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ABSTRACT

Understanding spatiotemporal correlations in power systems is crucial for maintaining grid stability, reliabil-
ity, and efficiency. By discerning connections between spatial and temporal dimensions, operators can antici-
pate and address issues such as congestion, voltage instability, and equipment failures. Recent advancements
in power system analysis have leveraged spatiotemporal correlations through sophisticated data-driven algo-
rithms. In this survey paper, we conduct a comprehensive examination of deep learning frameworks tailored
to tackle the complexities inherent in spatiotemporal data analysis within power systems. We categorize ma-
chine learning methodologies into discriminative, generative, and reinforcement learning, providing a struc-
tured overview of their mathematical foundations, advantages, and limitations in processing dynamic power
system measurements. Through empirical evaluations, we assess the performance of these methodologies
across various spatiotemporal applications, including cyber attack detection, fault identification, demand
response, and renewable energy forecasting, offering insights into their efficacy and applicability. Addition-
ally, we identify emerging topics within the machine learning domain that hold promise for future endeavors

in power systems analysis.
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I. INTRODUCTION

N the realm of power systems, recognizing
I the relationship between space and time holds significant
weight. Spatial correlation, in essence, pertains to the
similarity in behaviors observed across different locations
within the system, while temporal correlation refers to the
persistence of these behaviors over time. When we merge
these two aspects, we derive the concept of spatiotemporal
correlation, which essentially underscores how the
combined influence of space and time impacts system
dynamics. This understanding becomes particularly crucial
within power distribution systems, where it serves as a
linchpin for various essential tasks such as sustainable
energy forecasting [1]-[4], fault detection [5]-[8], load
management [9]-[13], state estimation [14]-[17], and cyber
security [18]-[21]. By discerning how phenomena evolve
both spatially and temporally, we can optimize distribution
efficiency, bolster reliability, and fortify the power
distribution  system’s resilience against unforeseen
challenges. Hence, prioritizing the analysis and utilization of
spatiotemporal correlations emerges as a cornerstone in the
realm of power systems engineering.

Data-driven approaches have been crucial in studying the
spatiotemporal correlations of power systems over the past
decade. The effectiveness and dependability of data-driven
approaches used in managing and evaluating power systems
are closely connected to the representation of data,
specifically the characteristics generated from the original
measured data [22]. Hence, a considerable proportion of
difficulties related to the utilization of conventional
data-driven algorithms in power systems stems from the
approaches employed for preprocessing, specifically
through unsupervised dimensionality reduction techniques
such as principal component analysis (PCA) [23],
independent component analysis [24], linear discriminant
analysis [25], auto-encoder (AE) [26], t-distributed
stochastic neighbor embedding [27]. Although these
strategies are helpful, they frequently fail to consider the
intricate and ever-changing spatiotemporal patterns of power
systems.

Generally speaking, the deep learning approaches for
analysis and understanding of spatiotemporal correlations
within the power systems are categorized as:

1) Discriminative Models: These models aim to directly

uncover the relationship between input spatiotemporal
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patterns and the model’s output across various
classification and regression tasks within power

systems domains [28]. Recent studies have
demonstrated their capacity to yield accurate
performance in load monitoring [29], voltage
regulation [30], and forecasting tasks [31].

Nevertheless, a notable drawback of discriminative
models lies in their dependence on labeled data for
training, which can be limited or costly to acquire in
certain contexts. Moreover, these models may
encounter challenges in capturing the underlying
generative processes of the data, potentially impeding
their capacity to generalize to novel scenarios.

2) Generative Models: Unlike discriminative models,
generative approaches seek to encapsulate the inherent
distribution of spatiotemporal correlations rather than
explicitly modeling the input-output relationship [28].
By grasping the distribution of input data, generative
models can produce samples closely resembling the
original spatiotemporal correlations within the power
systems, offering valuable insights into the intrinsic
variability and uncertainty of power systems
dynamics. Within power systems analysis, these
models have proven effective in tasks such as cyber
security in active power distribution systems [32],
probabilistic wind speed forecasting [33], and
anomaly detection [34] by discerning the fundamental
probability distribution of observed data. However, a
notable challenge with generative models lies in the
computational complexity inherent in their training,
particularly when confronted with high-dimensional
spatiotemporal data.

3) Reinforcement Learning (RL): These models present a
distinctive approach in power systems analysis,
focusing on sequential decision-making processes
within dynamic environments. Unlike discriminative
and generative models, these models operate by
learning optimal strategies through interaction with
the environment, maximizing cumulative rewards over
time [35]. In the context of power systems, RL models
have shown promise in tasks such as adaptive power
system emergency control [36], cyber-physical
security assessment [37], load management [38], and
optimal power flow (OPF) control [39]. By leveraging
spatiotemporal correlations, RL agents can make
sequential decisions that enhance system performance
and resilience in real-time scenarios. However, one
challenge with RL models in power systems lies in the
complexity of the environment and the need for
extensive training to learn effective policies.

This survey paper is organized as follows. In Section 2,
deep discriminative architectures with their respective
mathematics are thoroughly explained. By utilizing diverse
practical applications and datasets in power systems, this
paper comprehensively clarifies and empirically compares
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different variants of these machine learning approaches.
Section 3 explores probabilistic deep neural architectures,
encompassing traditional models such as Variational
Autoencoders (VAEs) and Generative Adversarial Networks
(GANSs). This section covers both the practical applications
and conceptual advantages of these techniques. Additionally,
Section 4 investigates the widespread use of deep RL
algorithms in spatiotemporal analysis of power systems
operation and management. Section 5 delves into emerging
topics and novel challenges within the domain of deep
learning and introduces potential future research lines within
data-driven methods for spatiotemporal analysis of power
systems. Finally, Section 6 provides a conclusion that
synthesizes the paper’s findings.

Il. DEEP DISCRIMINATIVE LEARNING

Deep discriminative learning (DDL) stands as a prevalent
method for processing spatiotemporal correlations within
power systems, addressing various challenges concerning
system resilience and reliability. In this approach, given a
training dataset ~ comprising input-output  pairs
(x1,¥1), (x2,¥2), --s (Xn,yn), the primary objective is to
directly learn a function f that maps input patterns
X = (x1,x2,...,x,) to output values Y, approximated as
Y = f(X) = (31,92, -, ). The discriminative function
f(x) is typically trained by minimizing an error function,
computed by measuring the discrepancy between the actual
output values Y and the estimated outputs Y. The selection
of the error function hinges on the specific task at hand; for
instance, cross-entropy often serves as a preferred choice for
various classification tasks, such as fault detection and event
classification. Over the past decade, a multitude of
discriminative approaches have been utilized to tackle a
wide range of research challenges in learning spatiotemporal
correlations within power systems. In the subsequent
subsections, we undertake a comprehensive review of the
key data-driven discriminative models employed in this
realm.

A. CONVOLUTION NEURAL NETWORKS

Convolutional neural networks (CNNs) play a crucial role in
feature representation learning on a variety of tasks,
including face recognition [40], [41], traffic scene
understanding [42], [43], and medical imaging [44], [45]. As
shown in Fig. 1, CNNs are composed of several
convolutional layers, and each layer comprises multiple
convolutional kernels to extract diverse features from the
input layer. Each neuron within a feature map establishes
connections with a local region of neurons in the preceding
layer, known as its receptive field. Through this connectivity
pattern, the convolutional layer captures spatial
dependencies and hierarchical features present in the input
[46]. During operation, each kernel convolves across its
respective receptive field, performing a weighted sum of the
input values. The resulting convolved feature map is then
subjected to an element-wise activation function, typically a
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FIGURE 1. General framework of CNN architecture.

rectified linear unit (ReLU), which introduces nonlinearities
into the network [47].

The training procedure of CNNs involves optimizing the
network’s parameters, particularly the kernels (i.e., weights)
of the convolutional layers, to minimize the error between
the predicted outputs and the ground truth labels. For both
classification [48], [49] and regression tasks [50], the error
calculation typically involves the use of a loss function that
quantifies the disparity between the predicted and actual
outputs. In classification tasks, cross-entropy loss is
commonly employed, while mean squared error (MSE) is
often used for regression tasks. During training, CNNs
utilize gradient descent optimization algorithms, such as
stochastic gradient descent (SGD) [51], [52] or its variants
like Adam, to iteratively update the network’s weights in the
direction that reduces the loss function. This process
involves computing the gradient of the loss function with
respect to each weight using backpropagation, which
efficiently propagates the error gradient through the network
layers [53]. Mathematically, the weight update rule in
gradient descent can be expressed as:

oL
) ) 2
Wij

(1

where wfjl) represents the weight connecting neuron j in

layer /, 1 is the learning rate controlling the step size of the

weight updates, and —2%- denotes the partial derivative of
Bw.(.)
u

the loss function L with respect to the weight wi(j]). The chain
rule of calculus is used to compute the gradients of the loss
function with respect to the weights in each layer,
facilitating efficient weight wupdates. These updates
gradually refine the CNN’s parameters, enabling it to learn
meaningful spatiotemporal representations of the input
power system measurements.

CNNs play a pivotal role in capturing spatiotemporal
correlations within power systems. Zhang et al. [54] utilized
CNN architecture to detect false data injection (FDI) attacks
in modern power systems. Their model analyzes
spatiotemporal correlations using the Cubature Kalman filter
and Gaussian process regression. Subsequently, a deep CNN
is designed to delineate the functional relationship between
these correlations and the output. Similarly, in [55] and [56],
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CNN architectures are employed to extract spatiotemporal
correlations for precise FDI attack detection in power
systems. Furthermore, in [57], a multi-view CNN (MCNN)
is devised to combat spoofing cyber attacks in distribution
synchrophasors data (DSD). This study involves the
extraction of spatiotemporal correlations from DSD’s raw
frequency measurements, achieved through the fast S
transform after removing common components. The
resulting correlations are then inputted into the MCNN to
identify spoofing attacks.

Numerous studies have utilized CNN architecture
effectively for fault detection and event classification
applications. For instance, Wang et al. [58] proposed a
multiscale deep CNN for analyzing Supervisory Control and
Data Acquisition (SCADA) data in wind turbine fault
detection. Zhang et al. [59] introduced a hybrid fault
diagnosis framework for power grids, combining variational
mode decomposition with deep CNN. Similarly, Li et al.
[60] presented a knowledge-based CNN with support vector
machines (SVM) for transformer fault analysis.
Additionally, Hao and Li [61] developed a method to
transform power flow data into dynamic images, using CNN
for feature extraction. In a related study [62], voltage sag
characterization was employed to locate faults in distribution
networks using deep CNN and spatiotemporal analysis. The
effectiveness of this model was evaluated on the IEEE
13-node system. Additionally, Basumallik et al. [63]
presented a spatiotemporal CNN-based classification
method for event categorization utilizing Phasor
Measurement Unit (PMU) packet data streams.
Experimental findings on the IEEE 118-bus system
showcased the superior performance of their approach
compared to the recurrent neural architecture (i.e., Long
Short-Term Memory (LSTM)).

Moreover, CNN architectures and spatiotemporal
characteristics are leveraged to address non-intrusive load
modeling (NILM) challenges in power systems. For
instance, Zhang et al. [64] propose a non-intrusive method
for identifying the load state of a distribution network,
employing a deep CNN to analyze the non-local
spatiotemporal features of load on-off state switching points
and temporal features. Liu et al. [65] develop a NILM
method for multi-energy coupling (MEC) appliances,
establishing a teaching and mutual learning framework
using two deep CNNs. The efficacy of this approach is
validated across five types of MEC appliances. Wu and
Wang [66] introduce a concatenated CNN for capturing and
analyzing ultra-short time load signals, evaluating its
performance on UK-DALE and BLUED datasets.
Additionally, other studies such as those by Moradzadeh et
al. [67], Teixeira et al. [68], and Chen et al. [69] demonstrate
the effectiveness of CNNs and spatiotemporal features in
addressing the NILM problem in power systems.

Multiple studies have explored the efficiency of
CCN-based models in the domain of power generation and
load forecasting. For instance, Yin and Xie [70] introduced a
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Multi-Temporal Spatial-Scale CNN (MTSSCNN) method
designed to learn nonlinear spatiotemporal features from
load time series data, resulting in accurate load forecasting
outcomes. Jeong and Kim [71] introduced a space-time
CNN that leverages the location and historical data of
photovoltaic (PV) power generators for multiple PV
forecasting. Also, Similarly, Feng et al. [72] utilized CNN
architecture to provide intra-hour solar forecasting,
demonstrating the superior performance of deep CNN
models over shallow machine learning models with
meteorological predictors. Hu et al. [73] proposed a
CNN-based spatiotemporal wind power predictor, capturing
space-time features among multiple wind farms for 5-30
minutes ahead of wind forecasting tasks. Additionally, a
three-dimensional CNN was employed to automatically
extract spatiotemporal features from numerical weather
prediction (NWP) data, showcasing the significant
effectiveness of CNN in capturing intrinsic spatiotemporal
features for wind speed forecasting [74]. In another study by
Hong et al. [75], a day-ahead image-based spatiotemporal
wind speed forecasting framework was proposed, utilizing
Taguchi’s orthogonal array to design a robust
two-dimensional CNN for wind speed forecasting at an
offshore wind farm. Similarly, other recent studies [50],
[76], [77] have highlighted the effectiveness of CNN models
in renewable energy forecasting tasks.

B. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) constitute a class of
artificial neural networks particularly adept at modeling
sequential data due to their inherent capacity to capture
temporal dependencies within sequences. Unlike traditional
deep ReLU neural networks, RNNs possess recurrent
connections that allow them to maintain a memory of past
inputs, thereby enabling the processing of sequences of
arbitrary length (as shown in Fig. 2). This memory
mechanism enables RNNs to dynamically adapt their
internal states based on the current input as well as the
information stored from previous time steps, making them
well-suited for tasks involving time-series data or sequences
with temporal dependencies. Through recurrent connections
and feedback loops, RNNs can effectively model the
temporal dynamics of sequential data, making them
invaluable in applications such as natural language
processing, speech recognition, time series prediction, and,
notably, spatiotemporal modeling in power systems.

Expanding on the foundation of RNNs, specialized
variants like Gated Recurrent Units (GRUs), LSTM
architecture, and Reservoir Computing (RC) models have
emerged as powerful tools in spatiotemporal modeling
within power systems. These models tackle the limitations
encountered by standard RNNs, notably the vanishing
gradient problem [78], by integrating gating mechanisms
that control the information flow within the network.

GRUs achieve this through two main gates: the update
gate z, and the reset gate r,. At each time step 7, the update
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FIGURE 2. General framework of RNN architecture. Here, x! shows the
power systems measurements at time step ¢

gate controls the extent to which the previous memory
should be updated, while the reset gate determines how
much of the past information should be discarded. The
hidden state h, is updated using these gates, and the
candidate activation &, is computed based on the input and
the previous hidden state using:

7 =0o(W; - [h-1,x])
rr=0(W,-[h-1,x])
hy tanh(W - [r, © hy—1,x])
h = (1 _Zt> O+ 2z ®]jlt

@

where o is the sigmoid activation function, W,, W,, and W are
weight matrices, x; is the input at time step ¢, and © represents
element-wise multiplication.

In contrast, LSTM networks [79], [80] introduce three main
gates: the input gate i;, the forget gate f;, and the output gate
0;. Additionally, they maintain a cell state ¢, alongside the
hidden state 4,. These gates and the cell state are updated as:

iy =o(Wi-[h_1,x])
fr=o(Wr - [h-1,x])

0r = a(Wo - [h—1,x])

¢, = tanh(W, - [h,—1,x])
G =fiOc_1+i O
h, = o; ® tanh(c¢,)

3

Here, W;, W, W,, and W, are weight matrices, and ¢,
represents the candidate cell state. Eq. (3) shows how
information is stored, updated, and retrieved over time in
LSTM units, allowing them to capture and utilize long-range
dependencies more effectively than traditional RNNs or
GRUs.

The RC architecture [81], [82] represents a distinctive
approach within the realm of RNNs that unlike LSTM and
GRU models, which involve complex internal gating
mechanisms, leverages a fixed, high-dimensional, and
randomly connected recurrent network called the reservoir.
The primary innovation of RC lies in the separation of the
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dynamic reservoir from the output layer, where only the
weights of the output layer are trained, significantly
simplifying the training process. This decoupling allows RC
models to efficiently capture temporal dependencies and
dynamic behavior of input sequences without the
computational burden associated with training the entire
network, as seen in LSTM and GRU architectures. As shown
in Fig. 3, the RC architecture typically comprises three main
components: the input layer, the reservoir, and the output
layer. The input layer maps the input signal u, to the
reservoir state space. The reservoir consists of a large
number of sparsely connected neurons with fixed, randomly
initialized weights Wi, and W,,. The dynamic state of the
reservoir x; evolves according to the nonlinear
transformation:

X1 = tanh(Wrie“Su, + Wisx + Weaityi—1)

res (4)
Y = Wouxs

where tanh is the activation function, and y, is the output
layer. Here, W is the weight matrix that connects the input
nodes to the reservoir layer, W5 denotes the weights in the
reservoir layer, and W2i' shows the matrix of feedback
weights which are used to incorporate the output of the
previous time step in the current state. Also, W, represents
the trainable weights that maps the latent high-dimensional
reservoir states to the output layer.

The training procedure of the RC seeks to solve the
optimization problem argmin ", [|yi*** — Woux; H2 by
adjusting the output weights Wy,,. The optimal solution for
this optimization problem is obtained as:

W = Ytarget(XXT)fle (5)

where Y™ is the given target observations, and X is the
designed matrix with x; in the tth column. Here, A is positive
parameter regularization determined by the validation set.
Due to the remarkable generalization capabilities inherent
in RNNs, numerous research endeavors have devised
RNN-based frameworks to address various power system
challenges, spanning from behind-the-meter (BtM)
disaggregation [83]—[85], to cyber-physical attack detection
[86]-[90] and sustainable energy and load forecasting
[91]-[99]. For instance, Razavi et al. [83] proposed an
LSTM-based multi-input single-output model that leverages
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historical data from individual households as simultaneous
inputs to forecast target time series. This approach
effectively captures spatial correlations among residential
units indirectly. Similarly, Zhang et al. [84] introduced a
method for predicting BtM PV power generation, employing
an attention-LSTM neural network and transfer learning.
Categorizing weather data into four types, they identify key
factors influencing PV power generation and utilize LSTM
to capture temporal patterns. Furthermore, Zaboli et al. [85]
presented a data-driven framework integrating LSTM and
stacked autoencoders (SAEs) for forecasting residential load
profiles, considering PV, battery energy storage systems, and
electric vehicle loads. Their approach involves minute-level
data extraction, facilitating accurate predictions, and
enhancing the understanding of load dynamics.

In the realm of power system cyber security and fault
identification, Musleh et al. [86] present a novel method
aimed at detecting FDI attacks in distribution systems. Their
approach employs a spatiotemporal learning algorithm,
utilizing an LSTM autoencoder to grasp normal system
behaviors and identify potential FDI attacks through
analysis of measurement errors. Additionally, James et al.
[87] introduce a machine learning framework designed for
FDI attack detection in AC state estimation. This method
leverages wavelet transform and GRU neural networks to
examine temporal correlations within estimated system
states. Experimental validation conducted on IEEE 118- and
300-bus power systems underscores the efficacy of the
proposed models, demonstrating satisfactory attack
detection accuracy. Also, Yadav et al. [88] introduce a novel
approach that PCA with sequential deep learning to classify
cyber-induced outages and natural events in power systems.
Their methodology relies on PCA to extract distinctive
spatiotemporal progression patterns, which are subsequently
classified using an ensemble LSTM network. Moreover,
Zhang et al. [100] introduced a novel RNN-based deep
autoencoder aimed at detecting wind turbine faults through
the analysis of spatiotemporal SCADA data. Their
framework comprises a deep GRU autoencoder designed to
capture  spatiotemporal features, followed by the
development of a support vector regression model optimized
by gray wolf optimization (GWO) to effectively classify
faults. Furthermore, Kim et al. [90] designed an Echo State
Network (ESN) as an efficient RC architecture for detecting
the FDI attacks in smart grids. Their results demonstrated
that the ESN model achieved comparable attack detection
accuracy to LSTM and GRU models but with significantly
reduced training times when tested on a three-bus power
system dataset.

In forecasting applications, Park et al. [91] introduce an
ensemble-based RNN framework to estimate generation
power at target PV sites. Their approach leverages historical
samples from other PV sites obtained through clustering and
distance-based sampling. Similarly, Jahangir et al. [94]
present a method addressing uncertainty in renewable
energy and electricity price data. Their approach combines
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micro-clustering with bidirectional LSTM networks,
categorizing data hourly to allocate distinct forecasting units
and enabling investigation of past and future data. Also, Fu
et al. [92] propose a multi-head self-attention network to
capture spatial correlations among wind farms, while a
sequence-to-sequence model captures temporal
dependencies of wind power time series. Moreover, Hu et al.
[101] proposed a robust ESN-based model enhanced by a
quality-driven loss function for wind power prediction
interval to quantify the prediction uncertainty. By evaluating
their proposed model on a real wind power dataset, the
authors showed the proposed model can reduce the mean
prediction interval width by up to 16.69% and save up to 5
times computation time compared to LSTM. Similarly, the
research study [99] introduced an RC-based model equipped
with a multi-objective GWO method for deterministic and
probabilistic wind power prediction. The numerical results
of this study, with respect to deterministic and probabilistic
metrics, showed higher performance of the proposed
RC-based model than state-of-the-art methodologies.

Furthermore, in [95], a spatiotemporal PV output
probability prediction method is introduced, leveraging
appearance similarity updating (ASU) in conjunction with
LSTM architecture. The ASU method is utilized to
quantitatively assess the lead-lag relationship between the
forecasting errors of each power station within a local small
PV cluster. Subsequently, by incorporating the output of
ASU analysis along with historical weather data, LSTM
enables accurate prediction results with a 15-minute horizon
for datasets originating from Jilin and Inner Mongolia. In
[97], a fast variant of RC architectures with smaller tunable
parameters is proposed for residential energy demand
forecasting. The proposed model is evaluated on four
different energy demand data sets for a 24-hour energy
demand prediction with a granularity of 15 min. The results
show that the proposed fast RC model improved the
traditional RC architecture as well as the LSTM model in
terms of training time metrics. Furthermore, Fujimoto et al.
[98] introduced a deep ESN architecture for edge computing
and proposed an efficient online learning scheme to keep
prediction models up-to-date. Using real-world data from
over 500 households, the framework demonstrated high
accuracy with significantly reduced computational costs.
This approach is well-suited for short-term residential
demand forecasting and can enhance demand-side energy
management.

C. CNN-RNN

CNN-RNN models offer a robust approach for capturing
spatiotemporal features in data by seamlessly integrating
CNN and RNN architectures. Mathematically, the CNN
component processes the input power system measurements
X using convolutional operations to extract spatial features,
generating feature maps F = CNN(X) that encode spatial
information across the input space. These feature maps are
then seamlessly integrated into the RNN component, where
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they are processed sequentially over time to capture
temporal dependencies. Let H, denote the hidden state of the
RNN at time step ¢, and 0 represent the parameters of the
RNN. The RNN component processes the feature maps F;
over time as H;, = RNN(F;,H,_1;6) where H, represents
the hidden state at time step ¢, F; denotes the convolution
feature maps at time step ¢, and H,_; is the hidden state
from the previous time step. By jointly leveraging spatial
and temporal information, CNN-RNN models excel in
learning how spatial features evolve and interact over time,
effectively capturing complex spatiotemporal correlations
within the data. Fig. 4 illustrates an example of a
CNN-LSTM architecture for short-term wind speed
prediction for an N x N array of wind turbines in a local
area. As depicted in the figure, the correlations among the
wind turbines are represented in an array, which is
subsequently fed into the CNN-LSTM model at each time
step ¢. This process extracts informative spatiotemporal
features for the wind speed prediction task.

Multiple recent studies have considered CNN-RNN
frameworks for spatiotemporal sustainable energy and load
forecasting. For instance, in [102], a short-term
spatiotemporal load forecasting framework is introduced,
leveraging spatial auto-correlation (SAC) and CNN-LSTM
to capture spatiotemporal characteristics of load time series
sub-signals derived from discrete wavelet transform.
Experimental results conducted on a dataset sourced from
power substations in Tehran, Iran, demonstrate the
efficiency of the proposed approach compared to recent load
forecasting methodologies. Chai et al. [103] exploit the
CNN-LSTM model to extract the spatiotemporal features of
a synthetic PV measurement dataset recorded in 56 locations
in the USA. Similarly, CNN-LSTM is employed in [104],
[105] for PV power generation forecasting task. In that
work, the authors show the superior performance of
CNN-LSTM compared with individual CNN and LSTM in
capturing spatiotemporal correlation of PV  power
generation sites. More recently, Yang et al. [106] integrated
a multi-scale convolutional neural network (MSCNN) with
an ESN architecture for solar irradiance prediction. Their
proposed model extracts task-relevant features from the 1-D
time series data of multiple locations using the MSCNN.
These extracted features are then fed into the ESN model to
obtain a high-dimensional state space. The authors
demonstrated the superiority of their spatiotemporal model
over the LSTM network in terms of performance and
accuracy. By integrating Rough set theory into CNN-LSTM
architecture, Saffari et al. [107] propose the end-to-end
convolutional rough LSTM model to extract spatiotemporal
correlations among 20 x 20 array of wind turbines in North
Carolina USA. In [108] a CNN is employed to extract spatial
features of 49 wind farms with cloud point distribution, and
an attention-based bidirectional LSTM architecture 1is
devised to learn temporal correlations. Also, Chen et al.
[109] proposed a multifactor CNN-LSTM model to extract
spatial features relationship between the meteorological
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FIGURE 4. General framework for CNN-LSTM architecture to extract
spatiotemporal features of wind turbines. ® denotes the convolution
operation.

factors of wind sites in a local area in Texas, USA.

Moreover, considerable research has delved into the
CNN-RNN model’s efficacy in cyber-attack and anomaly
detection, as well as voltage stability assessment within
power systems. For example, Kong et al. [110] utilize a
CNN-GRU model to accurately discern the health state of
wind turbines through spatiotemporal analysis of SCADA
data. In another study, D. et al. [111] introduce a SAE-based
CNN-RNN framework for detecting cyber-attacks in power
control systems. Leveraging two SAEs (i.e., CNN-SAE and
RNN-SAE), this model adeptly captures spatial and
temporal dependencies within the data, exhibiting
near-perfect classification outcomes across both binary and
multi-class scenarios. Additionally, Ruan et al. [112]
propose a spatiotemporally coordinated cyber attack strategy
targeting meteorological data used in renewable energy
forecasting. By designing white- and black-box attack
scenarios, they assess the performance of CNN-LSTM for
energy forecasting in the presence of these attacks.
Simulation results on the IEEE 39-bus benchmark
underscore the substantial economic losses and system
collapse induced by the proposed cyberattack strategy.
Additionally, Ma et al. [113] introduced a two-layer
algorithm for fault identification and localization using
spatiotemporal PMU data. Initially, they transform the PMU
data into 2D images utilizing Gramian angular field and
Short-Time Fourier Transform (STFT). Subsequently, a
CNN-LSTM  architecture is utilized to  extract
spatiotemporal features and classify faults on the IEEE
Standard New England 39-bus Test System. Additionally, to
maintain the power system in a secure state, Adhikari et al.
[114] propose a CNN-LSTM model for real-time assessment
of short-term voltage stability. Their model harnesses the
benefits of transfer learning, enabling effective operation
with only a limited number of labeled samples.
Experimental outcomes on IEEE 9-bus and New England
39-bus test systems demonstrate the superiority of the
proposed model for online applications.

In addition to energy forecasting and cyber attack
anomaly detection tasks, numerous studies have
demonstrated the efficacy of CNN-RNN models in NILM.
For instance, Kaselimi et al. [115] propose a deep learning
architecture that integrates CNN with a recurrent property to
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effectively model the spatial and temporal interdependencies
of power signals for energy disaggregation. By
incorporating multiple channels representing various
power-related variables, such as active, reactive, apparent
power, and current, the model achieves enhanced
performance and faster convergence times compared to
existing approaches. Similarly, Zhou et al. [116] combine
CNN, LSTM, and random forest models for spatiotemporal
NILM. They convert one-dimensional load data into a
two-dimensional matrix, extract spatial features using CNN,
learn temporal dependencies with LSTM, and employ
random forest to decode spatiotemporal features and output
labels. Experimental validation on two datasets confirms the
effectiveness of the proposed method in achieving accurate
NILM using low-frequency load data. Additionally, the
authors of [116] integrate a CNN-LSTM with random forest
architectures to extract task-relevant features from
low-frequency load data for performing NILM. Moreover,
Wang et al. [117] designed an adaptive sliding window to
prepare data from appliance operation characteristics and
fuse shallow CNN with a two-layer nested LSTM to perform
spatiotemporal load decomposition tasks.

D. GRAPH CNN

Graph-based methodologies are essential for
comprehensively modeling the spatiotemporal intricacies of
input time series data within power systems [118], [119]. By
conceptualizing the relationships and interconnections
among diverse power system components as nodes and
edges within a graph structure, these approaches facilitate
the capturing of both spatial and temporal dependencies
ingrained within the data. Here, the dynamic graph
G = {G}!ZI] consists of multiple graph snapshots
corresponding to time interval [f,7 + 7]. Each graph
snapshot G, = (V;,&) encapsulates the intricate
relationships among entities in power systems. Here, V),
denotes the set of nodes, and & signifies the set of edges
connecting nodes within V; at time step ¢. Each node v; is
connected by edges e; originating from node v;. The
neighborhood of a given node v; is expressed as
N,, = {ulu € V,(v,u) € &}. Typically, such data is
characterized by a nodal feature matrix X; with dimensions
n X f and an adjacency matrix A;, sized n X n, reflects the
presence of edges: a;; = Oif¢; ¢ & and a; = 1ife; € &
Dynamic graphs denoted as G, = (V},&,X,), crucially
employed in modeling spatiotemporal characteristics within
power system analysis, the features of nodes dynamically
evolve over time, enhancing the modeling capacity and
analytical depth of such methodologies.

Spectral graph convolutional neural networks (GCNNs)
[120] are a potent tool employed for extracting spatial
features from dynamic graph inputs G,. Operating within the
spectral domain, GCNNs utilize the eigenvalues and
eigenvectors of the graph Laplacian matrix L,, which
encapsulates the structural information of the dynamic
graph. As shown in Fig. 5, this spectral approach enables

VOLUME 11, 2023



IEEE Access

M. Saffari et al.: Learning Deep Spatiotemporal Correlations in Power Systems: A Review

Graph Convolutional Layers

=L Concatenation

Dynamic Graph

~, \\\

s, el -
AN =4 % \Y 5
N RelU zg
R o =
i W S
= RelLU /\‘\I =3
N\ . N 3=
N : o
H [ . < 3

: @
w ©
o
g

FIGURE 5. General framework of GCNN architecture.

GCNN s to transform the input dynamic graph features X;
into the spectral domain by applying multiple convolution
layers and obtain task-relevant spatiotemporal features of the
input dynamic graph. Mathematically, the spectral graph
convolution of graph G, at time step ¢ is (lzomputed as
Fox X, = ViFoVIX, = I, — D, ?W,D, 2, where the
parameter vector 6 represents the convolutional filter
parameters Fp = diag(@) in the frequency domain. Here, the
matrix V; contains the eigenvectors of the normalized
Lap}acian matrix L,;. Additionally, the expression

D, 2W.D, % denotes a normalized version of the weighted
adjacency matrix W, using the degree matrix D,. Due to
computational complexity in producing Fy, Chebyshev
polynomials {Tj}‘{zo are commonly employed to
approximate the underlying filters. This approximation is
expressed as F, =~ Zj:o o;T; ﬁ
represents the j-th Chebyshev coefficient, and w,,,, denotes
the maximum eigenvalue of L. Simplifying the convolution
operation with J/ = 1 and wy,,, = 2, and assuming equal and
opposite magnitudes for aig and o, the simplified form of
spectral GCNN can ble expressed as
Fo X, = «ap (In +D, *W,D, 5) X,. This streamlined
approach enhances the computational efficiency of spectral
graph convolution, offering a valuable framework for
analyzing dynamic graph data in various applications.

The spatiotemporal feature extraction capabilities of
GCNN architectures have led to their widespread adoption
in addressing diverse challenges within modern power
systems. The research study [121] utilized GCNN
frameworks for spatiotemporal load forecasting of a local
area in Hangzhou, China. Zhang et al. [122] propose a novel
method for short-term solar power forecasting, emphasizing
the optimization of graph structures to capture
spatio-temporal correlations among neighboring PV sites.
Through an analysis of geographical and weather factors,
key PV sites are selected to minimize data redundancy and
enhance forecasting accuracy. Leveraging complex network
theory, a unique index evaluates the connectivity of the
graph structure, enhancing the predictive capability of the
GCNN model. Evaluation on a dataset from 20 locations in
Jilin, China, demonstrates the superiority of the proposed

L, —1,), where o;

VOLUME 11, 2023

model over CNN-LSTM and LSTM architectures. Similarly,
Karimi et al. [123] propose a spatiotemporal graph neural
network for forecasting PV power in large-scale PV
systems. More recently, Liu et al. [124] introduce a
spatiotemporal approach for ultra-short-term wind farm
cluster power forecasting by analyzing fluctuation processes
and partitioning wind farm cluster power based on distinct
patterns. Their proposed model, employing a spatiotemporal
graph neural network for pattern prediction, outperforms
benchmarks on real wind farm cluster power datasets.
Additionally, in [125], a wind speed predictor is developed
that captures the spatial relationship of wind farms through
Granger causality testing. It employs a multi-scale graph
convolutional approach combined with a temporal
convolution layer to extract the most influential
spatiotemporal features, thereby enhancing the accuracy of
wind speed forecasting tasks with a 4-hour horizon. Also,
Dong et al. [126] develop a spatiotemporal GCN for wind
power forecasting, utilizing a directed graph convolutional
structure and a temporal convolutional network (TCN) to
effectively learn spatiotemporal correlations. The directed
GCNN layer enables the characterization of asymmetric
spatial correlations, while the TCN layer extracts temporal
features. By leveraging historical data from 15 wind farms in
Australia, the model demonstrates superior accuracy
compared to existing methods.

Several recent studies have proposed GCNN-based
frameworks for intelligent fault identification and voltage
stability assessment tasks. For instance, Tong et al. [127]
developed a spatiotemporal GCNN model aimed at
classifying transient faults in power transmission lines. By
incorporating both graph structures and bus voltage signals,
the model enables rapid fault classification by explicitly
considering spatial information within sampling sequences,
resulting in enhanced feature extraction capabilities.
Similarly, Hu et al. [128] introduced a fault diagnostic model
tailored for distribution systems. Their approach utilizes
deep GCNN architecture alongside spatiotemporal
convolutional blocks to extract waveform features
effectively. Experimental validation conducted on IEEE
33-bus and IEEE 37-bus test systems showcased superior
performance compared to regular GCNN and PCA-SVM
methods, particularly under diverse fault conditions and
various interference factors. Additionally, Nguyen et al.
[129] proposed a comprehensive framework integrating
ID-CNN and GCNN for extracting spatiotemporal
correlations from voltage measurements in microgrids. Their
approach addresses fault detection, type and phase
classification, and fault location. Evaluation against
traditional ANN structures on the Potsdam 13-bus microgrid
dataset revealed notably higher accuracy levels. In [130], an
attention-based graph convolution model is introduced for
monitoring the pre-fault transient stability of power systems.
Experimental results conducted on IEEE 39- and IEEE
300-bus systems highlight the superiority of the devised
framework, attributed to its hierarchical pooling structure
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and spectral unsupervised loss.

Furthermore, GCNN architectures are considered for
real-time solving of non-convex OPF optimization problems
in power systems. Li et al. [131] utilize graph-based neural
networks to extract attention matrices to tackle OPF
challenges in renewable power systems. Leveraging graph
attention neural networks, the approach extracts attention
matrices for nodes and links within the power grid,
effectively discerning correlations influenced by weather
inputs. Comprehensive evaluations across two European
renewable power system scenarios validate the method’s
efficacy, demonstrating superior performance compared to
existing data-driven techniques. By taking advantage of
GCNN and message passing technique interface, Mahto et
al. [132] proposed a spatiotemporal framework for OPF
solutions. In message passing, information is gathered from
neighboring nodes, aggregating and updating the feature
matrix. Simulation results on an IEEE 33-bus distribution
network validate the superior performance of the proposed
graph-based model compared with other recent deep neural
networks (DNNs).

Moreover, GCNNs have been employed to tackle cyber
attack detection in power systems. Qu et al. [133] focus on
addressing the threat of dummy data injection attacks
(DDIAs) to power system security. They highlight the
challenge faced by existing detection methods due to the
minimal spatiotemporal correlation between injected
malicious data and legitimate data. To overcome this, they
introduce temporal and spatial attention matrices aimed at
capturing spatiotemporal correlations within attacks. By
leveraging GCNN, they enhance dynamic correlation
mining capability and computational efficiency. In a related
study, Wu et al. [134] propose a spatiotemporal framework
for power grid cyber-attack detection and localization,
utilizing GCNN architectures in the complex-value domain.
They demonstrate that complex-valued GCNNs offer higher
stability in the face of perturbations in the underlying power
system graph and achieve higher FDI detection accuracy.

E. GRAPH CONVOLUTION RNN

In order to address the issue of long-term dependencies in
graph-structured data and alleviate the limitations of GCNN,
there is a growing interest in incorporating gate mechanisms
from RNNs, such as GRUs and LSTMs, into the GCNN
architectures. These models extend the capabilities of
traditional RNNs (i.e., GRU and LSTM) to handle
sequential data associated with graphs. Graph Convolution
GRU (GCGRU) extends traditional GRU networks to
operate on graph-structured data, allowing for sequential
modeling of graph data while capturing both temporal
dependencies and the structural information encoded in the
graph. Given x/ represents the feature vector associated with
node i at each time step t, GCGRUs update the hidden state
h"(l) of each node i based on the features of its neighboring
nodes. The update gate z’%t) and reset gate ”Ez) are computed
as sigmoid activations of linear combinations of the input
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features x/ and the previous hidden state h€171)’ while the
candidate hidden state iz’@ is obtained using the tanh

activation function. The final hidden state h’( ;) is updated by
blending the candidate hidden state with the previous hidden
state based on the update gate. Mathematically, this can be
expressed as:

4 =0(W,®x+ W, ®h_, +b,)

ri=0 Wy ®x\+ Wy ®hi_y +b,)

hi = tanh (Wy, ® x{ + Wiy, ® (r] © hi_|) + by,)

B=01-Z)oh |+ 0

(6)

where ® denotes a graph convolution operation with
2D-convolution kernels W, W, W,,., Wy, W, and Wp,.
Here, b,, b,, and b, are biases in convolution operation. This
formulation enables GCGRUs to capture complex
spatiotemporal dependencies within graphs, making them
suitable for various tasks related to power systems. Similar
to GCGRU, Graph Convolution LSTM (GCLSTM) is
another recurrent graph-based architecture that is an
extension of the LSTM model for analyzing dynamic
graphs. At each time step ¢, GCLSTMs update the hidden
state il and memory cell ¢! of each node i based on the
features of its neighboring nodes. This update involves the
computation of input, forget, and output gates i, !, o, and
the candidate memory cell content ¢!, followed by updating

the memory cell and hidden state accordingly.
Mathematically, this can be expressed as:
i =0 (Wx,- ®x;+ Wy ®h_; + b,-)
fl=o(Wy ®x;+ Wiy ®hi_y +by)
0, =0 (Wi ®x; + Wy, ® hi_; +b,) D

& = tanh (Wye ® x/ + Whe ® hi_; + b,)
a=fO0c_1+i;0q
I = ol ® tanh(c!)

where W, Wy, Wy,, W, are 2D-convolution kernels
(weights) that govern the influence of the input features x/
on the input gate i, forget gate £, output gate o, and the
candidate memory cell content ¢!, respectively, for node i at
time step 7. These weights control how much importance is
assigned to the input features when updating the cell state
and hidden state of the LSTM cell. Also, W;, Wy, Wy, Wi,
are weight matrices that govern the influence of the previous
hidden state 4, on the input gate i, forget gate f;', output
gate of, and the candidate memory cell content &,
respectively, for node i at time step ¢. These kernels control
how much importance is assigned to the previous hidden
state when updating the cell state and hidden state of the
LSTM cell. Additionally, b;, by, b,, b. are bias terms added
to the input gate if, forget gate f/, output gate o, and the
candidate memory cell content ¢!, respectively, for node i at
time step ¢. The biases allow the model to learn the overall
effect of each gate independent of the input and previous
hidden state. Fig. 6 shows an example of a GCGRU model
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FIGURE 6. General framework for a GCGRU Model for Extracting
Spatiotemporal Features

where the historical power system data between time steps
f € [t — 7,t — 1] are modeled as dynamic graphs {G; }!=/" L.
At each time step 7, the input graph data is fed into a spectral
GCNN [120] to extract the spatial correlations. These spatial
features are then input into a GRU to extract the temporal
correlations. Finally, the spatiotemporal features are
computed by averaging the hidden states of the GRUs across
the different time steps in [t — 7,7 — 1].

Several recent studies have utilized GCRNNs to address
sustainable energy generation and load forecasting
challenges. For example, Khodayar and Wang [135]
introduced a GCLSTM-based model for wind speed
forecasting, employing a scalable graph convolutional deep
learning architecture to effectively capture spatial and
temporal wind features. Integration of Rough Set Theory
[136], [137] enhances the model’s robustness, as
demonstrated by simulation results showcasing superior
performance over shallow architectures and state-of-the-art
models in wind speed prediction accuracy. Similarly, Jiao et
al. [138] applied the GCLSTM model to solar irradiance
forecasting in distributed PV systems, leveraging a GCNN
to extract critical features and an LSTM to capture temporal
correlations. Furthermore, to accurately forecast load
consumption, Arastehfar et al. [139] introduced a graph
convolution LSTM to extract spatiotemporal information
from users with similar consumption patterns. Experimental
results conducted on the Low Carbon London [140] and
Customer Behavior Trials [141] datasets showcase the
superior performance of the proposed model compared to
traditional LSTM and deep ReLU neural networks.

In the spatiotemporal BtM disaggregation task, Khodayar
et al. [142] introduced a novel approach employing a
spatiotemporal GCLSTM autoencoder to capture intricate
space-time correlations among residential units. This was
further augmented by a spatiotemporal graph dictionary
learning technique, effectively enhancing the sparsity of
latent spatiotemporal correlations. Similarly, Saffari et al.
[143] harnessed the power of dynamic graph modeling and
deep DL models to discern the most crucial spatiotemporal
features. Diverging from the methodology of [142], they
employed a capsule neural network (CapsNet) rather than a
deep ReLU neural network for decoding the latent sparse
representation and estimating load and PV power generation
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values at each time step ¢. Experimental findings, based on
real-world energy disaggregation datasets, underscore the
superiority of these spatiotemporal GCLSTM models,
enhanced with DL and CapsNet, over recent deep learning
baselines. Another noteworthy contribution is the geometric
GCLSTM method for BtM PV forecasting, as proposed by
the research study [144], leveraging insights derived from a
limited number of sensors (i.e., pyranometers, satellite
irradiation images, and power meters) within a distribution
system. Additionally, Saffari et al. [145] introduced an
attention-based GCGRU method, integrating deep extreme
learning machine (ELM) [146] as the decoder for load and
PV estimation.

Moreover, recent research has harnessed the capabilities
of GCRNN models in addressing diverse classification
problems within power systems analysis. For instance,
Ahmed et al. [147] propose a deep spatiotemporal graph
learning method for cyber-power event identification and
localization at the distribution level. The introduced
GCGRU autoencoder model utilizes physical measurements
from PMUs and cyber data from communication networks.
Experimental results on two different test systems, spanning
multiple cyber-power system events, vividly demonstrate the
high classification accuracy of the proposed model.
Additionally, a spatiotemporal fault diagnostic framework is
developed in [148], where a GCLSTM is engineered to
extract spatiotemporal features from voltage measurement
units installed at critical buses. The authors evaluate their
model’s performance on IEEE 123-node systems to
showcase its superiority over GCNN, LSTM, and CNN
architectures. Furthermore, Liu et al. [149] have devised a
spatiotemporal framework by combining GCNN and GRU
architectures for transient stability assessment of power
grids. The proposed gating spatiotemporal graph neural
network (GSTGNN), augmented with a weighted
cross-entropy loss function, is employed to extract and fuse
crucial spatiotemporal features, effectively addressing the
voltage assessment task at hand. Furthermore, Presekal et al.
[150] present a spatiotemporal framework that integrates
GLSTM for feature analysis and a deep CNN for time-series
classification-based online cyber attack situational
awareness aimed at enhancing power grid resilience.
Simulation results underscore the model’s significant ability
to identify active attack locations compared to recent deep
learning models.

F. PERFORMANCE COMPARISON AND DISCUSSION

In this section, we compare deep discriminative approaches
applied to various classification and regression tasks within
spatiotemporal power system analysis. We evaluate different
methodologies for classification applications based on
precision, recall, and F1 scores. For regression-based
applications, we use root mean square error (RMSE), mean
absolute error (MAE), and mean absolute percentage error
(MAPE) as key performance metrics. Tables 1 and 2 present
the quantitative outcomes achieved by different
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spatiotemporal discriminative architectures when addressing
classification- and regression-based challenges in power
system analysis, respectively. Across diverse applications,
both CNN-based and RNN-based methods demonstrate
comparable accuracy performances, as illustrated in the
tables. For example, in the task of FDI attack detection
within the power systems, the DCNN-CKF [54] model,
which integrates spatiotemporal correlations through a
Cubature Kalman filter before training a deep CNN model,
achieves an accuracy of 68.233%. Similarly, the LSTM-AE
[86] model exhibits a slightly superior F1 score of 69.687%
on the same dataset. Comparable performances are observed
when comparing results obtained from CNN- and
RNN-based models. Notably, CNN-RNN hybrid models
display enhanced accuracy compared to their individual
counterparts. For instance, in the NILM application on the
UK-DALE  dataset, CNN-GRU [110] surpasses
GRU-GWO-SVR [100] and VMD-CNN [59] by margins of
6.365% and 3.817%, respectively. Similarly, in PMU event
classification and voltage stability assessment, models such
as STFT-CNN-LSTM [113] and TempCNN-LSTM [114]
outperform STCNN [63] and FTSBA [151] methods by
margins of 3.976% and 4.889% in terms of F1 score,
respectively. This superior performance of CNN-RNN
architecture compared to individual CNN and RNN
architectures is attributed to their ability to simultaneously
capture complex spatiotemporal correlations by leveraging
the strengths of both CNN and RNN frameworks.

As illustrated in Table 1, graph-based spatiotemporal
approaches demonstrate superior performance compared to
other baseline methods. For instance, in voltage stability
assessment on the New England 39-bus system with 10
generators, AH-DAPE [130] outperforms TempCNN-LSTM
[114] and FTSBA [151] by margins of 3.689% and 8.578%,
respectively, in terms of F1 score. Similarly, in the fault
identification  within the IEEE 123-bus system,
Cplx-STGCN [134] outperforms CNN-RNN-SAE [111] by
3.242% in terms of the F1 score metric. This higher
classification performance is attributed to the utilization of
graph data structures and spectral graph convolutions, which
enable the modeling of intricate spatiotemporal correlations.

Furthermore, the GCRNN models enhance the
classification accuracy of GCNN architectures across
various spatiotemporal tasks. Notably, as depicted in the
table, the AttG-BDGNets [152], Ileveraging an
attention-based graph LSTM model, outperforms Spectral
GCN [153] by 4.125%. Similarly, RT-CPDLC [147]
improves the F1 score of GCN by 4.857% in the PMU event
classification task. This heightened generalization capacity
of GRCNN over GCNN stems from its utilization of both
recurrent and convolutional operations for mining dynamic
graphs derived from power system measurements.

Table 2 compares the performance of recent deep
discriminative architectures for regression-based tasks,
including sustainable energy and electrical load forecasting.
As shown in the table, both CNN- and RNN-based models
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show comparable forecasting accuracy. For instance, STAN
[92] that captures spatiotemporal correlations using a
multi-head attention-based sequence-to-sequence model,
slightly improve the Mean Absolute Percentage Error
(MAPE) of CSTWPP [73] that applies 2D convolutional
layers on spatiotemporal wind speed feature map. Similarly,
in PV power forecasting, one can observe that the
ASU-LSTM [95] reduces the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) of STCNN [63] by
0.432 and 0.538, respectively. Also, the SAC-ConvLSTM
[102] that leverages the advantages of both CNN and RNN
architectures outperforms B-LSTM [94] and MTSSCNN
baselines by 1.728% and 1.964%. Moreover, the
graph-based models show superior performance in
regression applications as well. Due to the shown results in
the table, the STSGCNN [121]  outperforms
SAC-ConvLSTM [102] and B-LSTM [94] by 1.558% and
3.355% in terms of MAPE, respectively. Similarly, the
GRLSTM [135] that utilizes robust Rough LSTM to process
spatiotemporal wind speed graph-based data decrease the
MAPE of ConvRLSTM [107] and STAN [92] by 2.398%
and 4.322%, respectively. The superiority of graph-based
models in power system analysis stems from their capacity
to explicitly represent intricate interdependencies among
system components as a graph structure. By harnessing
graph convolution operations, these models adeptly gather
information from adjacent nodes, facilitating the extraction
of spatiotemporal features crucial for analyzing power
system behavior over time.

G. ADVANTAGES AND DISADVANTAGES OF DEEP
DISCRIMINATIVE MODELS

In the realm of spatiotemporal analysis in power systems,
CNNs [54], [59], [63], [65], [70], [71] offer notable
advantages in capturing spatial dependencies within data,
making them particularly adept at processing information
from various sensors distributed across the power grid. By
leveraging shared weights and local receptive fields, CNNs
efficiently extract spatial features, enabling robust
identification of patterns such as fault detection and
classification of anomalies within the grid topology.
However, CNNs may struggle to effectively model temporal
dependencies inherent in time-series data, a critical aspect in
power system analysis where the temporal dynamics of
voltage fluctuations, load demand, and renewable energy
generation play pivotal roles. The RNNs [92], [94], [95],
[100], [154], on the other hand, excel in capturing sequential
dependencies over time, making them well-suited for
modeling temporal dynamics in power systems. Their ability
to maintain internal state representations allows for the
propagation of information across time steps, facilitating
accurate forecasting of future grid states and dynamic event
prediction. Nonetheless, RNNs may encounter challenges in
handling long-term dependencies and suffer from the
vanishing gradient problem, limiting their effectiveness in
capturing complex spatiotemporal interactions. To mitigate
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TABLE 1. Deep Discriminative Architectures Across Different Classification-based Power Systems Applications. For each application, the best results are
shown in bold and the second best results are underlined.

Performance Metric

Application Category Model Dataset
Precision (%) Recall (%) F1-Score (%)
CNN DCNN-CKF [54] 75.128 62.498 68.233
. RNN LSTM-AE [86] 66.123 73.658 69.687
FDI Attack Detection IEEE 300-bus system
CNN-RNN CNN-RNN-SAE [111] 74.259 71.193 72.694
GCNN Cplx-STGCN [134] 78.946 73.147 75.936
GRNN GC-LSTM [150] 85.946 80.687 83.234
CNN VMD-CNN [59] 75.146 78.159 76.623
L RNN GRU-GWO-SVR [100] 80.989 68.248 74.075
Fault Identification IEEE 123-bus system
CNN-RNN CNN-GRU [110] 78.257 82.749 80.440
GCNN STGCN [128] 80.743 85.127 82.877
GRNN R-GCN [148] 85.329 84.725 85.026
CNN TML-CNN [65] 50.198 61.456 55.259
RNN DL-LSTM [154] 49.178 63.175 55.305
NILM UK-DALE
CNN-RNN CNN-LSTM-RF [116] 55.117 57.842 56.447
GCNN Spectral GCN [153] 61.752 63.478 62.603
GRNN AttG-BDGNets [152] 64.449 69.175 66.728
CNN STCNN [63] 69.023 75.140 71.952
. CNN-RNN  STFT-CNN-LSTM [113] 71.519 80.897 75.919
Event Classification IEEE New England 39-bus system
GCNN GCN [127] 73.811 89.932 81.078
GRNN RT-CPDLC [147] 85.576 86.297 85.935
CNN FTSBA [151] 82.371 81.944 82.157
. CNN-RNN  TempCNN-LSTM [114] 85.184 88.991 87.046
Voltage Stability Assessment IEEE New England 10-generator 39-bus system
GCNN AH-DAPE [130] 90.388 91.085 90.735
GCRNN GSTGNN [149] 93.680 90.651 92.141

TABLE 2. Deep Discriminative Architectures Across Different Regression-based Power Systems Applications. For each application, the best results are
shown in bold and the second best results are underlined.

Performance Metric

Application Category Model Dataset
RMSE MAE MAPE (%)
CNN CSTWPP [73] 2.769 2.634 7.596
. . RNN STAN [92] . . . 2.549 2.129 6.869
Wind Power Forecasting Wind Integration National Dataset
CNN-RNN ConvRLSTM [107] 1.856 1.665 4.945
GCNN STDGCN [125] 1.297 1.196 4.069
GRNN GRLSTM [135] 1.064  0.852 2.547
CNN STCNN [71] 1.652 1.463 8.605
. . RNN ASU-LSTM [95] . . 1.114 1.031 8.369
PV Power Generation forecasting Solar Integration National Dataset
CNN-RNN CNN-LSTM [105] 1.032 0978 6.641
GCNN st-GNN [123] 1.166  0.862 5.905
GRNN GSINN [138] 1.079  0.716 4.764
CNN MTSSCNN [70] 2.445 2.268 9.102
. . RNN B-LSTM [94] 2237 1912 8.200
Electrical Demand Forecasting Low Carbon London
CNN-RNN  SAC-ConvLSTM [102] 1.897 1.661 6.403
GCNN STSGCN [121] 1.522 1.327 4.845
GRNN GCLSTM [139] 1.239 1.113 3.902
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these challenges, recent research has explored attention
mechanisms in RNNs, offering an alternative approach to
capture long-range dependencies in spatiotemporal data
within power systems. By dynamically weighting the
importance of different input features at each time step,
attention mechanisms enable RNNs to focus on relevant
information while effectively filtering out noise and
irrelevant data.

The CNN-RNN architectures [107], [110], [111], [116]
offer a compelling solution to address the limitations of
individual CNN and RNN models in the spatiotemporal
analysis of power systems. By combining the strengths of
both  CNNs and RNNSs, these architectures provide a
comprehensive framework capable of capturing both spatial
and temporal dependencies within the data. CNNs serve as
feature extractors, effectively capturing spatial patterns from
grid sensor data, while RNNs handle the sequential nature of
temporal data, capturing dynamic dependencies over time.
This synergistic approach enables CNN-RNN architectures
to effectively model the complex interactions between
spatial and temporal dimensions in power system data,
leading to improved performance in tasks such as load
forecasting, fault detection, and event classification.
Furthermore, CNN-RNN architectures mitigate the
vanishing gradient problem encountered by standalone
RNNs, as the CNN component pre-processes the data,
reducing the burden of long-term temporal dependencies on
the RNN. However, CNN-RNN architectures may introduce
additional complexity and computational overhead
compared to standalone models, requiring careful
architecture design and parameter tuning.

The GCNNs [121]-[124], [126] as a powerful tool for
leveraging graph data structures in the spatiotemporal
modeling of power systems, offering several advantages
over traditional CNN, RNN, and CNN-RNN approaches.
Firstly, GCNNs inherently exploit the graph structure of the
power grid, allowing for the propagation of information
between neighboring nodes in the graph. This enables
GCNNs to capture spatial dependencies more effectively
compared to traditional CNNs, which typically operate on
regular grid-like structures and may struggle to capture the
irregular connectivity of the power grid. Additionally,
GCNNs can naturally handle varying graph topologies and
dynamic changes in network configurations, addressing the
limitations of RNNs and CNN-RNNs in modeling temporal
dynamics in power systems. However, it’s worth noting that
GCNNs may still face challenges in capturing long-range
dependencies within the graph, particularly in large-scale
power systems with complex network structures.

To address the challenges of capturing long-range
dependencies within GCNN structures, the GCRNNs extend
the capabilities of GCNNs by incorporating recurrent
connections, allowing for the propagation of information not
only between neighboring nodes but also across multiple
time steps. By integrating recurrent connections into the
graph convolutional framework, GCRNNs [138]-[140],
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[142], [143] can effectively capture both spatial and
temporal dependencies within the power grid graph. This
enables GCRNNs to model the dynamic interactions
between different components of the grid over time,
providing a more comprehensive understanding of
spatiotemporal phenomena such as voltage fluctuations, load
dynamics, and renewable energy integration. Moreover,
GCRNNs offer flexibility in handling varying graph
topologies and dynamic changes in network configurations,
making them well-suited for real-world applications in
power system analysis and forecasting. Despite these
advantages, GCRNNs may introduce additional complexity
and computational overhead compared to standalone GCNs,
requiring careful optimization and parameter tuning.

Ill. DEEP GENERATIVE LEARNING

Generative modeling offers an alternative paradigm to
address spatiotemporal correlation learning in power system
analysis. Unlike discriminative modeling, which focuses on
learning the conditional distribution of output given input
p(Y|X), generative models aim to capture the joint
distribution of X and Y and then map that distribution to
P(Y|X) for a supervised task. By modeling the joint
distribution, generative models can potentially offer a deeper
understanding of the underlying data generating process,
facilitating tasks such as data synthesis, anomaly detection,
and uncertainty quantification [155]-[157]. Various GAN-
and VAE-based approaches have been explored in the
context of power system analysis to capture complex
spatiotemporal ~ correlations  for  probabilistic  and
deterministic tasks. In this section, we explore the details of
these generative models and review the spatiotemporal
approaches that employ them for solving different problems
in power systems analysis and operation.

A. VARIATIONAL AUTOENCODER

VAEs [158]-[160] are a class of generative models that
leverage the variational inferance techniques to learn latent
representations of high-dimensional data. The VAE
framework comprises two NNs: an encoder gq(z|x)
parametrized by ¢, responsible for mapping the input data
(i.e., power system measurements) x to a lower-dimensional
latent representation z, and a decoder py(x|z) parametrized
by 6, which reconstructs the original data x from the latent
representation z. In a VAE, the encoder g4 maps the input
data to a normal distribution by parameterizing the mean (1)
and variance (¢?) of a multivariate Gaussian distribution in
the latent space. Mathematically, the encoder outputs two
vectors, one for the mean (1) and another for the variance
(62). These vectors are then used to parameterize the
Gaussian distribution g, (zJx) ~ N(u,c?I) . The decoder
po(x|z) reconstructs the input data from the latent
representation by mapping the latent variables
z ~ N(u,0?I) back to the original data x. In a VAE, the
decoder py(x|z) takes a sample from the latent space
N (u,0%1) as input and generates a synthetic data samples
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X ~ p(x) where p(x) is the probability distribution on the
original data [161].

In training VAEs, the objective is to optimize the model
parameters to best approximate the underlying data
distribution by maximizing the Evidence Lower Bound
(ELBO) which serves as a surrogate objective for the
intractable true likelihood of the input data x.
Mathematically, the ELBO can be expressed as
L(0,0;x) = Eevg,(zollogpe(x[z)] — Dxrlqs(zlx)lp(z))
where Dg; denotes the Kullback-Leibler divergence
between the approximate posterior g,(z|x) and the prior
distribution p(z). By maximizing the ELBO, VAEs learn to
encode  meaningful latent representations  while
simultaneously generating realistic data samples [162].
Figure 7 illustrates a variant of the graph VAE designed for
learning the most significant node- and edge-based features
of the input graph. As depicted, the VAE encoder (i.e.,
GCN), maps the input graph to a latent space distribution.
Sampling from this distribution allows for the reconstruction
of the input graph using two distinct decoders for node and
edge features.

The VAEs have found extensive applications across
various domains within power systems, serving as a
powerful tool for unsupervised feature extraction and as a
supervised method for estimating discrete labels or
continuous variables. For instance, Pan et al. [163]
introduced a VAE-based approach for load profile
generation, which integrates deep CNNs as both encoder
and decoder components. Saffari et al. [31] present a robust
generative solution by integrating GCNN, VAE, and Rough
Set theory for PV power forecasting. Their model effectively
learns the probability distribution functions (PDF) of each
PV site, enhancing the accuracy of future value predictions.
Similarly, in [164], a graph convolutional VAE architecture
is proposed to learn the continuous nodal PDF of arbitrary
graphs representing solar irradiance. Experimental results
conducted on the National Solar Radiation Database
demonstrate superior performance in probabilistic radiation
prediction across geographically distributed irradiance data.
More recently, Ma et al. [165] integrate VAE and
generalized regression neural network models to introduce a
spatiotemporal generative autoencoder for probabilistic
wind forecasting. Their experiments, conducted on the
Global Energy Forecasting Competition 2014 dataset,
highlight the significant performance gains achieved by the
proposed model under diverse weather conditions.

Additionally, in load monitoring, Khodayar et al. [166]
introduce a generative LSTM framework tailored to address
the uncertainty inherent in power resource monitoring. Their
approach involves learning the continuous PDF of load
parameters from intricate temporal variations in
measurements using developed VAE. Through numerical
experiments conducted on the 68-bus New England and
New York Interconnect System, they demonstrate the
effectiveness of the proposed VAE-based model across
various probabilistic estimation metrics. Furthermore, Regan
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et al. [167] present an attention-based VAE incorporating
LSTM and dictionary learning [168] modules for NILM.
Their study illustrates how generative modeling coupled
with attention mechanisms enhances deep learning’s
comprehension of the spatiotemporal correlations among
NILM features. Lastly, Zheng et al. [169] propose a
multi-scale load forecasting algorithm employing VAE and
LSTM architectures to model sequential data and accurately
predict electricity consumption.

In the realm of fault identification and cybersecurity
within  power  systems, various spatiotemporal
methodologies have leveraged the VAE framework.
Recently, Wang et al. [170] employed attention-based GRU
and VAE models for unsupervised locational FDI attack
detection in state estimation within smart grids. Their
experimental results across multiple power system
measurements demonstrate significant performance in their
proposed model. Furthermore, Mylonas et al. [171] utilized
a conditional VAE to characterize the PDF of accumulated
fatigue in wind turbines using historical SCADA data.
Additionally, Aftabi et al. [172] integrated RNNs, VAEs,
and deep ReLU networks to develop a comprehensive
generative framework for the detection, diagnosis, and
localization of cyberattacks on smart grids. Through the
evaluation of a networked power transmission system, they
establish the superiority of their proposed model over
traditional model-based attack detection methods.

B. GENERATIVE ADVERSARIAL NETWORK

GAN frameworks [34], [173]-[175] have emerged as a
powerful tool in the field of spatiotemporal generative
modeling, offering a novel approach to learning realistic
data distributions. As shown in Fig. 8, GANs comprise two
deep neural networks [176]: the generator G4 parameterized
by ¢ and the discriminator Dy parameterized by 6, which are
involved in a minimax game. The generator takes random
noise z from a prior distribution p(z) and generates synthetic
data samples ¥ = G(z). Simultaneously, the discriminator
receives both real data samples x from the true data
distribution pg,(x) and generated samples X, and aims to
distinguish between them by assigning high probabilities to
real data and low probabilities to generated data. Through
adversarial training, the generator learns to generate
increasingly realistic samples, while the discriminator
improves its ability to distinguish between real and fake
data. This iterative process results in the generation of
high-quality synthetic data that follows the underlying
distribution of input data p(X) [177].

The training of GANs is framed as a minimax game
involving the generator and discriminator networks. The
generator aims to reduce the dissimilarity between the
distribution of generated samples p(G(z)) and real samples
p(x). Meanwhile, the discriminator attempts to maximize
the discrepancy between the distribution of real samples and
that of fake samples. The GAN'’s objective function can be
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formulated as follows [178]:
minmax V(Dg, Gy) = Eip,,,(x) [log Do (x)]
Go Do )
+ E.p) [log(1 — Dp(Gy(2)))]

where V(Dy,Gg) represents the value function that the
discriminator seeks to maximize and the generator aims to
minimize. This objective encourages the generator to
produce samples that are indistinguishable from real data,
while the discriminator aims to correctly classify real and
fake (or generated) samples. Through iterative optimization
using techniques such as SGD or its variants, the generator
and discriminator learn to improve their respective abilities,
leading to the generation of increasingly realistic data
samples [178].

In recent years, various GAN architectures have emerged
to tackle complex challenges within the spatiotemporal
analysis of power systems, particularly scenario generation.
This critical task involves creating diverse hypothetical
scenarios to evaluate the behavior and performance of the
power grid under different conditions, encompassing factors
such as load fluctuations, weather patterns, equipment
malfunctions, and market dynamics [179]-[183]. For
example, Chen et al. [181] developed a conditional GAN
(CGAN) tailored for solar scenario generation, integrating
user-defined labels during training to enable event-based
scenario creation. These scenarios demonstrate statistical
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consistency with historical data and effectively capture
spatiotemporal correlations across multiple locations.
Similarly, Yang et al. [182] introduced a CGAN for
generating scenarios related to PV power generation,
employing it in the design of hybrid energy storage systems.
A common challenge in GAN training is mode collapse,
where the generator network produces repetitive or limited
sample variations. Addressing this issue, Li et al. [183]
proposed a federated learning framework based on least
square GANs for renewable scenario generation. This
framework learns a shared global model and generates
scenarios in a privacy-preserving manner.

Moreover, GAN architectures find application in
spatiotemporal classification tasks within power systems
analysis, notably in event detection, fault identification, and
FDI attack detection. For instance, Zheng et al. [184] present
a two-stage framework for synthesizing PMU data,
employing GANs for data augmentation to enhance event
classification accuracy. Their model integrates GANs for
data generation and incorporates neural ordinary differential
equations to improve model explainability. Similarly, Cheng
et al. [34] propose a bidirectional GAN-based algorithm for
real-time event classification using streaming PMU data
validated on a large-scale dataset from the Eastern
Interconnection of the US. Additionally, Wu et al. [185]
leverage GAN architecture for conductor galloping
monitoring, a critical task for power system safety. Their
work introduces a curve reconstruction method using
CGANs to fully synthesize transmission line galloping
curves, demonstrating accurate reconstruction with minimal
sensor usage. Moreover, in order to tackle imbalanced
dataset challenges in FDI attack detection, a GAN
framework is devised in [173], with a GRU serving as the
generator and a transformer neural network acting as the
discriminator. This framework aims for the precise
classification of various FDI attack scenarios on the IEEE
118-bus system.

Numerous studies have employed GANs in
spatiotemporal power systems data generation, owing to
their effectiveness in synthesizing data. For instance, Yang et
al. [186] tackle the power system data recovery problem by
proposing a GAN-based architecture employing LSTM
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neural networks as the generator and discriminator for data
generation tasks. Their results demonstrate the efficacy of
the GAN-based method in effectively recovering lost data.
Additionally, to address missing data in wind turbine data
collection, Hu et al. [187] introduce a spatiotemporal GAN
architecture capable of capturing historical decay and
feature correlations among wind turbines under varying
environmental conditions. Experimental findings highlight
the significant performance of the proposed GAN model in
data imputation tasks. Moreover, Song et al. [188]
introduced ProfileSR-GAN, a two-stage GAN-based
framework designed to tackle the issue of load profile
super-resolution.  ProfileSR-GAN aims to restore
high-frequency components from low-resolution load
profiles to generate high-resolution load profiles. Moreover,
research by Hu et al. [189], and Silva et al. [190]
underscores the notable performance of GAN-based models
in generating load profiles. These studies collectively
emphasize the utility of GANs in enhancing spatiotemporal
data generation capabilities within power systems analysis.

Several state-of-the-art methodologies leverage GAN
architectures for sustainable energy and load forecasting
tasks. For instance, Wen et al. [191] devised a GAN-based
generative approach specifically for regional solar
forecasting across an entire geographical area. Their method
employs GANs to learn the temporal variation of spatial
solar irradiance maps, enabling accurate prediction of future
SIM steps. Similarly, Yuan et al. [192] introduced an
enhanced GAN model with guaranteed convergence to
precisely capture the uncertainty of solar and wind power
resources, thereby improving forecasting accuracy. They
applied this model to learn the intrinsic spatiotemporal
patterns of multiple-site renewable energy systems,
demonstrating significant performance gains in forecasting
both wind and solar power scenarios using real-world
datasets. In a similar vein, Wei et al. [193] developed a
GAN-based model tailored for a  large-scale
hydro-wind-solar hybrid system, aiming to capture the
intricate spatiotemporal relationships between wind farms
and PV plants. Their numerical experiments conducted on a
renewable energy base in southwest China showcased the
superior performance of the proposed generative model in
generating high-quality scenarios. Moreover, in [175], a
conditional GAN-based architecture is developed for
residential load forecasting. The proposed method utilizes
LSTM and CNN architectures for the generator and
discriminator networks, respectively, to capture both spatial
and temporal correlations. Experimental results from this
study demonstrate significant performance enhancement
compared to discriminative architectures.

C. PERFORMANCE COMPARISON AND DISCUSSION

Similar to discriminative approaches, we conducted a
comprehensive evaluation of various state-of-the-art
generative techniques for analyzing spatiotemporal power
systems, encompassing both classification and regression
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tasks. Table 3 presents the experimental findings of these
models across FDI attack detection, fault identification, and
voltage stability assessment scenarios. Notably, the
GAN-based approaches demonstrated superior accuracy
compared to VAE-based models across diverse applications.
As shown in Table 3, GAN-based architectures exhibit
superior generalization capabilities compared to VAE-based
approaches. For example, in voltage stability assessment, the
CycleGAN [174], leveraging adversarial training and
cycle-consistency loss functions, outperforms VSA-VAE
[194] by 3.095% based on the Fl-score metric. Likewise,
GAN-based models demonstrate enhancements of 4.285%
and 1.816% over VAE-based models in FDI attack detection
and fault identification, respectively. Moreover, Table 4
illustrates how GANs enhance performance in
regression-based applications. For instance, in load profile
generation, the ProfileSR-GAN [188] outperforms the
Load-VAE [163] framework by 0.333 and 0.562 in terms of
RMSE and MAE metrics, respectively. Similarly, in wind
forecasting, the GAN-CLSTM [195] reduces the forecasting
MAPE of STGRVAE [196] by 1.723% by training CNN and
RNN architectures in an adversarial fashion. Similar
improvements of GANs over VAEs are observable across
various applications detailed in Tables 4 and 3. This
superiority can be attributed to their implicit modeling of the
latent spatiotemporal space through the generator network,
enabling GANs to capture intricate and nonlinear
relationships in power system spatiotemporal measurements
more effectively compared to VAE-based models, which
rely on an explicit latent space representation.

D. ADVANTAGES AND DISADVANTAGES OF DEEP
GENERATIVE MODELS

Deep generative models [172], [173], [191], [197] offer
distinctive advantages compared to discriminative models in
the context of spatiotemporal modeling in power systems
analysis. Unlike discriminative models, which focus on
learning the conditional PDF of the target given the input,
generative models aim to capture the underlying data
distribution directly. This enables generative models to
generate new samples that closely resemble the training
data, facilitating data augmentation and synthetic data
generation for tasks with limited labeled data availability.
Additionally, deep generative models inherently capture the
high-dimensional and nonlinear nature of the data
distribution, allowing for more flexible and expressive
representations of complex spatiotemporal patterns within
power system measurements. Furthermore, generative
models can provide insights into the latent structure of the
data, enabling the discovery of hidden variables or features
that may be critical for understanding system behavior.
While generative models may pose challenges in training
stability and convergence, advancements in training
techniques and architectures have mitigated many of these
issues, making them increasingly viable for spatiotemporal
modeling in power systems.
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TABLE 3. Deep Generative Architectures Across Different Classification-based Power Systems Applications. For each application, the best results are

shown in bold.

Performance Metric

Application Category Model Dataset
Precision  Recall F1-Score

. VAE VAE-RNN [172] 84.493 78.125 81.184

FDI Attack Detection IEEE 300-bus system
GAN GAN-GRU [173] 88.739 82.432 85.469
. VAE CVAE [171] 83.158 85.816 84.466

Fault Identification IEEE 123-bus system
GAN Bi-AnoGAN [34] 88.406 84.258 86.282
. VAE VSA-VAE [194] 87.294 95.469 91.199

Voltage Stability Assessment IEEE Standard New England 39-Bus Test System

GAN CycleGAN [174] 91.772 96.959 94.294

TABLE 4. Deep Generative Architectures Across Different Regression-based Power Systems Applications. For each application, the best results are shown

in bold.
Performance Metric
Application Category Model Dataset
RMSE MAE MAPE
. . VAE STGRVAE [196] . . . 1.978 1.353 3.931
Wind Forecasting Wind Integration National Dataset
GAN GAN-CLSTM [195] 1.164 0.752 2.208
. VAE CGRVAE [31] . . 1.918 1.723 4.274
PV forecasting Solar Integration National Dataset
GAN Multiscale-GAN [191] 1.053 0.891 3.015
. . VAE CNN-VAE [197] 1.769 1.305 5.281
PV Scenario Generation IEEE New England 39-bus system
GAN C-GAN [182] 1.092 0.821 4.710
. VAE TFVAE-LSTM [169] 1.815 1.593 5.061
Load Forecasting IEEE New England 10-generator 39-bus system
GAN cWGAN-GP [175] 1.211 1.184 3.151
. . VAE Load-VAE [163] 1.807 1.520 3.116
Load Profile Generation IEEE New England 10-generator 39-bus system
GAN ProfileSR-GAN [188] 1.474 0.958 2.870

In spatiotemporal modeling of power systems, the VAEs
[31], [171], [172], [196] offer distinct advantages and
disadvantages. VAEs provide a probabilistic framework for
generative modeling, facilitating uncertainty quantification
crucial for the inherent unpredictability in power systems.
Additionally, VAEs inherently perform dimensionality
reduction, aiding in managing the high-dimensional nature
of spatiotemporal power data. However, VAEs often suffer
from producing blurry and noisy outputs and may struggle
to capture complex dependencies and structures within the
data in applications with the limited number of data points.

The GAN architectures [182], [188], [189], [191] offer
several advantages of VAEs in spatiotemporal modeling of
power systems. GANs excel in generating high-fidelity,
sharp samples, potentially capturing the nuanced dynamics
of power systems more accurately compared to VAEs. The
adversarial training framework of GANs encourages the
model to produce realistic samples by competing with a
discriminator network, leading to sharper outputs with fine
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details. However, GANs require careful training and may
suffer from mode collapse [177], [198], where they fail to
capture the full diversity of the data distribution, especially
in complex and high-dimensional spatiotemporal data like
power systems. Conversely, VAEs provide a probabilistic
generative model that inherently supports uncertainty
quantification, which is essential for addressing the inherent
unpredictability in power systems. Additionally, VAEs
perform better dimensionality reduction, aiding in managing
the high-dimensional nature of spatiotemporal power data.
Therefore, the choice between GANs and VAEs for
spatiotemporal analysis of power systems depends on the
specific modeling requirements, considering the trade-offs
between model fidelity, uncertainty quantification, and
computational efficiency.

IV. DEEP REINFORCEMENT LEARNING
Reinforcement learning approaches [35], [199], [200] have
attracted significant attention in the realm of spatiotemporal
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learning within power systems, offering a dynamic
framework to optimize system operation and management.
As shown in Fig. 9, the system’s behavior is modeled as a
Markov Decision Process (MDP) [201], where the state of
the system at each time step encapsulates relevant
spatiotemporal information such as power generation,
consumption, and grid topology. Formally, the state s, at
time ¢ can be represented as a vector comprising features
characterizing the system’s spatial and temporal dynamics,
denoted as s, = (x;,y;,t), where x, and y, denote the spatial
coordinates and ¢ represents the temporal dimension. The
action a, taken by the RL agent influences the system’s state
transition from s, to s,41, thereby impacting the subsequent
evolution of the power system.

Mathematically, the RL agent aims to learn an optimal
policy n* that dictates the selection of actions to maximize
the cumulative reward over time. The reward function
R(s;,ar,5:+1) quantifies the immediate desirability of
transitioning from state s, to s, by executing action q,.
Typically, in power systems, the reward function is designed
to incentivize actions leading to improved system
performance, such as minimizing transmission losses,
maintaining voltage stability, and enhancing renewable
energy integration. Thus, the RL agent’s objective is to
iteratively explore and exploit the state-action space to learn
an optimal policy that maximizes the expected cumulative
reward, formulated as [35]:

oo
7 = argmaxE | > y'R(si. i, 5141) )
=0
where 7 denotes the discount factor accounting for the
long-term consequences of actions. Through this iterative
learning process, RL techniques offer promising avenues for
spatiotemporal learning in power systems, enabling adaptive
and efficient decision-making in complex and dynamic
environments.

Generally speaking, the RL methods can be categorized
into three main classes [202]: policy-based, value-based, and
model-based methods. Policy-based methods directly learn
the optimal policy, a mapping from states to actions, without
explicitly computing value functions of the states. These
methods typically involve training a neural network to
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approximate the policy and using techniques like policy
gradients to update the network parameters. On the other
hand, value-based methods focus on estimating the value of
state-action pairs, aiming to maximize the expected return.
Finally, model-based methods involve learning a model of
the environment dynamics, enabling the agent to plan by
simulating possible future states and actions. In this section,
we aim to explore the intricacies of widely used RL
algorithms, assessing their performance and applicability to
spatiotemporal learning in power systems [203]. We seek to
provide insights into their effectiveness and suitability for
addressing the complexities inherent in power system
optimization and management through empirical evaluations
and comparative analyses.

A. Q-LEARNING

Q-learning [204], [205] is a fundamental reinforcement
learning algorithm that forms the basis for many advanced
techniques used in the spatiotemporal analysis of power
systems. At its core, Q-learning aims to learn the optimal
action-value function Q(s;, a,), where s, represents the state
of the environment and a, denotes the action taken by the
agent at the time step ¢. The key idea behind Q-learning is
the iterative update of the action-value function using the
Bellman equation:

(s, a) < Q(sr,ar)+a [”t+1 + ’ym(?,x O(si41,a) — Q(si, ar)

(10)
where o € [0, 1] is the learning rate, r,4; is the immediate
reward obtained by taking action a, in state s;, and y € [0,1)
is the discount factor. Q-learning iteratively improves the
action-value function by minimizing the temporal difference
error between the predicted and target values. While
Q-learning is effective in simple environments with discrete
action spaces, it may struggle in high-dimensional or
continuous action spaces commonly encountered in power
system analysis.

Deep Q-Networks (DQNs) [206] address the limitations
of traditional Q-learning by employing deep neural networks
to approximate the action-value function Q(s,a;0),
parameterized by neural network weights §. DQN enables
the handling of high-dimensional state spaces (e.g.,
spatiotemporal power system data) by learning a nonlinear
mapping from states to action values. The key innovation of
DQN lies in its use of experience replay and target networks
to stabilize training and improve sample efficiency.
Experience replay consists of retaining agent encounters
(state, action, reward, next state) within a replay buffer and
drawing mini-batches from this buffer for neural network
training. Meanwhile, target networks are used to compute
target values for training, reducing the impact of moving
targets on learning stability. The DQN loss function is
defined as the mean squared error between the predicted and
target values:
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1)
where D denotes the replay buffer, ¢ represents the parame-
ters of the target network, and -y is the discount factor.

Double Deep Q-Network (DDQN) [207] extends the
DQN framework by mitigating overestimation bias, which
can occur when using the maximum action-value estimate
for both action selection and evaluation. DDQN achieves
this by decoupling the action selection and evaluation
processes, employing separate online and target networks
for each. The online network is used to select actions, while
the target network is used to evaluate actions, reducing the
likelihood of overestimation. Mathematically, DDQN
involves updating the target network parameters ¢ less
frequently than the online network parameters 6, thus
stabilizing training and improving convergence. The
Q-learning update rule for DDQN is similar to DQN, but it
utilizes the action selection network to compute the target
Q-value. Mathematically, the update rule for DDQN can be
represented as [208]:

O(si,ar) < O(sr,ar) + - (rg1+
7 - Q(si41, argmax,, Q(si1,d’;0); ¢) — O(s, ar))

where argmax, Q(s',a’;0) represents the action selected
by the online network. The loss function for DDQN remains
similar to DQN, computed as the mean squared error
between the predicted Q-value and the target Q-value, where
the target Q-value is calculated using the target network.

Several recent studies have developed spatiotemporal
Q-learning-based frameworks in diverse power system
applications. For instance, Babar et al. [209] introduced
micromodels for agile demand response, facilitating precise
monitoring, learning, and scheduling of demand flexibility
by multiple agents. Similarly, Lu et al. [210] utilized
multi-agent Q-learning in an hour-ahead demand response
algorithm for home energy management systems,
demonstrating reduced user energy bills and dissatisfaction
costs. Moreover, Xu et al. [211] proposed a multi-agent
reinforcement learning (MARL) framework integrating
Q-learning and ELM neural networks for home energy
management systems. Their model schedules the energy
consumption of various home appliances based on
electricity price trends obtained from the ELM neural
network. Additionally, a recent study [212] introduced a
double Q-learning framework for voltage stability control,
augmenting the MARL model with a GCNN to capture
topology changes and spatiotemporal correlations in nodal
features. Experimental results on the IEEE 39-bus system
affirm the superior control performance of the GCN DDQN
model amidst grid topology changes.

Recent studies [213], [214] have leveraged deep
Q-networks for load-shedding applications. Zhang et al.

12)
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[213] introduced a deep Q-network designed to determine
real-time optimal load-shedding strategies for maintaining
power system stability, utilizing spatiotemporal information
extracted by a CNN-LSTM architecture. Similarly, [214]
proposed an improved double deep Q-network for the load
shedding problem, incorporating a graph neural network for
spatiotemporal feature extraction. Simulation results
conducted on modified IEEE 39- and 300-bus systems
underscore the efficacy of the proposed spatiotemporal
Q-learning-based framework in offering both economical
and reliable control strategies.

Furthermore, recent research efforts have explored the
application of Q-learning techniques to enhance the cyber
security of power systems. For instance, Liu et al. [215]
proposed a DQN-based framework to evaluate the
cyber-physical security of power systems, particularly
focusing on the challenges posed by the intermittent
generation of renewable energy sources. Their approach
models the states of power systems as partially observable
MDP (POMDP), enabling a more comprehensive
assessment of system vulnerabilities. Similarly, Li et al.
[216] addressed the issue of low-latency cyber attack
detection in smart grids by developing a DQN within the
framework of an improved MDP. Notably, their proposed
DOQN incorporates a meticulously designed reward function,
allowing for flexible trade-offs between detection delays and
accuracy.

B. SARSA

The State—Action—Reward-State—Action (SARSA) [217]
algorithm stands as a pivotal tool in the realm of
reinforcement learning, particularly when applied to
decision-making processes in spatiotemporal power network
analysis. It operates by iteratively updating the value of
state-action pairs based on the agent’s experience within the
environment. At each time step ¢, the agent observes the
current state of the network, selects an action according to
its policy, receives a reward, transitions to a new state, and
takes another action. Unlike Q-learning, the SARSA updates
the value of the action taken rather than the best action for
the next state. This distinction makes SARSA particularly
suitable for scenarios where the agent’s actions directly
influence subsequent states. Mathematically, the update rule
for SARSA can be expressed as:

O(si,ar) + Q(si, a)+a[rip1 +7Q(si41,a41) — Qs ar)]

13)
where Q(s,,a,) represents the value of taking action g, in
state s;, while r,,; denotes the immediate reward obtained
upon transitioning to the next state s;1. The learning rate «
and discount factor 7 regulate the magnitude of updates and
the importance of future rewards, respectively. Here, the
term Q(s;+1,d;+1) embodies the value of the action taken
under the current policy, guiding the agent’s learning
process towards optimal decision-making [218].
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In the context of spatiotemporal power network analysis,
SARSA emerges as a powerful technique for addressing
critical challenges, including voltage control [219], energy
management [220], demand response [221], and
cybersecurity of power systems [222]. Tousi et al. [219]
designed a MARL framework where each agent is equipped
with voltage control devices, and a multi-agent SARSA
algorithm is proposed for training these agents to have an
acceptable voltage profile in all nodes of the power system.
More recently, the SARSA algorithm is applied in [221] to
address demand response in industrial multi-energy
microgrids with a variety of sustainable energy resources.
Experimental results demonstrate the superior performance
of the proposed adaptive SARSA framework compared to
recent demand response models. In energy management,
Aljohani et al. [220] utilized the SARSA algorithm to learn
the maximum travel policy for electric vehicles, treating
them as agents, with the defined optimal behavior of the
agent serving as the reward function. Simulation results
show a slight performance improvement of the proposed
approach compared to the double deep Q-network
algorithm. Additionally, Kurt et al. [222] demonstrated the
effectiveness of the SARSA algorithm in detecting FDI
attacks, modeled as a POMDP problem. Numerical
investigations demonstrate the effectiveness of the proposed
detection scheme in the reliable identification of
cyber-attacks in the smart grid.

C. ACTOR-CRITIC

Actor-Critic is a reinforcement learning framework that
combines both policy-based and value-based methods [223].
It consists of two neural networks: the "actor" learns the
policy to select actions, while the "critic" evaluates these
actions by estimating their value. Here, the "actor"
component represents the policy function, denoted as
7 (s, a; 0), which maps state s to actions a with parameters 6.
This policy function guides decision-making by selecting
actions that maximize expected rewards. In the context of
power systems, actions might correspond to adjustments in
generation, transmission, or distribution to optimize
performance metrics such as stability, reliability, or
efficiency. Meanwhile, the "critic" component evaluates the
action-value function, denoted as Q(s,a;w), which
estimates the expected return when taking action « in state s,
parameterized by w. The action-value function provides
feedback to the actor by assessing the quality of chosen
actions, enabling refinement of the policy over time.
Mathematically, the actor updates its parameters 6 by
gradient ascent to maximize the expected return, while the
critic updates its parameters w through temporal-difference
learning to minimize the temporal difference error between
predicted and actual returns, as shown in the equations
below:

A0 = aVylogn(s,a;0)0(s,a;w)
Aw = B6V,,Q(s,a; w)
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(14)

Here, o and 3 represent learning rates, Vy and V,, denote
gradients with respect to the actor and critic parameters,
respectively, and § signifies the temporal difference error,
calculated as the difference between the observed and
predicted returns. Through iterative updates based on these
equations, the Actor-Critic framework learns to navigate the
spatiotemporal dynamics of power systems, continually
improving control policies to adapt to changing conditions
and optimize system performance.

Several recent studies have employed actor-critic
frameworks and developed improved versions for various
spatiotemporal challenges in power systems. For instance,
Hu et al. [224] proposed an experience-augmented
multi-agent actor-critic algorithm enhanced by an attention
mechanism to learn high-quality spatiotemporal policies for
voltage control at the distribution level. Additionally, in
[225], a Gumbel-softmax soft actor-critic algorithm is
proposed for real-time dynamic network reconfiguration and
Volt-VAR control. Also, Bakakeu et al. [226] present a
Multi-Agent Actor-Critic (MAAC) framework tailored for
optimizing energy utilization within a heterogeneous cluster
of electric machines equipped with energy generation and
storage capabilities in a microgrid environment. Moreover,
Mu et al. [227] have addressed the voltage control problem
by formulating it as a decentralized POMDP and leveraging
the graph-based MAAC framework. Simulation results on
IEEE 33- and 141-bus systems show the effectiveness of the
proposed model in learning spatiotemporal correlations of
distribution networks by integrating GCN into the MAAC
framework.

Furthermore, Mazare [228] employs the actor-critic
framework to enhance the cyber-security of wind farms
against FDI attacks, as well as match and mismatch
disturbances. By integrating a fixed-time observer-based
sliding mode control mechanism into the actor-critic
framework, the proposed model enhances both the
convergence time and the steady-state accuracy compared to
recent studies. Additionally, Gassi and Baysal [229] address
energy management in microgrids with sustainable energy
resources by integrating a DNN-based actor-critic
framework and a linear programming myopic optimization
model. Also, a robust actor-critic augmented with a heuristic
mechanism is proposed in [230] to address the automatic
generation control challenge exacerbated by the disturbances
stemming from the stochastic nature of renewable energies.
Moreover, Gu and Huang [231] develop a robust multi-agent
actor-attention-critic (MAAAC) framework for the reactive
power optimization process in an active distribution network
under the high permeability of distributed generation. The
experimental results of this study on IEEE 33- and IEEE
123-node networks reveal the superiority of the MAAAC
framework in extracting task-relevant spatiotemporal
features and the high accuracy of the proposed MAAAC
model under varying degrees of data uncertainties.
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D. DDPG

Inspired by the actor-critic framework, deep deterministic
policy gradient (DDPG) combines the strengths of deep
neural networks with policy gradient methods, enabling
agents to effectively navigate the high-dimensional action
spaces inherent in power system control [232]. The DDPG
employs a deterministic policy gradient approach to learn
continuous action policies, making it particularly well-suited
for problems characterized by continuous control, such as
power flow optimization and voltage control. In the DDPG,
the actor network is trained to maximize the expected
cumulative reward by directly adjusting the policy
parameters, while the critic network learns to estimate the
value function, capturing the expected future rewards
associated with state-action pairs. The update equations for
the actor and critic networks can be expressed as follows:

Vou = E [VQ“ Q(Sv a‘ag)h:s,,a:u(a‘,w*‘)}
90(s,al0?) da (15)
~ oa 900 [P——

where, J represents the expected cumulative reward,
w(s;|6*) denotes the policy function parameterized by 6*,
and Q(s,a|0?) denotes the action-value function
parameterized by #9. The gradients with respect to the actor
and critic parameters (9* and #9) are computed to update
the respective network weights.

In the context of spatiotemporal analysis of power
systems, the DDPG offers a promising approach to
addressing different challenges such as voltage control
[233]-[235] in modern power systems. Li et al. [233]
developed a spatiotemporal framework by integrating
attention-based graph convolution and the DDPG algorithm
for voltage fluctuation control in distribution networks with
renewable energy resources. They have validated the
performance of the proposed model on the modified IEEE
33, 69, and 128-bus systems. Also, Wang et al. [234] have
employed the DDPG algorithm for multi-agent voltage
control formulated as a Markov Game, utilizing a heuristic
method to partition agents. Additionally, in [235], a
Multi-Agent DDPG (MADDPG) framework is designed for
solving the Volt/Var problem formulated as a POMDP. In the
proposed method, the spatiotemporal uncertainties
associated with PV power generation and loads are
represented through stochastic programming as scenarios
within the MADDPG algorithm. Simulations carried out on
the IEEE 123-node system under both PV-peak and
load-peak scenarios affirm the superior performance of the
DDPG-based approach.

Moreover, the application of the DDPG algorithm extends
to other challenging spatiotemporal tasks within power
systems. For instance, Jendoubi et al. [236] devised a
multi-agent hierarchical DDPG approach for scheduling the
operation of controllable devices within electric networks.
Their experimental findings, based on one-hour resolution
load and PV data, indicate that the developed DDPG
approach outperforms other control strategies. Additionally,
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Chengqing et al. [237] utilized attention-based GCGRU and
the DDPG algorithm to construct a spatiotemporal wind
power prediction model. Similarly, Zhang et al. [238]
applied the MADDPG algorithm for spatiotemporal fault
diagnosis and protection strategies in power systems,
demonstrating  superior  performance compared to
conventional SARSA and DDPG algorithms. Furthermore,
Li et al. [239] tackled the OPF problem as a multi-objective
optimization challenge, developing a spatiotemporal
DDPG-based algorithm to dynamically search for OPF
solutions. Their experimental evaluations on IEEE 33-, 69-,
and 118-bus systems underscored the proposed framework’s
effectiveness in enhancing power system robustness amidst
voltage fluctuations arising from renewable energy resource
uncertainty.

E. PPO

Proximal Policy Optimization (PPO) plays an important role
in deep RL advancement, particularly in addressing
challenges associated with policy optimization in complex
environments  like  power  systems  with  their
multi-dimensional control tasks [240]. Originating from the
family of policy gradient methods, the PPO maintains a
fundamental objective of enhancing sample efficiency and
stability while learning optimal policies. While DDPG
employs an actor-critic architecture with continuous action
spaces, PPO operates directly on the policy space,
simplifying implementation and training procedures. This
algorithm operates by iteratively optimizing a parameterized
policy function, denoted as my, where 6 represents the policy
parameters. The central objective of PPO revolves around
maximizing the expected cumulative reward, commonly
formulated as the expected return J(6) = E[} 2 ~'r],
given a policy parameterization 6. Here, E denotes the
expectation operator, v represents the discount factor, and 7,
signifies the immediate reward at time step ¢ [241], [242].

The PPO enhances policy optimization by introducing a
surrogate objective function that constrains policy updates to
prevent drastic policy changes. The surrogate objective,
LCP(9), is formulated as the clipped probability ratio
between the new and old policies, weighed by an advantage
function A(s, a):

LP(9) = E[min(r,(0) * A, clip(r,(0),1 — €,1 + €) x A,)]

(16)
where r,(0) represents the ratio of the probabilities of
actions taken under the new and old policies. Here, the
parameter € serves as a hyperparameter controlling the
extent of clipping. Moreover, PPO incorporates an entropy
term into its objective function to promote exploration and
prevent premature convergence to suboptimal policies. The
overall objective function of PPO is a weighted combination
of the clipped surrogate objective and the entropy term:

L(0) = E[L“(0) — ¢ x H(mp)],
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where H (my) denotes the entropy of the policy distribution
and ¢ represents the coefficient governing the trade-off
between exploration and exploitation.

In the domain of spatiotemporal analysis within power
systems, the PPO algorithm has attracted notable attention in
recent studies. For instance, Shi et al. [240] introduce a
Multi-Agent PPO (MAPPO) algorithm tailored for local
power grids amidst the uncertainties posed by sustainable
energy sources and the flexibility inherent in electric vehicle
scheduling. Their approach incorporates a GAN architecture
to enrich the training data with diverse scheduling scenarios.
Also, Wu et al. [243] develop a spatiotemporal graph-based
MAPPO framework to train online controller policies for the
optimal adjustment of distributed energy resource setpoints.
Their experimental validation on the 1-minute resolution
Pecan Street dataset demonstrates higher robustness
compared with other benchmark methods.

Furthermore, Liang et al. [244] demonstrate the efficacy
of PPO in the frequency regulation of wind turbines across
multiple local farms. Their methodology frames the
cooperative frequency control problem within each farm as a
decentralized POMDP, subsequently employing MAPPO to
address it. Likewise, Zhou et al. [245] tackle the distributed
generator rescheduling challenge by formulating it as a
decentralized POMDP, proposing a MAPPO algorithm to
devise an optimal rescheduling strategy that bolsters the
resilience of distributed systems. Additionally, Zhang, et al.
[246] showcase the superior performance of MAPPO over
multi-agent deep Q-learning in an energy-adaptive
monitoring system tailored for smart farms.

F. PERFORMANCE COMPARISON AND DISCUSSION
Table 5 presents the numerical outcomes of various RL
techniques applied to diverse tasks. As depicted, both
Q-learning and SARSA-based methodologies exhibit
comparable performance. For instance, in voltage control
applications, GC-DDQN [212] marginally outperforms
SARSA-MDP [219] by a difference of 0.046 in per unit (pu)
average cumulative voltage violation. However, SARSA
models demonstrate superior performance over Q-learning
methods in demand response and FDI attack detection
applications. For instance, in FDI attack detection, FDQN
[216] outperforms FDI-SARSA [222] by 1.91%. The similar
performances of SARSA and Q-learning-based strategies
stem from similarities in their learning processes and reward
functions. However, due to Q-learning’s greedy policy
improvement strategy, we observed a faster convergence rate
than SARSA-based algorithms across various applications.
In the table, one can observe the superior performance of
actor-critic-based methodologies compared to SARSA and
Q-learning approaches. For instance, in applications such as
energy management and cyber attack detection, MOAC
[229] and AC-NFTSM [228] demonstrate higher
performance over ELM Q-learning [211] and FDI-SARSA
[222] by 2.971% and 2.637% respectively. A similar pattern
persists across various other applications, suggesting the
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enhanced generalization capability of actor-critic models in
comparison to SARSA and Q-learning. This superior
performance of actor-critic-based approaches can be
attributed to the dual-network architecture employed for
policy and value function learning, which facilitates more
efficient and rapid learning. Additionally, the table
illustrates the better performance of DDPG-based models
over actor-critic frameworks. For instance, in solving the
constraint OPF optimization problem, MG-ASTGCN [233]
outperforms Cplx-STGCN TD3 [247] by 7.93%. Similarly,
in an energy management scenario, MA-OCDDPG [236]
reduces the total annual cost by 10.47% compared to the
MAOC [229] model. This higher performance of
DDPG-based methods is attributable to the utilization of
experience buffers, which enable efficient learning from past
agent experiences, and the inherent robustness of the model
in handling uncertain measurements in power systems.

Moreover, Table 5 presents the superiority of PPO-based
frameworks over other deep RL approaches, particularly in
demand response and cyber attack detection applications.
For instance, in demand response scenarios, GAN-MAPPO
[240] demonstrates notable improvements in operational
cost compared to MG-ASTGCN [233] and A-Q-learning
[209] by 17.0% and 42.428, respectively, based on data from
the steel powder manufacturing dataset. Similarly,
MAPPO-UM [246] exhibits superior performance in FDI
attack detection on the IEEE 39-bus system, surpassing
CDDPG [248] and AC-NFTSM [228] by 2.50% and 3.564%
in terms of F1 score, respectively. This enhanced efficacy of
PPO is attributed to its adeptness in managing policy
changes, facilitated by the incorporation of a clipped
objective function, which restricts the magnitude of policy
updates per iteration, thereby ensuring stability and
efficiency in training.

G. ADVANTAGES AND DISADVANTAGES OF DEEP RL
ALGORITHMS

Deep RL has emerged as a promising approach for
spatiotemporal analysis within power systems, offering a
range of methodologies, each with distinct advantages and
limitations. The SARSA [219]-[222], a classic deep RL
algorithm, presents a straightforward implementation and
convergence guarantees under specific conditions, making it
particularly suitable for tasks characterized by clear
episodes. However, SARSA often exhibits slow convergence
and high variability in the learning process, resulting in
lower sample efficiency compared to other methods.
Additionally, its on-policy nature limits its effectiveness in
certain  spatiotemporal applications such as OPF
optimization, energy management in microgrids, and
frequency regulation within power systems. On the other
hand, Q-learning approaches [211], [214]-[216] offer ease
of implementation and is model-free, handling stochastic
environments effectively and demonstrating flexibility
through its off-policy nature. Nonetheless, Q-learning is
susceptible to variability in learning outcomes and may
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TABLE 5. Deep Reinforcement Learning Architectures Across Different Power Systems Applications. For each application, the best results are shown in

bold and the second best results are underlined.

Application Deep RL Algorithm Model Dataset Performance metric Result
SARSA SARSA-MDP [219] 0.467
DQN GC-DDQN [212] . o 0.421
Voltage Control IEEE 123-bus system Average Cumulative Voltage Violation (pu)
Actor-Critic EA-MAAC [224] 0.393
DDPG MADDPG [249] 0.381
SARSA ESARSA [220] 1313.36
Q Learning ELM Q-Learning [211] 1303.85
Energy Management Pecan Street Total Annual Cost ($)
Actor-Critic MOAC [229] 1274.34
DDPG MA-OCDDPG [236] 1140.86
DDPG MG-ASTGCN [239] . ! . e . 0.453
OPF IEEE 30-Bus System Normalized Time and Setpoint Satisfaction Function
Actor-Critic Cplx-STGCN TD3 [247] 0.492
SARSA ASARSA [221] 171.32
Q Leaning A-Q-Learning [209] 183.74
Demand Response Actor-Critic MAAC [231] PJM Electricity Market Operation Cost ($) 162.68
DDPG MG-ASTGCN [233] 158.32
PPO GAN-MAPPO [240] 141.32
SARSA FDI-SARSA [222] 90.786
DQN FDQN [216] 88.876
Cyber Actor-Critic AC-NFTSM [228] IEEE 39-Bus System F1 Score (%) 93.423
DDPG CDDPG [248] 94.487
PPO MAPPO-UM [246] 96.987

converge sluggishly to accurate Q-values. Furthermore, it is
prone to overestimating action values and requires careful
selection of learning rates to mitigate sensitivity issues.

Actor-critic architectures [224], [226], [228], [230], [231],
[250], [251] have gained prominence for their effectiveness
in continuous action spaces, offering better convergence
compared to SARSA and Q-learning in application such as
demand response optimization, voltage regulation, and
power system restoration. By enabling independent learning
of policy and value functions, actor-critic methods exhibit
enhanced adaptability within spatiotemporal analysis of
power systems. Nevertheless, their efficacy is contingent
upon meticulous tuning of multiple hyperparameters, and
instability in learning policy and value functions remains a
concern. Moreover, performance variability persists across
different architectural and algorithmic choices. On the other
hand, DDPG-based approaches [233], [236], [237], [239]
show enhanced stability through the incorporation of target
networks, particularly excelling in high-dimensional
continuous action spaces within power systems. Despite its
advantages, DDPG frameworks often experience a high
variance in the learning process, leading to slower
convergence and a tendency to overestimate action values.

The PPO-based approaches [240], [244]-[246] introduce
advancements aimed at mitigating the challenges inherent in
policy gradient methods [233], [239], [248]. By specifically
addressing the issue of high variance, the PPO enhances
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training stability through the utilization of a clipped
objective function, thereby ensuring more consistent
learning dynamics. This stability contributes to PPO’s
reputation for achieving good sample efficiency and
robustness, which are essential characteristics in the context
of power system analysis where data may be limited or
noisy. However, like other deep reinforcement learning
algorithms, PPO demands careful tuning of hyperparameters
to achieve optimal performance. Furthermore, its efficacy
may vary depending on the specifics of the underlying
environment and task, necessitating thorough
experimentation and adaptation to ensure reliable results
within the context of spatiotemporal analysis in power
systems.

V. DATASETS

In Sections III, IV, and V, we presented the numerical results
of various deep data-driven models applied to various
spatiotemporal tasks in the power system domain. This
section provides a comprehensive overview of different
datasets utilized in our experiments.

o IEEE 123-bus system: For fault identification, we
utilized simulated data from the IEEE 123-bus system
generated by DigSilent PowerFactory [252]. Fig. 10
provides a general diagram of the IEEE 123-bus
system. In our experiments, we defined several fault
classes, including single-phase-to-ground,
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FIGURE 10. IEEE 123-bus system diagram.

double-phase-to-ground,  two-phase  faults, and
three-phase faults. Each fault was initiated at 0.1
seconds and cleared at 0.105. The dataset comprises a
total of 26, 200 fault samples.

IEEE 300-bus system: We utilized simulated data
from the IEEE 300-bus system for the FDI attack
detection task as a benchmark model representing a
large-scale power network. We simulated various
scenarios where false data is injected into different
measurement points across the network. These
scenarios include both random and targeted attacks on
bus voltages and line flows. The considered dataset
consists of comprehensive records, including normal
operational states and multiple attack scenarios,
amounting to 50, 000 samples.

IEEE New England 39-bus system: This simulated
dataset is employed for the event classification task. It
includes 1000 samples, each encapsulating detailed
measurements and system states such as bus voltages,
angles, and power flows across different network
components. Each sample is annotated with event
types, and the total number of samples in this study is
considered to be 35, 000.

IEEE New England 10-generator 39-bus system: For
the voltage stability assessment application, we
simulate a dataset from the IEEE New England
10-generator 39-bus system that includes time-series
data of voltage magnitudes and angles for all 39 buses,
generator outputs, and power flows, recorded at
one-minute intervals over one year, totaling 525,600
data points per variable. The dataset incorporates
spatial metadata such as bus coordinates, line
connectivity, and varied load profiles to reflect realistic
operational conditions. Contingencies and disturbances
are synthetically introduced to provide diverse stability
events.

UK-DALE [253]: This dataset is utilized for NILM
application in the power system that comprises detailed
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electricity usage data from five households in the UK.
It includes high-frequency recordings of aggregate
power consumption at 1 Hz and sub-metered
appliance-level data at varying frequencies, ranging
from 6 seconds to 1 minute, collected over several
years. This results in 16 millions of data points per
household, providing extensive temporal resolution and
granularity.

Wind Integration National Dataset [254]: To perform
spatiotemporal wind speed prediction, we utilized the
Wind Integration National Dataset provided by the
National Renewable Energy Laboratory (NREL). This
dataset comprises high-resolution wind speed data
recorded at 5-minute intervals over a ten-year period,
spanning more than 120,000 geographic locations
across the United States, resulting in over 12 billion
data points. Additionally, the dataset includes essential
meteorological variables such as temperature, pressure,
and humidity, which are crucial for accurate
forecasting. For our experiments, we used historical
spatiotemporal wind speed data from 2007 to 2012 to
train the models and evaluate their performance on the
data from 2013.

Solar Integration National Dataset [255]:This
dataset, provided by the NREL, is employed for
spatiotemporal PV forecasting. The dataset includes
high-resolution solar irradiance data recorded at
30-minute intervals over ten years, covering over
100, 000 geographic locations across the United States.
The dataset also encompasses critical meteorological
variables such as temperature, cloud cover, and
humidity, essential for accurate PV forecasting. Spatial
metadata includes coordinates and elevation of each
location, enhancing the spatial analysis. In our
experiments, we split the dataset by seasons. For each
season, we consider 80% of samples as training and
validation sets and 20% as testing set. The entire
seasonal training and testing sets contain 21,024 and
9, 256 samples.

Low Carbon London [256]: The Low Carbon London
dataset, provided by UK Power Networks, is utilized
for spatiotemporal demand forecasting. This dataset
includes energy consumption readings from 5,567
London households, collected at half-hour intervals
from November 2011 to February 2014, resulting in
approximately 167 million rows. The dataset records
energy consumption in kWh, unique household
identifiers, dates, and times. In our experiments, we
utilized data from 2011 to 2013 as the training set and
data from 2014 as the test set.

PJM Electricity Market [257]: Similar to [210], we
employed the PJM electricity market dataset for
spatiotemporal demand response in home energy
management that includes price and energy data from
the PJM electricity market. The dataset spans from
January 1, 2016, to February 21, 2017, for training
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purposes, and the model predictions cover February
22-28, 2017. It contains high-frequency recordings of
electricity prices and energy consumption data at
half-hour intervals.

o Pecan Street [258]: The Pecan Street dataset,
employed for spatiotemporal energy management,
provides detailed electricity consumption and
generation data from over 1,000 residential units. This
dataset includes high-frequency recordings at
one-minute intervals, capturing variables such as
energy usage, solar generation, and appliance-level
consumption. For our experiments, we focused on data
from 100 residential units, utilizing 80% of each
month’s samples for training and validation, while the
remaining 20% constituted our test set.

VI. FUTURE DEVELOPMENT

Over the last decade, significant efforts have been made to
integrate spatiotemporal feature learning into various aspects
of power system analysis. While remarkable progress has
been achieved, there remains ample opportunity to enhance
the efficacy of spatiotemporal approaches by harnessing
state-of-the-art machine learning techniques. This section
introduces these advanced methodologies, elucidating their
potential to further refine the performance of such
approaches.

A. NORMALIZING FLOW

As discussed in this paper, GANs and VAEs have
demonstrated impressive performance results on challenging
tasks within spatiotemporal analysis of power systems.
GANs often struggle with mode collapse, where the
generator produces similar samples, limiting their ability to
capture the diverse and nuanced patterns present in power
system data. Additionally, training GANs can be unstable,
requiring careful tuning of hyperparameters and
architectural choices to achieve desirable results [259],
[260]. VAEs, on the other hand, face challenges in
generating high-fidelity samples due to the variational lower
bound used in the training objective, which may lead to
blurry or less realistic outputs. Moreover, VAEs often
struggle to capture long-range dependencies and complex
structures in spatiotemporal data, limiting their effectiveness
in modeling the intricate dynamics of power systems [261],
[262].

To address these limitations, the adoption of the
normalizing flow framework presents a compelling
alternative for spatiotemporal analysis of power systems.
Normalizing flows [263] are a class of generative models
used to learn complex probability distributions. At their
core, they transform a simple base distribution, such as a
Gaussian, into a more complex distribution through a series
of invertible transformations. These transformations are
typically parameterized by neural networks, allowing for
flexibility in modeling complex distributions. Normalizing
flows offer several advantages, including exact likelihood
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evaluation and invertibility, which facilitate more accurate
modeling of complex distributions without sacrificing
fidelity or interpretability. By employing invertible
transformations  parameterized by neural networks,
normalizing flows can effectively capture the intricate
spatiotemporal dependencies and heterogeneity present in
power system data. Furthermore, the explicit likelihood
estimation provided by normalizing flows enables principled
uncertainty ~ quantification,  essential  for  robust
decision-making in power system operations and planning
[264]. Leveraging the flexibility and expressiveness of
normalizing flows, researchers can enhance the performance
of spatiotemporal analysis tasks such as demand forecasting,
anomaly detection, and grid optimization, ultimately
contributing to the development of more efficient and
resilient power systems.

B. PHYSICS-INFORMED

Conventional machine learning frameworks often face
challenges due to the inherent complexity and dynamic
nature of power system data, which includes a multitude of
interdependent  variables and physical constraints.
Traditional machine learning models may struggle to
capture the underlying physics and causal relationships
governing power system behavior, leading to suboptimal
performance and limited interpretability [131], [135], [265].
Additionally, conventional approaches typically rely on
large amounts of labeled data for training, which may be
scarce or costly to obtain in the context of power systems.

In response to these challenges, there is growing interest
in adopting physics-informed machine learning frameworks
for spatiotemporal analysis of power systems [266], [267].
By integrating domain knowledge and physical principles
into the learning process, physics-informed models offer
several key advantages over conventional approaches. These
models can effectively capture the underlying physics and
constraints of power system dynamics, leading to more
accurate and interpretable predictions. Furthermore,
physics-informed  machine learning  enables  the
incorporation of prior knowledge and constraints into the
learning process, reducing the need for extensive labeled
data and enhancing the generalization capabilities of the
models. Recent studies have shown the merits of these
models in a variety of fields, including fluid dynamics [268],
biomedical engineering [269], and power system [270]. By
leveraging the complementary strengths of machine learning
and physics-based modeling, researchers can develop robust
and reliable solutions for various spatiotemporal analysis
tasks in power systems, including load forecasting, fault
detection, and renewable energy integration.

C. EXPLAINABLE Al

While different ML frameworks have been applied to
different power system applications, most of the developed
frameworks suffer from a lack of interpretability.
Explainable artificial intelligence (XAI) refers to the
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capability of artificial intelligence systems to provide
transparent, interpretable, and understandable explanations
for their decisions or predictions [271], [272]. XAI assists
humans in comprehending the process by which a machine
algorithm generates its output. It aids in assessing the
correctness, fairness, and transparency of models, thereby
facilitating Al-assisted decision-making. XAl plays a crucial
role in fostering trust and confidence among organizations
when utilizing Al models. In the context of spatiotemporal
power system analysis, where complex interactions among
various components, such as generators, transmission lines,
and loads, occur over time and space, the need for XAl
becomes significant. Interpretability in Al models allows
power system operators and engineers to comprehend the
reasoning behind Al-driven insights, facilitating informed
decision-making and enhancing trust in Al-based solutions
[273].

Three stages of explainability can be considered. (1)
Before modeling, techniques such as visualization,
domain-based and model-based feature engineering [274],
[275], data summarization, and exploratory data analysis
[276] pave the way by providing insights into the data’s
characteristics and relationships. (2) Within the model
architecture, mechanisms like self-attention [277] and
multi-head attention [278] enhance interpretability by
allowing the model to focus on relevant features and
relationships, promoting modularity and sparsity to simplify
understanding. (3) Post-modeling, interpretability is further
refined through prediction-level methods such as feature
importance analysis [274], accumulated local effects (ALE)
plots [279], individual conditional expectation (ICE) [280],
and partial dependence plots (PDP) [281] to illuminate the
impact of features on predictions.

Additionally, techniques such as feature importance
analysis, SHapley Additive exPlanations (SHAP) values
[273], Local Interpretable Model-agnostic Explanations
(LIME) [282], and surrogate models contribute to the
enhancement of explainability [276]. Feature importance
analysis assesses the contribution of each input variable to
the model’s predictions, providing insights into the factors
driving the outcomes. SHAP values offer a game-theoretic
approach to quantifying the impact of features on
predictions, facilitating a deeper understanding of the
model’s behavior. LIME generates local interpretations by
approximating the model’s behavior around specific
instances, aiding in understanding predictions at an
individual level. Surrogate models, which are simpler
models trained to mimic the behavior of the primary model,
offer a more interpretable representation of the underlying
decision logic. Integrating these methodologies enables
practitioners to develop models that deliver accurate
predictions and provide transparent explanations, fostering
trust and facilitating informed decision-making across
diverse applications.
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D. DOMAIN ADAPTATION

Conventional machine learning frameworks often face
challenges in the spatiotemporal analysis of power systems
due to domain shifts and data heterogeneity [56], [72], [76],
[92]. These frameworks typically rely on labeled training
data collected from specific domains or conditions, which
may not fully represent the diverse operating scenarios and
environmental conditions encountered in real-world power
systems. As a result, models trained on one set of data may
struggle to generalize to unseen domains or adapt to changes
in operating conditions, leading to poor performance and
limited applicability. Moreover, conventional machine
learning approaches may require large amounts of labeled
data for each target domain, which can be impractical or
costly to obtain in the context of power system analysis.
Additionally, these models may fail to leverage valuable
information from related domains or historical data, further
hindering their ability to capture the complex spatiotemporal
dynamics of power systems.

To address these challenges, domain adaptation, and
transfer learning frameworks offer a promising approach for
enhancing the spatiotemporal analysis of power systems.
These frameworks aim to leverage knowledge from related
domains or auxiliary data sources to improve model
generalization and adaptation to new domains or operating
conditions. By learning transferable representations from
source domains, domain adaptation methods enable models
to generalize better to target domains with limited labeled
data.

Deep domain adaptation techniques can be broadly
categorized into  three  main  categories: nH
Discrepancy-based methods [283], [284] aim to minimize
the distributional difference between the source and target
domains by directly measuring the dissimilarity between
their feature distributions. (2) Reconstruction-based
techniques [285], [286] focus on reconstructing the input
data from the learned representations and leveraging
autoencoders or generative models to encourage
domain-invariant representations. (3) Adversarial-based
approaches [287], [288] introduce domain adversarial
learning, where a domain discriminator is trained to
distinguish between source and target domain samples,
while the feature extractor aims to fool this discriminator by
learning domain-invariant representations. These models
address domain shifts by aligning feature distributions,
encouraging domain-invariant representations, facilitating
knowledge transfer from a labeled source domain to an
unlabeled or sparsely labeled target domain. Multiple recent
studies have developed robust domain adaptation techniques
in different applications including traffic  scene
understanding [42], [43], medical imaging [289], [290], fault
diagnosis [291], [292], etc. By incorporating domain
adaptation and transfer learning techniques into
spatiotemporal analysis of power systems, researchers can
mitigate the challenges associated with domain shifts, data
scarcity, and model generalization, ultimately leading to
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more robust and effective predictive models for power
system operations and planning.

E. FEDERATED LEARNING

The conventional machine learning framework faces
significant challenges in the spatiotemporal analysis of
power systems due to privacy concerns and data
decentralization. Traditional machine learning methods
often require centralizing sensitive data from various sources
for model training, which can be impractical or raise privacy
issues in the context of power systems, where data comes
from diverse geographical locations [3], [64], [70], [83].
Federated learning [293] addresses these challenges by
allowing model training to be performed locally on
distributed data sources (such as smart meters, sensors, and
power generators) without sharing raw data. Instead, only
model updates or aggregated information is exchanged
between devices or nodes. This decentralized approach not
only preserves data privacy and security but also enables the
analysis of spatiotemporal patterns across the power system
while respecting regulatory constraints. Furthermore,
federated learning can improve the robustness and
generalization of models by leveraging the diversity of data
across different locations and time periods. It allows for the
incorporation of local insights and variations into the
learning process, leading to more accurate predictions and
better adaptation to changing conditions within the power
system.

Generally, federated learning approaches can be
categorized into three main classes [294]: (1) horizontal
federated learning, where individual power grid operators
can collaborate without sharing sensitive data, pooling their
resources to collectively train models that capture
spatiotemporal patterns across different regions. This allows
for the creation of robust predictive models capable of
forecasting power demand, identifying anomalies, and
optimizing grid operations while maintaining data privacy.
(2) vertical federated learning enables collaboration between
different entities within the power system, such as utilities
and renewable energy providers, facilitating the integration
of diverse data sources for more comprehensive analyses.
and (3) federated transfer learning that facilitates
transferring the insights gained from one region or aspect of
the power grid, accelerates model refinement and improves
performance across the entire system [295], [296]. Several
recent studies have shown practical advantages of federated
learning frameworks in healthcare systems [297], [298],
natural language processing [299], [300], and the Internet of
Things [301], [302]. Utilizing federated learning techniques,
future research endeavors in the spatiotemporal analysis of
power systems can derive actionable insights from extensive
and diverse spatiotemporal data, all while prioritizing data
privacy and security.
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VII. CONCLUSION

This survey paper provides a comprehensive overview of the
applications of deep learning algorithms in spatiotemporal
analysis of power systems. By categorizing deep machine
learning frameworks into discriminative, generative, and
reinforcement learning, we have presented a structured
examination of various methodologies, their mathematical
formulations, and their respective advantages and
limitations. By exploring each category, we have elucidated
how different frameworks address the complexities inherent
in spatiotemporal data analysis within power systems.
Through empirical evaluations, we have scrutinized the
performance of these methods across diverse spatiotemporal
applications, offering insights into their efficacy and
applicability. Furthermore, our discussion extends beyond
current practices, as we have identified emerging topics
within the realm of machine learning that hold promise for
future endeavors in the deep spatiotemporal analysis of
power systems. In essence, this survey serves as a valuable
resource for researchers and practitioners alike, offering a
comprehensive  understanding of the state-of-the-art
methodologies while also pointing towards exciting avenues
for future research and development in the intersection of
deep machine learning and power systems operation and
analysis.
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