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High-Frequency Mapping of Downward Shortwave
Radiation From GOES-R Using Gradient Boosting

Sadegh Ranjbar

Abstract—This study investigates high-frequency mapping of
downward shortwave radiation (DSR) at the Earth’s surface using
the advanced baseline imager (ABI) instrument mounted on Geo-
stationary Operational Environmental Satellite—R Series (GOES-
R). The existing GOES-R DSR product (DSR A1) offers hourly
temporal resolution and spatial resolution of 0.25°. To enhance
these resolutions, we explore machine learning (ML) for DSR
estimation at the native temporal resolution of GOES-R Level-2
cloud and moisture imagery product (5 min) and its native spatial
resolution of 2 km at nadir. We compared four common ML regres-
sion models through the leave-one-out cross-validation algorithm
for robust model assessment against ground measurements from
AmeriFlux and SURFRAD networks. Results show that gradient
boosting regression (GBR) achieves the best performance (R* =
0.916, RMSE = 88.05 W-m~2) with more efficient computation
compared to long short-term memory, which exhibited similar
performance. DSR estimates from the GBR model through the
ABI live imaging of vegetated ecosystems workflow (DSRar1vE)
outperform DSR4 g1 across various temporal resolutions and sky
conditions. DSRA1.1vE agreement with ground measurements at
SURFRAD networks exhibits high accuracy at high temporal res-
olutions (5-min intervals) with R? exceeding 0.85 and RMSE =
122 W-m~2. We conclude that GBR offers a promising approach for
high-frequency DSR mapping from GOES-R, enabling improved
applications for near-real-time monitoring of terrestrial carbon
and water fluxes.

Index Terms—Ameriflux, downward shortwave radiation
(DSR), geostationary satellite, machine learning (ML), SURFRAD.

I. INTRODUCTION

OWNWARD shortwave radiation (DSR) at the Earth’s
D surface has long been estimated using geostation-
ary (“weather”) satellites by combining measured top-of-
atmosphere (TOA) reflectances with radiative transfer models
[1], [2], [3], [4], [5]. The NOAA operational algorithm using
observations from the advanced baseline imager (ABI) on the
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Fig. 1. Proportion of valid pixels in the DSRapr product from GOES-16

across the CONUS view in 2022, averaged over the course of the day for each
month.

Geostationary Operational Environmental Satellite—R Series
(GOES-R) provides hourly estimates of DSR [3] (hereafter
DSR 1) despite scanning on 5-min intervals across the con-
terminous United States (CONUS) and 10-min intervals across
the Western Hemisphere “full disk™ [6], [7]. This hourly cadence
complicates nascent efforts to apply geostationary remote sens-
ing to estimate terrestrial carbon and water cycling in near-real
time [8], [9], because additional approaches must be taken
to infer hourly DSR at more frequent intervals, which intro-
duce uncertainty [10]. The DSR 4 g product creates maps with
0.25° x 0.25° (0.25° = 27-28 km) spatial resolution over
CONUS [11] when most ABI products are created at 2-km
resolution at nadir, with many missing estimates that require un-
certain gapfilling to obtain continuous data (see Fig. 1). Reduced
solar radiation, cloud cover, aerosol concentration, atmospheric
pollution, atmospheric moisture content, variations in surface
albedo (reflectivity) and various other environmental factors
can contribute to data loss in the DSR product. For instance,
during winter, the DSR s gy typically experiences approximately
2 h with 90% or more of valid pixels in an image, reflecting
periods of relatively clearer atmospheric conditions conducive
to accurate data collection.

Recent work has applied machine learning (ML) to estimate
DSR and/or photosynthetically active photon flux density from
the observations of multiple geostationary satellites [5], [12],
[13], [14], [15]. Artificial neural networks (ANNSs), recurrent
ANNs like long short-term memory (LSTM), random forest
(RF), and deep learning approaches are often determined to have
improved skill [12], [13], [16], [17], [18], [19], [20], due in part
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Fig. 2. Location of Ameriflux towers (orange squares) and SURFRAD sites
(magenta circles) used in this study, mapped onto GOES-16 CONUS “true color”
imagery from September 21, 2022.

to their ability to capture nonlinear relationships amongst mul-
tiple variables. Here, following the approach of [8] for carbon
dioxide flux estimation using GOES-R, we demonstrate how
gradient boosting regression (GBR) can give comparable skill
in DSR estimation compared to more computationally expensive
approaches like LSTM, multilayer perceptron neural networks
(MLP), and RF to efficiently estimate DSR in near-real time from
Level 2 cloud and moisture imagery (CMI) reflectance factors
and brightness temperatures from the ABI across CONUS.

II. DATA

We utilized ground measurements from the Ameriflux and
NEON tower networks and SURFRAD networks, along with
geostationary satellite observations obtained from the ABI sen-
sor mounted on GOES-R series satellites. To create an efficient
estimate of DSR using ABI data, we sampled time series of ABI
Level 2 products at 99 sites across CONUS from pixels where
Ameriflux eddy covariance towers are located that measure
incident shortwave radiation (SW-IN) for the period 2020-2022
(see Fig. 2). Time series data collection followed the method
proposed in [10], which applies a point-based terrain-correction
to the ABI Fixed Grid projection to mitigate the effect of parallax
displacement. The 2020-2022 period captures a range of atmo-
spheric conditions across multiple climate zones for training
and testing our model, hereafter DSR z1,1vE, following the ABI
live imaging of vegetated ecosystems workflow [8]. The SW-IN
measurements underwent consistent quality control (QC) checks
through the standardized Ameriflux processing scheme [21].
These SW-IN data were combined with GOES-R ABI CMI
observations, solar zenith angle (SZA), and solar azimuth angle
(SAA) (SZA and SAA were calculated using NOAA solar
position calculator' ) to build a database of predictor variables
(CMIs, SZA, and SAA) and target variables (SW-IN) to explore
ML methods to estimate DSRa1,ve. ABI CMI observations

1.[Online]. Available at: https://gml.noaa.gov/grad/solcalc/calcdetails.html.
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include 16 bands collected across the visible, near-infrared,
and infrared ranges of the electromagnetic spectrum (see [6]
and [7] for more specific information about the bands). The
model performance was compared against independent SW-IN
observations from the Ameriflux and NEON tower networks and
SURFRAD [21], [22], [23]. The SURFRAD network measures
DSR (DSRsyrFrAD) €very minute, providing high-quality data
at seven sites ideal for evaluating DSR A 1,1vE at various temporal
intervals (refer to [22] for further information). The SURFRAD
sites are located in seven different states across US (see Fig. 2),
including Illinois (with site code of BND), Colorado (TBL),
Nevada (DRA), Montana (FPK), Mississippi (GWN), Penn-
sylvania (PSU), South Dakota (SXF), and Oklahoma (SGP).
We further compared DSR a1 1vE With DSR a1, and DSRa By
to SW-IN, to understand differences that may arise between
the different ABI-based data products. We analyzed data with
respect to clear and cloudy skies using the ABI Clear Sky Mask
product, and also explored the ability of the ABI aerosol optical
depth (AOD) product to improve predictions [24], [25], noting
that AOD estimates from the ABI also include frequent missing
observations.

III. METHODS

A. Regression Models: RF, GBR, LSTM, and MLP

We explored four common ML regression models to create
DSRarLive: RE, GBR, LSTM, and MLP [26], [27], [28].

RF and GBR, both ensemble models, blend decision trees via
bootstrapping and feature bagging [29]. As applied in remote
sensing [30], [31], [32], [33], they gauge feature importance
but differ in focus. RF prioritizes simplicity and minimizing
training set loss, while GBR emphasizes optimizing a loss func-
tion for error reduction. GBR iteratively constructs an additive
model through a forward stage-wise approach, facilitating the
optimization of diverse differentiable loss functions, while RF
combines trees independently [30], [34]. Both require hyper-
parameter tuning, influencing model size and depth. In both
models, shared hyperparameters include “number of estima-
tors,” “maximum depth,” and “minimum samples per leaf.”
These parameters collectively determine model complexity,
regularization, and generalization ability [20], [32], [34]. The
“number of estimators” controls the quantity of decision trees in
the ensemble, while “maximum depth” limits tree complexity
to mitigate overfitting. “Minimum samples per leaf” sets the
threshold for node splitting, aiding in regularization [32], [33].
Finally, the learning rate parameter modulates the contribution of
each tree to the ensemble, fostering a balanced tradeoff between
convergence speed and model stability [31], [34].

LSTM networks have proven instrumental in handling se-
quential data, showcasing proficiency in time series forecasting
[35]. Their efficacy in capturing long-term dependencies, facili-
tated by unique memory cell architecture [36], [37], addresses a
key limitation of traditional recurrent neural networks (RNNs)
and can handle nonlinear relationships within sequences [37].
Despite their advantages, the complexity of LSTM architecture
demands higher computational resources compared to simpler
RNNSs [38], [39]. In addition, achieving optimal performance
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often requires careful hyperparameter tuning, adding intricacy
to the training process [35]. Researchers must weigh these com-
putational costs and tuning challenges against the benefits when
applying LSTMs, to tailor an approach aligned with dataset
characteristics and research goals [36], [37], [38], [39]. Our
LSTM architecture utilized two LSTM layers with an identical
number of units. The first layer (“return_sequences = True”)
retained and returned the entire sequence of hidden states for
each input sequence, crucial for capturing temporal depen-
dencies. Conversely, the second layer (“return_sequences =
False”) only returned the output at the last time step, effectively
summarizing the learned information. Following the LSTMs,
two dense layers were added. The first dense layer, with 25
units, facilitated further feature extraction and representation
learning. The final dense layer, with a single unit, produced the
model’s output.

MLP is an ANN for learning patterns through backpropaga-
tion [40], [41], [42]. With layers of interconnected neurons and
nonlinear activation functions, MLP is versatile in approximat-
ing nonlinear relationships [40], [42], [43]. Hyperparameters
contribute to model complexity, nonlinear mapping, conver-
gence speed, and preventing overfitting [44].

MLPs and LSTM networks rely on hyperparameters to opti-
mize their performance. For MLPs, activation functions, solver
algorithms, hidden layer configurations (including size), and
regularization terms significantly impact the network’s architec-
ture, learning dynamics, and overfitting tendencies [36], [42]. In
LSTMs, the number of units (neurons) determines memory ca-
pacity and computational complexity, while activation functions
modulate information flow within memory cells [36]. Optimizer
choice steers training dynamics and convergence, and batch size
regulates efficiency and memory usage during training iterations
[45], [46]. A mean squared error loss function was used for both
MLP and LSTM.

B. Model Development

We used Google Colab Pro with random access memory up to
32 GB and an A100 graphics processing unit (GPU) for model
development. To optimize model performance, we employed
a grid search algorithm, systematically testing hyperparameter
combinations within each ML model to identify configurations
that maximize correlation (in terms of R?) and prediction speed
[28], [47]. Table I outlines the hyperparameter search specifica-
tions and ranges for each ML model.

For validation and evaluation, we adopted a leave-one-out
cross-validation (LOOCYV) algorithm, reserving 20% of the
data exclusively for testing, while the remaining data under-
went a four-fold cross-validation process with a 75:25 training-
validation split [47]. To enhance reliability and robustness, we
reran the algorithm ten times and averaged the results using
the Scikit-learn Python library [48] and used the coefficient
of determination (R?) and root mean squared error (RMSE) to
evaluate and compare models. Following model comparison,
we used feature importance results to identify key variables
for modeling DSR in a SHapley Additive exPlanations (SHAP)
analysis [49].
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TABLE I
GRID SEARCH SPECIFICATIONS AND HYPERPARAMETER SETTING FOR ML
MODELS
Model | Hyperparameter Grid Setting
Number of estimators | 100, 300, 500, 800, 1000
RF Maximum depth 5,8, 10, 15, 20, 30
min_samples_leaf 50, 100, 200, 500
Number of estimators | 100, 300, 500, 800
GBR Maximum depth 3,5,8,10
min_samples_leaf 50, 100, 200, 500
Learning rate 0.01,0.05,0.1
Activation “logistic”, “tanh”, “relu”
Solver “adam’”, “sgd”
MLP Hidden layer 2,3,5
Hidden layer size 50, 100, 200, 500
Alpha 0.0001, 0.001, 0.01, 0.1
Units (neurons) 32,64, 128,256, 512
Activation “logistic”, “tanh’}, “relu”
LSTM — m Py
Optimizer adam’; “sgd
Batch Size 32, 64, 128, 256

SHAP is a powerful tool rooted in game theory for unraveling
the opaque nature of ML predictions [49]. It uncovers individual
feature contributions by quantifying the direction and magnitude
of their influence to identify synergistic or antagonistic relation-
ships that steer model behavior [50]. SHAP is not a universal
solution; computational costs may scale with data size, and
its effectiveness can be influenced by model complexity [51].
Nevertheless, SHAP can clarify individual predictions, unveil
feature interactions, and demystify the “black box” nature of
ML models. SHAP values are a unified measure to explain the
output of ML models by quantifying the contribution of each
feature to the prediction. Higher SHAP values denote features
with more significant impact and importance on the model’s
predictions.

IV. RESULTS

A. ML Performance

The GBR and LSTM models displayed better performance
than the other models with R? of 0.92, an improvement over the
relationship between DSR s g1 against SW-IN observations for
314 Ameriflux sites (R? of 0.83 reported in [10]). The prediction
time for LSTM is 19.5 times that of GBR (see Table IT), which de-
creases to 4.2 times that of GBR with the use of Google Colab Pro
A100 GPU. Given our objective of generating hypertemporal
DSR maps from ABI imagery captured every 5 min, prediction
time is critical. In this context, GBR emerged as the optimal
choice among the ML models due to its similar accuracy and
reduced prediction time compared to LSTM.

B. GBR Model Efficiency

To enhance the efficiency of prediction time versus accuracy,
we conducted training experiments on the GBR model, varying
the number of samples per site (with 20 965 available samples
per site), the model parameters maximum depth (m_depth), and
the number of estimators (n_estimators). We explored training
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TABLE II
MODELS PERFORMANCE VERSUS PREDICTION TIME FOR ML MODEL
TRAINING USING GOOGLE COLAB PRO

.. . Train Train Test Test
Model Prediction Time R RMSE R RMSE
CPU: 2.7 E-05 (2.2)
RF A100 GPU: 2.7 E-05 (2.2) 0.90 93.41 0.884 | 105.68
CPU: 1.2 E-05 (1)
GBR A100 GPU: 1.2 E-05 (1) 0.93 84.33 0.916 | 88.05
CPU: 3.41 E-05 (2.8)
MLP A100 GPU: 2.5 E-05 (2.1) 0.90 95.78 0.888 | 101.15
CPU: 23.4 E-05 (19.5)
LSTM A100 GPU: 5.1E-05 (4.2) 0.92 85.09 0914 | 87.52
Prediction time unit is seconds per sample. The number in parentheses is the
relative prediction time compared to GBR. Units for RMSE are W m=.
0.91 - % 1 S 9 ‘ e o0
® o O °
{ ". oo o o
0.90 A " ‘1“ oo (® o
e O ‘ ...
% 0.89 1 t A
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Samples/site
0.881 ® 200 ® 2000
® 500 ® 4000
® 1000 ® 8000
0.87 -I ; T T T
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Prediction time (s) 1le-5
Fig. 3. R? score versus prediction time for GBR models (see Table IT) with

different m_depth, n_estimator, and training size. The black cross shows the
selected GBR model that balances prediction time and accuracy.

with 200, 500, 1000, 2000, 4000, and 8000 samples per site,
combinations of m_depth between 3, 5, 8, 10, and 12, and
n_estimators of 100, 300, 500, 800, and 1000.

Models trained with 2000 samples per site exhibited better
performance in terms of prediction time versus accuracy com-
pared to those trained with 200, 500, or 1000 samples per site
(see Fig. 3). Moreover, our analysis reveals that the model’s
performance stabilizes with 2000 samples per site, suggesting
diminishing returns with larger sample sizes. Therefore, opti-
mizing the sample size to balance accuracy and computational
efficiency is paramount for our dataset generation objectives.
Through iteration, we identified the most efficient GBR model,
balancing prediction time (1.18E-5 s per sample) and correlation
(R? of 0.91). This optimal model was trained with 2000 samples
per site with m_depth = 8 and n_estimator = 300. The selection
of this model is visually depicted by the black cross in Fig. 3.
‘We used this model for DSRa11vE.

A density scatter plot illustrating the relationship between
SW-IN and DSRy1,1vE is shown in Fig. 4. The R? between
half-hourly SW-IN and DSRa11vE is 0.92 with an RMSE of
86.12 W-m 2,

11961

12001R75.92 T4

RMSE: 86.12

1MAE: 55.8

Bias: 1.12
AT 4

=
o
o
o

800 -

Aysuap uiod

=
L)

Estimated DSRve W/m?

200 400 600 800 1000 1200
Measured SW-IN W/m?2

Fig. 4. Density scatter plot between half-hourly DSRar1vE and SW-IN
measurements from eddy covariance towers.

TABLE III
DSRA11vE VERSUS AMERIFLUX TOWERS MEASUREMENTS AT TEMPORAL
RESOLUTION AND SKY CONDITION

Temporal Resolution | Sky Condition| R> |RMSE
clear 0.98 | 48.76

Half hourly cloudy 0.88 ] 89.86
all 0.92| 86.12

Daily all 0.99( 10.30
Weekly all 099 6.68

Table III presents the agreement of DSR z1,1vE versus SW-IN
from the average of running LOOCYV algorithm ten times. We
computed R> and RMSE metrics by taking the mean DSR
across different temporal resolutions (half-hourly, daily, and
weekly) and sky conditions (clear and cloudy). Moreover, the
daily analysis revealed a more robust performance of the GBR
model when comparing estimated DSR a1 1vE to SW-IN, with
R? values of 0.99, RMSE of 10.30 W-m~2, MAE 8.19 and bias
of —1.06 W-m~2.

C. DSR4 11vE Performance

The relationship between half hourly DSR z1,1vE and SW-IN
has an R? value of 0.98 for clear skies and 0.88 for cloudy skies,
with little bias as a function of local (standard) time (see Fig. 5).
Bias for cloudy skies is larger, especially in the early morning.

Mean DSR s 1vE largely matches SW-IN across the range of
SZA from 11° to 88° (see Fig. 6) but slightly overestimates SW-
IN at low SZA, especially in cloudy conditions [see Fig. 6(d)],
noting that less training data are available at low SZA across
CONUS [see Fig. 2].

D. Feature Analysis

We conducted SHAP analyses separately for clear and cloudy
days and studied the top eight most impactful features on the
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GBR model output for DSR predictions. SZA with the SHAP
value of 0.79 is the most important, and CMI-C01 at wavelength
of 0.47 um (with SHAP value of 0.12) and SAA (with SHAP
value of 0.04) consistently rank among the top three most
important features for prediction (see Fig. 7). These features
exhibit a positive correlation with the model prediction, where
higher values result in higher DSR. Following these, CMI-C06
at wavelength of 2.2 ym, CMI-C15 at 12.3 ym, and CMI-C12 at
9.6 ;um emerge as the next most important features for clear skies
[see Fig. 7(a)], while for cloudy skies [see Fig. 6(b)], the order

of importance shifts to CMI-C15, CMI-C12, then CMI-CO06.
CMI-C15 displays a negative correlation impact on the model
output, and CMI-C02 and CMI-C04 exhibit similar but smaller
impacts as CMI-C15.

Our findings revealed a modest increase of 0.02 in the average
R? when adding AOD to the GBR model. However, the standard
deviation of R? values at a specific hour across all DOY increased
by 0.05. Furthermore, 58% of our data was lost due to missing
AOD pixel values. We expect there to be similar proportions of
missing AOD data in the future because the ABI AOD algorithm
has not changed. Using AOD as a predictor would, therefore,
prevent DSR prediction at many timestamps, creating the same
DSR data outages that we are aiming to prevent.

E. DSR4 1vE Versus DSR 4 gr Versus SW-IN: Assessment at
Discrete Hours Across CONUS

Fig. 8 presents an analysis of the GBR model performance
trained on data from 2021 and tested on 2022 data at a local
standard time. By focusing on a specific hour on different DOY
in 2022, from 99 sites spatially distributed across CONUS, we
aimed to reduce the impact of time-based variations across
the distributed sites. Each box plot in Fig. 8 represents the
distribution of R? values obtained for a particular hour across
all 365 DOYs in 2022, excluding periods without at least 80
sites in each computation.

DSRarrve demonstrates higher R? values compared to
DSR A1 when compared with SW-IN throughout most hours,
except for 6-8 P.M. local standard time (red box in Fig. 8), during
which SZAs are characteristically low across the ABI CONUS
scene (see Fig. 2). DSR a1 1vE and DSR z g1 deviate from SW-IN
measurements after 5 P.M. [see Fig. 8(a) and (b)], and the mean
R? between SW-IN and both DSR a1 ve and DSRap; is less
than 0.7 from 5 to 6 A.M. DSR averages less than 100 W-m >
during these times (see Fig. 5).

Fig. 9 presents the CONUS maps for estimated DSRa11vE
and DSRpr at 6 PM. UTC on September 21, 2022, providing
a comparison extending beyond specific site locations. The
analysis yielded R> of 0.83, RMSE of 132.15 W-m~2, and
bias (DSRAp-DSR AL vE) of 85.86 W-m ™2, notable differences
between the two products across space and with respect to
cloud characteristics revealed by storm systems. (Tropical Storm
Ophelia can be seen on the right-hand side of the imagery.)
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Fig. 10 compares the model performance at Ameriflux sites
[see Fig. 10(a)] with the full images [see Fig. 10(b)] from
Fig. 9 using kernel density estimates. SW-IN and DSRa11vE
exhibit closer correspondence compared to their relationship
with DSR sy [see Fig. 10(a)]. DSRap; typically shows higher
estimates compared to the DSRar1vE [see Figs. 9 and 8(b)].
Fig. 10(a) and (b) depicts density plots related to September
21, 2022, at tower sites, where DSRa11vE and DSRaAp1 maps
are available (see Fig. 9). However, there is an observed bias of
85.86 W-m 2 between DSR a1 vE and DSRp; maps which
is evident in both the density plot [see Fig. 10(b)] and the
difference between the two maps, DSRapr - DSRar1vE [see
Fig. 9 (ABI-ALIVE)].

F. DSR4 1vE Performance at 5-min Frequency Versus
DSRsyrRFRAD

We exclusively utilized DSRsuyrrraD for testing DSRa11vE;
none were used in training. We selected the first week of July
2022 for time series comparison (see Fig. 11) and assessed
DSRar1vE performance across time intervals of 5, 15, and 30
min, as well as 1 and 2 h (see Table IV). Fig. 11 illustrates
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Fig. 9. DSRAaBI, estimated DSRA1,1vE, and their differences (ABI-ALIVE)
maps at hour 6 PM. UTC on September 21, 2022, with a CONUS view from the
GOES satellite.

significant fluctuations in DSRgyrFrAD at most sites, indicating
the potential influence of aerosols or clouds [16], [52]. Analysis
of AOD plots on the NOAA website, accessible at [53], further
demonstrates substantial fluctuations in AOD values at these
times and locations.

Fig. 11 indicates that the site DRA exhibits the highest agree-
ment with an R? value of 0.98, followed closely by SXL, BND,
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Fig. 10. Comparison of DSR distribution using kernel density estimate: SW-

IN versus DSRa By versus DSRar1vE at 6 PM. UTC on September 21, 2022,
at (a) Ameriflux sites and (b) across CONUS from maps presented in Fig. 9.

TABLE IV
DSRA11vE VERSUS SURFRAD MEASUREMENTS

5 min 15 min 30 min lh 2h
R? 0.85 0.86 0.88 0.90 0.91
RMSE| 121.82 108.83 103.02 | 96.85 [ 92.65
MAE 84.32 74.1 71.85 69.14 | 65.65
Bias 8.02 6.12 6.23 6.1 6.41

and TBL, each with R? values exceeding 0.85. In contrast, FPK
and PSU display lower R? values of 0.77 and 0.79, respectively.

Table IV presents the accuracy of DSRaprvg versus
DSRsurrrAD across temporal intervals ranging from 5 min to
2 h. As temporal resolution increases, there is a corresponding
improvement in model performance, demonstrated by higher
R? values and reduced error metrics such as RMSE, MAE, and
Bias. However, one may consider R? values of 0.85 at a 5-min
temporal resolution to be promising for hypertemporal analysis,
effectively capturing short-term variations in DSR, noting that
variability at shorter temporal scales, due to subpixel clouds
and/or fast-moving clouds, will not be able to be resolved by the
ABL

V. DISCUSSION
A. ML Performance and Efficiency

Our study highlights the importance of selecting efficient
ML models for predicting high-frequency DSR maps from ABI
imagery. GBR emerged as the optimal choice, offering similar
accuracy to LSTM but with substantially faster prediction time,
crucial for real-time applications [54], [55]. Through optimiza-
tion experiments, we identified a GBR model configuration that
balances prediction time and accuracy, making it well-suited for
generating “hypertemporal” DSR maps for our objective.

The findings from the GBR model efficiency experiment
suggest that models trained with a larger volume of training
data per site (2000 samples compared to 200, 500, or 1000)
enhance the balance between prediction time and accuracy,
thereby increasing overall model efficiency. Although it is well-
known that a larger sample size improves ML performance [47],
our study shows that it also increases efficiency in terms of
prediction time. However, 2000 samples per site appear to be
the saturation point for efficiency (see Fig. 3). Increasing the
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Fig. 11. Time series of DSRa1,1vE versus DSRSURFRAD at seven sites with

a 5-min frequency during the first week of July 2022. Sites abbreviations and
R? between DSR a1, 1vE and DSRSURFRAD Mmeasurements are noted.

number of samples beyond this point increases training time
with little improvement in fit. Furthermore, we observed that
models with higher complexity (m_depth) and lower ensemble
size (n_estimators) achieve optimization in both computational
efficiency and predictive accuracy (see Fig. 3).

B. SHAP Analysis

SZA emerges as the most critical predictor for modeling DSR,
as widely demonstrated in previous studies [15], [16], [17], [52].
Following SZA, CMI-CO01, and SAA are significant predictors
(see Fig. 7). These features demonstrate positive correlations
with DSR, where higher values indicate higher DSR. CMI-CO01,
which measures blue visible reflectance at 0.47 pm; its impor-
tance is consistent with Rayleigh scattering [15], [56], [57], [58].
SAA improved time alignment of ABI observations with SW-IN
measurements acquired at towers (see Fig. 5). This improvement
addresses the timing issue previously described in detail by
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Losos et al. [10]; in brief, the Ameriflux SW-IN observations
represent an average between observations made at the top of
the hour and half past the hour (or vice-versa) such that 15 and
45 min past the hour represents the average time over which
observations are averaged. Time alignment was poorer before
including SAA (results not shown).

Accurately estimating DSR presents a challenge influenced
by factors beyond just cloud cover. Research in [24], [59], and
[60] underscores the significant impact of cloud properties—like
type, thickness, and composition—on solar radiation reaching
the Earth’s surface. In addition, AOD, as described in [5], [15],
[24], [25], [60] in measuring atmospheric particle concentration,
also affects solar radiation attenuation. Although Hao et al. [15],
Ma et al. [16], and Hou et al. [61] showed the significance
of using AOD in DSR modeling, incorporating AOD into the
model results in only a modest increase in R? (0.02) for temporal
patterns, but decreases R> between spatially distributed sites at
specific hours, indicating prediction instability. Furthermore, the
significant loss of data due to missing AOD values (approxi-
mately 58%) raises concerns about the reliability of the final
DSR map at 5-min frequency. In addition to AOD, many studies
[15], [16], [59], [62] show that cloud optical depth (COD),
and cloud fraction (CF) also play crucial roles in DSR/PAR
modeling. Here we assume that the ML model incorporates
observations from the ABI TOA product (CMIs) for representing
the impacts of AOD, COD, and CF in DSR modeling. Previous
research indicates that CMI observations, particularly the blue
band, contain valuable information regarding AOD levels. In
2022, Kang et al. [63] utilized GOCI geostationary satellite data
to improve retrievals of AOD using a light GBR model. They
achieved R? of 0.92 by showing CHOI (the GOCI blue band
at 0.412 pym) as the most informative feature. Remote sensing,
combined with ML, offers an effective tool for retrieving cloud
microphysical parameters such as COD and CF [64], [65].

The comparison between DSR A1 and DSR A 1,1vE maps (see
Fig. 9) reveals notable disparities, particularly in regions with
high cloud cover, such as during hurricanes (Tropical Storm
Ophelia is depicted on the southeast corner of Fig. 9). Itis impor-
tant to note that DSR 5 g1 products may not be a perfect reference
for validation (with absolute error of up to 125 W-m~2 [11]),
especially in areas with frequent cloud cover or over oceans
due to the lack of ground stations. Incorporating additional
variables related to clouds, such as COD and/or CF, may enhance
performance. However, relying on additional datasets would
make DSR o 1,1vg more vulnerable to data outages. Therefore, we
have concluded that maintaining the simplicity of our algorithm
is advisable, especially considering its effective performance
compared to measurements of SW-IN measurements from
towers.

C. Data Sources and Uncertainty: Ameriflux Versus
SURFRAD

SURFRAD DSR measurements have lower uncertainty (2%
to +5%), compared to AmeriFlux’s stated =10% uncertainty
for net radiation observations [22]. However, AmeriFlux imple-
ments the AmeriFlux QC method to ensure data quality [21],
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[66], [67] and employs a multistep QC process to guarantee
the integrity of eddy covariance and micrometeorological data
[66], [68]. Following initial processing by tower teams, data
undergo rigorous assessment encompassing individual variable
inspection, evaluation of correlations between coupled variables
(e.g., solar radiation and photosynthetically active radiation),
analysis of temporal patterns, and in-depth examinations of
interrelated variable variations [21], [68].

Interestingly, despite the difference in uncertainty, our re-
search showed good agreement (R? of 0.85-0.91) between mod-
els trained on AmeriFlux data and DSR measurements from
the SURFRAD network. This agreement held even at 5-min
intervals, even though the models were trained on half-hourly
data (see Table IV). This suggests that AmeriFlux SW-IN data,
despite higher reported uncertainty, can be valuable for modeling
purposes.

D. DSR A1 rvE Performance Against SW-IN, DSRABI, and
DSRsyrrrAD

We observed that DSRaprye generally outperformed
DSRApr when compared with SW-IN measurements, except
during specific evening hours characterized by high SZAs (see
Fig. 8). In fact, both models performed more poorly compared
to SW-IN measurements after 5 P.M., suggesting limitations in
ABI to capture solar radiation dynamics during certain times
of the day with high SZAs. DSR maps across CONUS in
Fig. 9 revealed notable spatial differences between DSRa11vE
and DSRapy products, particularly regarding their response
to cloud characteristics. While DSRa1,1vE showed promising
performance under clear sky conditions for data collected at the
Ameriflux sites, differences persisted especially during periods
of low solar radiation and in the presence of clouds.

Our findings demonstrate that DSR 5 1,1vE exhibits promising
performance in estimating DSR at high temporal resolutions
(5-minintervals) compared to ground-based measurements from
the SURFRAD network (see Table IV). This is particularly
significant because, to our knowledge, this is the first study to
explore DSR mapping at such fine time scales. Traditionally,
DSR retrievals have been limited to coarser temporal resolutions
(half-hourly or hourly) due to constraints imposed by satellite
data availability and/or processing techniques [5], [15], [16],
[59], [69]. The ability of DSRa1,1vE to capture observed short-
term variations holds significant value for various applications.
For instance, monitoring rapid phenomena like heatwaves [70],
[71], wildfires [72], [73], [74], water stresses and flash droughts
[75]1, [76], and other fast-changing environmental events often
necessitates high-frequency data. Similarly, studies investigat-
ing the carbon cycle or other processes sensitive to short-term
fluctuations in solar radiation benefit from high-resolution DSR
data [8], [77], [78], [79]. Our work paves the way for utilizing
DSRar1vE as a tool to analyze these critical Earth system
processes at unprecedented temporal detail.

Itis important to note that while SURFRAD provides valuable
ground-truth data, its network primarily focuses on mid-latitude
regions (see Fig. 2). This poses a limitation for validating
models like DSR a1 1vE, which might struggle to simulate DSR
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accurately at lower latitudes with lower SZAs (e.g., Fig. 6).
These limitations in the SURFRAD network highlight the need
for complementary validation strategies, potentially including
future ground stations at lower latitude sites, to ensure the
robustness of DSRap1vE and similar approaches across more
geographical regions.

E. Comparing Against Recent Studies on DSR

At half-hourly resolution, our GBR models showed impres-
sive performance metrics against Ameriflux sites (see Table III).
Under clear sky conditions, our models achieve an R? of 0.98
with an RMSE of 48.76 W-m~2, surpassing the performance
of DenseNET and CNNGRUnor architectures [17]. In cloudy
sky conditions, although the R? slightly decreased to 0.88, the
RMSE increased to only 89.86 W-m™2. Overall, our model’s per-
formance under all conditions at half-hourly resolution yields an
R? of 0.92 and an RMSE of 86.12 W-m~2, indicating improved
accuracy in comparison to recent studies [17], [19], [52], [69],
[80]. For hourly DSR mapping, the GBR model demonstrates
robust accuracy (see Fig. 4) compared to previous studies. In
[52], researchers achieved an R” of 0.90 using a combination
of GOES-16 and MODIS data and employing a look-up table
at a 500-m spatial resolution. In addition, in another study,
researchers achieved an R?> of 0.82 using a combination of
DSCOVR-EPIC data and employing an RF model for hourly
DSR mapping at a 10 km spatial resolution [15].

Shifting to performance on daily time scales, our model also
outperforms compared to [5] and [15], who achieved an R? of
0.88 and 0.93 compared to our daily R? of 0.99 (see Table III).
Our GBR models exhibit exceptional accuracy with an R*> of
0.99 and an RMSE of 10.30 W-m~2, outperforming the RF
model from [19], which achieved an R? of 0.97 and an RMSE
of 17.64 W-m~—2. Ata weekly resolution, our models maintain
high accuracy, with an R? of 0.99 and an RMSE of 6.68 W-m™2.
The robustness of our GBR models in terms of prediction time
versus model performance for estimating DSR from GOES-R
ABI data has significant implications for near-real-time carbon
uptake mapping and solar energy applications.

When comparing DSRar1ve against DSRgyrrrap, high
agreement (R> of 0.85) is achieved even at 5-min frequency,
although the GBR model was trained on half-hourly data from
the AmeriFlux network. To the best of our knowledge, there
is no other DSR product available at a 5-min frequency for
comparison.

VI. CONCLUSION

We used public, quality-checked SW-IN ground measure-
ments to train an ML model for predicting DSR at the native
temporal and spatial scale of GOES-16 ABI CMI measure-
ments. Our model outperformed the existing DSR o g1 algorithm
under most solar conditions, with opportunities for improve-
ment, especially at lower SZA and early morning/late evening
periods. Additional surface SW-IN observations in subtropical
and tropical regions for model training, and ongoing efforts to
use ML to improve physically based atmospheric attenuation
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models, would likewise advance DSR product development to
better realize the extensive benefits of geostationary satellite
observations.
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