L)

Check for
updates

2024 ACM Southeast Conference — ACMSE 2024 — Session 1: Full Papers — ISBN: 979-8-4007-0237-2
Marietta, Georgia, USA, April 18-20, 2024

An Empirical Analysis and Resource Footprint Study of Deploying
Large Language Models on Edge Devices

Nobel Dhar

Kennesaw State University
Marietta, Georgia, USA
ndhar@students.kennesaw.edu

Xiaofeng Wu
City University of Macau
Macao, Macau
xiaofengwu@cityu.edu.mo

ABSTRACT

The success of ChatGPT is reshaping the landscape of the entire
IT industry. The large language model (LLM) powering ChatGPT
is experiencing rapid development, marked by enhanced features,
improved accuracy, and reduced latency. Due to the execution over-
head of LLMs, prevailing commercial LLM products typically man-
age user queries on remote servers. However, the escalating volume
of user queries and the growing complexity of LLMs have led to
servers becoming bottlenecks, compromising the quality of service
(QoS). To address this challenge, a potential solution is to shift
LLM inference services to edge devices, a strategy currently being
explored by industry leaders such as Apple, Google, Qualcomm,
Samsung, and others. Beyond alleviating the computational strain
on servers and enhancing system scalability, deploying LLMs at
the edge offers additional advantages. These include real-time re-
sponses even in the absence of network connectivity and improved
privacy protection for customized or personal LLMs.

This article delves into the challenges and potential bottlenecks
currently hindering the effective deployment of LLMs on edge de-
vices. Through deploying the LLaMa-2 7B model with INT4 quan-
tization on diverse edge devices and systematically analyzing ex-
perimental results, we identify insufficient memory and/or comput-
ing resources on traditional edge devices as the primary obstacles.
Based on our observation and empirical analysis, we further pro-
vide insights and design guidance for the next generation of edge
devices and systems from both hardware and software directions.

CCS CONCEPTS

« Computer systems organization; - Computing methodolo-
gies — Artificial intelligence; Natural language generation;

KEYWORDS

Large Language Models (LLMs), LLaMA-2, Edge Devices, Edge
Computing

This work is licensed under a Creative Commons Attribution International 4.0
License.

ACMSE 2024, April 18-20, 2024, Marietta, GA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0237-2/24/04.

https://doi.org/10.1145/3603287.3651205

Bobin Deng
Kennesaw State University
Marietta, Georgia, USA
bdeng2@kennesaw.edu

Liang Zhao
Kennesaw State University
Marietta, Georgia, USA
Izhao10@kennesaw.edu

Dan Lo

Kennesaw State University
Marietta, Georgia, USA
dlo2@kennesaw.edu

Kun Suo
Kennesaw State University
Marietta, Georgia, USA
ksuo@kennesaw.edu

ACM Reference Format:

Nobel Dhar, Bobin Deng, Dan Lo, Xiaofeng Wu, Liang Zhao, and Kun Suo.
2024. An Empirical Analysis and Resource Footprint Study of Deploying
Large Language Models on Edge Devices. In 2024 ACM Southeast Conference
(ACMSE 2024), April 18-20, 2024, Marietta, GA, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3603287.3651205

1 INTRODUCTION

Over the past year, Artificial Intelligence (AI) has witnessed signifi-
cant revolutionary advancements, notably with the introduction
of ChatGPT [7] and other Large Language Models (LLMs). These
LLMs have showcased remarkable abilities in understanding human
languages and generating diverse applications for society. However,
when compared to traditional search queries, a single LLM query
incurs a significantly higher overhead, requiring 8 to 16 high-end
GPUs on the server. Furthermore, the complexity of LLMs and the
growing user base contribute to an escalating demand on server
resources, potentially leading to the central server becoming a per-
formance and bandwidth bottleneck. For instance, OpenAl recently
had to temporarily suspend new ChatGPT Plus subscriptions due
to a rapid surge in demand [8].

In parallel, Statista predicts that the current global count of con-
nected Internet of Things (IoT) devices stands at 15.14 billion and is
projected to reach 29.42 billion by 2030 [25]. This rapid expansion
of connected IoT devices in edge systems not only transforms in-
dustry system architectures but also provides local computational
resources in closer proximity to users. Given the potential limita-
tions of centralized servers and the surplus computational capacity
at the edge, there is a compelling motivation to push LLM exe-
cutions to the edge. Additionally, an edge-based LLM can deliver
real-time responses to users, even in the absence of network con-
nections. The deployment of customized or personalized LLMs on
edge devices is also advantageous for privacy and storage consider-
ations. To harvest the above benefits, industry leaders, including
Apple, Google, Qualcomm, and Samsung, recently proposed specific
optimizations [4, 6] or developed new lightweight models [3, 5] to
achieve intelligence on edge/mobile devices.

Effectively deploying LLMs to edge systems still poses chal-
lenges, primarily due to the inherent conflict between the scale
of Al models and the limited resources available at the edge, such
as computational and storage resources. This paper aims to sys-
tematically quantify these challenges, considering factors such as

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3603287.3651205&domain=pdf&date_stamp=2024-04-27

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices
Dhar, Deng, Lo, Wu, Zhao, Suo

performance, memory utilization, CPU utilization, frequency of
process switching, swap partition utilization, and disk busy rate.
Following a thorough analysis of our experimental results, we in-
tend to provide insights and design guidelines for next-generation
edge devices and systems, encompassing both hardware architec-
tures and software stacks. To achieve this, we deploy LLaMA-2 [24],
an open-source LLM from Meta, on different edge devices post
INT4 quantization [21]. Our evaluation results are gathered and
analyzed using this real-world platform. The key contributions of
this paper are outlined as follows:

e With the successful deployment of LLama-2 7B through uti-
lizing INT4 quantization on a range of off-the-shelf edge
devices, we systematically gathered and analyzed evaluation
results. This comprehensive analysis covers diverse data,
including inference performance, memory utilization, CPU
utilization, frequency of process switching, swap partition
utilization, and disk busy rate.

e Building upon the aforementioned evaluation results, we
pinpoint the bottlenecks that hinder the efficient deployment
of LLMs to diverse edge devices and delve into the underlying
causes of these bottlenecks.

e Drawing from these data and analysis, we offer additional in-
sights and design recommendations for future LLM services,
edge devices, and associated systems from both hardware
and software optimizations.

The remaining content of this paper is structured as follows:
Section 2 delves into the evaluation methodology, encompassing
model and device selection, deployment, text generation, and data
collection. Section 3 scrutinizes the gathered data to identify po-
tential bottlenecks and furnishes insights for system architects to
enhance edge infrastructure for more efficient LLM performance.
Section 4 introduces relevant prior work in the field, and Section 5
presents our concluding remarks.

2 EVALUATION METHODOLOGY

This section presents our evaluation platform and methodology,
encompassing various edge devices and their specifications, the
framework for the large language model, the dataset, measurement
tools, and the model compression techniques that will be applied.

2.1 Edge Devices

As shown in Figure 1, four distinct edge devices were evaluated
in this paper: the Nvidia Jetson AGX Orin [1] and Raspberry Pi 4
Model B [11] with 1GB, 2GB, and 8GB of memory. Without loss of
generality, we utilize Raspberry Pis with different RAMs to repre-
sent general edge devices. Raspberry Pis are widely used in many
edge devices, and their ARMvx architecture is also very popular
in mobile and edge systems. The Jetson AGX Orin represents the
high-end edge nodes. Table 1 provides an overview of the funda-
mental specifications of evaluated edge devices. Raspberry Pis with
varying memory capacities represent typical edge nodes. On the
other end, the Nvidia Jetson AGX Orin serves as the high-end edge
node, although only the CPU of this device has been used in this
work to make a standard comparison. Table 2 illustrates the mem-
ory bandwidth of these devices, as this metric is often a crucial
factor influencing edge LLM performance.

‘ Memory ‘
8GB

‘ Memory ‘
2GB

Figure 1: All the Devices Used in This Study

Table 1: Basic Specifications of Evaluated Edge Devices

Device Name Memory CPUFreq. CPU# Disk Size

Raspberry Pi 4B 1GB 1.8GHz 4 32GB
Raspberry Pi 4B 2GB 1.8GHz 4 32GB
Raspberry Pi 4B 8GB 1.8GHz 4 32GB
Jetson AGX Orin 32GB 2.2GHz 12 64GB

Table 2: Memory Bandwidth of Evaluated Edge Devices

Devices Bandwidth (GB/s)
Raspberry Pi 4B 1GB 12.8
Raspberry Pi 4B 2GB 12.8
Raspberry Pi 4B 8GB 12.8

Jetson AGX Orin 204.8

2.2 LLM Compression and Deployment

We opt for the open-source large language model, LLaMa-2 [24], to
represent the state-of-the-art in LLMs, which is obtainable from the
META repository. Given the constraints of edge devices, we employ
the LLaMa-2 7B model as the benchmark for evaluation. Before
deploying LLaMa-2 7B across all devices, an effective compression
technique, quantization, is applied better to align the model with
memory and storage requirements. For our hardware parameters,
we specifically choose INT4 quantization [2]. The resulting size of
the quantized LLaMa-2 7B model is approximately 3.9 GB. Following
successful deployment, a standard input prompt is submitted to each
device, generating a text response. All pertinent data for evaluation
metrics is collected during this process. The system status data is
collected via NMON tool, which includes CPU utilization, memory
usage, disk activity, etc. The latency results are provided by the
llama.cpp [2] framework.

3 EDGE LLM OBSERVATIONS AND ANALYSIS

This section delves into detailed evaluation results obtained from
the experimental platform discussed in Section 2, with the objective
of investigating the performance of the quantized LLaMA-2 7B
across diverse edge devices. We explored diverse input prompts
to generate text and evaluate, such as ‘Kennesaw State University,
‘Atlanta, Georgia, and ‘ACMSE’. These preliminary tests confirmed
that the evaluated performance is always consistent when switch-
ing inputs. Therefore, all experiments in this section utilized the

70

2024 ACM Southeast Conference — ACMSE 2024 — Session 1: Full Papers — ISBN: 979-8-4007-0237-2
Marietta, Georgia, USA, April 18-20, 2024

(a) Raspberry Pi 1GB (b) Raspberry Pi 2GB

(c) Raspberry Pi 8GB (d) Jetson Orin

80004 30000
800
1500 A 25000 -
= IWASYAMNIR A SIS | 6000 4
= /= 120000 1 —— memtotal —— active
z 1000 1 r~ {15000 4 —— memfree ~ —— inactive
£ 4000 4 —— cached
g 5004 10000
2000 4 5000 -
WA AN ar A A AN 1
oL - - - - - - . - - ol - - . .
N 29 o® o N 0 o® W ® N 0 o0 R
Time(s) Time(s) Time(s) Time(s)

Figure 2: Memory Utilization of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

standard input prompt, ‘Hello World!’, for evaluation. To eliminate
stochastic interference factors, we encapsulate a standard evalua-
tion environment. We ensure no other application is executed and
there is no data communication on the testing device. Based on
this encapsulated environment, we observed that data patterns are
very close in multiple evaluations. We monitored all devices during
their active LLM influences. The evaluation metrics encompass LLM
inference latency, memory utilization, CPU utilization, frequency of
process switching, swap partition utilization, and disk busy rate. Each
metric will be scrutinized through the lenses of Observation, Anal-
ysis, and Insight or Suggestion. In the end, we also conclude with
a comprehensive summary of the overarching observations and
analyses derived from the above experimental results.

Note: The y-axis scales of sub-figures vary in the majority of figures
of this section, aiming to highlight specific data trends and identify
differences.

3.1 Inference Performance

Observation. Table 3 summarizes the inference performance of
executing LLaMa-2 7B with INT4 quantization on different edge
devices. After all the response words have been printed, the infer-
ence performance (Tokens per second) can be computed via the
total number of tokens that have been generated divided by the
total execution time. The Raspberry Pis with 1GB and 2GB memory
exhibit the performance of 0.01 tokens/second. This throughput is
considered unacceptable by LLM users, even though the aggressive
model compression technique has been applied. For the Raspberry
Pis with 8GB memory, we observed a performance of 0.11 tokens
per second, which is an 11X improvement. However, this is still
not enough to achieve high Quality of Service (QoS) for the LLM
users. The NVIDIA Jetson Orin, with sufficient CPU and memory
resources, performed at 4.49 tokens per second.

Table 3: Inference Performance of Executing LLaMa-2 7B
with INT4 Quantization on Different Edge Devices

Devices Performance (Tokens/Second)
Raspberry Pi 4B 1GB 0.01
Raspberry Pi 4B 2GB 0.01
Raspberry Pi 4B 8GB 0.11
Jetson AGX Orin 4.49

Analysis. As per Table 1 and Table 2, all configurations of the
three Raspberry Pi devices are identical except for the memory size.
Comparing the Raspberry Pi with 1GB and 2GB of memory to the
8GB version, an 11X performance improvement is observed. This
performance gap can be attributed to their limited memory size,
which leads to more frequent swapping and switching and less CPU
utilization. Our experimental data, as detailed in the later sections,
support this conclusion. The frequent swapping of data blocks
between the memory and disk inevitably increases the overall re-
sponse latency of LLM. In contrast, the Nvidia Jetson Orin, with
more powerful computational units and storage capacity, achieves
a 40.8x throughput compared to the Raspberry Pi 8GB, making it
suitable for a subset of LLM applications.

Insight or Suggestion. We suggest to increase the memory sizes
for edge devices to serve LLM inference better. We observed non-
linear performance improvement from our experimental results
while increasing memory size. From Jetson Orin’s results, adequate
computational resources and memory bandwidth may also benefit
the LLM inference performance.

3.2 Memory Utilization

Observation. Figure 2 illustrates the memory utilization of execut-
ing LLaMa-2 7B with INT4 quantization on multiple edge devices.
In Figure 2 (a) and 2 (b), which are Raspberry Pi with 1GB and
2GB memory, the availability of free memory is always close to
0. For the Raspberry Pi with 8GB memory (Figure 2 (c)), the free
memory is close to 2GB most of the time. Finally, the Jetson Orin
(Figure 2 (d)) has more than 23GB of free memory all the time when
executing this quantized LLM.

Analysis. As we introduced in Section 2.2, the size of LLaMa-2
7B with INT4 Quantization is approximately 3.9 GB. Due to this
fact, the free memory of Raspberry Pi with 1GB or 2GB of memory
is always close to 0. This result is consistent because they must
frequently evict and fetch back the data blocks, leading to extra
waiting time. For the Raspberry Pi with 8GB memory and Jetson
Orin, we can load the entire quantized LLM into their memories;
therefore, their performance is significantly better. However, we
still observed the 40.8X performance gap between the Raspberry Pi
8GB and Jetson Orin. This observation indicates that besides raising
the memory size, we should also increase the memory bandwidth
and computational resources for better inference performance.

7

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices
Dhar, Deng, Lo, Wu, Zhao, Suo

(a) Raspberry Pi 1GB

(b) Raspberry Pi 2GB

(c) Raspberry Pi 8GB

(d) Jetson Orin

=
N OB O © O
o ©o © o o

CPU Utilization (%)

o

{ ey 100 wrerrerrr gy e e vy 100 100
80 80 1 80 1
60 - 601 601
40+ 40+ 40+
204 204 201
01 01 01
T T T T T T T T T T T T T T T T T
N o ® e [N 20 o0 B 20 o B N 20 o0 B ®
Time(s) Time(s) Time(s) Time(s)

2400

2200

Number of Process Switches
per Second
[T
[=)) =] o
o o o
o o o

Figure 3: CPU Utilization of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

(a) Raspberry Pi 1GB

(b) Raspberry Pi 2GB

(c) Raspberry Pi 8GB

(d) Jetson Orin

2000

1800

1600

1400

8000

6000

4000

50000

—— Process Switches

40000

30000

O

1400 | l 1 1200 1 MY‘ | 2000 I i tl | 20000 J 'l w '|ﬂ
1200 | 1000 L"‘W ‘LJ 10000
N o @u @00 1000 N 50 o 450 @00 N 250 o N \900 N %0 o N o°
Time(s) Time(s) Time(s) Time(s)

Figure 4: Process Switches of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

Insight or Suggestion. Upgrading the memory size itself is prob-
ably not enough in some scenarios; we should also increase the
memory bandwidth and/or add extra computational units for bet-
ter performance. Besides the hardware optimizations, we may also
explore orthogonal software methodologies to enhance memory
efficiency, such as sparse matrix encoding for some specified layers
to minimize LLM storage requirements.

3.3 CPU Utilization

Observation. Figure 3 shows the CPU utilization of executing
LLaMa-2 7B with INT4 quantization on different edge devices. The
pattern of CPU utilization essentially is very similar to that of
memory utilization, as Figure 2 depicted. In Figures 3 (a) and 3 (b),
the CPU utilization for Raspberry Pi models with 1GB and 2GB
memory configurations is presented. Notably, for both of these
devices, an average of only approximately 20% of CPU resources
is actively engaged, while nearly 80% remains in a waiting state.
It is worth highlighting that the 8GB version of the Raspberry
Pi exhibits a nearly 100% CPU utilization rate, signifying a more
intensive computational workload. Conversely, the NVIDIA Jetson
Orin experiences an average utilization rate of around 10%.

Analysis. Combining the findings from Section 3.1 and Section 3.2,
the low CPU utilization rates depicted in Figure 3 (a) and Figure 3
(b) suggest that insufficient memory is the primary bottleneck.
Throughout most of the LLM inference duration, the CPUs of Rasp-
berry Pi 1GB and Raspberry Pi 2GB are idle, awaiting the requested
data from the disk. Conversely, the Raspberry Pi 8GB, equipped
with enough memory to load the entire LLM model, exhibits nearly
100% CPU utilization. In this case, the performance bottleneck shifts
to computational resources, highlighting that additional memory

is not required. To enhance the LLM inference performance of the
8GB device further, consideration should be given to upgrading
to a more powerful unit or adding extra computational units. The
optimal inference performance achieved with low CPU utilization
implies that the high-end edge node’s memory and computational
resources are adequate for handling the quantized LLaMa-2 7B.

Insight or Suggestion. Both memory and computational resources
may be LLM inference bottlenecks. When conditions permit, we
should provide edge devices with sufficient memory and compu-
tational resources. For the high-end edge node with surplus com-
puting and memory resources, such as Nvidia Jetson Orin in our
experiments, we can explore the model parallelism of LLM to en-
hance the performance further.

3.4 Frequency of Process Switching

Observation. The data trending in Figure 4 reveals that Raspberry
Pi devices with less available memory may experience a higher fre-
quency of process switching. Context switching among processes
can reduce CPU utilization and increase cache misses, leading to
a slowdown in overall system performance. Figures 4 (a) and 4
(b) demonstrate that when running large language models on the
Raspberry Pi with 1GB and 2GB of memory, the frequencies of
process switching are mainly between 1200 and 1500 times per
second. However, the frequency of the system’s process switching
is dropped greatly upon raising the memory size to 8GB, as illus-
trated in Figure 4(c). Notably, during certain time intervals of large
language model runs, process switching occasionally surpassed
2000 times per second. Beyond the comparison among Raspberry
Pis, Figure 4 (d) shows that the Jetson AGX Orin is observed to have
process switchings between 10,000 and 35,000 times per second.

72

2024 ACM Southeast Conference — ACMSE 2024 — Session 1: Full Papers — ISBN: 979-8-4007-0237-2
Marietta, Georgia, USA, April 18-20, 2024

(a) Raspberry Pi 1GB (b) Raspberry Pi 2GB

(c) Raspberry Pi 8GB (d) Jetson Orin

QE: 300 300 300 20000

<

v 2501 250 4 250 7

g 15000 1

¥ 200 + 200 4 200 4

c

=)

&£ 150 4 150 4 150 4 10000 4 —— SwapTotal

B —— SwapFree

>

S 100 A 100 100

QEJ 5000 1

= 504 50 4 50 4

I}

2

£ ol ; : : S ; ; ; S ; ; ; SRS ‘ ‘ ‘ ‘
0 500 1000 1500 2000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

Time(s) Time(s) Time(s) Time(s)

Figure 5: Swap Partition Utilization of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

Analysis. The frequency of process switching surges is closely tied
to page faults, particularly in scenarios where the entire quantized
LLaMA-2 7B model cannot fit into the device’s memory. Page faults
will be triggered when a specific required data block or segment
is not available in memory. Consequently, the system reallocates
the CPU resources to processes that contain immediately required
data in memory. The page faults typically contribute to the extra
time cost of LLM execution. Therefore, similar to the inference
performance in Section 3.1, the frequency of process switching in
Raspberry Pi 1GB and 2GB is higher than in Raspberry Pi 8GB.
The higher process switch rates were observed in the Jetson Orin
compared to the Raspberry Pis. This can be attributed to Jetson
Orin’s powerful CPU architecture, which supports multitasking.
This capability, while beneficial for parallel performance, requires
significant system resources to manage and synchronize threads,
leading to more frequent context switches.

Insight or Suggestion. To lower the frequency of process switch-
ing and achieve better LLM performance, ensuring that the edge
devices serve LLM with sufficient memory is imperative. Similar
to Section 3.1, Section 3.2 and Section 3.3, software approaches to
improve memory usage efficiency can also reduce the frequency of
process switching and boost the LLM inference performance.

3.5 Swap Partition Utilization

Observation. Figure 5 showcases the utilization of swap partitions
during the execution of LLaMa-2 7B with INT4 quantization on di-
verse edge devices. The observed trend in swap partition utilization
is nearly identical to the analysis of memory utilization presented
in Section 3.2. Specifically, the swap spaces of Raspberry Pi models
with 1GB and 2GB memory configurations are nearly at full capac-
ity, indicating a significant reliance on swap memory. In contrast,
the swap spaces of the Raspberry Pi with 8GB memory and Nvidia
Jetson Orin remain largely unutilized, suggesting ample available
swap capacity on these devices.

Analysis. The assessment of swap partition utilization is corre-
lated with the findings on inference performance in Section 3.1 and
memory utilization in Section 3.2. In cases where memory over-
flow occurs, such as in Raspberry Pi 1GB and Raspberry Pi 2GB, a
portion of data blocks is relocated from memory to the swap space.
However, the limited swap space proves insufficient to accommo-
date the entire LLM model, leading to a 100% utilization rate of
the swap partition for these devices. In these scenarios, thrashing
becomes evident, adversely affecting the inference performance

of Raspberry Pi 1GB and Raspberry Pi 2GB. While increasing the
swap size may marginally alleviate the impact on inference per-
formance by facilitating data transfers between memory and disk
or MicroSSD, achieving satisfactory performance still necessitates
an augmentation of memory size. For the Raspberry Pi 8GB and
Nvidia Jetson Orin, the absence of additional data block evictions
to the swap partition indicates that the memory adequately meets
the storage requirements of the running LLM model.

Insight or Suggestion. Based on the discourse in this subsection,
while enlarging the swap space may offer marginal improvements in
inference performance, it remains imperative to emphasize the need
for augmenting the hardware memory size to guarantee satisfactory
LLM performance on typical edge devices.

3.6 Disk Busy Rate

Observation. Figure 6 displays the disk busy rates during the ex-
ecution of LLaMa-2 7B with INT4 quantization on diverse edge
devices. Similar to the observed pattern of swap partition utiliza-
tion in Section 3.5, the disk busy rates for Raspberry Pi 1GB and
2GB fall within the same category. Throughout the evaluation pe-
riod, their disk busy rates consistently range between 90% and 95%.
In contrast, as shown in Figure 6 (c) and (d), the disk busy rates for
Raspberry Pi 8GB and Nvidia Jetson Orin are noticeably lower for
the majority of the evaluation time.

Analysis. The observed trend in disk busy rates mirrors that of
swap partition utilization. The disk busy rate is linked to accessing
swap space. In the case of Raspberry Pi 1GB or 2GB, the frequent
swapping of data blocks between memory and disk results in high
disk busy rates. Conversely, Raspberry Pi 8GB and Nvidia Jetson
Orin require less frequent switching, leading to significantly lower
disk busy rates. Consequently, increasing the memory size emerges
as a fundamental solution for reducing disk busy rates.

Insight or Suggestion. Increasing edge devices’ memory size is
the primary strategy to lower the disk busy rates, eventually con-
tributing to better LLM inference performance. Similarly, software
strategies that raise LLM storage efficacy could also be applied.

3.7 Insight and Suggestion Summary

By summarizing the insights and suggestions from Section 3.1 to
Section 3.6, the main constraints for effectively deploying LLM
on edge devices with acceptable inference performance are in-
sufficient memory and/or computational resources. From the

73

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices
Dhar, Deng, Lo, Wu, Zhao, Suo

(a) Raspberry Pi 1GB

(b) Raspberry Pi 2GB

(c) Raspberry Pi 8GB (d) Jetson Orin

—— Disk Activity

100.0

97.5

95.0 11

92.5 1~

90.0 -

Percentage of Disk Busy

87.5 | |

80 30 4

60

60

40 40

20 20 | l

o0 90 \’000

Time(s)

B\ \’000 \5,00 75,0“ 92

Time(s)

«° N x@“

Time(s)

o0 1% o® 75

Time(s)

22°

Figure 6: Disk Busy Rates of Executing LLaMa-2 7B with INT4 Quantization on Different Edge Devices

hardware perspective, to better support local LLM inference in
next-generation edge or mobile devices, the primary consideration
is to add extra memory and computing resources in System-on-
Chip (SoC). Moreover, adequate memory bandwidth should also be
supported. Otherwise, LLM performance would still be constrained
even with extra hardware costs. From the software perspective,
we suggest exploring orthogonal strategies to improve memory
usage efficiencies and computing resource utilization. The potential
methodologies include but are not limited to quantization, weight
matrix decomposition, model parallelism, sparse weight matrix en-
coding, shared storage and synchronizing with neighboring, etc.
These hardware and software optimizations could be applied inde-
pendently or combined according to the performance requirements
and resource conditions.

4 RELATED WORK

Artificial Intelligence on Edges. Our work aligns with key ad-
vancements in edge intelligence, as demonstrated in recent studies.
These studies emphasize the integration of Al and edge computing,
address computational challenges for advanced Al models in edge
environments, and highlight the evolution of edge-specific Al solu-
tions for real-time data processing and decision-making[10, 29]. A
number of studies recognize that edge devices typically have only a
limited amount of memory resources, and their CPUs are less pow-
erful [13, 27, 32]. However, these constraints are considered major
impediments to implementing demanding ML models for end users.
To overcome this issue, one solution is to move the computing-
intensive tasks to the server and receive the results once the server
is complete. Ji Lin et al. [15] provides a comprehensive survey of
the associated with this method, which also gives an overview of
the current status and future challenges of edge computing. Li Lin
et al. [17] discuss some application scenarios for migrating compu-
tation tasks from mobile devices to the cloud. However, as the data
size increases, this approach suffers from high response latency.
It is mainly due to limited network bandwidth and finite server
resources, which impact transmission and remote execution delays
[23]. So, due to the high latency and unpredictability of cloud-based
execution, an approach employs two main strategies: DNN parti-
tioning, which adaptively divides DNN computation between the
device and the edge station, and DNN right-sizing, which uses an
early-exit mechanism at intermediate DNN layers to reduce compu-
tation latency [14]. Jian et al. [12] achieved significant reductions

in total execution time (27%-68%) for on-device inference with min-
imal impact on accuracy by adaptively pruning DNN connections.
Some optimization techniques are vital for edge intelligence sys-
tems, including providing lightweight models, model compression,
and hardware-aware neural architecture search, which are essential
for optimizing deep learning models on resource-constrained edge
devices [18]. Integrating model compression methods, specifically
random pruning, may also be beneficial for supporting intelligence
in resource-constrained edge networks [9]. In our work, we try
to explore challenges and bottlenecks to deploying LLM on edge,
where the model size and complexity are even several orders of
magnitude higher. While systematically optimizing general Al mod-
els for edge environments exists, the specific application of edge
LLMs still needs to be explored comprehensively. This paper aims
to fill this gap, delving into the potential challenges and more gen-
eral optimization strategies for effectively running LLMs on edge
devices. This topic is also crucial to enhancing edge Al capability.

LLM Deployment on Edges. Quantization is a straightforward
compression method that could benefit LLM edge deployment. Ji
Lin et al. [16] proposed Activation-aware Weight Quantization
(AWQ), emphasizing that not all weights are equally important for
efficient low-bit weight-only LLM quantization. AWQ selectively
quantizes model weights, preserving only the most crucial ones
for accuracy, and is designed to be hardware-friendly, enabling
more efficient LLM deployment on edge devices, including mobile
GPUs. Dual Grained Quantization (DGQ) [31] is another approach
by combining fine-grained quantization and coarse-grained quan-
tization. DGQ aims to reduce memory requirements significantly
while maintaining high accuracy. However, quantization can not
be simply applied to all LLMs. For some huge models, quantization
itself is still not enough for edge deployment. So exploring other
parallel approaches is still necessary. Woisetschlager et al. [28] give
a solution to fune-tune FLAN-T5 model family on edge, but the
these parameters numbers is much smaller, from 80M to 3B. Edge-
MOoE [30] is a specific sparse LLM approach for on-device deploy-
ment that does not systematically identify challenges and explore
deployment solutions. A few works also address the challenges
of efficiently operating LLMs in wireless communication environ-
ments by strategically managing user connections and resource
allocation to enhance the service delivery of LLMs in MEC systems
[22]. All related work above helps deploy LLM on edge systems to
some extent but lacks a comprehensive analysis of the bottlenecks
and fails to provide sufficient general solutions. Our work provides

74

2024 ACM Southeast Conference — ACMSE 2024 — Session 1: Full Papers — ISBN: 979-8-4007-0237-2
Marietta, Georgia, USA, April 18-20, 2024

a clear design guideline for future edge LLM deployment from both
hardware and software optimizations.

5 CONCLUSION

Executing LLM on edge provides attractive benefits in system scal-
ability, local real-time intelligence, and privacy preservation. How-
ever, the contradiction between large-scale models and limited
resources on edge makes LLM deployment challenging. This paper
identifies the challenges and bottlenecks via empirical experiments.
LLaMa-2 with INT4 quantization is executed on diversified edge
devices and evaluated from inference performance, memory uti-
lization, CPU utilization, frequency of process switching, swap
partition utilization, and disk busy rate. After systematic analysis,
we conclude that the main challenges that limited edge LLM per-
formance are insufficient memory and computing resources. We
finally give insights and suggestions for effectively deploying LLM
on edge from hardware and software directions.

Evaluations in this paper are associated with LLM. All LLMs uti-
lized the transformer [26] architecture as the main components [19].
So, the challenges identified and the suggestions proposed in this pa-
per should also be applied to the deployments of other transformer-
based AI models on edge or IoT (Internet of Things) devices. For
example, we can download the 3D Detection Transformer [20] on
a drone or UAV (Unmanned Aerial Vehicle) with LiDARs to autopi-
lot and evade attack even if it loses network connections. These
suggestions essentially further extend the application scenarios of
transformer-based Al models.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their comments
and suggestions on this paper. This work was supported in part by
U.S. NSF grants CPS-2103459, SHF-2210744.

REFERENCES

[n.d.]. Jetson AGX Orin. https://www.nvidia.com/en-us/autonomous-machines/
embedded- systems/jetson-orin/.

[n.d.]. Port of Facebook’s LLaMA Model in C/C++.
ggerganov/llama.cpp.

2023. A New Foundation for AI on Android. https://android-developers.
googleblog.com/2023/12/a-new-foundation-for-ai- on-android.html.

2023. Qualcomm Works with Meta to Enable On-device AI Applications Using
Llama 2. https://www.qualcomm.com/news/releases/2023/07/qualcomm-works-
with-meta-to-enable-on-device-ai-applications-usi.

2023. Samsung Looks Towards AI For The Galaxy S24. https:
//www.forbes.com/sites/ewanspence/2023/11/13/samsung- galaxys24-ultra-
generative-ai-qualcomm-snapdragon-exynos-2400/?sh=6a019d2b3fba.

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik
Cho, Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. 2023.
LLM in a Flash: Efficient Large Language Model Inference with Limited Memory.
arXiv:2312.11514 [cs.CL]

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL]

Ellis Di Cataldo. 2023. OpenAl Stops New ChatGPT Plus Subscriptions Due to
Demand. https://tech.co/news/openai-stops-new-chatgpt-plus-subscriptions
Chao Chen, Bohang Jiang, Shengli Liu, Chuanhuang Li, Celimuge Wu, and Rui
Yin. 2023. Efficient Federated Learning in Resource-Constrained Edge Intelligence
Networks using Model Compression. IEEE Transactions on Vehicular Technology
(2023), 1-12. https://doi.org/10.1109/TVT.2023.3318080

https://github.com/

[10

[11

[12

(14

(15

[16

=
=

(18]

[19

[20]

[21

~
o

[23

[24]

[25

[26

~
=

[28

[29

Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar, and
Albert Y. Zomaya. 2020. Edge Intelligence: The Confluence of Edge Computing
and Artificial Intelligence. IEEE Internet of Things Journal 7, 8 (2020), 7457-7469.
https://doi.org/10.1109/JI0T.2020.2984887

Warren Gay. 2014. Raspberry Pi Hardware Reference. https://doi.org/10.1007/978-
1-4842-0799-4

Tong Jian, Debashri Roy, Batool Salehi, Nasim Soltani, Kaushik Chowdhury, and
Stratis Joannidis. 2023. Communication-Aware DNN Pruning. In [EEE INFOCOM
2023 - IEEE Conference on Computer Communications. 1-10. https://doi.org/10.
1109/INFOCOM53939.2023.10229043

Guangchen Lan, Xiao-Yang Liu, Yijing Zhang, and Xiaodong Wang. 2023.
Communication-efficient Federated Learning for Resource-constrained Edge
Devices. IEEE Transactions on Machine Learning in Communications and Network-
ing (2023).

En Li, Zhi Zhou, and Xu Chen. 2018. Edge Intelligence: On-Demand Deep Learn-
ing Model Co-Inference with Device-Edge Synergy. In Proceedings of the 2018
Workshop on Mobile Edge Communications (Budapest, Hungary) (MECOMM’18).
Association for Computing Machinery, New York, NY, USA, 31-36. https:
//doi.org/10.1145/3229556.3229562

Hai Lin, Sherali Zeadally, Zhihong Chen, Houda Labiod, and Lusheng Wang. 2020.
A Survey on Computation Offloading Modeling for Edge Computing. Journal of
Network and Computer Applications 169 (2020), 102781. https://doi.org/10.1016/].
jnca.2020.102781

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han.
2023. AWQ: Activation-aware Weight Quantization for LLM Compression and
Acceleration. arXiv preprint arXiv:2306.00978 (2023).

Li Lin, Xiaofei Liao, Hai Jin, and Peng Li. 2019. Computation Offloading Toward
Edge Computing. Proc. IEEE 107, 8 (2019), 1584-1607. https://doi.org/10.1109/
JPROC.2019.2922285

Di Liu, Hao Kong, Xiangzhong Luo, Weichen Liu, and Ravi Subramaniam. 2022.
Bringing Al to Edge: From Deep Learning’s Perspective. Neurocomputing 485
(2022), 297-320. https://doi.org/10.1016/j.neucom.2021.04.141

Pradeep Menon. 2023. Introduction to Large Language Models and the Trans-
former Architecture. https://rpradeepmenon.medium.com/introduction-to-
large-language-models-and- the-transformer-architecture-534408ed7e61.

Ishan Misra, Rohit Girdhar, and Armand Joulin. 2021. An End-to-end Transformer
Model for 3D Object Detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2906-2917.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart
Van Baalen, and Tijmen Blankevoort. 2021. A White Paper on Neural Network
Quantization. arXiv preprint arXiv:2106.08295 (2021).

Liangxin Qian and Jun Zhao. 2023. User Association and Resource Allocation
in Large Language Model Based Mobile Edge Computing System over Wireless
Communications. arXiv:2310.17872 [cs.IT]

Umber Saleem, Yu Liu, Sobia Jangsher, Xiaoming Tao, and Yong Li. 2020. Latency
Minimization for D2D-Enabled Partial Computation Offloading in Mobile Edge
Computing. IEEE Transactions on Vehicular Technology 69, 4 (2020), 4472-4486.
https://doi.org/10.1109/TVT.2020.2978027

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
Lionel Sujay Vailshery. 2023. Number of Internet of Things (IoT) Connected
Devices Worldwide from 2019 to 2023, with Forecasts from 2022 to 2030. https:
//www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you Need. Advances in neural information processing systems 30 (2017).
Shigiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. 2019. Adaptive Federated Learning in Re-
source Constrained Edge Computing Systems. IEEE journal on selected areas in
communications 37, 6 (2019), 1205-1221.

Herbert Woisetschlager, Alexander Isenko, Shigiang Wang, Ruben Mayer, and
Hans-Arno Jacobsen. 2023. Federated Fine-Tuning of LLMs on the Very Edge:
The Good, the Bad, the Ugly. arXiv preprint arXiv:2310.03150 (2023).

Dianlei Xu, Tong Li, Yong Li, Xiang Su, Sasu Tarkoma, Tao Jiang, Jon Crowcroft,
and Pan Hui. 2020. Edge Intelligence: Architectures, Challenges, and Applications.

75

An Empirical Analysis and Resource Footprint Study of Deploying Large Language Models on Edge Devices
Dhar, Deng, Lo, Wu, Zhao, Suo

arXiv:2003.12172 [cs.NI]

[30] Rongjie Yi, Liwei Guo, Shiyun Wei, Ao Zhou, Shangguang Wang, and Mengwei
Xu. 2023. Edgemoe: Fast on-device Inference of Moe-based Large Language
Models. arXiv preprint arXiv:2308.14352 (2023).

[31] Luoming Zhang, Wen Fei, Weijia Wu, Yefei He, Zhenyu Lou, and Hong Zhou.
2023. Dual Grained Quantization: Efficient Fine-Grained Quantization for LLM.

[32

]

arXiv preprint arXiv:2310.04836 (2023).

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. 2018.
Deepthings: Distributed Adaptive Deep Learning Inference on Resource-
Constrained Iot Edge Clusters. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 37, 11 (2018), 2348-2359.

76

