
An Empirical Analysis and Resource Footprint Study of Deploying
Large Language Models on Edge Devices

Nobel Dhar
Kennesaw State University

Marietta, Georgia, USA

ndhar@students.kennesaw.edu

Bobin Deng
Kennesaw State University

Marietta, Georgia, USA

bdeng2@kennesaw.edu

Dan Lo
Kennesaw State University

Marietta, Georgia, USA

dlo2@kennesaw.edu

Xiaofeng Wu
City University of Macau

Macao, Macau

xiaofengwu@cityu.edu.mo

Liang Zhao
Kennesaw State University

Marietta, Georgia, USA

lzhao10@kennesaw.edu

Kun Suo
Kennesaw State University

Marietta, Georgia, USA

ksuo@kennesaw.edu

ABSTRACT

The success of ChatGPT is reshaping the landscape of the entire

IT industry. The large language model (LLM) powering ChatGPT

is experiencing rapid development, marked by enhanced features,

improved accuracy, and reduced latency. Due to the execution over-

head of LLMs, prevailing commercial LLM products typically man-

age user queries on remote servers. However, the escalating volume

of user queries and the growing complexity of LLMs have led to

servers becoming bottlenecks, compromising the quality of service

(QoS). To address this challenge, a potential solution is to shift

LLM inference services to edge devices, a strategy currently being

explored by industry leaders such as Apple, Google, Qualcomm,

Samsung, and others. Beyond alleviating the computational strain

on servers and enhancing system scalability, deploying LLMs at

the edge offers additional advantages. These include real-time re-

sponses even in the absence of network connectivity and improved

privacy protection for customized or personal LLMs.

This article delves into the challenges and potential bottlenecks

currently hindering the effective deployment of LLMs on edge de-

vices. Through deploying the LLaMa-2 7B model with INT4 quan-

tization on diverse edge devices and systematically analyzing ex-

perimental results, we identify insufficient memory and/or comput-

ing resources on traditional edge devices as the primary obstacles.

Based on our observation and empirical analysis, we further pro-

vide insights and design guidance for the next generation of edge

devices and systems from both hardware and software directions.

CCS CONCEPTS

• Computer systems organization; • Computing methodolo-

gies → Artificial intelligence; Natural language generation;

KEYWORDS

Large Language Models (LLMs), LLaMA-2, Edge Devices, Edge

Computing

This work is licensed under a Creative Commons Attribution International 4.0 
License.
ACMSE 2024, April 18–20, 2024, Marietta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0237-2/24/04.
https://doi.org/10.1145/3603287.3651205

ACM Reference Format:

Nobel Dhar, Bobin Deng, Dan Lo, Xiaofeng Wu, Liang Zhao, and Kun Suo.

2024. An Empirical Analysis and Resource Footprint Study of Deploying

Large Language Models on Edge Devices. In 2024 ACM Southeast Conference

(ACMSE 2024), April 18–20, 2024, Marietta, GA, USA. ACM, New York, NY,

USA, 8 pages. https://doi.org/10.1145/3603287.3651205

1 INTRODUCTION

Over the past year, Artificial Intelligence (AI) has witnessed signifi-

cant revolutionary advancements, notably with the introduction

of ChatGPT [7] and other Large Language Models (LLMs). These

LLMs have showcased remarkable abilities in understanding human

languages and generating diverse applications for society. However,

when compared to traditional search queries, a single LLM query

incurs a significantly higher overhead, requiring 8 to 16 high-end

GPUs on the server. Furthermore, the complexity of LLMs and the

growing user base contribute to an escalating demand on server

resources, potentially leading to the central server becoming a per-

formance and bandwidth bottleneck. For instance, OpenAI recently

had to temporarily suspend new ChatGPT Plus subscriptions due

to a rapid surge in demand [8].

In parallel, Statista predicts that the current global count of con-

nected Internet of Things (IoT) devices stands at 15.14 billion and is

projected to reach 29.42 billion by 2030 [25]. This rapid expansion

of connected IoT devices in edge systems not only transforms in-

dustry system architectures but also provides local computational

resources in closer proximity to users. Given the potential limita-

tions of centralized servers and the surplus computational capacity

at the edge, there is a compelling motivation to push LLM exe-

cutions to the edge. Additionally, an edge-based LLM can deliver

real-time responses to users, even in the absence of network con-

nections. The deployment of customized or personalized LLMs on

edge devices is also advantageous for privacy and storage consider-

ations. To harvest the above benefits, industry leaders, including

Apple, Google, Qualcomm, and Samsung, recently proposed specific

optimizations [4, 6] or developed new lightweight models [3, 5] to

achieve intelligence on edge/mobile devices.

Effectively deploying LLMs to edge systems still poses chal-

lenges, primarily due to the inherent conflict between the scale

of AI models and the limited resources available at the edge, such

as computational and storage resources. This paper aims to sys-

tematically quantify these challenges, considering factors such as

2024 ACM Southeast Conference – ACMSE 2024 – Session 1: Full Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

69

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603287.3651205&domain=pdf&date_stamp=2024-04-27


 
 
 

performance, memory utilization, CPU utilization, frequency of

process switching, swap partition utilization, and disk busy rate.

Following a thorough analysis of our experimental results, we in-

tend to provide insights and design guidelines for next-generation

edge devices and systems, encompassing both hardware architec-

tures and software stacks. To achieve this, we deploy LLaMA-2 [24],

an open-source LLM from Meta, on different edge devices post

INT4 quantization [21]. Our evaluation results are gathered and

analyzed using this real-world platform. The key contributions of

this paper are outlined as follows:

• With the successful deployment of LLama-2 7B through uti-

lizing INT4 quantization on a range of off-the-shelf edge

devices, we systematically gathered and analyzed evaluation

results. This comprehensive analysis covers diverse data,

including inference performance, memory utilization, CPU

utilization, frequency of process switching, swap partition

utilization, and disk busy rate.

• Building upon the aforementioned evaluation results, we

pinpoint the bottlenecks that hinder the efficient deployment

of LLMs to diverse edge devices and delve into the underlying

causes of these bottlenecks.

• Drawing from these data and analysis, we offer additional in-

sights and design recommendations for future LLM services,

edge devices, and associated systems from both hardware

and software optimizations.

The remaining content of this paper is structured as follows:

Section 2 delves into the evaluation methodology, encompassing

model and device selection, deployment, text generation, and data

collection. Section 3 scrutinizes the gathered data to identify po-

tential bottlenecks and furnishes insights for system architects to

enhance edge infrastructure for more efficient LLM performance.

Section 4 introduces relevant prior work in the field, and Section 5

presents our concluding remarks.

2 EVALUATION METHODOLOGY

This section presents our evaluation platform and methodology,

encompassing various edge devices and their specifications, the

framework for the large language model, the dataset, measurement

tools, and the model compression techniques that will be applied.

2.1 Edge Devices

As shown in Figure 1, four distinct edge devices were evaluated

in this paper: the Nvidia Jetson AGX Orin [1] and Raspberry Pi 4

Model B [11] with 1GB, 2GB, and 8GB of memory. Without loss of

generality, we utilize Raspberry Pis with different RAMs to repre-

sent general edge devices. Raspberry Pis are widely used in many

edge devices, and their ARMvx architecture is also very popular

in mobile and edge systems. The Jetson AGX Orin represents the

high-end edge nodes. Table 1 provides an overview of the funda-

mental specifications of evaluated edge devices. Raspberry Pis with

varying memory capacities represent typical edge nodes. On the

other end, the Nvidia Jetson AGX Orin serves as the high-end edge

node, although only the CPU of this device has been used in this

work to make a standard comparison. Table 2 illustrates the mem-

ory bandwidth of these devices, as this metric is often a crucial

factor influencing edge LLM performance.

Figure 1: All the Devices Used in This Study

Table 1: Basic Specifications of Evaluated Edge Devices

Device Name Memory CPU Freq. CPU # Disk Size

Raspberry Pi 4B 1GB 1.8GHz 4 32GB

Raspberry Pi 4B 2GB 1.8GHz 4 32GB

Raspberry Pi 4B 8GB 1.8GHz 4 32GB

Jetson AGX Orin 32GB 2.2GHz 12 64GB

Table 2: Memory Bandwidth of Evaluated Edge Devices

Devices Bandwidth (GB/s)

Raspberry Pi 4B 1GB 12.8

Raspberry Pi 4B 2GB 12.8

Raspberry Pi 4B 8GB 12.8

Jetson AGX Orin 204.8

2.2 LLM Compression and Deployment

We opt for the open-source large language model, LLaMa-2 [24], to

represent the state-of-the-art in LLMs, which is obtainable from the

META repository. Given the constraints of edge devices, we employ

the LLaMa-2 7B model as the benchmark for evaluation. Before

deploying LLaMa-2 7B across all devices, an effective compression

technique, quantization, is applied better to align the model with

memory and storage requirements. For our hardware parameters,

we specifically choose INT4 quantization [2]. The resulting size of

the quantized LLaMa-2 7Bmodel is approximately 3.9 GB. Following

successful deployment, a standard input prompt is submitted to each

device, generating a text response. All pertinent data for evaluation

metrics is collected during this process. The system status data is

collected via NMON tool, which includes CPU utilization, memory

usage, disk activity, etc. The latency results are provided by the

llama.cpp [2] framework.

3 EDGE LLM OBSERVATIONS AND ANALYSIS

This section delves into detailed evaluation results obtained from

the experimental platform discussed in Section 2, with the objective

of investigating the performance of the quantized LLaMA-2 7B

across diverse edge devices. We explored diverse input prompts

to generate text and evaluate, such as ‘Kennesaw State University,’

‘Atlanta, Georgia,’ and ‘ACMSE’. These preliminary tests confirmed

that the evaluated performance is always consistent when switch-

ing inputs. Therefore, all experiments in this section utilized the

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices 
Dhar, Deng, Lo, Wu, Zhao, Suo

70



 
 
 

Figure 2: Memory Utilization of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

standard input prompt, ‘Hello World!’, for evaluation. To eliminate

stochastic interference factors, we encapsulate a standard evalua-

tion environment. We ensure no other application is executed and

there is no data communication on the testing device. Based on

this encapsulated environment, we observed that data patterns are

very close in multiple evaluations. We monitored all devices during

their active LLM influences. The evaluation metrics encompass LLM

inference latency, memory utilization, CPU utilization, frequency of

process switching, swap partition utilization, and disk busy rate. Each

metric will be scrutinized through the lenses of Observation, Anal-

ysis, and Insight or Suggestion. In the end, we also conclude with

a comprehensive summary of the overarching observations and

analyses derived from the above experimental results.

Note: The y-axis scales of sub-figures vary in the majority of figures

of this section, aiming to highlight specific data trends and identify

differences.

3.1 Inference Performance

Observation. Table 3 summarizes the inference performance of

executing LLaMa-2 7B with INT4 quantization on different edge

devices. After all the response words have been printed, the infer-

ence performance (Tokens per second) can be computed via the

total number of tokens that have been generated divided by the

total execution time. The Raspberry Pis with 1GB and 2GB memory

exhibit the performance of 0.01 tokens/second. This throughput is

considered unacceptable by LLM users, even though the aggressive

model compression technique has been applied. For the Raspberry

Pis with 8GB memory, we observed a performance of 0.11 tokens

per second, which is an 11× improvement. However, this is still

not enough to achieve high Quality of Service (QoS) for the LLM

users. The NVIDIA Jetson Orin, with sufficient CPU and memory

resources, performed at 4.49 tokens per second.

Table 3: Inference Performance of Executing LLaMa-2 7B

with INT4 Quantization on Different Edge Devices

Devices Performance (Tokens/Second)

Raspberry Pi 4B 1GB 0.01

Raspberry Pi 4B 2GB 0.01

Raspberry Pi 4B 8GB 0.11

Jetson AGX Orin 4.49

Analysis. As per Table 1 and Table 2, all configurations of the

three Raspberry Pi devices are identical except for the memory size.

Comparing the Raspberry Pi with 1GB and 2GB of memory to the

8GB version, an 11× performance improvement is observed. This

performance gap can be attributed to their limited memory size,

which leads to more frequent swapping and switching and less CPU

utilization. Our experimental data, as detailed in the later sections,

support this conclusion. The frequent swapping of data blocks

between the memory and disk inevitably increases the overall re-

sponse latency of LLM. In contrast, the Nvidia Jetson Orin, with

more powerful computational units and storage capacity, achieves

a 40.8× throughput compared to the Raspberry Pi 8GB, making it

suitable for a subset of LLM applications.

Insight or Suggestion. We suggest to increase the memory sizes

for edge devices to serve LLM inference better. We observed non-

linear performance improvement from our experimental results

while increasing memory size. From Jetson Orin’s results, adequate

computational resources and memory bandwidth may also benefit

the LLM inference performance.

3.2 Memory Utilization

Observation. Figure 2 illustrates the memory utilization of execut-

ing LLaMa-2 7B with INT4 quantization on multiple edge devices.

In Figure 2 (a) and 2 (b), which are Raspberry Pi with 1GB and

2GB memory, the availability of free memory is always close to

0. For the Raspberry Pi with 8GB memory (Figure 2 (c)), the free

memory is close to 2GB most of the time. Finally, the Jetson Orin

(Figure 2 (d)) has more than 23GB of free memory all the time when

executing this quantized LLM.

Analysis. As we introduced in Section 2.2, the size of LLaMa-2

7B with INT4 Quantization is approximately 3.9 GB. Due to this

fact, the free memory of Raspberry Pi with 1GB or 2GB of memory

is always close to 0. This result is consistent because they must

frequently evict and fetch back the data blocks, leading to extra

waiting time. For the Raspberry Pi with 8GB memory and Jetson

Orin, we can load the entire quantized LLM into their memories;

therefore, their performance is significantly better. However, we

still observed the 40.8× performance gap between the Raspberry Pi

8GB and Jetson Orin. This observation indicates that besides raising

the memory size, we should also increase the memory bandwidth

and computational resources for better inference performance.

2024 ACM Southeast Conference – ACMSE 2024 – Session 1: Full Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

71



 
 
 

Figure 3: CPU Utilization of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

Figure 4: Process Switches of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

Insight or Suggestion. Upgrading the memory size itself is prob-

ably not enough in some scenarios; we should also increase the

memory bandwidth and/or add extra computational units for bet-

ter performance. Besides the hardware optimizations, we may also

explore orthogonal software methodologies to enhance memory

efficiency, such as sparse matrix encoding for some specified layers

to minimize LLM storage requirements.

3.3 CPU Utilization

Observation. Figure 3 shows the CPU utilization of executing

LLaMa-2 7B with INT4 quantization on different edge devices. The

pattern of CPU utilization essentially is very similar to that of

memory utilization, as Figure 2 depicted. In Figures 3 (a) and 3 (b),

the CPU utilization for Raspberry Pi models with 1GB and 2GB

memory configurations is presented. Notably, for both of these

devices, an average of only approximately 20% of CPU resources

is actively engaged, while nearly 80% remains in a waiting state.

It is worth highlighting that the 8GB version of the Raspberry

Pi exhibits a nearly 100% CPU utilization rate, signifying a more

intensive computational workload. Conversely, the NVIDIA Jetson

Orin experiences an average utilization rate of around 10%.

Analysis. Combining the findings from Section 3.1 and Section 3.2,

the low CPU utilization rates depicted in Figure 3 (a) and Figure 3

(b) suggest that insufficient memory is the primary bottleneck.

Throughout most of the LLM inference duration, the CPUs of Rasp-

berry Pi 1GB and Raspberry Pi 2GB are idle, awaiting the requested

data from the disk. Conversely, the Raspberry Pi 8GB, equipped

with enough memory to load the entire LLM model, exhibits nearly

100% CPU utilization. In this case, the performance bottleneck shifts

to computational resources, highlighting that additional memory

is not required. To enhance the LLM inference performance of the

8GB device further, consideration should be given to upgrading

to a more powerful unit or adding extra computational units. The

optimal inference performance achieved with low CPU utilization

implies that the high-end edge node’s memory and computational

resources are adequate for handling the quantized LLaMa-2 7B.

Insight or Suggestion. Both memory and computational resources

may be LLM inference bottlenecks. When conditions permit, we

should provide edge devices with sufficient memory and compu-

tational resources. For the high-end edge node with surplus com-

puting and memory resources, such as Nvidia Jetson Orin in our

experiments, we can explore the model parallelism of LLM to en-

hance the performance further.

3.4 Frequency of Process Switching

Observation. The data trending in Figure 4 reveals that Raspberry

Pi devices with less available memory may experience a higher fre-

quency of process switching. Context switching among processes

can reduce CPU utilization and increase cache misses, leading to

a slowdown in overall system performance. Figures 4 (a) and 4

(b) demonstrate that when running large language models on the

Raspberry Pi with 1GB and 2GB of memory, the frequencies of

process switching are mainly between 1200 and 1500 times per

second. However, the frequency of the system’s process switching

is dropped greatly upon raising the memory size to 8GB, as illus-

trated in Figure 4(c). Notably, during certain time intervals of large

language model runs, process switching occasionally surpassed

2000 times per second. Beyond the comparison among Raspberry

Pis, Figure 4 (d) shows that the Jetson AGX Orin is observed to have

process switchings between 10,000 and 35,000 times per second.

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices 
Dhar, Deng, Lo, Wu, Zhao, Suo

72



 
 
 

Figure 5: Swap Partition Utilization of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

Analysis. The frequency of process switching surges is closely tied

to page faults, particularly in scenarios where the entire quantized

LLaMA-2 7B model cannot fit into the device’s memory. Page faults

will be triggered when a specific required data block or segment

is not available in memory. Consequently, the system reallocates

the CPU resources to processes that contain immediately required

data in memory. The page faults typically contribute to the extra

time cost of LLM execution. Therefore, similar to the inference

performance in Section 3.1, the frequency of process switching in

Raspberry Pi 1GB and 2GB is higher than in Raspberry Pi 8GB.

The higher process switch rates were observed in the Jetson Orin

compared to the Raspberry Pis. This can be attributed to Jetson

Orin’s powerful CPU architecture, which supports multitasking.

This capability, while beneficial for parallel performance, requires

significant system resources to manage and synchronize threads,

leading to more frequent context switches.

Insight or Suggestion. To lower the frequency of process switch-

ing and achieve better LLM performance, ensuring that the edge

devices serve LLM with sufficient memory is imperative. Similar

to Section 3.1, Section 3.2 and Section 3.3, software approaches to

improve memory usage efficiency can also reduce the frequency of

process switching and boost the LLM inference performance.

3.5 Swap Partition Utilization

Observation. Figure 5 showcases the utilization of swap partitions

during the execution of LLaMa-2 7B with INT4 quantization on di-

verse edge devices. The observed trend in swap partition utilization

is nearly identical to the analysis of memory utilization presented

in Section 3.2. Specifically, the swap spaces of Raspberry Pi models

with 1GB and 2GB memory configurations are nearly at full capac-

ity, indicating a significant reliance on swap memory. In contrast,

the swap spaces of the Raspberry Pi with 8GB memory and Nvidia

Jetson Orin remain largely unutilized, suggesting ample available

swap capacity on these devices.

Analysis. The assessment of swap partition utilization is corre-

lated with the findings on inference performance in Section 3.1 and

memory utilization in Section 3.2. In cases where memory over-

flow occurs, such as in Raspberry Pi 1GB and Raspberry Pi 2GB, a

portion of data blocks is relocated from memory to the swap space.

However, the limited swap space proves insufficient to accommo-

date the entire LLM model, leading to a 100% utilization rate of

the swap partition for these devices. In these scenarios, thrashing

becomes evident, adversely affecting the inference performance

of Raspberry Pi 1GB and Raspberry Pi 2GB. While increasing the

swap size may marginally alleviate the impact on inference per-

formance by facilitating data transfers between memory and disk

or MicroSSD, achieving satisfactory performance still necessitates

an augmentation of memory size. For the Raspberry Pi 8GB and

Nvidia Jetson Orin, the absence of additional data block evictions

to the swap partition indicates that the memory adequately meets

the storage requirements of the running LLM model.

Insight or Suggestion. Based on the discourse in this subsection,

while enlarging the swap spacemay offermarginal improvements in

inference performance, it remains imperative to emphasize the need

for augmenting the hardware memory size to guarantee satisfactory

LLM performance on typical edge devices.

3.6 Disk Busy Rate

Observation. Figure 6 displays the disk busy rates during the ex-

ecution of LLaMa-2 7B with INT4 quantization on diverse edge

devices. Similar to the observed pattern of swap partition utiliza-

tion in Section 3.5, the disk busy rates for Raspberry Pi 1GB and

2GB fall within the same category. Throughout the evaluation pe-

riod, their disk busy rates consistently range between 90% and 95%.

In contrast, as shown in Figure 6 (c) and (d), the disk busy rates for

Raspberry Pi 8GB and Nvidia Jetson Orin are noticeably lower for

the majority of the evaluation time.

Analysis. The observed trend in disk busy rates mirrors that of

swap partition utilization. The disk busy rate is linked to accessing

swap space. In the case of Raspberry Pi 1GB or 2GB, the frequent

swapping of data blocks between memory and disk results in high

disk busy rates. Conversely, Raspberry Pi 8GB and Nvidia Jetson

Orin require less frequent switching, leading to significantly lower

disk busy rates. Consequently, increasing the memory size emerges

as a fundamental solution for reducing disk busy rates.

Insight or Suggestion. Increasing edge devices’ memory size is

the primary strategy to lower the disk busy rates, eventually con-

tributing to better LLM inference performance. Similarly, software

strategies that raise LLM storage efficacy could also be applied.

3.7 Insight and Suggestion Summary

By summarizing the insights and suggestions from Section 3.1 to

Section 3.6, the main constraints for effectively deploying LLM

on edge devices with acceptable inference performance are in-

sufficient memory and/or computational resources. From the

2024 ACM Southeast Conference – ACMSE 2024 – Session 1: Full Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

73



 
 
 

Figure 6: Disk Busy Rates of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

hardware perspective, to better support local LLM inference in

next-generation edge or mobile devices, the primary consideration

is to add extra memory and computing resources in System-on-

Chip (SoC). Moreover, adequate memory bandwidth should also be

supported. Otherwise, LLM performance would still be constrained

even with extra hardware costs. From the software perspective,

we suggest exploring orthogonal strategies to improve memory

usage efficiencies and computing resource utilization. The potential

methodologies include but are not limited to quantization, weight

matrix decomposition, model parallelism, sparse weight matrix en-

coding, shared storage and synchronizing with neighboring, etc.

These hardware and software optimizations could be applied inde-

pendently or combined according to the performance requirements

and resource conditions.

4 RELATEDWORK

Artificial Intelligence on Edges. Our work aligns with key ad-

vancements in edge intelligence, as demonstrated in recent studies.

These studies emphasize the integration of AI and edge computing,

address computational challenges for advanced AI models in edge

environments, and highlight the evolution of edge-specific AI solu-

tions for real-time data processing and decision-making[10, 29]. A

number of studies recognize that edge devices typically have only a

limited amount of memory resources, and their CPUs are less pow-

erful [13, 27, 32]. However, these constraints are considered major

impediments to implementing demanding ML models for end users.

To overcome this issue, one solution is to move the computing-

intensive tasks to the server and receive the results once the server

is complete. Ji Lin et al. [15] provides a comprehensive survey of

the associated with this method, which also gives an overview of

the current status and future challenges of edge computing. Li Lin

et al. [17] discuss some application scenarios for migrating compu-

tation tasks from mobile devices to the cloud. However, as the data

size increases, this approach suffers from high response latency.

It is mainly due to limited network bandwidth and finite server

resources, which impact transmission and remote execution delays

[23]. So, due to the high latency and unpredictability of cloud-based

execution, an approach employs two main strategies: DNN parti-

tioning, which adaptively divides DNN computation between the

device and the edge station, and DNN right-sizing, which uses an

early-exit mechanism at intermediate DNN layers to reduce compu-

tation latency [14]. Jian et al. [12] achieved significant reductions

in total execution time (27%-68%) for on-device inference with min-

imal impact on accuracy by adaptively pruning DNN connections.

Some optimization techniques are vital for edge intelligence sys-

tems, including providing lightweight models, model compression,

and hardware-aware neural architecture search, which are essential

for optimizing deep learning models on resource-constrained edge

devices [18]. Integrating model compression methods, specifically

random pruning, may also be beneficial for supporting intelligence

in resource-constrained edge networks [9]. In our work, we try

to explore challenges and bottlenecks to deploying LLM on edge,

where the model size and complexity are even several orders of

magnitude higher. While systematically optimizing general AI mod-

els for edge environments exists, the specific application of edge

LLMs still needs to be explored comprehensively. This paper aims

to fill this gap, delving into the potential challenges and more gen-

eral optimization strategies for effectively running LLMs on edge

devices. This topic is also crucial to enhancing edge AI capability.

LLM Deployment on Edges. Quantization is a straightforward

compression method that could benefit LLM edge deployment. Ji

Lin et al. [16] proposed Activation-aware Weight Quantization

(AWQ), emphasizing that not all weights are equally important for

efficient low-bit weight-only LLM quantization. AWQ selectively

quantizes model weights, preserving only the most crucial ones

for accuracy, and is designed to be hardware-friendly, enabling

more efficient LLM deployment on edge devices, including mobile

GPUs. Dual Grained Quantization (DGQ) [31] is another approach

by combining fine-grained quantization and coarse-grained quan-

tization. DGQ aims to reduce memory requirements significantly

while maintaining high accuracy. However, quantization can not

be simply applied to all LLMs. For some huge models, quantization

itself is still not enough for edge deployment. So exploring other

parallel approaches is still necessary. Woisetschläger et al. [28] give

a solution to fune-tune FLAN-T5 model family on edge, but the

these parameters numbers is much smaller, from 80M to 3B. Edge-

MoE [30] is a specific sparse LLM approach for on-device deploy-

ment that does not systematically identify challenges and explore

deployment solutions. A few works also address the challenges

of efficiently operating LLMs in wireless communication environ-

ments by strategically managing user connections and resource

allocation to enhance the service delivery of LLMs in MEC systems

[22]. All related work above helps deploy LLM on edge systems to

some extent but lacks a comprehensive analysis of the bottlenecks

and fails to provide sufficient general solutions. Our work provides

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices 
Dhar, Deng, Lo, Wu, Zhao, Suo

74



 
 
 

a clear design guideline for future edge LLM deployment from both

hardware and software optimizations.

5 CONCLUSION

Executing LLM on edge provides attractive benefits in system scal-

ability, local real-time intelligence, and privacy preservation. How-

ever, the contradiction between large-scale models and limited

resources on edge makes LLM deployment challenging. This paper

identifies the challenges and bottlenecks via empirical experiments.

LLaMa-2 with INT4 quantization is executed on diversified edge

devices and evaluated from inference performance, memory uti-

lization, CPU utilization, frequency of process switching, swap

partition utilization, and disk busy rate. After systematic analysis,

we conclude that the main challenges that limited edge LLM per-

formance are insufficient memory and computing resources. We

finally give insights and suggestions for effectively deploying LLM

on edge from hardware and software directions.

Evaluations in this paper are associated with LLM. All LLMs uti-

lized the transformer [26] architecture as the main components [19].

So, the challenges identified and the suggestions proposed in this pa-

per should also be applied to the deployments of other transformer-

based AI models on edge or IoT (Internet of Things) devices. For

example, we can download the 3D Detection Transformer [20] on

a drone or UAV (Unmanned Aerial Vehicle) with LiDARs to autopi-

lot and evade attack even if it loses network connections. These

suggestions essentially further extend the application scenarios of

transformer-based AI models.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their comments

and suggestions on this paper. This work was supported in part by

U.S. NSF grants CPS-2103459, SHF-2210744.

REFERENCES
[1] [n. d.]. Jetson AGX Orin. https://www.nvidia.com/en-us/autonomous-machines/

embedded-systems/jetson-orin/.
[2] [n. d.]. Port of Facebook’s LLaMA Model in C/C++. https://github.com/

ggerganov/llama.cpp.
[3] 2023. A New Foundation for AI on Android. https://android-developers.

googleblog.com/2023/12/a-new-foundation-for-ai-on-android.html.
[4] 2023. Qualcomm Works with Meta to Enable On-device AI Applications Using

Llama 2. https://www.qualcomm.com/news/releases/2023/07/qualcomm-works-
with-meta-to-enable-on-device-ai-applications-usi.

[5] 2023. Samsung Looks Towards AI For The Galaxy S24. https:
//www.forbes.com/sites/ewanspence/2023/11/13/samsung-galaxys24-ultra-
generative-ai-qualcomm-snapdragon-exynos-2400/?sh=6a019d2b3fba.

[6] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik
Cho, Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. 2023.
LLM in a Flash: Efficient Large Language Model Inference with Limited Memory.
arXiv:2312.11514 [cs.CL]

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

[8] Ellis Di Cataldo. 2023. OpenAI Stops New ChatGPT Plus Subscriptions Due to
Demand. https://tech.co/news/openai-stops-new-chatgpt-plus-subscriptions

[9] Chao Chen, Bohang Jiang, Shengli Liu, Chuanhuang Li, Celimuge Wu, and Rui
Yin. 2023. Efficient Federated Learning in Resource-Constrained Edge Intelligence
Networks using Model Compression. IEEE Transactions on Vehicular Technology
(2023), 1–12. https://doi.org/10.1109/TVT.2023.3318080

[10] Shuiguang Deng, Hailiang Zhao,Weijia Fang, Jianwei Yin, SchahramDustdar, and
Albert Y. Zomaya. 2020. Edge Intelligence: The Confluence of Edge Computing
and Artificial Intelligence. IEEE Internet of Things Journal 7, 8 (2020), 7457–7469.
https://doi.org/10.1109/JIOT.2020.2984887

[11] Warren Gay. 2014. Raspberry Pi Hardware Reference. https://doi.org/10.1007/978-
1-4842-0799-4

[12] Tong Jian, Debashri Roy, Batool Salehi, Nasim Soltani, Kaushik Chowdhury, and
Stratis Ioannidis. 2023. Communication-Aware DNN Pruning. In IEEE INFOCOM
2023 - IEEE Conference on Computer Communications. 1–10. https://doi.org/10.
1109/INFOCOM53939.2023.10229043

[13] Guangchen Lan, Xiao-Yang Liu, Yijing Zhang, and Xiaodong Wang. 2023.
Communication-efficient Federated Learning for Resource-constrained Edge
Devices. IEEE Transactions on Machine Learning in Communications and Network-
ing (2023).

[14] En Li, Zhi Zhou, and Xu Chen. 2018. Edge Intelligence: On-Demand Deep Learn-
ing Model Co-Inference with Device-Edge Synergy. In Proceedings of the 2018
Workshop on Mobile Edge Communications (Budapest, Hungary) (MECOMM’18).
Association for Computing Machinery, New York, NY, USA, 31–36. https:
//doi.org/10.1145/3229556.3229562

[15] Hai Lin, Sherali Zeadally, Zhihong Chen, Houda Labiod, and LushengWang. 2020.
A Survey on Computation Offloading Modeling for Edge Computing. Journal of
Network and Computer Applications 169 (2020), 102781. https://doi.org/10.1016/j.
jnca.2020.102781

[16] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han.
2023. AWQ: Activation-aware Weight Quantization for LLM Compression and
Acceleration. arXiv preprint arXiv:2306.00978 (2023).

[17] Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. 2019. Computation Offloading Toward
Edge Computing. Proc. IEEE 107, 8 (2019), 1584–1607. https://doi.org/10.1109/
JPROC.2019.2922285

[18] Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. 2022.
Bringing AI to Edge: From Deep Learning’s Perspective. Neurocomputing 485
(2022), 297–320. https://doi.org/10.1016/j.neucom.2021.04.141

[19] Pradeep Menon. 2023. Introduction to Large Language Models and the Trans-
former Architecture. https://rpradeepmenon.medium.com/introduction-to-
large-language-models-and-the-transformer-architecture-534408ed7e61.

[20] IshanMisra, Rohit Girdhar, and Armand Joulin. 2021. An End-to-end Transformer
Model for 3D Object Detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2906–2917.

[21] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A White Paper on Neural Network
Quantization. arXiv preprint arXiv:2106.08295 (2021).

[22] Liangxin Qian and Jun Zhao. 2023. User Association and Resource Allocation
in Large Language Model Based Mobile Edge Computing System over Wireless
Communications. arXiv:2310.17872 [cs.IT]

[23] Umber Saleem, Yu Liu, Sobia Jangsher, Xiaoming Tao, and Yong Li. 2020. Latency
Minimization for D2D-Enabled Partial Computation Offloading in Mobile Edge
Computing. IEEE Transactions on Vehicular Technology 69, 4 (2020), 4472–4486.
https://doi.org/10.1109/TVT.2020.2978027

[24] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[25] Lionel Sujay Vailshery. 2023. Number of Internet of Things (IoT) Connected
Devices Worldwide from 2019 to 2023, with Forecasts from 2022 to 2030. https:
//www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you Need. Advances in neural information processing systems 30 (2017).

[27] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive Federated Learning in Re-
source Constrained Edge Computing Systems. IEEE journal on selected areas in
communications 37, 6 (2019), 1205–1221.

[28] Herbert Woisetschläger, Alexander Isenko, Shiqiang Wang, Ruben Mayer, and
Hans-Arno Jacobsen. 2023. Federated Fine-Tuning of LLMs on the Very Edge:
The Good, the Bad, the Ugly. arXiv preprint arXiv:2310.03150 (2023).

[29] Dianlei Xu, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, Tao Jiang, Jon Crowcroft,
and Pan Hui. 2020. Edge Intelligence: Architectures, Challenges, and Applications.

2024 ACM Southeast Conference – ACMSE 2024 – Session 1: Full Papers – ISBN: 979-8-4007-0237-2 
Marietta, Georgia, USA, April 18-20, 2024

75



 
 
 

arXiv:2003.12172 [cs.NI]
[30] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei

Xu. 2023. Edgemoe: Fast on-device Inference of Moe-based Large Language
Models. arXiv preprint arXiv:2308.14352 (2023).

[31] Luoming Zhang, Wen Fei, Weijia Wu, Yefei He, Zhenyu Lou, and Hong Zhou.
2023. Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM.

arXiv preprint arXiv:2310.04836 (2023).
[32] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018.

Deepthings: Distributed Adaptive Deep Learning Inference on Resource-
Constrained Iot Edge Clusters. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 37, 11 (2018), 2348–2359.

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices 
Dhar, Deng, Lo, Wu, Zhao, Suo

76




