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ABSTRACT
In recent years, integrating distributed energy resources has emerged
as a pervasive trend in competitive energy markets. The idea of
virtual power plants (VPPs) has gained traction among researchers
and startups, offering a solution to address diverse social, economic,
and environmental requirements. A VPP comprises interconnected
distributed energy resources collaborating to optimize operations
and participate in energy markets. However, existing VPPs confront
numerous challenges, including the unpredictability of renewable
energy sources, the intricacies and fluctuations of energy markets,
and concerns related to insecure communication and data transmis-
sion. This article comprehensively reviews the concept, historical
development, evolution, and components of VPPs. It delves into
the various issues and challenges encountered by current VPPs.
Furthermore, the article explores the potential of artificial intelli-
gence (AI) in mitigating these challenges, investigating how AI can
enhance the performance, efficiency, and sustainability of future
smart VPPs.
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1 INTRODUCTION
In recent years, many countries have significantly transitioned their
power systems from the conventional “source follows load” par-
adigm to a more dynamic “source-load interaction” model. The
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large-scale grid connection of renewable energy, such as wind tur-
bines and solar power, has dramatically changed the structure of
the traditional centralized power generation method. However,
distributed power generation faced challenges, including limited
capacity, large amounts of data, and poor controllability. Random
connection of massive electric vehicles (EV) to the grid also changes
the power flow characteristics and makes the grid load more un-
predictable. In addition, another observation of the current power
system is that the double peaks of usage (i.e., winter and summer
peaks, morning and evening peaks) become much sharper but keep
a short duration, resulting in low efficiency and high cost of the
redundant design of the traditional grid. This change refers to a
more pronounced and sudden increase in electricity demand during
specific periods, impacting the efficiency and cost of the traditional
grid design. The system’s flexibility in handling a high proportion
of fluctuating renewable energy is crucial for ensuring the future
power system’s security. In this context, components other than
the power generation sides represented by virtual power plants
(VPPs) become increasingly critical. A VPP utilizes the internet
and current communication technologies to consolidate distributed
power sources, energy storage, loads, and other resources dispersed
throughout the power grid for collaborative optimization of op-
eration, control, and market transactions, which achieves energy
complementarity and load adjustments like peak shaving, frequency
regulation, and energy backup. Based on the report of the Grand
View Research [12], the estimated market value of the global virtual
power plant industry stood at approximately USD 3.42 billion in
2022. This market size is expected to increase with a compound
annual growth rate of 22.0%, with this growth trajectory expected
to continue from 2023 through 2030.

However, the implementation and advancement of VPPs face
various challenges. Notably, the escalating share of renewable en-
ergy sources and the resultant instability in power grid supply pose
significant concerns from the standpoint of energy sources and
resource allocation. The incorporation of energy storage and its
seamless integration into the existing grid present formidable ob-
stacles. In the context of market transactions, VPPs deal with issues
such as price fluctuations, regulatory changes, dynamic compli-
ance, and evolving consumer behavior, making their operation and
management increasingly complex. Furthermore, VPPs share com-
mon challenges with traditional power systems, including big data
management and communication security. As the landscape of elec-
tricity users transitions from just consumers to hybrid producers
and consumers, all these factors will challenge the security, relia-
bility, and economic efficiency of VPPs and their power networks.
In light of these challenges, this article delves into the potential
solutions offered by artificial intelligence (AI) in addressing the key
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Figure 1: Concept and Challenges of Virtual Power Plant

issues faced by VPPs.
Our study provides a comprehensive review of the concept, his-

tory, evolution, and components of VPPs and discusses how VPPs
can integrate distributed energy resources, enhance grid stability,
and participate in energy markets. We identify four major chal-
lenges in operating andmanaging current VPPs: energy sources and
resource allocation, transactions due to market price fluctuations,
dynamic loads and demands, and communications and security.
Considering the above issues, this article focuses on researching
and summarizing the challenges and opportunities of applying AI
to the next-generation smart VPPs, including solving energy insta-
bility and resource inefficiency, analyzing market fluctuations, and
adapting to regulatory changes, overcoming uncertainty and better
understanding consumers, and promoting effective communication
through solid security measures. This study pioneers a systematic
and critical analysis of the latest AI technologies for VPPs, explor-
ing their potential advantages in enhancing performance, efficiency,
security, and sustainability. This study explores the potential and
advantages of AI in improving the performance, efficiency, security,
and sustainability of VPPs. This article can shed light on academic
scholars and industrial researchers in related fields to explore the
new generation of smart VPPs.

The remaining sections of the paper are outlined as follows. Sec-
tion 2 reviewed the background of the VPP, including the history,
case studies, and structures. Section 3 discussed the existing chal-
lenges of VPPs, including resource allocation, assuming market
price and energy transaction, dynamic load demand, and commu-
nication and security. In Section 4, we explore and evaluate the
opportunities and solutions offered by AI for smart VPPs, discuss
how AI can help tackle the challenges and issues in each aspect
of VPPs, and provide some examples of the use of AI. Section 5
provides an overview of related research in this field. Finally, the
paper concludes with a summary in Section 6.

2 BACKGROUND
Traditional power plants are mainly built to generate electricity,
adjust peak and frequency, and participate in energy market trans-
actions. It is estimated that the number of large power stations
on the grid, such as nuclear or gas plants, will be reduced by half
in the next 20 years, and more than 70% of the electricity in the
future will be renewable energy [8]. The energy revolution has

also profoundly changed the structure of the power grid. Unlike
centralized, traditional power plants, as illustrated in Figure 1, vir-
tual power plants (VPPs) aggregate distributed power sources and
energy storage facilities using modern intelligent technology. They
participate in electricity market transactions with dynamic, fine-
grained control [41, 46, 68]. VPPs effectively reduce generation
losses and emissions, optimize resource use, control grid peaks, and
enhance power supply reliability.

2.1 History and Evolution of VPPs
Virtual power plants (VPPs) built on distributed and renewable
energy sources have a long history. From the end of the nineteenth
century to the beginning of the twentieth century, the world’s first
wind turbine [61] and a large-scale solar generator [6] were built
near Glasgow, UK, and Cairo, Egypt, respectively. ARCO Solar de-
veloped the first large-scale commercial photovoltaic power plant
and came online in 1982 near Hesperia, California, with a capacity
of 1MW [4]. From the 1980s to the 1990s, the use and develop-
ment of distributed energy resources continued to increase, and the
power supply system gradually transformed from centralized to
decentralized. In order to coordinate and power monitoring, Dr. Shi-
mon Awerbuch first proposed the concept of a VPP in 1997 [35]. In
the twenty-first century, the development of smart grid technology
paved the way for more efficient energy management. Advanced
metering, communications, and control systems enable utilities to
monitor and control distributed energy resources remotely [76].
Through sophisticated software and control systems, VPP further
enables the management and optimization of decentralized energy.
These platforms can aggregate and coordinate the output of various
distributed energy sources, including solar, wind, and batteries, and
even respond to dynamic consumer demand [69]. In the industry,
VPP solution startups such as Next Kraftwerke, Kiwi Power, and
Sunverge Energy have also been established in recent years [15–
17]. In the next decade, VPP is expected to become increasingly
adopted in regions with a high proportion of renewable energy,
such as Europe and Australia [13, 76]. Recently, with significant
advancements in AI and the Internet of Things (IoT), the capabilities
of VPP can be further enhanced to achieve more effective energy
monitoring, prediction, control, and optimization [40, 69].

2.2 How VPP Works
A Virtual power plant (VPP) is a network that integrates dispersed
energy resources, orchestrating them to operate cohesively as an
extensive power generation facility. The primary goal of a VPP
is to enhance grid stability, efficiency, and reliability while miti-
gating emissions and costs associated with conventional power
generation [21]. Generally, the architecture of a VPP contains three
essential elements. Firstly, a diverse array of energy assets, ranging
from solar panels and wind turbines to energy storage systems
and energy-efficient buildings, form the foundation of the VPP. En-
ergy Management Systems (EMS) play a pivotal role in efficiently
overseeing various energy resources, including dispatchable power
plants, intermittent generation units, storage facilities, and demand
response systems. The second component is the communications
network, facilitating data exchange and control signals among dif-
ferent VPP elements. For instance, EMS facilitates energy trading
within the VPP through bidirectional communication [37, 66] and
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real-time status updates. The third component, the control sys-
tem, handles data collection and analysis, power market predic-
tion, resource modeling, aggregation, and transaction decisions. It
oversees the real-time operation of distributed energy production
and consumption. Cloud-based software is used for data analysis,
optimization, and decision-making [19], targeting cost reduction,
pollution minimization, and profit maximization.

2.3 Case Studies of Existing VPPs
Tesla’s SuburbanVPP in SouthAustralia. In 2018, Tesla launched
its VPP project [9] in the suburban of South Australia to utilize dis-
tributed energy resources and improve the resilience of the grid [11].
This VPP project connects thousands of Tesla Powerwall batteries
in residence to form a network [23]. It provides grid stabilization
services, including frequency regulation and backup power during
grid outages. This project demonstrates the scalability and effec-
tiveness of residential battery storage systems in supporting grid
operations and mitigating grid fluctuations caused by intermittent
renewable energy [9]. Upon completion, Tesla’s VPP is anticipated
to produce 250 MW of solar energy and store 650 MWh of storage
capacity to serve this region [23].

TEPCO’s VPP within Metropolis Tokyo. Japan’s Tokyo Electric
Power Company (TEPCO) established its VPP to enhance energy
security after the Fukushima nuclear disaster [7], and the project
began operations in 2017 [18]. TEPCO VPP integrates rooftop solar
panels, battery storage systems, and EV charging infrastructure.
It optimizes distributed energy resources to achieve demand re-
sponse and peak shaving and provides backup power in emergency
situations to enhance disaster recovery capabilities [7]. TEPCO’s
VPP is part of a larger project that includes rooftop solar power
facilities with a total capacity of 100 MW within the city. This VPP
project improves grid resilience and encourages sustainable energy
practices in the populous metropolis, promoting the adoption of
electric vehicles and smart grid technologies in Tokyo.

Centrica’s VPP across Multiple Countries. Centrica is a leading
energy company that operates a VPP in the UK. Europe’s inaugural
extensive, multi-asset clean energy smart grid has been inaugurated
at Terhills leisure park in Belgium by Centrica Business Solutions.
This marks the establishment of the world’s most sophisticated
VPP, which was established in 2018 [10] and aggregates various
renewable energy sources, including wind farms, solar installations,
and biomass facilities. It utilizes advanced control systems and real-
time monitoring to enhance the performance of distributed energy
assets. The Terhills site boasts 140 lithium-ion batteries, collectively
possessing an energy capacity of 18 megawatts. In conjunction with
the energy adaptability of the Belgian plant and other prominent
energy producers, these batteries form a VPP with a total capacity
of 32MW [14]. Centrica’s VPP significantly improves the UK’s grid
stability and reduces greenhouse gas emissions. It is also a model
for efficient integration of renewable energy and resilience of the
grid in different European countries.

3 CHALLENGES IN EXISTING VIRTUAL
POWER PLANTS

Although virtual power plants (VPPs) contain many advantages
and are put into use by various parties, existing virtual power plants

still face different kinds of limitations and challenges. As shown
in Figure 2, based on the research and analysis of current systems,
this chapter summarizes four main categories of challenges, in-
cluding different aspects of resources, markets, operations, and
communications.

Energy source & 
resource 
allocation

Transactions & 
market price

Dynamic load
& demand

Security & 
Communication  

Figure 2: Major Challenges of Existing VPPs

3.1 Energy Source and Resource Allocation
Growing Share of Renewable Energy. Virtual Power Plants
(VPPs) are crucial in harnessing large quantities of renewable en-
ergy sources (RES), like wind and solar power. However, the time-
dependent nature of these resources significantly influences their
operational stability. The unpredictability of wind power genera-
tion is primarily attributable to the stochastic variations in wind
speed, which, in turn, are impacted by environmental factors like
geographical area and weather conditions. Besides, solar radiation
heavily impacts solar energy production, resulting in daily and
seasonal fluctuations [65]. The sudden onset of cloud cover or other
weather changes can have a substantial and adverse effect on re-
newable energy output. Nevertheless, the current wind and solar
power generation forecasts continue to exhibit a notable margin of
error, typically ranging from 20% to 30% [65]. This uncertainty and
the growing share of renewable energy can introduce significant
instability and resource wastage within VPPs.
Insufficient Energy Storage Capacity. VPPs commonly leverage
diverse energy storage systems to address the inherent instability
of renewable energy sources. However, the efficacy of these storage
systems is often contingent on factors such as chemical compo-
sition, battery life, and other relevant variables [45]. Exploring
optimal configurations for energy storage systems that account for
intricate relationships, including multiple factors, objectives, and
constraints, requires further investigation. Moreover, the energy
storage power stations within a VPP are dispersed and numerous,
with variations in capacity configuration, maximum charge power,
and other attributes. Notably, the comprehensive consequences of
integrating energy storage devices into VPPs have yet to be fully
explored in existing literature [36].
Difficulties in Integrating with Existing Grids. The widespread
adoption of distributed renewable energy sources has introduced
considerable unpredictability, significantly impacting the security,
stability, and economic performance of the current power grid [52].
For producers, opting for high-capacity, easily deployable energy
sources often reduces costs by simplifying transmission infrastruc-
ture. Conversely, from a consumer standpoint, the growing popu-
larity of distributed renewable energy is anticipated to yield future
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cost savings, making it a more economically advantageous option
compared to traditional energy sources. Modern power stations face
the challenge of meeting diverse functional requirements across
various time scales and output precisions, including frequency and
peak regulation, emergency control, and fluctuation suppression.
The effective integration of these resources into the existing grid,
mitigating the impact of their intermittency and volatility, and
coordinating diverse energy storage systems and load conditions
represent significant challenges for today’s virtual power plants.

3.2 Transactions and Market Price
Massive Trading and Real-time Prices. The volatility of market
prices and the substantial transaction volumes constitute a signif-
icant source of uncertainty in virtual power plants (VPPs) man-
agement. Energy markets are characterized by high volatility and
frequent fluctuations in prices. From a supply perspective, Conven-
tional energy sources which include coal, gas, and oil, experience
price variations influenced by changes in global markets and local
policies [74]. As the share of renewable energy grows, introducing
its own uncertainties, the supply price of energy in virtual power
plants also becomes increasingly unstable. The high intermittent
nature of renewable energy will bring electricity markets closer
to real-time trading markets as well. Additionally, energy prices
are contingent on factors such as demand, trading volumes, and
transmission networks, which all contributes to substantial fluctu-
ations in electricity market prices. As per the U.S. Department of
Energy’s report [55], this fluctuation may reach up to 359.8%. These
dynamic factors pose significant challenges to the development and
operation of VPPs, requiring strategic considerations to navigate
the complexities of the evolving energy landscape.
Diverse Markets and Regulatory Complexities. Energy mar-
kets are subject to diverse regulations, tariffs, and market rules
that vary across regions [67]. The intermittent nature of renewable
energy is poised to increase cross-region transactions in the elec-
tricity market. Virtual power plants often operate across multiple
markets, each governed by its own distinct regulations. Navigating
these intricate situations can present considerable challenges. A
comprehensive understanding of local and national energy poli-
cies and regulations is imperative to ensure regulatory compliance
while optimizing transactions and fostering revenue growth. Given
the potential for losses due to regulatory changes and market price
fluctuations, participants in the electricity market, including VPPs,
must ascertain effective electricity pricing and quality trading meth-
ods. Pandvzic et al. [60] investigated weekly self-scheduling for
VPPs, including intermittent renewables, energy storage, and tradi-
tional power plants. They used a mixed-integer linear programming
model to maximize weekly VPP profits, respecting long-term con-
tracts and technological constraints.
Operation Optimization and Risk Management.Many VPPs
aim to boost profits by purchasing energy at lower cost and selling
them at higher prices, necessitating sophisticated optimization al-
gorithms and effective risk management strategies. The intricate
task of precisely allocating energy resources to align with market
prices while considering potential shifts in supply and demand
adds complexity to VPP operations [50]. Managing risks associated
with price instability, weather-induced uncertainty, and asset per-
formance further compounds the challenges. Therefore, having an

optimized operation and robust risk management plan is crucial
for VPP operators to protect against financial losses. Tajeddini et
al. [73] proposed a two-stage stochastic mixed-integer linear pro-
gramming method to formulate optimal VPP operations. In another
related study [82], Zhang et al. investigated the impact of price fluc-
tuations on the transaction dynamics and the costs of VPPs. These
endeavors underscore the challenges inherent in VPP operations,
emphasizing the importance of overcoming these obstacles for the
financial stability and long-term sustainability of VPPs.

3.3 Dynamic Load and Demand
Load and Demand Uncertainty. One of the primary challenges
associated with Variable Power Plants (VPPs) is the inherent uncer-
tainty linked to load and demand. In their research, Shah et al. [70]
delved into the intricacies of forecasting electricity demand and
price, highlighting the complexities arising from unique characteris-
tics such as high frequency, volatility, extended trends, non-constant
mean and variance, mean regression, and others. Furthermore, the
fluctuations in load demand are contingent on seasonal variations
and are influenced by factors like consumer habits, financial condi-
tions, production activities, and emergencies, rendering the charac-
teristics of uncertain load demand even more intricate [31]. As an
illustration, the Electric Reliability Council of Texas observed a peak
demand of 69,215 MWh during the February 2021 cold snap [22].
Uncontrollability of the Grids. The variability in load intro-
duces a significant challenge to the controllability of virtual power
plants [28]. Typically, various components of a grid operate inter-
dependently, following predetermined rules and schedules. These
loads, with their predictable operating patterns, can be made more
cost-effective through controlled load tariffs, provided that power
consumption is restricted to specific periods (usually during off-
peak hours). However, the growing prevalence of electric vehicles
in recent years has exacerbated the unpredictability within the VPP
system. According to a study by Pandey et al. [59], the number
of electric vehicles is projected to reach approximately 11 million
by 2025. If the current disorderly charging practices of electric
vehicles persist—charging occurring at any time, anywhere, and
without a structured plan, the existing power grid may struggle to
accommodate a higher penetration of new energy vehicles.
Different Consumer Behaviors. Consumer behavior plays a cru-
cial role in influencing energy demand, shaped by diverse lifestyle
choices and household activities [58]. Electricity consumption be-
havior encompasses the decisions, actions, and patterns demon-
strated by individuals or households in acquiring and using goods
and services [26]. Significantly, the electricity consumption behav-
ior varies across regions and consumer groups. For instance, in
affluent areas where consumers prioritize environmental conscious-
ness, the proliferation of electric vehicles with high penetration
rates and frequent use can result in a substantial upswing in the
power grid system’s peak load. On the other hand, groups with
lower spending power often exhibit electricity demand during off-
peak hours, primarily at night. The key to the future development
of intelligent virtual power plants lies in empowering customers to
modify their electricity consumption patterns, actively engaging in
smart power distribution [64], and promoting the adoption of mea-
sures with optimal emission reduction efficiency, operability, and
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acceptability. This approach is crucial for steering the trajectory of
smart VPPs toward a sustainable and consumer-centric direction.

3.4 Communication and Security
Data Transmission and Information Aggregation. Data trans-
mission and information aggregation play integral roles across all
facets of power production, transmission, monitoring, and opera-
tion within virtual power plants (VPPs) [57, 80]. They are pivotal
for effectively managing and controlling distributed energy within
the VPP framework. Specifically, digital technology within VPPs
encompasses data collection (e.g., power plant operation conditions,
meteorological data, market prices, etc.), secure and rapid communi-
cation (e.g., among VPPs, individual resources, transmission system
operators, and power markets), and precise regulation based on load
and requests. VPPs exhibit distinctive characteristics, including a
large number of short-term services, high concurrency rates, wide
cross-regional operations, and significant load fluctuations. Con-
sequently, there are stringent requirements for data transmission
and information communication in VPPs. Failures in communica-
tion systems can have severe implications on a VPP’s revenue and
operational efficiency. As the scale and application scope of VPPs
continue to expand, the need for efficient, safe, and reliable infor-
mation communication networks becomes increasingly critical to
achieve large-scale, multi-temporal, and spatial-scale distributed
resource aggregation and control.
Cybersecurity and Privacy Protection. Traditional power grid
enterprises typically employ closed management and control, uti-
lizing private networks for scheduling, operation, and control data.
This approach enhances grid communication security, providing a
robust defense against potential network attacks. In contrast, VPPs
interface with equipment and systems from various organizations,
introducing multiple access methods. Each organization employs
distinct technologies and security measures, resulting in variations
in identity management, encryption methods, networking modes,
and security mechanisms. Simultaneously, VPPs encounter the chal-
lenge of collecting and analyzing a substantial amount of energy
data, exposing them to potential data security [47] and privacy
risks [44]. Any network attack, unauthorized access, or tampering
with the data in a VPP constitutes a substantial risk to the operation
of the power system. Therefore, when constructing a VPP, it is im-
perative to guarantee the reliability and protection of a distributed
energy system. This includes implementing robust data security
protections such as secure data transmission, encryption, and iden-
tity authentication to safeguard against potential vulnerabilities.
Data Interoperability and IoT Integration. Ensuring rapid data
transmission and aggregation is crucial for establishing interconnec-
tions and effectively managing and monitoring distributed energy
resources in virtual power plants [32]. To facilitate seamless com-
munication across diverse interfaces and optimize the development
and operation of application software on heterogeneous platforms,
VPPs need to address challenges related to intercommunication,
interconnection, and interoperability among various devices [30].
The wide range of communication technologies requires different
networking equipment, and with many equipment manufacturers,
achieving interoperability and efficient data management across di-
verse systems and equipment poses technical challenges. The need

for comprehensive interconnection, interoperability, and compati-
bility grows as renewable energy, electric vehicles, and the Internet
of Things integrate into VPPs. These are essential to support the ad-
vanced sensing, data fusion, and intelligent applications anticipated
in future VPPs.

4 OPPORTUNITIES WITH AI FOR SMART
VPPS

4.1 Tackling Unstable Energy and Inefficient
Resource

Artificial intelligence plays a vital role in the evolution of smart
grids, enabling seamless regulation from source and grid to load
and storage. This shift, in particular, enables Virtual Power Plants
(VPPs) to manage volatile renewable energy sources like solar and
wind effectively. Utilizing state-of-the-art artificial intelligence al-
gorithms, like long short-term memory (LSTM) and simulated an-
nealing methods, can help more accurate predictions of solar and
wind power [42, 54]. Elsaraiti et al. [42] demonstrated a deep learn-
ing technology based on the LSTM algorithm to help predict solar
power generation capacity under different conditions. Muneeb et
al. [54], use simulated annealing and deep learning models to de-
termine the ideal time step for wind power forecasting. Their work
allows efficient discovery of optimal lookback periods within a lim-
ited number of epochs, thereby reducing training time and greatly
enhancing grid stability. In addition to helping overcome fluctua-
tions generated by renewable energy, AI also has the potential to
improve energy storage systems in VPPs by taking into account
past data and load forecasts. A report from STEM [20] found that
AI-driven software and hardware systems can greatly improve the
efficiency and reliability of various energy storage devices. For ex-
ample, digital twin algorithms can quickly decide when to discharge
or charge energy storage devices, guided by the latest data [49].
In the field of electrochemical energy storage, benefiting from the
predictive capabilities of artificial intelligence in modeling battery
charging and discharging behavior, the industry has simplified the
simulation and refined management of battery operations in large-
scale energy storage facilities, thereby improving the reliability and
security of lithium-ion batteries [72]. Finally, in terms of integra-
tion with traditional power grids, artificial intelligence can also
help automate control of all aspects of the VPP, achieve efficient
and precise control, and improve power generation efficiency and
quality. Qin et al. [63] utilized a novel deep reinforcement learning
algorithm to minimize operating costs of off-grid VPPs that incor-
porate battery storage and flexible loads, utilizing fossil fuel-based
generators as necessary backup. Shibl et al. [71] focused on artifi-
cial intelligence in VPPs using electric vehicles. They proposed an
LSTM-based management system that effectively reduces power
loss and voltage fluctuations, achieving grid load curve smoothing.

4.2 Analyzing Market Fluctuations and
Adapting to Regulatory Changes

Artificial intelligence has the capability to construct predictive
models by analyzing historical market data, policy shifts, and other
pertinent factors, enabling the anticipation of future energy market
prices. For instance, virtual power plant (VPP) operators can gain
insights into current market dynamics through machine learning
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Table 1: Challenges in Existing VPPs and Possible Solutions with AI Comparison

Characteristic Challenges and Issues Opportunities with AI for Smart VPPs

Energy Source
and Resource
Allocation

Growing Share of Renewable Energy [65],
Insufficient Energy Storage Capacity [36, 45],
Difficulties in Integrating with Existing Grids [52]

Accurate Predictions of Wind and Solar [42, 54],
Advanced Energy Storage Software [20],

Digital Twin Management [49],
Battery Charging Behavior [72],
Flexible Loads and Backup [63],
Vehicle-to-grid and Grid-to-vehicle [71]

Transactions and
Market Price

Massive Trading and Real-time Prices [55, 74],
Diverse Markets and Regulatory Complexities [67],
Operation Optimization and Risk Management [50]

Forecasting the Daily Electricity Price [25],
Automatic Operations with Evolving Regulations [75],

Risk-constrained Management [50],
Autonomously Optimize Power Sales [27]

Dynamic Load
and Demand

Load and Demand Uncertainty [22, 31, 70],
Uncontrollability of the Grids [28, 59],
Different Consumer Behaviors [26, 58, 64]

Consumer Demand Forecasting [5, 56, 62],
EV Charging and Routing Management [39],

Digital Platform and Data-driven Modelling [34, 53]

Communication
and Security

Data Transmission and Information Aggregation [57, 80],
Cybersecurity and Privacy Protection [44, 47],
Data Interoperability and IoT Integration [30, 32]

Blockchain Integration [65],
Communication Parameter Mapping [48],

Data Protection and Security Analysis [24, 77],
Hybrid Traffic Scheduling [78],

Enhance Data Interoperability with IoT [29, 33]

techniques like time series analysis. AI can also rapidly process ex-
tensive data from diverse sources, encompassing seasons, weather
conditions, historical trends, and supply and demand metrics. Sub-
sequently, the model can predict real-time market price movements
and potential rule changes, facilitating informed decisions regard-
ing resource allocation and trade strategies. In a recent study [25],
researchers sought to establish a reliable model incorporating the
most impactful predictors for predicting the Maximum Daily Elec-
tricity Price (MDEP) within the Iranian electrical energy market.
They employed an artificial intelligence model featuring a convo-
lutional neural long-short-term memory network, demonstrating
exceptional forecast accuracy for both MDEP and Average Daily
Electricity Price (ADEP) in the Iranian energy market. Artificial
intelligence also plays a crucial role in adapting to shifts in en-
ergy regulations, tariffs, and market rules across diverse regions.
For instance, natural language processing (NLP) is instrumental
in extracting key information from regulatory filings and tracking
updates. Based on that, machine learning models then automati-
cally adjust operations within the VPP system, ensuring compliance
with evolving regulations. Thimm et al. [75] are engaged in an ex-
tensive and ongoing research program that focuses on leveraging
intelligent systems, machine learning, and NLP to aid corporate
environmental compliance managers in monitoring and evaluating
new regulations and oversight renewals. They advocate for a com-
prehensive conceptual data model designed to encapsulate critical
elements of environmental regulatory announcements and assess
their relevance. In the realm of operational optimization and risk
management, artificial intelligence proves invaluable for VPPs by
enabling the simulation of diverse scenarios and the formulation
of effective risk management strategies to shield against financial
losses. This includes the implementation of hedging strategies, di-
versification, and decisions based on risk thresholds, empowering
VPP operators to make informed decisions regarding market partic-
ipation or exit strategies to mitigate risk exposure [50]. For instance,
Gridmatic, a specialized company in power trading technology, uti-
lizes artificial intelligence in its proprietary system to autonomously

optimize power sales at the most favorable prices [27]. By offering
fixed-price offtake agreements, Gridmatic reduces energy produc-
tion risk while leveraging artificial intelligence to enhance power
sales. It is crucial to have a model that improves and becomes more
accurate as it learns from factual information and adjusts its predic-
tions. Given its iterative learning capability, reinforcement learning
becomes pivotal in this context. A recent study [79] explores the
feasibility of using reinforcement learning in power producer bid-
ding strategies. The study proposes a multi-agent reinforcement
learning (MARL) approach, merging Win or Learn Fast and Pol-
icy Hill-Climbing algorithms to tackle the bi-level game model
iteratively, ultimately achieving market equilibrium outcomes.

4.3 Overcoming Uncertainties and Better
Understanding Consumers

Artificial intelligence has gained prominence as a viable approach
to address challenges arising from uncertainty in load and demand.
Electrical load profiles, shaped by a complex interplay of predictable
and stochastic elements influenced by time, geography, and emerg-
ing technologies such as electric vehicles (EVs), pose unique chal-
lenges. Nevertheless, AI technology presents innovative solutions,
enabling virtual power plants (VPPs) to balance supply and demand
more efficiently and accurately. The demand response industry is
experiencing growth in North America, the UK, and Europe. Within
North America, the market is assumed to exceed 18 billion USD
by 2022, increasing from its value of 8 billion USD in 2018 [14]. In
a comprehensive research endeavor [56], an organized review of
electricity demand forecasting explores the hypotheses and vari-
ables influencing electricity consumption. The findings reveal that
50% of electricity demand forecasts hinge on weather and financial
indicators, 8.33% on household lifestyle factors, 38.33% on histori-
cal energy consumption data, and 3.33% on stock market indexes.
Furthermore, AI plays a pivotal role in optimizing charging needs,
overseeing, and coordinating availability [3]. Its utility extends to
monitoring and coordinating charging requirements, enhancing
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grid stability by promptly identifying and addressing anomalies in
generation, consumption, or transmission. Many VPP companies,
such as Karit VPP, leverage advanced data modeling and machine
learning techniques to analyze grid, demand, market, weather, and
asset performance data, facilitating automated responses [5]. Re-
cently, substantial efforts have been dedicated to enhancing the
controllability of the grid, as evidenced by extensive research [62].
These endeavors focus on predicting EV demand, devising optimal
EV charging schedules, facilitating the integration of EVs into the
grid, and addressing issues related to damaged EV batteries. For
instance, Qaisar et al. [62] investigated the application of machine
learning methods in EV charging and energy management within
smart grids. Their study delves into the advantages and challenges
of various approaches, which include deep neural networks (DNN),
support vector machines, and reinforcement learning (RL). The
research evaluates the accuracy and reliability of these models us-
ing diverse metrics and datasets. Cao et al. [38] developed a Smart
Charging Algorithm (SCA) grounded in action critical learning
to optimize electric vehicle charging while considering the uncer-
tainty in electric vehicle charging behavior. Furthermore, VPPs can
also leverage artificial intelligence and machine learning [53] to
analyze and predict consumer behavior based on historical data
and real-time information. Antonopoulos et al. [34] employed a
variety of machine learning models, like linear regression, gradient
boosting, random forests, and dense neural networks, to create a
model that understands the relationship between household charac-
teristics and the median response of each household. Additionally,
the authors utilized model-agnostic interpretation techniques like
ranked feature importance to identify key elements and assess their
impact on response behavior. The research further emphasizes that
AI-driven smart meters and IoT devices empower consumers to ad-
just electricity consumption in response to real-time pricing, peak
demand periods, and the availability of renewable energy. This
active participation enhances consumer empowerment and bolsters
the VPP’s capacity to manage demand uncertainty effectively. Man-
aging the power grid in extreme situations like blackouts is chal-
lenging. Zhenting Zhao et al. [83] explore reinforcement learning
for enhanced power grid control and show that applying methods
like “reduced action spaces” significantly improves RL agents’ per-
formance in simulating large-scale blackouts and sub-networked
grids.

4.4 Facilitating Effective Communication with
Robust Security Measures

Artificial intelligence is increasingly employed in virtual power
plants (VPPs) for intrusion detection, encryption, data protection,
security analysis, and dynamic resource allocation within energy
networks. Li et al. [48] conducted an evaluation of VPP commu-
nication technology, emphasizing security, efficiency, trustworthi-
ness, and standardization. The study emphasizes the utilization
of blockchain, collaboration between cloud and edge computing,
machine learning, and emerging Information and Communication
Technologies (ICT) for energy transaction, exchange, and dispatch
processes within VPPs. Roozbehani et al. [65] explore the use of
artificial intelligence in tackling communication challenges, propos-
ing a novel method to enhance two-way communication in VPPs.

Wu et al. [78] also proposed a three-layer VPP communication ar-
chitecture incorporating 5G and time-sensitive networks to achieve
determinism and mobility. Collectively, these AI-driven approaches
contribute to overcoming communication challenges in VPPs by
enhancing the efficiency and reliability of data transmission. The
integration of AI and the power grid holds significant promise for
bolstering cybersecurity within VPPs. For instance, Kerem et al. [24]
extensively explore the application of AI techniques to counter cy-
ber threats, furnishing advanced security measures to safeguard
VPPs from potential vulnerabilities. Venkatachary et al. [77] pro-
pose a security architecture grounded in edge intelligent computing
to mitigate risks, enhance system security, and ensure privacy and
data protection. These AI-driven solutions contribute to fortifying
the security infrastructure of VPPs, addressing concerns related to
authentication, access control, and protection against cyber threats.
In recent years, numerous studies have extensively explored data
interoperability across all service areas of VPPs, which is important
for the seamless operation of these facilities. Adi et al. [29] presents
a framework for analyzing IoT data derived from diverse hetero-
geneous sources. Such AI-driven solutions significantly contribute
to ensuring rapid data transmission, aggregation, and interoper-
ability, facilitating the efficient management of smart terminals
and distributed energy resources within VPPs. Another study [33],
conducted by Ali et al., introduces a real-time intelligent energy
management model for VPPs. Utilizing multi-objective, multi-level
optimization strategies, their model enhances data interoperability
by enabling real-time exchange and coordination among different
energy resources.

Grid data and energy utilization data are critical to advance in AI as
most of the prediction is related to consumer use and distribution.
However, several issues and challenges are associated with collect-
ing electric grid data, including grid complexity, variety of data
and volume, strict laws, cybersecurity risks, and privacy concerns.
Despite the crisis of a large volume of data, the advancement of AI
technology to build resilient grids continues at an incredible speed
with limited available sources.

5 RELATEDWORK
Academic Explorations in AI for Smart VPPs. Academic litera-
ture has extensively explored uncertainties associated with virtual
power plants (VPPs), categorizing them into areas such as Uncer-
tainty of Renewable Energy Resources, Market Price Uncertainty,
and Load Uncertainty [65]. Various scheduling and optimization
approaches have been proposed, ranging from a novel algorithm
for enhancing the day-ahead thermal and electrical scheduling [43]
to Mixed-Integer Linear Programming (MILP) models to maximize
VPP profits [81]. Attempts using Deep Reinforcement Learning
(DRL) methods have been made to address optimal scheduling
challenges within VPPs, acknowledging limitations in managing
non-linear, non-convex, and stochastic EV charging stations [51].
In the domain of demand response and consumer behavior, AI plays
a pivotal role. Studies by Antonopoulos et al. [34] and Qaisar et
al. [62] illustrate how machine learning models can predict and
optimize electric vehicle charging schedules, contributing to grid
stability. The application of AI in communication, security, and cy-
bersecurity measures within VPPs has become crucial, with studies
exploring blockchain, cloud-edge collaboration, machine learning,
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and ICT [24, 29, 33, 48, 77, 78]. In demand response and consumer be-
havior, AI has proven instrumental in predicting electricity demand,
optimizing charging needs for electric vehicles, and analyzing and
predicting consumer behavior [34, 53, 56, 62].
Industrial AI Effort for Smart VPPs. In the industrial domain,
companies have actively applied AI to overcome challenges and
enhance the functionality of VPPs. Evergen develops a Distributed
Energy Resource Management System (DERMS) that advances re-
newable energy by integrating DERs [1]. H Energy, a South Korean
startup, delivers power brokerage solutions for energy operators.
Their cloud platform, DERShare, facilitates the management of
numerous DERs, incorporating big data processing and real-time
optimization, among other functionalities within a VPP context [1].
Logical Buildings, a U.S. startup, utilizes AI-powered VPP software
for commercial real estate. The platform learns building habits to
identify energy inefficiencies and cost-saving opportunities [2].
Another key player, Terhills, strategically incorporates AI in VPP
operations to navigate uncertainties arising from fluctuating re-
newable energy inputs [10]. They achieve real-time adaptability
through advanced algorithms, ensuring optimal energy resource al-
location within their VPP network. AI-driven systems significantly
improve energy storage efficiency and reliability of energy storage
devices in VPPs [20]. Gridmatic, a power trading technology firm,
showcases AI’s role in autonomously optimizing power sales and
reducing energy production risk [27].

6 CONCLUSION
AVirtual Power Plant (VPPs) integrates dispersed small-scale power
production facilities, such as wind power, solar power, and fuel cells,
with power demand endpoints through control centers, creating
a flexible and manageable power system. This paper comprehen-
sively examines the concept, historical development, evolution, and
components of VPPs, delving into the key challenges and opportu-
nities presented by the application of artificial intelligence in smart
VPPs. Specifically, it categorizes and outlines four challenges en-
countered by current VPPs: energy sources and resource allocation,
transactions and market prices, dynamic loads and demands, and
communications and security. In addressing these challenges, the
article explores the potential of AI to enhance the performance, effi-
ciency, economics, and sustainability of VPPs. It delves into how AI
can play a pivotal role in optimizing energy sources, streamlining
resource allocation, managing transactions and market dynamics,
accommodating dynamic loads and demands, and enhancing com-
munication and security protocols within VPPs. This article also
provides examples of existing VPPs and their AI applications in dif-
ferent aspects and summarizes related work on academic concepts
and industrial applications.
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