frobenius norm. Graphical illustration of our proposed approach, namely tensor Grassmann
discriminant analysis (TGDA)2, is shown in Figure 2.

4. Experimental Results

In this section, we have presented experimental results on four well-known data sets: the Cambridge Hand Ges-
ture [38], Weizmann [39], UTD-MHAD [40], and UCF sports action [41] data sets. We compare our proposed
approach with the state-of-the-art algorithms to show the effectiveness of the proposed approach. The comprehensive
explanation of each data set is given in the following.

4.1. Cambridge Hand-Gesture Database

Our first experiment is conducted using the Cambridge hand-gesture data set which has 900 video sequences
of nine different hand gesture classes (100 video sequences per gesture class) [38]. The videos are collected from
five different illumination sets labeled as Set1, Set2, Set3, Set4, and Set5. In the experiments, the same experimental
setting in [42, 8, 10] is followed where the videos were converted to grayscale and resized to 20×20×20. Additionally,
the videos from the Set5 was used for training and the videos from the Set1, Set2, Set3, and Set4 were used for testing.

In order to perform matrix-based methods GDA [4] and GGDA [5], each video sequence needs to be represented
as a matrix. First, we row-scan the frames and create 400 × 20 matrices to represent the data set. The dimension
of the rows is generally greater than the dimension of the columns due to the nature of row-scanning. As such, the
matrix only spans 20 dimensions. For each sequence, a single subspace U ∈ R400×k is produced by the singular value
decomposition. Therefore, the maximum subspace dimension is k = 20. For our proposed approach, the subspaces
1U, 2U, 3U, 1V, 2V, 3V ∈ R20×20×k are third-order tensors and the maximum subspace dimension can be chosen as
k = 20. Table 2 shows the experimental results of our methods compared with GDA [4] and GGDA [5] based on
the subspace dimensions. The subspace dimension k is kept the same and 1-nearest neighbor classifier is performed
for all methods to have a fair comparison. Additionally, the projection kernel is used for GDA and GGDA. The
best classification accuracies of GDA and GGDA were obtained at subspace dimension 20, which was 82.1±5.9%
and 86.7±3.9% respectively. Table 2 shows that our TDAG method is superior to matrix-based Grassmann discrim-
inant analysis approaches. This experiment also indicates that using small subspace dimensions gives our proposed
approach advantage over both GDA and GGDA. Table 3 illustrates the comparison of the proposed method with
the other tensor-based methods, namely tensor canonical correlation anlysis (TCCA) [38], tangent bundles (TB) [7],
product Grassmann manifold (PGM) [8], constrained multilinear discriminant analysis (CMDA) [43], direct general
tensor discriminant analysis (DGTDA) [43], tensor-driven low-rank discriminant analysis (TLRDA) [44], and n-mode
generalized difference subspace (n-mode GDS) [10] along with Grassmann kernels techniques, namely Grassmann
discriminant analysis (GDA) [4], graph-embeded Grassmann discriminant analysis (GGDA) [5], and sparse-based
classifier (SRC) [9].

2Our source code is available in the GitHub repository: https://github.com/Cagri-Ozdemir/TGDA
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Table 2: Classification performance comparison between the proposed method and GDA [4] and GGDA [5] on the Cambridge Hand-Gesture data
set based on subspace dimensions. The dimension of subspace is represented as k.

Test Set Method k = 1 k = 2 k = 3 k = 4 k = 5

Set1

GDA 25.00% 76.11% 87.22% 91.67% 94.44%
GGDA 27.22% 74.44% 85.00% 91.67% 92.78%
TGDA 98.33% 96.67% 97.22% 96.67% 95.56%

Set2

GDA 11.11% 46.11% 59.44% 68.89% 71.11%
GGDA 15.56% 40.56% 66.67% 77.78% 78.33%
TGDA 64.44% 86.67% 89.44% 92.22% 88.89%

Set3

GDA 11.11% 41.67% 54.44% 67.78% 80.00%
GGDA 16.11% 46.11% 71.67% 80.56% 81.11%
TGDA 77.22% 90.00% 93.33% 94.44% 92.22%

Set4

GDA 11.67% 68.89% 75.00% 80.00% 86.67%
GGDA 9.44% 73.89% 82.22% 81.11% 85.56%
TGDA 90.00% 91.67% 93.89% 93.33% 92.22%

mean±std

GDA 14.11±5.45% 58.20±14.62% 60.03±12.96% 77.09±9.68% 83.06±8.58%
GGDA 17.08±6.41% 58.75±15.54% 76.40±7.50% 82.78±5.29% 84.45±5.46%
TGDA 84.00±11.89% 91.25±3.61% 93.47±2.76% 94.17±1.65% 92.22±2.36%

Table 3: Comparison of Classification Accuracy with State-of-the-Art Methods on the Cambridge Hand Gesture data set.

TCCA [42] GDA [4] TB [7] GGDA [5] PGM [8] CMDA [43] DGTDA [43] TLRDA [45] n-mode GDS [10] SRC [9] TGDA (Our method)

82±3.5% 82.1±5.9% 91±2.4% 86.7±3.9% 91.7±2.3% 42.78±25.84 36.67±19.29% 92.5±4.9% 93.5±2.1% 89.7±3.9% 94.2±1.7%

4.2. UTD-MHAD Database

The UTD-MHAD database contains 27 actions performed by 8 subjects [40]. The database contains RGB video,
depth video, skeleton joint positions and inertial signals data. In our experiments, we only use RGB videos and
follow the same experimental setting in [40] where the subject numbers 1, 3, 5, 7 were used for training, and the
subject numbers 2, 4, 6, 8 were used for testing. The data set was pre-processed by using a people detector. We also
grayscaled and resized each video to 20×20×20. Table 4 illustrates the experimental results of our methods compared
with GDA [4] and GGDA [5] based on the subspace dimensions. The subspace dimension k was kept the same and
1-nearest neighbor classifier was performed for all methods to have a fair comparison. Additionally, the projection
kernel was used for GDA and GGDA. The best classification accuracies of GDA and GGDA were obtainted at the
subspace dimension of 20 which are 76.62% and 72.92% respectively, whereas the best classification accuracy of the
proposed approach was obtained at the subspace dimension of 6 which is 88.89%. In [40], the authors extract features
from depth images and inertial sensors and combine the extracted features to achieve the best performance on their own
data set, which is given in Table 5 as Kinect & Internal. In [46], motion and appearance features of RGB images are
extracted using the histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF) descriptors. In [47],
a new descriptor called 3D histograms of texture (3DHOT) has been introduced to extract discriminant features from
depth images. Classification accuracies of these two descriptor-based techniques are also given in Table 5 as 3DHOT-
MBC and STIP-BOW-SVM. Table 5 shows that the proposed approach appreciably better compared to given both
tensor-based and descriptor-based methods.

Table 4: Classification performance comparison between the proposed method and GDA [4] and GGDA [5] on the UTD-MHAD data set based on
subspace dimensions. The dimension of subspace is represented as k.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

GDA 20.83% 52.08% 59.72% 57.41% 62.96% 62.73%
GGDA 7.41% 44.21% 54.40% 61.34% 59.72% 62.27%
TGDA 59.49% 78.94% 82.41% 83.80% 85.88% 88.89%
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Table 5: Comparison of Classification Accuracy with State-of-the-Art Methods on the UTD-MHAD data set.

GDA [4] GGDA [5] PGM [8] CMDA [43] DGTDA [43] Kinect & Internal [40] 3DHOT-MBC [47] STIP-BOW-SVM [46] TGDA (Our method)

76.62% 72.92% 72.00% 56.05% 43.29% 79.1% 84.4% 67.37% 88.89%

4.3. Weizmann Database

The Weizmann database is a commonly used database for human action recognition [39]. The 90 videos coming
from 10 categories of actions included bending (bend), jacking (jack), jumping (jump), jumping in places (pjump),
running (run), gallopingside ways (side), skipping (skip), walking (walk), single-hand waving (wave1), and both-
hands waving (wave2), which were performed by nine subjects. Our performance evaluation is based on the leave-
one-person-out cross validation test. As such, as the actions were performed by nine subjects, we used each individual
person as testing and the rest for training. The data set was pre-processed by using a people detector. We also
grayscaled and resized each video to 20 × 20 × 20. Table 6 shows the experimental results of our methods compared
with GDA and GGDA based on the subspace dimensions. The best classification accuracies of GDA and TGDA were
obtainted at the subspace dimension of 4 which are 93.33% and 94.44% respectively, whereas the best classification
accuracy of GGDA approach was obtained at the subspace dimension of 5 which is 82.22%. Sparse tensor discrimi-
nant analysis (STDA) [48] and sparse tensor alignment (STA) [49] provide multilinear tensor extensions of manifold
learning based algorithms to a sparse case. Table 7 illustrates that our proposed method performs better than STDA
and STA techniques along with the other state-of-the-art methods.

Table 6: Classification performance comparison between the proposed method and GDA [4] and GGDA [5] on the Weizmann data set based on
subspace dimensions. The dimension of subspace is represented as k.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

GDA 78.89±12.86% 75.56±14.99% 88.89±8.75% 93.33±8.17% 88.89±7.37% 93.33±6.67%
GGDA 41.11±7.37% 54.44±18.33% 75.55±14.23% 78.89±18.53% 82.22±10.30% 80.00±12.47%
TGDA 72.22±13.15% 84.44±8.31% 91.11±3.14% 94.44±4.97% 91.11±5.67% 91.11±5.67%

Table 7: Comparison of Classification Accuracy with State-of-the-Art Methods on the Weizmann data set.

GDA [4] GGDA [5] PGM [8] CMDA [43] DGTDA [43] STDA [48] STA [49] TGDA (Our method)

93.33±8.17% 82.22±10.30% 75.56±10.66% 54.44±15.71 56.67%±10.54% 80.38±2.98% 79.33±3.54% 94.44±4.97%

4.4. UCF Sports Action Database

The UCF sports database [41] encompasses 10 sports actions recorded in real sport environment exhibiting the
variations in background, illumination conditions, and occlusions, which make it a challenging data set. These actions
include: golf swing, diving, lifting, kicking, running, riding horse, swing-bench, skateboarding, swing-side, and
walking. The experimental results are based on Leave-One-Out (LOO) cross validation scheme. In LOO cross
validation, all video sequences are used for training except one, which is used for testing the performance of the
classifier. Frames in all video sequences were grayscaled and resized to 20×20. We use the region of interest provided
with the data set. Table 8 shows the experimental results of our methods compared with GDA and GGDA based
on the subspace dimensions. The best classification accuracies of GDA and GGDA were obtainted at the subspace
dimension of 7 and 1 respectively, whereas the best classification accuracy of TGDA approach was obtained at the
subspace dimension of 5. The HOG3D descriptor method [50] is based on histograms of 3D gradient orientations and
provides promising classification rates for human action recognition problems; whereas RTW+eGDA [51] proposes
a framework by extending the framework of GDA. Table 9 shows that our proposed method performs well compared
to the aforementioned methods.
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Table 8: Classification performance comparison between the proposed method and GDA [4] and GGDA [5] on the UCF sports data set based on
subspace dimensions. The dimension of subspace is represented as k.

Method k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

GDA 60.66% 56.00% 62.00% 64.67% 68.00% 68.67%
GGDA 56.67% 40.00% 50.00% 46.00% 46.67% 48.67%
TGDA 72.67% 80.00% 85.33% 85.33% 86.67% 86.67%

Table 9: Comparison of Classification Accuracy with State-of-the-Art Methods on the UCF sports data set.

GDA [4] GGDA [5] PGM [8] CMDA [43] DGTDA [43] HOG3D [50] RTW+eGDA [51] TGDA (Our method)

71.33% 56.67% 74.00% 48.67% 53.33% 85.6% 84.67% 86.67%

5. Conclusions and Feature Work

In this paper, we present a tensor-based discriminant analysis on the Grassmann manifold for human action recog-
nition. We applied 3-mode t-SVDw and obtained third-order subspaces representing spatial and temporal information
of a human action video. We also showed that an orthogonal tensor can be considered as a bundle of elements that
naturally live on a Grassmann manifold. To apply the tensor-based discriminant analysis developed for Euclidean
space, a novel tensor Grassmann projection kernel was also proposed to embed the Grassmann manifold into a Hilbert
space, which satisfies necessary kernel validity conditions. Our experiments have demonstrated the superiority of our
proposed approach over the state-of-the-art methods. Future work will be dedicated to evaluate a set of new positive
definite kernels for third-order tensors.
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