
Kernelization of Tensor Discriminant Analysis with

Application to Image Recognition

Cagri Ozdemir+, Randy C. Hoover+, Kyle Caudle∗, Karen Braman∗

+Department of Electrical Engineering and Computer Science, South Dakota Mines
∗Department of Mathematics, South Dakota Mines

AbstractÐMultilinear discriminant analysis (MLDA), a novel
approach based upon recent developments in tensor-tensor de-
composition, has been proposed recently and showed better
performance than traditional matrix linear discriminant analysis
(LDA). The current paper presents a nonlinear generalization of
MLDA (referred to as KMLDA) by extending the well known
ªkernel trickº to multilinear data. The approach proceeds by
defining a new dot product based on new tensor operators for
third-order tensors. Experimental results on the ORL, extended
Yale B, and COIL-100 data sets demonstrate that performing
MLDA in feature space provides more class separability. It is
also shown that the proposed KMLDA approach performs better
than the Tucker-based discriminant analysis methods in terms of
image classification.

Index TermsÐtensor discriminant analysis, kernel method,
image recognition, linear discriminant analysis.

I. INTRODUCTION

Linear discriminant analysis (LDA) [1], [2] is one of the

most popular shallow learning algorithms for feature extrac-

tion and widely used in many areas of image classification

and pattern recognition for dimensionality reduction [3]±[5].

Traditionally, the reduced dimensional subspace of a large data

set has been computed using a linear algebraic framework. In

particular, each image is ªrow-scannedº into a column vector.

However, converting two-dimensional (2D) image matrices

into one-dimensional (1D) vectors is problematic in that: (a) it

eliminates the spatial correlations within each image; and (b)

it suffers from the curse of dimensionality and small sample

size problem [6], [7]. In order to solve these problems, new

methods have been proposed that rely on higher-order data

structures that leave each image in its natural matrix form,

and stack the collection of matrices into a tensor structure

(commonly referred to as a n-way or n-mode array, where n
is not to be confused with the number of images but rather

represents the different statistical modes of the data). Most

notably is the so-called higher-order discriminant analysis

(HODA) [8]. In addition to HODA, discriminant analysis with

tensor representation (DATER) [9] and general tensor discrim-

inant analysis (GTDA) [10] provide iterative procedures to

maximize the scatter ratio criterion. However, DATER does not

converge over iterations. Although the iterative approximation
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method of GTDA converges, it converges to a local maximum.

Thus, two effective algorithms, direct general discriminant

analysis (DGTDA) and constrained multilinear discriminant

analysis (CMDA) are proposed as outlined in [11]. DGTDA

learns tensor subspaces by obtaining the global maximum

scatter ratio without iteration, whereas CMDA guarantees con-

vergence over iterations. All these supervised learning methods

rely on Tucker decompositions and the n-mode product [12],

[13].

Recently, a new approach to supervised learning has been

introduced by extending traditional LDA to a multilinear

framework (referred to as multilinear discriminant analysis

(MLDA)) [14]. The approach is based on recent developments

based upon Fourier theory and an algebra of circulants as

outlined in [15]±[19]. It was shown that under the right tensor

multiplication operator, a third order tensor can be written as

a product of third order tensors in which the left tensor is

a collection of eigenmatrices, the middle tensor is a front-

face diagonal (denoted as f-diagonal) tensor of eigen-tuples,

and the right tensor is the tensor inverse of the eigenmatrices

resulting in a tensor-tensor eigenvalue decomposition (t-eig)

that is similar to its matrix counterpart.

In an effort to improve and perfect the performance of

MLDA, in this paper, we propose a kernel-based MLDA

(referred to as KMLDA) that provides nonlinear generaliza-

tion of MLDA. The kernel idea was originally applied in

Support Vector Machines [20] and kernel Fisher discriminant

analysis [21], [22] for second-order tensors. However, we

introduce the polynomial kernels for third-order tensors that

provide the nonlinear mapping explicitly. Moreover, we intro-

duce the wavelet transform based third-order tensor definitions

and mathematical operations using a special structured block

matrix which are computationally more efficient compared

to the fast Fourier transform (FFT) and the discrete cosine

transform (DCT) based third-order operators [18], [23], [24].

The remainder of the paper is organized as follows. In

Section II, we discuss the mathematical foundations of the

tensor operators and the tensor-tensor eigendecomposition. In

Section III, we propose our new framework for KMLDA.

In Section IV, we compare the proposed method with the

state-of-art Tucker structure based discriminant analysis and

MLDA methods for classification applications, and Section V

concludes the paper.



II. MATHEMATICAL BACKGROUND

In this section, we will define the wavelet transform-based

third-order tensor definitions and mathematical operations us-

ing a special structured block matrix determined by the frontal

slices of the third-order tensors. Fundamental to the results

presented in this section is motivated by the tensor definitions

based upon Fourier theory and algebra of circulants as outlined

in [15]±[19], [23], [25]±[27].

A. Tensor operators

In the wavelet transform, a signal in the time domain is

decomposed by passing it through high-pass filter (resulting

in detail coefficients) and low-pass filter (resulting in ap-

proximation coefficients) to produce low-pass and high-pass

wavelet coefficients referred to as a ªlevel-1 decompositionº.

The low-pass version can be further decomposed by again

passing it to a set of low-pass and high pass filters referred

to as ªlevel-2 decompositionº. This process can be further

continued to a pre-defined level as outlined in [28], [29].

While there are many different types of wavelets, arguably

the most common are the Haar wavelet [30] and Daubechies

wavelet [31]. In our work, we use the Haar wavelet due to

its low computation cost and simplicity to apply as compared

to other wavelets. The discrete Haar wavelet transform can be

expressed in matrix form for each level decomposition [32].

Thus, the discrete Haar wavelet forward transformation matrix

for level-1 decomposition can be written as:

H =


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














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



, (1)

where h0 and h1 are scaling function coefficients, whereas g0
and g1 are wavelet function coefficients.

It will be convenient to break a tensor A in R
ℓ×m×n up

into various slices and to have an indexing on those. The ith

lateral slice will be denoted Ai whereas the jth frontal slice

will be denoted A(j). In terms of MATLAB indexing notation,

this means Ai ≡ A(:, i, :) while A(j) ≡ A(:, :, j). In order

to discuss our new definitions we must first introduce the

block matrix that can be diagonalized by the discrete Haar

wavelet transform matrix H (illustrated in (1)). We call this

block matrix as ªblock dwt matrixº, denoted by bdwt for short.

For example, consider the tensor A ∈ R
ℓ×m×n with ℓ × m

frontal slices then bdwt(A) can be written as follows:

bdwt(A) =












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













A(1) A(2) 0 0 · · · 0

A(2) A(1) 0 0 · · ·
.
.
.
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.
.
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.
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.

.

.

.
.
.
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. . .
. . . A(n−1) A(n)

0 0 · · · · · · A(n) A(n−1)
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
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
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. (2)

A new block-diagonal form (3) can be constructed via left and

right multiplication by a DWT matrix (1).

(Hn ⊗ Iℓ) · bdwt(A) · (HT
n ⊗ Im) =











D1

D2

. . .

Dn











, (3)

where each of the Di is a ℓ×m matrix, Iℓ is a ℓ× ℓ identity

matrix, Im is a m × m identity matrix, Hn is the n × n
DWT matrix defined in (1), HT

n is its transpose, and ⊗ is

the Kronecker product.

Definition 1. An element c ∈ R
1×1×n is called a tubal-scalar

of length n.

Definition 2. If A ∈ R
ℓ×m×n, then unfold(A) takes tensor

A and returns a block ℓn×m matrix.

unfold(A) =











A(1)

A(2)

...

A(n)











.

The operation that takes unfold(A) back to tensor form is the

fold operator:

A = fold
(

unfold(A)
)

.

Definition 3. If A ∈ R
ℓ×m×n, then the unbdwt operator takes

matrix bdwt(A) and returns tensor A.

A = unbdwt
(

bdwt(A)
)

.

Definition 4. Let A ∈ R
ℓ×m×n and B ∈ R

m×ℓ×n. Then the

wavelet product denoted by A ∗w B ∈ R
ℓ×ℓ×n is defined as:

A ∗w B = fold(bdwt(A) · unfold(B)),

where · is standard matrix multiplication.

Definition 5. Let A ∈ R
ℓ×m×n. Then the tensor transpose of

the tensor A denoted by AT ∈ R
m×ℓ×n is defined as:

AT = unbdwt
(

(

bdwt(A)
)T
)

.

Definition 6. Let A ∈ R
m×m×n. Then the tensor inverse of

the tensor A denoted by A−1 ∈ R
m×m×n is defined as:

A−1 = unbdwt
(

(

bdwt(A)
)−1
)

.

Definition 7. The identity tensor I ∈ R
m×m×n is the tensor

whose frontal slice is the m × m identity matrix in the

transform domain,

I = Ĩ ×3 H
−1
n ,



where Ĩ(:, :, i) = I for i = 1, . . . , n and I is the m × m
identity matrix. Hn is the n × n Haar wavelet level-1 trans-

formation matrix defined in (1). We note that ×3 is a mode-3

product [13], [24]. This operation has the same effect as taking

inverse wavelet transform along each tube in Ĩ.

Definition 8. The tensor norm used through this paper is the

Frobenious norm which for the tensor A ∈ R
ℓ×m×n is given

by:

||A||F =

√

√

√

√

ℓ
∑

i=1

m
∑

j=1

n
∑

k=1

(

A(i, j, k)
)2
.

Definition 9. An idempotent tensor A ∈ R
m×m×n is the

tensor which, when multiplied by itself, yields itself.

A = A ∗w A.

B. Wavelet Tensor Eigendecomposition

The final tool necessary for a multilinear LDA is to define

a tensor-tensor eigenvalue decomposition. Motivated by the

tensor eigendecomposition based on the Fourier transform-

based tensor operators in [14], we will introduce the wavelet

tensor eigendecomposition referred to as the t-eigw using the

special block structure and tensor operators given in II-A.

Definition 10. Let A ∈ R
m×m×n, then the t-eigw of the tensor

A is defined as:

A = P ∗w D ∗w P−1,

where P ∈ R
m×m×n is a non-singular and D ∈ R

m×m×n is

a f-diagonal tensor such that the frontal slices are diagonal. A

graphical illustration of the t-eigw is shown in Fig. 1.

Recall equation (3):

(Hn ⊗ Im) · bdwt(A) · (HT
n ⊗ Im) =











D1

D2

. . .

Dn











.

To construct the t-eigw, the matrix eigenvalue decomposition

is performed on each of the Di as Di = PiΣiP
−1
i . Then we

can write:






D1

. . .

Dn






=







P1

. . .

Pn










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Σ1

. . .

Σn













P−1
1

. . .

P−1
n






.

Applying (HT
n ⊗Im) to the left and (Hn⊗Im) to the right of

each of the block diagonal matrices on the right hand side

results in each being the bdwt structure. We can use the

unbdwt operator given in Definition 3 to take them back into

tensor form as following:

P = unbdwt

(

(HT
n ⊗ Im)







P1

. . .

Pn






(Hn ⊗ Im)

)

,

D = unbdwt

(

(HT
n ⊗ Im)







Σ1

. . .

Σn






(Hn ⊗ Im)

)

,

P−1 = unbdwt

(

(HT
n ⊗Im)







P−1
1

. . .

P−1
n






(Hn⊗Im)

)

,

Therefore, that results in the decomposition:

A = P ∗w D ∗w P−1.

For computational efficiency, we can compute the tensor

eigendecomposition for any invertible transforms using spec-

tral domain operations similar to the computation of the t-

SVD using the FFT in place of spatial domain operations [15],

[17], [18], [24], [33]. Previously, the FFT-based tensor eigen-

decomposition is defined in [14]. However, the DWT has time

complexity of O(N), whereas the FFT and DCT are both

O(NlogN), hence the reduction in computational complexity.

TABLE I shows the time complexity of the tensor eigendecom-

position of tensor A ∈ R
m×m×n based on three most widely

used invertable linear transforms, it is clearly seen that the

DWT-based eigendecomposition (t-eigw) is the fastest method

among others.

TABLE I
THE TIME COMPLEXITY OF THE FFT, DCT, AND DWT BASED TENSOR

EIGENDECOMPOSITION.

Tensor A ∈ R
m×m×n

FFT O
(

m2nlog(n)
)

t-eig after FFT O(2m3)

t-eig with FFT O
(

m2nlog(n)
)

+O(2m3)

DCT O
(

m2nlog(n)
)

t-eig after DCT O(m3)

t-eig with DCT O
(

m2nlog(n)
)

+O(m3)

DWT O(m2n)

t-eig after DWT O(m3)

t-eig with DWT O(m2n) +O(m3)

III. PROPOSED KMLDA METHOD

In this section, we provide an overview of prior MLDA

work proposed in [14] and illustrate some of the shortcomings

of such an approach. We then turn our attention to nonlinear

extension of MLDA work that improves the recognition per-

formance of MLDA.

A. Overview of MLDA

To keep the current work self-contained, we present a brief

overview of the work on MLDA outlined in [14]. However,

unlike MLDA in [14] (which was based Fourier theory), we

use the wavelet transform-based operators and definitions as

outlined in Section II.

Consider the situation where we have a collection of ℓ image

samples, each of size m×n pixels. We can construct our data

tensor A ∈ R
m×ℓ×n where each lateral slice of A (i.e., Ai,



Fig. 1. Graphical illustration of the t-eigw.

for i = 1, 2, . . . , ℓ) is an m × n sample image. From this

construction, the within-class scatter tensor can be written as:

Sw =

C
∑

i=1

∑

Aj∈ci

(Aj −Mi) ∗w (Aj −Mi)
T , (4)

where C is the total number of classes, Aj ∈ R
m×1×n is the

jth lateral slice of class i denoted by ci, and Mi ∈ R
m×1×n is

the mean of class ci. The transpose operator and the multipli-

cation operator are outlined in Definition 5 and Definition 4

respectively. We define the between-class scatter tensor as:

Sb =
C
∑

i=1

Ni(Mi −M) ∗w (Mi −M)T , (5)

where M is the mean of all data samples and Ni is the number

of samples in the class i.
The goal is to find a projection tensor U so as to maximize

the between-class scatter while minimizing the within-class

scatter (generally written as a scatter ratio). It can be shown

that the projection tensor in question can be computed by

solving the generalized tensor eigenvalue problem as:

(Sw
−1 ∗w Sb) ∗w U = D ∗w U , (6)

where U = [U1,U2, . . . ,Uk] ∈ R
m×k×n are the eigenmatrices

corresponding to the k largest eigen-tuples of the diagonal

tensor D using the tensor norm defined in Definition 8 and

the tensor inverse operation is outlined in Definition 6. Note

that similar to its matrix counterpart, there are at most C − 1
nonzero eigentuples of (6), therefore the projection space has

at most dimension C − 1. The projection tensor U can be

obtained via the t-eigw defined in Section II-B. Finally, the

tensor data A ∈ R
m×ℓ×n can be projected onto the new

multilinear subspace U ∈ R
m×k×n resulting in the new

reduced feature tensor.

B = (UT ∗w A) ∈ R
k×ℓ×n. (7)

B. Proposed KMLDA Extension

Suppose that A ∈ R
m×ℓ×n is a data tensor consists of

m × n sample images as lateral slices, i.e., Ai ∈ R
m×1×n,

for i = 1, 2, . . . , ℓ . Define Φ as a function that maps the

tensor input to feature space, i.e., Φ(Ai) ∈ R
t×1×n. We note

that we generally have t ≥ m. Motivated by the definition of

the kernel of two vectors outlined in [34], [35], we define the

kernel of two tensors A1 ∈ R
m×1×n and A2 ∈ R

m×1×n by:

k(A1,A2) = Φ(A1)
T ∗w Φ(A2) ∈ R

1×1×n, (8)

which results in a tubal scalar and measures similarity between

the two tensors [24]. Because the function Φ is usually not

available, computation of dot products in feature spaces can

be done efficiently by using the kernel functions. There exists

different types of kernels functions defined for vectors [36],

[37]. In this paper, we define polynomial kernels for third-

order tensors based on the inner product definition between

two third order tensors.

Polynomial: k(A1,A2) = (AT
1 ∗w A2 + c)d (9)

where c ∈ R
1×1×n is a tubal-scalar constant, and d is a scalar

constant. In our experiments, we use cj = 1 for j = 1 · · ·n,

where cj denotes the jth entry of that tubal scalar, and d = 0.8.

In order to perform MLDA in feature space, we first map

the training and testing tensors into a feature space. Suppose

A ∈ R
m×ℓ×n and B ∈ R

m×p×n are the training and testing

tensors respectively where each lateral slice is a m×n sample

image. The training tensor in the feature space AΦ ∈ R
ℓ×ℓ×n

is the kernel tensor of the training data and the testing tensor

in the feature space BΦ ∈ R
ℓ×p×n is the kernel tensor of the

training data and the testing data. They can be defined using

the polynomial tensor kernel in (8) as:

AΦ =











k(A1,A1) k(A1,A2) · · · k(A1,Aℓ)
k(A2,A1) k(A2,A2) · · · k(A2,Aℓ)

...
...

...

k(Aℓ,A1) k(Aℓ,A2) · · · k(Aℓ,Aℓ)











, (10)

BΦ =











k(A1,B1) k(A1,B2) · · · k(A1,Bp)
k(A2,B1) k(A2,B2) · · · k(A2,Bp)

...
...

...

k(Aℓ,B1) k(Aℓ,B2) · · · k(Aℓ,Bℓ)











. (11)

The within-class scatter tensor can now be reformulated as:

SΦ
w =

C
∑

i=1

WΦi ∗w CΦi ∗w CΦi ∗w (WΦi)T ,



where CΦi ∈ R
k×k×n is the centering tensor of the ith class

which is an idempotent tensor defined in Definition 9.

CΦi = CΦi ∗w CΦi .

Therefore,

SΦ
w =

C
∑

i=1

WΦi ∗w CΦi ∗w (WΦi)T , (12)

where WΦi ∈ R
ℓ×k×n is the kernel tensor of the entire

training data and the training data of the ith class. If, for

example, the first three lateral slices of the tensor A belong

to the ith class, we can write WΦi ∈ R
ℓ×3×n as:

WΦi =











k(A1,A1) k(A1,A2) k(A1,A3)
k(A2,A1) k(A2,A2) k(A2,A3)

...
...

...

k(Aℓ,A1) k(Aℓ,A2) k(Aℓ,A3)











.

Definition 11. The tensor CΦ ∈ R
m×m×n is called a centering

tensor when right multiplied with a tensor A ∈ R
m×m×n has

the same effect as subtracting the mean of all lateral slices of

the tensor and left multiplied with a tensor has the same effect

as subtracting the mean of all horizontal slices of the tensor.

The mean of the lateral slices of the tensor A can be

computed as:

M =
1

k

k
∑

i=1

A(i).

To remove the mean M ∈ R
k×1×n from the tensor A, we

subtract the mean from the lateral slices of the tensor A.

Ā = A−M.

CΦ ∈ R
k×k×n is a centering tensor can be written as:

CΦ = I −
1

k
J ,

J = J̃ ×3 H
−1
n ,

where J̃ ∈ R
k×k×n is a tensor whose each entry is one,

I ∈ R
k×k×n is the identity tensor defined in (7) and Hn is

the n× n Haar wavelet level-1 transformation matrix defined

in (1). We remind the reader that ×3 is a mode-3 product

and details can be found in [13], [24]. Multiplication by the

centering tensor is a convenient analytical tool of of removing

the mean from a tensor.

Ā = A ∗w CΦ.

The fact that left multiplication removes the mean of the

horizontal slices from the tensor can be similarly shown.

The between-class scatter tensor can be written as:

SΦ
b =

C
∑

i=1

(MΦi −MΦ) ∗w (MΦi −MΦ)T , (13)

where MΦi ∈ R
ℓ×1×n is the mean of the lateral slices of the

kernel tensor WΦi ∈ R
ℓ×k×n, whereas MΦ ∈ R

ℓ×1×n is the

mean of the lateral slices of the kernel tensor AΦ ∈ R
ℓ×ℓ×n.

The projection tensor UΦ
w can then be computed by solving

the generalized tensor eigenvalue problem as:

(SΦ
w

−1
∗w SΦ

b ) ∗w UΦ = DΦ ∗w UΦ, (14)

where UΦ ∈ R
ℓ×C−1×n consists of eigenmatrices. Note that

there are at most C−1 nonzero eigen-tuples of (14), therefore

the projection space has at most dimension C−1. Finally, the

training tensor data AΦ ∈ R
ℓ×ℓ×n and the testing training

tensor data BΦ ∈ R
ℓ×k×n can be projected onto the new

multilinear subspace UΦ ∈ R
ℓ×C−1×n resulting in the new

reduced feature tensor.

ĀΦ = UΦT
∗w AΦ ∈ R

C−1×ℓ×n, (15)

B̄Φ = UΦT
∗w BΦ ∈ R

C−1×k×n. (16)

Once the projections ĀΦ and B̄Φ have been computed, classifi-

cation is performed via nearest neighbor search for the closest

match using the tensor norm defined in Definition 8.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed KMLDA method

with other multilinear subspace learning methods in the liter-

ature, namely, DATER [9], HODA [8], CMDA [11] , DGTDA

[11], and MLDA [14].

For our experimental validation, we choose three common

data sets used in the literature, namely: (a) the ORL data

set consists of 10 different images of 40 distinct subjects un-

der varying lighting conditions, facial expressions, and facial

details [38]; (b) the extended Yale-B data set that contains

images of human faces under varying facial expressions and

illumination directions [39]. There are 38 subjects and 59

images per subject; (c) the COIL-100 data set that contains

images of 100 different objects being rotated about a single

degree of freedom to obtain 72 poses per object [40]. For

computational efficiency, we use the first 20 objects with 72

poses of each object to produce total data set of 1440 images.

A subset of example images for each of the three data sets are

illustrated in Fig. 3. We note that, for computational efficiency,

each image in the all databases were resized to 32 × 32. For

each of the four data sets, 20 different classification runs were

evaluated where a random 70/30 (training/testing) split was

performed to ensure complete coverage of the training/testing

space. Information regarding image size, training set, testing

set, and class size is outlined in Table II.

TABLE II
SPECIFICATIONS ON THE DATA SETS USED FOR EXPERIMENTAL

VALIDATION.

Data Set Image Size Train Set Test Set # of Classes (C)

ORL 32× 32 280 120 40

Ext. Yale-B 32× 32 1569 673 38

COIL-100 32× 32 1008 432 20

Fig. 2 shows the classification performance of MLDA and

KMLDA methods on the three data sets. It is clearly seen that



Fig. 2. Classification accuracy comparison on the ORL, extended Yale B, and COIL 100 databases.

Fig. 3. A subset of images from each data set used in this research. (a) The
ORL data set, (b) the extended Yale-B face database, (c) the COIL-100 data
set.

the defined tensor kernel space yields more class separability

for each feature dimension on the three data sets. We note

that since the projection space has at most dimension C − 1
(where C is the total number of classes), KMLDA may reach

the maximum projection dimension, whereas the image size

may not allow MLDA to reach the maximum as seen on the

ORL and extended Yale B data sets.

Table III shows the classification accuracy for all six meth-

ods applied to the data sets outlined in Table II. Because the

classification results are computed for 20 different cycles (each

with a random 70/30 split), we show the mean classification

accuracy ± the standard deviation in classification accuracy

across all 20 runs. We note that for classification, we selected

a 5−dimensional subspace for all six methods and performed

nearest-neighbor search with tensor Frobenious norm defined

in Section II Definition 8. As can be seen from Table III, the

proposed KMLDA approach outperforms all other methods

across all three data sets evaluated.

TABLE III
CLASSIFICATION ACCURACY FOR EACH OF THE SIX DIFFERENT METHODS

AND ALL THREE DATA SETS.

Method ORL Extended Yale B COIL 100

DATER [9] 56.75± 2.75 86.73± 2.13 94.02± 1.45

HODA [8] 75.04± 3.44 62.35± 4.66 97.55± 0.67

CMDA [11] 71.42± 4.01 74.71± 4.08 95.56± 1.01

DGTDA [11] 72.29± 2.85 61.45± 4.04 97.76± 0.69

MLDA1 [14] 94.83± 2.56 92.31± 1.23 98.22± 0.63

KMLDA 96.21± 1.72 95.81± 0.76 99.16± 0.59

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new approach to tensor discriminant

analysis computing the discriminant features in some feature

space which is nonlinear related to the input space. Further-

more, the wavelet transform-based MLDA was introduced

using the wavelet transform based mathematical operations

which are more computationally efficient compared to the FFT

and the DCT-based operators. An analysis was presented in

the context of classification of the ORL, the extended Yale

B, and the COIL-100 data sets. It was illustrated that for all

three data sets, our current approach outperformed the Tucker-

based discriminant analysis and MLDA methods in terms of

classification accuracy. Future work will be dedicated to repro-

ducing kernel space applied to the Tucker-based discriminant

analysis as well as evaluating radial basis kernel functions for

third-order tensors.

1MLDA is computed using the wavelet based tensor operators and t-eigw

in Section II-A. Classification performance of MLDA based on the FFT [14]
might be slightly different than the DWT-based MLDA.
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