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Abstract—Multilinear discriminant analysis (MLDA), a novel
approach based upon recent developments in tensor-tensor de-
composition, has been proposed recently and showed better
performance than traditional matrix linear discriminant analysis
(LDA). The current paper presents a nonlinear generalization of
MLDA (referred to as KMLDA) by extending the well known
‘“kernel trick” to multilinear data. The approach proceeds by
defining a new dot product based on new tensor operators for
third-order tensors. Experimental results on the ORL, extended
Yale B, and COIL-100 data sets demonstrate that performing
MLDA in feature space provides more class separability. It is
also shown that the proposed KMLDA approach performs better
than the Tucker-based discriminant analysis methods in terms of
image classification.

Index Terms—tensor discriminant analysis, kernel method,
image recognition, linear discriminant analysis.

I. INTRODUCTION

Linear discriminant analysis (LDA) [1], [2] is one of the
most popular shallow learning algorithms for feature extrac-
tion and widely used in many areas of image classification
and pattern recognition for dimensionality reduction [3]-[5].
Traditionally, the reduced dimensional subspace of a large data
set has been computed using a linear algebraic framework. In
particular, each image is “row-scanned” into a column vector.
However, converting two-dimensional (2D) image matrices
into one-dimensional (1D) vectors is problematic in that: (a) it
eliminates the spatial correlations within each image; and (b)
it suffers from the curse of dimensionality and small sample
size problem [6], [7]. In order to solve these problems, new
methods have been proposed that rely on higher-order data
structures that leave each image in its natural matrix form,
and stack the collection of matrices into a tensor structure
(commonly referred to as a n-way or n-mode array, where n
is not to be confused with the number of images but rather
represents the different statistical modes of the data). Most
notably is the so-called higher-order discriminant analysis
(HODA) [8]. In addition to HODA, discriminant analysis with
tensor representation (DATER) [9] and general tensor discrim-
inant analysis (GTDA) [10] provide iterative procedures to
maximize the scatter ratio criterion. However, DATER does not
converge over iterations. Although the iterative approximation
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method of GTDA converges, it converges to a local maximum.
Thus, two effective algorithms, direct general discriminant
analysis (DGTDA) and constrained multilinear discriminant
analysis (CMDA) are proposed as outlined in [11]. DGTDA
learns tensor subspaces by obtaining the global maximum
scatter ratio without iteration, whereas CMDA guarantees con-
vergence over iterations. All these supervised learning methods
rely on Tucker decompositions and the n-mode product [12],
[13].

Recently, a new approach to supervised learning has been
introduced by extending traditional LDA to a multilinear
framework (referred to as multilinear discriminant analysis
(MLDA)) [14]. The approach is based on recent developments
based upon Fourier theory and an algebra of circulants as
outlined in [15]-[19]. It was shown that under the right tensor
multiplication operator, a third order tensor can be written as
a product of third order tensors in which the left tensor is
a collection of eigenmatrices, the middle tensor is a front-
face diagonal (denoted as f-diagonal) tensor of eigen-tuples,
and the right tensor is the tensor inverse of the eigenmatrices
resulting in a tensor-tensor eigenvalue decomposition (t-eig)
that is similar to its matrix counterpart.

In an effort to improve and perfect the performance of
MLDA, in this paper, we propose a kernel-based MLDA
(referred to as KMLDA) that provides nonlinear generaliza-
tion of MLDA. The kernel idea was originally applied in
Support Vector Machines [20] and kernel Fisher discriminant
analysis [21], [22] for second-order tensors. However, we
introduce the polynomial kernels for third-order tensors that
provide the nonlinear mapping explicitly. Moreover, we intro-
duce the wavelet transform based third-order tensor definitions
and mathematical operations using a special structured block
matrix which are computationally more efficient compared
to the fast Fourier transform (FFT) and the discrete cosine
transform (DCT) based third-order operators [18], [23], [24].

The remainder of the paper is organized as follows. In
Section II, we discuss the mathematical foundations of the
tensor operators and the tensor-tensor eigendecomposition. In
Section III, we propose our new framework for KMLDA.
In Section IV, we compare the proposed method with the
state-of-art Tucker structure based discriminant analysis and
MLDA methods for classification applications, and Section V
concludes the paper.



II. MATHEMATICAL BACKGROUND

In this section, we will define the wavelet transform-based
third-order tensor definitions and mathematical operations us-
ing a special structured block matrix determined by the frontal
slices of the third-order tensors. Fundamental to the results
presented in this section is motivated by the tensor definitions
based upon Fourier theory and algebra of circulants as outlined
in [15]-[19], [23], [25]-[27].

A. Tensor operators

In the wavelet transform, a signal in the time domain is
decomposed by passing it through high-pass filter (resulting
in detail coefficients) and low-pass filter (resulting in ap-
proximation coefficients) to produce low-pass and high-pass
wavelet coefficients referred to as a “level-1 decomposition”.
The low-pass version can be further decomposed by again
passing it to a set of low-pass and high pass filters referred
to as “level-2 decomposition”. This process can be further
continued to a pre-defined level as outlined in [28], [29].
While there are many different types of wavelets, arguably
the most common are the Haar wavelet [30] and Daubechies
wavelet [31]. In our work, we use the Haar wavelet due to
its low computation cost and simplicity to apply as compared
to other wavelets. The discrete Haar wavelet transform can be
expressed in matrix form for each level decomposition [32].
Thus, the discrete Haar wavelet forward transformation matrix
for level-1 decomposition can be written as:
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where hy and h; are scaling function coefficients, whereas gq
and ¢; are wavelet function coefficients.

It will be convenient to break a tensor A in R**™*™ up

into various slices and to have an indexing on those. The i
lateral slice will be denoted .A; whereas the j® frontal slice
will be denoted AY). In terms of MATLAB indexing notation,
this means A; = A(:,4,:) while AU) = A(:,:, ). In order
to discuss our new definitions we must first introduce the
block matrix that can be diagonalized by the discrete Haar
wavelet transform matrix H (illustrated in (1)). We call this
block matrix as “block dwt matrix”, denoted by bdwt for short.
For example, consider the tensor A € R*™*" with £ x m

frontal slices then bdwt(A) can be written as follows:
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A new block-diagonal form (3) can be constructed via left and
right multiplication by a DWT matrix (1).
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where each of the D; is a £ x m matrix, I, is a ¢ x ¢ identity
matrix, I, is a m x m identity matrix, H,, is the n x n
DWT matrix defined in (1), H! is its transpose, and ® is
the Kronecker product.

Definition 1. An element ¢ € R'*1*" ig called a tubal-scalar
of length n.

Definition 2. If A € R*™>" then unfold(A) takes tensor
A and returns a block #n x m matrix.

AD

A
unfold(A) =

Ain)
The operation that takes unfold(.A) back to tensor form is the

fold operator:
A = fold (unfold(A)).

Definition 3. If A € R/*™*"_then the unbdwt operator takes
matrix bdwt(.A) and returns tensor A.

A = unbdwt (bdwt(A)).

Definition 4. Let A € R“™*™ and B € R™***". Then the
wavelet product denoted by A ,, B € R**" is defined as:

A x,, B = fold(bdwt(.A) - unfold(5)),
where - is standard matrix multiplication.

Definition 5. Let A € R‘*™*" Then the tensor transpose of
the tensor A denoted by AT € R™*#X" jg defined as:

AT = unbdwt ( (bdwt(A)) T) :

Definition 6. Let A € R™*"*" Then the tensor inverse of
the tensor A denoted by A~ € R™*™*" s defined as:

A~' = unbawt ( (bdwt(4)) ~").

Definition 7. The identity tensor Z € R™*™*" g the tensor
whose frontal slice is the m X m identity matrix in the
transform domain,

T=T1x3H;',



where f(:mi) =1Ifori=1,...,n and I is the m x m
identity matrix. H,, is the n x n Haar wavelet level-1 trans-
formation matrix defined in (1). We note that x3 is a mode-3
product [13], [24]. This operation has the same effect as taking
inverse wavelet transform along each tube in 7.

Definition 8. The tensor norm used through this paper is the
Frobenious norm which for the tensor A € R‘*™*™ is given
by:
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Definition 9. An idempotent tensor A € R™>™*™ g the
tensor which, when multiplied by itself, yields itself.

A=Ax, A

B. Wavelet Tensor Eigendecomposition

The final tool necessary for a multilinear LDA is to define
a tensor-tensor eigenvalue decomposition. Motivated by the
tensor eigendecomposition based on the Fourier transform-
based tensor operators in [14], we will introduce the wavelet
tensor eigendecomposition referred to as the t-eig,, using the
special block structure and tensor operators given in II-A.

Definition 10. Let A € R™*"™*™ _then the t-eig,, of the tensor
A is defined as:

A:P*wp*wp_la

where P € R"™*™*" is a non-singular and D € R"™>*™*" jg
a f-diagonal tensor such that the frontal slices are diagonal. A
graphical illustration of the t-eig,, is shown in Fig. 1.

Recall equation (3):

D,
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To construct the t-eigy, the matrix eigenvalue decomposition
is performed on each of the D; as D; = PiEiPi_l. Then we
can write:

D,

Py P Pt
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Applying (H ®I,,,) to the left and (H,, ®I,,,) to the right of
each of the block diagonal matrices on the right hand side
results in each being the bdwt structure. We can use the
unbdwt operator given in Definition 3 to take them back into
tensor form as following:
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D= unbdwt<(HnT ® Iy) (Hp ® Im)>,

Xn

Pt
Pl = unbdwt((Hf@Im) (Hn®1m)>,

Pfl
Therefore, that results in the decomposition:
A="PxyDx, P L.

For computational efficiency, we can compute the tensor
eigendecomposition for any invertible transforms using spec-
tral domain operations similar to the computation of the t-
SVD using the FFT in place of spatial domain operations [15],
[17], [18], [24], [33]. Previously, the FFT-based tensor eigen-
decomposition is defined in [14]. However, the DWT has time
complexity of O(N), whereas the FFT and DCT are both
O(NlogN), hence the reduction in computational complexity.
TABLE I shows the time complexity of the tensor eigendecom-
position of tensor A € R™*™*™ based on three most widely
used invertable linear transforms, it is clearly seen that the
DWT-based eigendecomposition (t-eigy) is the fastest method
among others.

TABLE I
THE TIME COMPLEXITY OF THE FFT, DCT, AND DWT BASED TENSOR
EIGENDECOMPOSITION.

Tensor A c R"LX’"LX’IL

FFT O (m?nlog(n))

t-eig after FFT O(2m?)

t-eig with FFT | O(mZnlog(n)) + O(2m?)
DCT O (m?nlog(n))

t-eig after DCT Oo(m?)

t-eig with DCT | O(m2nlog(n)) + O(m3)
DWT O(m?n)

t-eig after DWT O(m?)

t-eig with DWT O(m?n) + O(m?)

III. PROPOSED KMLDA METHOD

In this section, we provide an overview of prior MLDA
work proposed in [14] and illustrate some of the shortcomings
of such an approach. We then turn our attention to nonlinear
extension of MLDA work that improves the recognition per-
formance of MLDA.

A. Overview of MLDA

To keep the current work self-contained, we present a brief
overview of the work on MLDA outlined in [14]. However,
unlike MLDA in [14] (which was based Fourier theory), we
use the wavelet transform-based operators and definitions as
outlined in Section II.

Consider the situation where we have a collection of £ image
samples, each of size m x n pixels. We can construct our data
tensor A € R™*X" where each lateral slice of A (ie., A;,



Fig. 1. Graphical illustration of the t-eigy.

for : = 1,2,...,¢) is an m X n sample image. From this
construction, the within-class scatter tensor can be written as:

c
Sy = Z Z (Aj = M) # (A; — M), “4)

=1 .Aj €c;

where C' is the total number of classes, A; € R™*1*" is the
4" lateral slice of class i denoted by c¢;, and M; € R™>*1X" ig
the mean of class c;. The transpose operator and the multipli-
cation operator are outlined in Definition 5 and Definition 4
respectively. We define the between-class scatter tensor as:

c
Sy =Y Ni(M; = M) %, (M; = M), (5)
i=1
where M is the mean of all data samples and NN; is the number
of samples in the class <.

The goal is to find a projection tensor I/ so as to maximize
the between-class scatter while minimizing the within-class
scatter (generally written as a scatter ratio). It can be shown
that the projection tensor in question can be computed by
solving the generalized tensor eigenvalue problem as:

(Sw_l *w Sb) *wu:D*wu7 (6)

where U = [Uy,Us, ..., U] € R™*FX" are the eigenmatrices
corresponding to the k largest eigen-tuples of the diagonal
tensor D using the tensor norm defined in Definition 8 and
the tensor inverse operation is outlined in Definition 6. Note
that similar to its matrix counterpart, there are at most C' — 1
nonzero eigentuples of (6), therefore the projection space has
at most dimension C' — 1. The projection tensor I/ can be
obtained via the t-eigy defined in Section II-B. Finally, the
tensor data A € R™**" can be projected onto the new
multilinear subspace U € R™**X™ resulting in the new
reduced feature tensor.

B — (uT *w A) c kalxn. (7)
B. Proposed KMLDA Extension

Suppose that A € R™**X" is a data tensor consists of
m x n sample images as lateral slices, i.e., A; € R™MX1X7
for i = 1,2,...,¢ . Define ® as a function that maps the
tensor input to feature space, i.e., ®(A;) € R™>*1X" We note

that we generally have ¢ > m. Motivated by the definition of
the kernel of two vectors outlined in [34], [35], we define the
kernel of two tensors A; € R™*1%X" and A, € R™*X1X" by:

k(A1 Az) = ®(A1)T %, §(Ay) € RV*¥IX7 ®8)

which results in a tubal scalar and measures similarity between
the two tensors [24]. Because the function @ is usually not
available, computation of dot products in feature spaces can
be done efficiently by using the kernel functions. There exists
different types of kernels functions defined for vectors [36],
[37]. In this paper, we define polynomial kernels for third-
order tensors based on the inner product definition between
two third order tensors.

Polynomial: k(A;, As) = (AT , Ay + ¢)? )

where ¢ € R*1X7 ig a tubal-scalar constant, and d is a scalar
constant. In our experiments, we use ¢; = 1 for j =1---n,
where ¢; denotes the j‘h entry of that tubal scalar, and d = 0.8.

In order to perform MLDA in feature space, we first map
the training and testing tensors into a feature space. Suppose
A € Rm*#xn and B € R™*PX™ are the training and testing
tensors respectively where each lateral slice is a m x n sample
image. The training tensor in the feature space A® € R*¢x7
is the kernel tensor of the training data and the testing tensor
in the feature space B® € R*PX" is the kernel tensor of the
training data and the testing data. They can be defined using
the polynomial tensor kernel in (8) as:

k(A1 A1) k(A As) - -k(Ap, Ap)

40— k(AQ., Ay) k(Ag., As) - 'k(./"lz, Ay) a0
K(An A K(AnAs) k(A Ay
k(A1,B1) k(A1,B2) ---k(A1,B,)

5 k(Az', B1) k(A2', By) - 'k(./ftg, By) an
k(Ae., Bi) k(-Ae., By) - 'k(v;lh By)

The within-class scatter tensor can now be reformulated as:
c

SP = ZWq)i s CP1 sk, C1 sy WENT
i=1



where C® € RF*kX™ 5 the centering tensor of the i class
which is an idempotent tensor defined in Definition 9.

CP =C% x, C*.

Therefore,

C
S = WP €T VT,

i=1

12)

where WP ¢ R*kX7 ig the kernel tensor of the entire
training data and the training data of the i" class. If, for
example, the first three lateral slices of the tensor A belong
to the i class, we can write W®i € REX3X7n aq:

k(A1 A1) k(A Az) k(A As)
k(Az, A1) k(Az, A2) Kk(Asz, A3)

we

k(Ap, A1) k(A Az)  Kk(Ag, As)

Definition 11. The tensor C* € R™*™*" jg called a centering
tensor when right multiplied with a tensor A € R™*™*" has
the same effect as subtracting the mean of all lateral slices of
the tensor and left multiplied with a tensor has the same effect
as subtracting the mean of all horizontal slices of the tensor.

The mean of the lateral slices of the tensor A can be

computed as:
k

1 .
i (1)
M= AY.
=1
To remove the mean M € RF*1X" from the tensor A, we
subtract the mean from the lateral slices of the tensor A.

A=A-M.
C® € RF*kx71 js a centering tensor can be written as:

1

P _ -
" =1 kjv

j:jXSH;17

where J € R¥*FX" is a tensor whose each entry is one,
T € RF*kXn ig the identity tensor defined in (7) and H,, is
the n x n Haar wavelet level-1 transformation matrix defined
in (1). We remind the reader that X3 is a mode-3 product
and details can be found in [13], [24]. Multiplication by the
centering tensor is a convenient analytical tool of of removing
the mean from a tensor.

A= Ax, C®.

The fact that left multiplication removes the mean of the
horizontal slices from the tensor can be similarly shown.
The between-class scatter tensor can be written as:

c
S =D (MP = MP) s, (MO = MP)T,

i=1

13)

where M®i € RE¥1X7 ig the mean of the lateral slices of the
kernel tensor W®i € RI¥Exn whereas M® € RIX1X7 ig the
mean of the lateral slices of the kernel tensor A% € R¢*Exn,

The projection tensor U can then be computed by solving
the generalized tensor eigenvalue problem as:

(827" sy SP) 5y UT = D® 5, U, (14)

where U® € R**C—1X" consists of eigenmatrices. Note that
there are at most C'— 1 nonzero eigen-tuples of (14), therefore
the projection space has at most dimension C' — 1. Finally, the
training tensor data A® € R®*¥*™ and the testing training
tensor data B® € R‘*¥*X™ can be projected onto the new
multilinear subspace U® € R¥*C~1X" resulting in the new
reduced feature tensor.

T T o C—1x¢
A =U®T %, A® € RE XX

B® :u<I>T *u B® ¢ RC—1xkxn

5)
(16)

Once the projections A® and B?® have been computed, classifi-
cation is performed via nearest neighbor search for the closest
match using the tensor norm defined in Definition 8.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed KMLDA method
with other multilinear subspace learning methods in the liter-
ature, namely, DATER [9], HODA [8], CMDA [11] , DGTDA
[11], and MLDA [14].

For our experimental validation, we choose three common
data sets used in the literature, namely: (a) the ORL data
set consists of 10 different images of 40 distinct subjects un-
der varying lighting conditions, facial expressions, and facial
details [38]; (b) the extended Yale-B data set that contains
images of human faces under varying facial expressions and
illumination directions [39]. There are 38 subjects and 59
images per subject; (c) the COIL-100 data set that contains
images of 100 different objects being rotated about a single
degree of freedom to obtain 72 poses per object [40]. For
computational efficiency, we use the first 20 objects with 72
poses of each object to produce total data set of 1440 images.
A subset of example images for each of the three data sets are
illustrated in Fig. 3. We note that, for computational efficiency,
each image in the all databases were resized to 32 x 32. For
each of the four data sets, 20 different classification runs were
evaluated where a random 70/30 (training/testing) split was
performed to ensure complete coverage of the training/testing
space. Information regarding image size, training set, testing
set, and class size is outlined in Table II.

TABLE 11
SPECIFICATIONS ON THE DATA SETS USED FOR EXPERIMENTAL
VALIDATION.
Data Set Image Size | Train Set | Test Set | # of Classes (C)
ORL 32 x 32 280 120 40
Ext. Yale-B 32 x 32 1569 673 38
COIL-100 32 x 32 1008 432 20

Fig. 2 shows the classification performance of MLDA and
KMLDA methods on the three data sets. It is clearly seen that
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Fig. 2. Classification accuracy comparison on the ORL, extended Yale B, and COIL 100 databases.

Fig. 3. A subset of images from each data set used in this research. (a) The
ORL data set, (b) the extended Yale-B face database, (c) the COIL-100 data
set.

the defined tensor kernel space yields more class separability
for each feature dimension on the three data sets. We note
that since the projection space has at most dimension C' — 1
(where C' is the total number of classes), KMLDA may reach
the maximum projection dimension, whereas the image size
may not allow MLDA to reach the maximum as seen on the
ORL and extended Yale B data sets.

Table III shows the classification accuracy for all six meth-
ods applied to the data sets outlined in Table II. Because the
classification results are computed for 20 different cycles (each
with a random 70/30 split), we show the mean classification
accuracy =+ the standard deviation in classification accuracy
across all 20 runs. We note that for classification, we selected
a b—dimensional subspace for all six methods and performed
nearest-neighbor search with tensor Frobenious norm defined
in Section II Definition 8. As can be seen from Table III, the
proposed KMLDA approach outperforms all other methods
across all three data sets evaluated.

TABLE III
CLASSIFICATION ACCURACY FOR EACH OF THE SIX DIFFERENT METHODS
AND ALL THREE DATA SETS.

Method ORL Extended Yale B COIL 100
DATER [9] 56.75 + 2.75 86.73 £ 2.13 94.02 £ 1.45
HODA [8] 75.04 + 3.44 62.35 + 4.66 97.55 + 0.67
CMDA [11] 71.42 +£4.01 74.71 £ 4.08 95.56 £ 1.01

DGTDA [11] 72.29 4+ 2.85 61.45 +4.04 97.76 £ 0.69
MLDA! [14] 94.83 + 2.56 92.31+1.23 98.22 + 0.63
KMLDA 96.21 +1.72 95.81 + 0.76 99.16 + 0.59

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new approach to tensor discriminant
analysis computing the discriminant features in some feature
space which is nonlinear related to the input space. Further-
more, the wavelet transform-based MLDA was introduced
using the wavelet transform based mathematical operations
which are more computationally efficient compared to the FFT
and the DCT-based operators. An analysis was presented in
the context of classification of the ORL, the extended Yale
B, and the COIL-100 data sets. It was illustrated that for all
three data sets, our current approach outperformed the Tucker-
based discriminant analysis and MLDA methods in terms of
classification accuracy. Future work will be dedicated to repro-
ducing kernel space applied to the Tucker-based discriminant
analysis as well as evaluating radial basis kernel functions for
third-order tensors.

'MLDA is computed using the wavelet based tensor operators and t-eigyy
in Section II-A. Classification performance of MLDA based on the FFT [14]
might be slightly different than the DWT-based MLDA.
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