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Abstract

We consider the top Lyapunov exponent associated to a dissipative linear evo-
lution equation posed on a separable Hilbert or Banach space. In many applica-
tions in partial differential equations, such equations are often posed on a scale of
nonequivalent spaces mitigating, e.g., integrability (L p) or differentiability (Ws,p).
In contrast to finite dimensions, the Lyapunov exponent could apriori depend on
the choice of norm used. In this paper we show that under quite general conditions,
the Lyapunov exponent of a cocycle of compact linear operators is independent of
the norm used. We apply this result to two important problems from fluid mechan-
ics: the enhanced dissipation rate for the advection diffusion equation with ergodic
velocity field; and the Lyapunov exponent for the 2d Navier–Stokes equations with
stochastic or periodic forcing.

1. Introduction

Consider the linear evolution equation

d
dt

v(t) = L(t)v(t) , v(0) = v0 , (1)

posed on a Banach space (B, ∥ · ∥B), where L(t) is a time-varying, closed linear
operator (potentially unbounded). Let us assume (1) is globally well-posed and it
gives rise to an evolution semigroup S(t), namely, a bounded family of solution
operators S(t) : B → B, t ! 0, such that v(t) = S(t)v0 is the unique solution to
(1) for all fixed initial v0 ∈ B.

TheMultiplicativeErgodicTheorem(MET) is a powerful tool for characterizing
the asymptotic behavior of systems such as (1) in the case when L(t) depends on
the value of some auxiliary stationary process, e.g., when L(t) is random with
probabilistic law independent of t . In this setting and under some mild conditions
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on the operators S(t), the MET asserts that for ‘typical’ realizations of t $→ L(t),
there exists a value λ1 ∈ [−∞,∞) and a finite-codimensional subspace F ⊂ B
such that, for all v0 ∈ B\F ,

λ1 = lim
t→∞

1
t
log ∥S(t)v0∥B . (2)

As B \ F is open and dense in B, it follows that the growth rate λ1 is experienced
by ‘typical’ initial v0. For further details and a review of the MET in this setting,
see Sect. 2.1 below.

Linear evolution equations such as (1) cover a broad variety of time-dependent
dissipative linear PDE. In this paper, we consider the following example settings:

(i) the advection diffusion equation for a passive scalar advected by a velocity field
evolving according to a “statistically stationary” evolution equation, e.g., the 2d
Navier–Stokes equations with either time-periodic or stochastic forcing; and

(ii) the first variation (linearization) of the 2d Navier-Stokes equations with either
time-periodic or stochastic forcing.

We will discuss both of these examples in more detail in Sect. 1.1 below. Other
relevant examples that can be treated (though not discussed) in this setting are: the
kinematic dynamo equation governing the advection and diffusion of a magnetic
field in a flow, as well as the first variation equation of a wide class of forced
dissipative semilinear parabolic problems, including reaction diffusion equations,
magnetohydrodynamics (MHD), and various dissipative wave equations (see [75]
and [15] for examples and descriptions of these models and more).

Lyapunov exponents along scales of norms
For globally well-posed linear evolution equations as above, it is common to have
global well-posedness on a scale of Banach spaces (Bα, ∥ ·∥Bα ) for α ∈ [a, b] ⊂ R
such that Bβ is embedded in Bα for all α < β. Such scales of spaces might
capture varying degrees of integrability, e.g., L p spaces, or spatial regularity, e.g.,
Sobolev spacesWr,p or Besov spaces Br

p,q . Each Bα comes equipped with its own
norm ∥ · ∥Bα with respect to which one can compute Lyapunov exponents, and so
apriori, the same evolution equation (1) might possess an entire range of Lyapunov
exponents

λ1(Bα) = lim
t→∞

1
t
log ∥v(t)∥Bα ,

depending on the scale parameter α.
It is evident from (2) that for a finite-dimensional Banach space, the choice of

norm has no effect on the value of λ1: in this case, local compactness implies that all
norms on B are equivalent up to a multiplicative constant which vanishes under the
limit of 1

t log. Thus it is often said that in the finite dimensional setting, Lyapunov
exponents are intrinsic to the underlying system in that they do not depend on the
choice of norm. However, local compactness is false in infinite dimensions, and
so it is possible that λ1(Bα) could depend nontrivially on the scale parameter α.
This casts doubt on the ‘intrinsic’ nature of Lyapunov exponents in the infinite



Arch. Rational Mech. Anal. (2023) 247:97 Page 3 of 48 97

dimensional setting, especially when there is no natural or otherwise physically
relevant choice for the space Bα .

The following is an informal statement of the main result of this paper:

Informal Theorem. Let (Bα)α∈[a,b] be a nested family of Banach spaces, each
with separable dual. Assume that

(a) Bβ ⊂ Bα is dense for all a " α < β " b;
(b) S(t) : Bα → Bα is a compact (hence bounded) linear operator for all α ∈

[a, b]; and
(c) supt∈[0,1] ∥S(t)∥α satisfies a logarithmic moment condition with respect to the

stationary law governing L(t).

Then, for all β ∈ [a, b] and v0 ∈ Bβ\{0}, the limit

λ(v0) = lim
t→∞

1
t
log ∥S(t)v0∥Bα

exists and does not depend on α.

This result affirms the idea that for such systems, the Lyapunov exponent is an
intrinsic feature of the system, independent of the choice of norm ∥ · ∥Bα . For full
statements, see Sect. 2.2. See Sect. 2.3 for a literature review of prior work on this
topic.

Remark 1.1. (Time-transient behavior) Suppose that we are in the setting of the
theorem above, and let ε > 0,β ∈ [a, b], and a vector v0 ∈ Bβ be fixed; we define

Tε,β(v0) = min
{
T > 0 :

∣∣∣∣
1
t
log ∥S(t)v0∥Bβ − λ(v0)

∣∣∣∣ < ε for all t ! T
}
.

The value Tε,β(v0) is, roughly speaking, the time it takes for the exponent λ(v0)

to be ‘realized’ in the norm of Bβ to within accuracy ε. While our main results
give conditions under which the asymptotic value λ(v0) is independent of the norm
∥ · ∥Bβ , the value Tε,β(v0) can and will, in general, depend on the norm. Indeed, a
prime example of this dependence is passive scalar advection; see the discussion in
Sect. 1.1.1 below. Nevertheless, under stronger but realistic conditions it is possible
to compare these timescales between norms: see Sect. 2.1.4 and Corollary 2.8 in
Sect. 2.2.1 for precise statements.

1.1. Applications

This paper contains several applications of the main result to systems of interest
in fluid dynamics. We will discuss these applications and their physical relevance
below, deferring detailed statements to Sect. 4. While several simplifying assump-
tions are made, e.g., working with periodic domains without boundary, we note that
many of the main ideas discussed below remain valid in broader generality. More-
over, while we work with Hilbert regularity spaces Hs , much of what we show
can also be done in spaces like Ws,p and Bs

p,q , which often carry more precise
regularity information.
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1.1.1. Lyapunov Exponents for Passive Scalar Advection Let d > 1 and let
u : [0,∞) × Td → Rd be a time dependent, incompressible velocity field on the
torus Td , which for the purposes of this discussion will be assumed to be C∞ in
x locally uniformly in t . Let f (t, x) be a solution to the passive scalar advection
equation

∂t f + u · ∇ f = κ' f , f (0, x) = f0(x) (3)

for a given mean-zero initial scalar f0 : Td → R. This equation models the
advection of the scalar density f0 (e.g., a dilute chemical concentration or small
temperature variation) by a fluid with velocity field u(t, x) taking into account
molecular diffusivity κ > 0. Equation (3) is globally well-posed on the Sobolev
space Hr for any r ∈ R, and so gives rise to a linear (nonautonomous) semiflow
S(t) : Hr → Hr of bounded linear operators. Here, Hr is viewed as a Hilbert
space of mean-zero functions (or distributions, if r < 0) g : Td → R with the
homogeneous Sobolev norm ∥ f ∥Hr = ∥(−')r/2 f ∥L2 and corresponding inner
product (·, ·)Hr .

When t $→ u(t, ·) evolves according to some ergodic, stationary process, e.g.,
theNavier–Stokes equationswith spatially regular, time-periodic or stochastic forc-
ing, the Lyapunov exponent

λ1(Hr ) = lim
t→∞

1
t
log ∥ f (t)∥Hr

exists in [−∞,∞) with probability 1 for all sufficiently regular initial velocity
profiles u0 and for an open and dense set of initial scalars f0.

In the mathematical literature on advection diffusion, special interest is often
taken in interpretations of the growth or decay of ∥ f (t)∥Hr for various values of r .
When κ = 0, the H1 norm is naturally connected to the strength of shear-straining
in the fluid (see (5) below), while the H−1 norm and other negative Sobolev norms
measure the degree to which the scalar ft has been uniformly “mixed” into the
fluid—see, e.g., [22,53,58,74]—and are related to the decay of correlations of the
Lagrangian flow associated to the velocity u. The addition of diffusion (κ > 0)
somewhat complicates these interpretations:when advection generates small scales,
diffusion can effect decay of the L2 norm on time scales faster than the diffusive
one. This is known in themathematics literature as enhanced dissipation; this effect
has been studied in both the physics [8,26,51,55,67] and (somewhat more recent)
mathematics literature [2,3,6,7,18,29,81,89,90].

Despite such varied interpretations of themeasurement of various norms, in this
manuscript we prove the following (see Theorem2.6 below for a precise statement):

Informal Theorem. Assume κ > 0 and that u(t, ·) is an ergodic, stationary pro-
cess and

∫ 1
0 ∥u(t, ·)∥Hγ dt satisfies a moment condition for some γ > d

2 +1. Then,
λ(Hs) exists for all s ∈ [−γ , γ ] and does not depend on s. In particular,

λ1(H1) = λ1(L2) = λ1(H−1) . (4)
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For a full statement, see Theorem 4.2 in Sect. 4.2 below. To our knowledge,
ours is the first proof of this fact for passive scalar advection, although we note that
it has been predicted before, e.g., by numerical evidence in the recent paper [62],
as well as in [60].
Additional discussion and context
The case κ = 0. Key to the validity of (4) is compactness of the solution linear
operators St : Hr → Hr for (3) when κ > 0. A clear example is provided in the
case κ = 0; in this case, (3) is still globally well-posed on Hr for all r , and by the
method of characteristics one has

f (t) = S(t) f0 = f0 ◦ (ϕt )−1

for all f0 ∈ L2, where ϕt : Td # is the Lagrangian flow associated to the velocity
field u. Note that in this case, S(t) : L2 → L2 cannot be compact, as it is unitary:
(S(t) f, S(t)g)L2 = ( f, g)L2 for all f, g ∈ L2 by incompressibility. In particular,
for the L2 Lyapunov exponent,∥ f (t)∥L2 = ∥ f0∥L2 for all t ! 0, henceλ1(L2) = 0.
On the other hand,

∥ f (t)∥H1 = ∥(Dϕt )−T∇ f ∥L2 (5)

by incompressibility. When the Lagrangian flow ϕt associated to u has a positive
Lyapunov exponent on a positive volume, i.e.,

Leb
{
x ∈ Td : lim sup

t→∞
1
t
log ∥Dxϕ

t∥ > 0
}
> 0 , (6)

then ∥ f (t)∥H1 can grow exponentially fast, hence λ1(H1) > 0. It was recently
shown by the authors and J. Bedrossian in [5] that when u solves the stochastic
Navier–Stokes equations with nondegenerate, white-in-time forcing, the LHS of
(6) has full Lebesgue measure with probability 1.1

L2 and H1 decay rates.When κ > 0, standard heat equation energy estimates for
the L2 norm immediately imply

λ1(L2) " −κ < 0,

and therefore our result implies the same holds true for λ1(H1). At first glance,
this might be surprising in light of the tendency of (32) to form large gradients. It
is however consistent with the energy estimate

∫ ∞

0
κ∥∇ f (s)∥2L2ds < ∞,

requiring time integrability of ∥ ft∥H1 over [0,∞) for κ > 0. We emphasize,
though, that λ1(H1) < 0 refers only to time asymptotic behavior, and does not

1 Despite a wealth of numerical evidence, in the absence of noise it is a notoriously
challenging open problem to prove that positivity of Lyapunov exponents for incompressible
systems of practical interest. This is already the case for low-dimensional discrete-time toy
models [19] of Lagrangian flow such as the Chirikov standard map [16], for which the
analogue of (6) is a wide-open problem—see, e.g., the discussion in [10,21].
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rule out transient growth in H1 on some (κ-dependent, potentially quite long) time
scale after which the diffusion dominates (c.f. Remark 1.1 and Sects. 2.1.4, 2.2.1).
H−1 decay rates. In [3–5], the authors proved the following exponential decay
estimate for (32) when u solves the 2d stochastic Navier-Stokes equation (or any
of a large class of noisy evolution equations):

∥ f (t)∥H−1 " Dκe−γ t∥ f0∥H1 .

Here the deterministic constant γ > 0 is independent of κ and the random variable
Dκ ! 1 has κ-independent expectation. Using that S(t) instantly regularizes H−1

to H1 for t > 0, this readily implies that

λ1(H−1) " −γ < 0.

In light of our main result and the results of [3], we conclude that, for the stochastic
Navier–Stokes equations and related models, all Sobolev norms (including L2)
eventually decay no slower than the uniform-in-κ exponential decay rate γ > 0
(perhaps after an initial κ-dependent period of transient growth). This κ → 0
singular limit bears a striking similarity to the stochastic stability of the so-called
Ruelle-Pollicott resonances associated to stationary hyperbolic flows [27].

Remark 1.2. We emphasize that we are not the first to apply the MET and related
ideas to passive scalar advection. Froyland et al. have developed data-driven al-
gorithms for identifying coherent structures in incompressible fluids [33], with
applications in the forecasting of oceanic features such as persistent gyres in the
Atlantic ocean [78]. Justifying the use of these algorithms required extending the
MET for compositions of possibly noninjective linear operators, addressed in [32]
in finite dimensions and, e.g., [38] in infinite dimensions. Additional applications
of the MET in this vein include the exploration of almost-sure statistical properties
for random compositions of mappings [23,24].

1.1.2. Lyapunov Exponents for the Navier–Stokes Equations Let u(t, x) be a
mean-zero divergence free velocity field solving the Navier–Stokes equations on
the periodic box T2,

∂t u + (u · ∇)u = ν'u − ∇ p + F , div u = 0 ,

where F is some spatially smooth, white-in-time or time-periodic forcing term, ν >

0 is fixed, and p denotes the pressure that enforces the divergence-free condition.
Under appropriate conditions on the forcing, for all r ! 0 this nonlinear evolution
equation gives rise to a stochastic semiflow of C1 Frechet-differentiable mappings
+t

ω : Hr → Hr , where Hr denotes the Sobolev space of Hr (weakly) divergence-
free fields (r = 0 corresponding to L2). Here, ω denotes the history of the driving
path. Given an initial u0 = u(0, ·) and an initial divergence-free v0 ∈ Hr , the v0
derivative vt = (Du0+

t )v0 solves the linearized Navier–Stokes equations

∂tv + (u · ∇)v + (v · ∇)u = ν'v − ∇q, div v = 0,
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with initial data v0.When F is deterministic and time-periodic orwhen F is stochas-
tic and white-in-time, the MET applies: under mild additional conditions, the Hr

Lyapunov exponent

λ1(Hr ) = lim
t→∞

1
t
log ∥vt∥Hr

exists with probability 1 and for ‘typical’ initial velocity fields u0, where v0 is
drawn from an open and dense subset of Hr .2 Since we are working with a first
variation equation, the value λ1(Hr ) represents the asymptotic exponential rate at
which nearby trajectories converge (λ1 < 0) or diverge (λ1 > 0) in the Hr norm
as time progresses.

In the study of the 2d Navier–Stokes equations it is often useful to formulate
the equation in terms of vorticity w = curl u,

∂tw + (u · ∇)w = ν'w + curl F ,

or in terms of the stream functionψ = '−1curl u, which is the Hamiltonian for the
velocity field u = ∇⊥ψ = (−∂yψ, ∂xψ). Depending on the variable considered, it
is natural to study the associated growth of the perturbation in L2 of the associated
variable. Hence, measuring the linearization in H1, L2 or H−1 corresponds to
measuring the linearization in L2 for the vorticity, velocity, or stream function
formulations of the equation.

In the inviscid case (ν = 0), it is known that the stability of the equation is
strongly dependent on the whether one is considering L2 of vorticity, velocity or
the stream functionwith someperturbation being stable in L2 of the stream function,
but not in L2 of velocity or vorticity due to the generation of high-frequencies due to
mixing effects. For the viscid problem ν > 0, we prove in this paper the following:

Informal Theorem. Assume that u(t, ·) solve the Navier–Stokes equations with
forcing F (either time-periodic or white-in-time) and that the resulting process on
velocity fields is (statistically) stationary and ergodic. Assume

∫ 1
0 ∥u(t, ·)∥Hγ+2 dt

has finite moments for some γ > 2. Then, λ(Hs) exists for all s ∈ [−γ + 1, γ + 1]
and does not depend on s. In particular,

λ1(H1) = λ1(L2) = λ1(H−1).

For full details, see Theorem 4.12 in Sect. 4.3.
There is a long and extensive literature on the linear stability or instability of sta-

tionary (time independent) solutions to the Euler and Navier–Stokes equations; see,
e.g., the textbooks [14,25,42,73,86]. Lyapunov exponents, which can be viewed
as analogous to spectra for nonstationary flows, have been employed extensively
in the study of semilinear parabolic problems such as Navier–Stokes, for instance
in providing upper bounds on the dimension of the global attractors– see, e.g.,

2 When F is white-in-time and satisfies mild nondegeneracy conditions (e.g., those in
[41]), the value λ1(Hr ) does not depend on u0. When F is time-periodic it is possible that
λ1(Hr ) depends on u0. For more details and discussion, see Sect. 4 below.
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[17,31,76]. Ruelle and Takens proposed dynamical chaos, of which a positive Lya-
punov exponent is a natural hallmark, as a mechanism involved in the transition to
turbulence [56,71]. To this end, Ruelle established an extension of smooth ergodic
theory to dissipative parabolic problems such as Navier–Stokes [70] (see also, e.g.,
[11,52,54]). For numerical studies of Lyapunov exponents in turbulent regimes,
see, e.g., [20,87].

Plan for the paper
Sect. 2 covers necessary background from ergodic theory and a full statement of
our main abstract result, Theorem 2.6, the full proof of which is given in Sect. 3.
Full statements and proofs of the assertions in Sect. 1.1 above are given Sect. 4.

2. Abstract Setting and Statement of Results

2.1. Background on the Multiplicative Ergodic Theorem (MET)

TheMET is a theorem in ergodic theory, the study of measure-preserving trans-
formations (mpt’s) of a probability space. Here we briefly recall a few basic def-
initions and the statement of the MET itself, and will afterwards provide the full
statement of our main result. Additional context and a brief review of literature is
given at the end of Sect. 2.1.

2.1.1. Setting Let (X,F ,m) be a probability space: here X is a set, F a σ -
algebra of subsets of X , and m a probability measure. We say that a measurable
transformation T : X → X (possible noninvertible) is an mpt if m ◦ T−1 = m,
i.e., m(T−1A) = m(A) for all A ∈ F . We can interpret the invariant measure m
as characterizing “equilibrium statistics” for the dynamics described by T : if x0 is
an X -valued random variable with law m, and given any observable ϕ : X → R,
then the random variables

ϕ(x0), ϕ ◦ T (x0), . . . , ϕ ◦ T k(x0), . . .

all have the same law, i.e., {ϕ ◦ T k(x0)}k!0 a stationary sequence.
We say that T : (X,F ,m) # is ergodic if, for any A ∈ F , the invariance

relation T−1A = A implies m(A) = 0 or 1. Ergodicity is a form of irreducibility:
the phase space X cannot be partitioned into two pieces of positive m-mass which
never exchange trajectories.

Example 2.1. Let B be a separableBanach space and let T : B → B be a continuous
mapping, e.g., the time-1 solution mapping to a possibly nonlinear, well-posed
evolution equation on B. IfA ⊂ B is a compact, T -invariant subset3, e.g., a global
attractor for T , then there exists at least one T -invariant, Borel probability measure

3 We call A a T -invariant set if T−1A ⊃ A.
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supported on A. Indeed, for any fixed x0 ∈ A, any subsequential weak∗ limit of
the sequence

1
n

n−1∑

i=0

δT i x0

is T -invariant.4By standard arguments,5 it follows that there also exist ergodic
T -invariant probability measures supported on A.

2.1.2. The MET Let B be a separable Banach space with norm ∥ · ∥B . The MET
concerns cocycles of operators, which for our purposes are compositions of the
form

An
x = A(T n−1x)A(T n−2x) · · · A(T x)A(x), n ! 1, x ∈ X ,

where A : X → L(B), L(B) the space of bounded operators on B, is the generator
of the cocycle. We view the composition An

x as being “driven” by the dynamics
T : X → X . The MET describes the asymptotic exponential growth rates

λ(x, v) := lim
t→∞

1
t
log ∥An

xv∥B , (7)

where they exist, as x ranges overm-typical initial conditions in X and v ∈ B \{0}.
For simplicity, we assume below that Ax is compact for all x ∈ X ; otherwise,
we make no additional assumptions, e.g., on the injectivity of Ax (we follow the
convention that log 0 = −∞). Many proofs of the MET in this setting exist; the
following is taken from [52]; see also [72].

Theorem 2.2. (MET for compact cocycles) Let T : (X,F ,m) # be an mpt. As-
sume that A : X → L(B) is strongly measurable6 and that A(x) is a compact
linear operator on B for all x ∈ X. Lastly, assume the log-integrability condition

∫
log+ ∥A(x)∥B dm(x) < ∞. (8)

Then, for every λc > −∞, there exists a (i) function rλc : X → Z!0; (ii) for each
i ! 1, a function λi : {x : rλc (x) ! i} → R satisfying

λ1(x) > · · · > λrλc (x)(x) ! λc ;

4 That such weak∗ limits exist follows by compactness ofA. That such limiting measures
are T -invariant is straightforward to check: see, e.g., Lemma 2.2.4 of [80]. The above proce-
dure is often referred to as the Krylov-Bogolyubov argument for the existence of T -invariant
measures [48].
5 E.g., Proposition 4.3.2 of [80] and the Krein-Milman Theorem, paragraph I.A.22 in [85].
6 When B is separable,we say that x $→ Ax is stronglymeasurable if it isBorelmeasurable

w.r.t. the strong operator topology on L(B), or equivalently, when x $→ Axv is a Borel
measurable mapping for each fixed v ∈ B. For a summary of alternative measurability
requirements for the MET, see, e.g., [79].
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and (iii) at m-a.e. x ∈ X a filtration

B =: F1(x) ! F2(x) ! · · · ! Frλc (x)(x) ! F̄λc (x)

by closed, finite-codimensional,measurably varying7 subspaces Fi (x), F̄λc (x) such
that

λ(x, v) = λi (x) for all 1 " i " rλc (x) − 1 and v ∈ Fi (x) \ Fi+1(x) ,

λ(x, v) = λrλc (x)(x) for all v ∈ Frλc (x)(x) \ F̄λc (x) ,

and

lim
n

1
n
log ∥An

x |F̄λc
∥B " λc

for m-a.e. x ∈ X.
The functions rλc(x), λi (x) are constant along m-a.e. trajectory, as are the

codimensions Mi (x) := codim Fi+1(x) < ∞. Moreover, when T : (X,F ,m) #
is ergodic, rλc and the values λ1, · · · , λrλc are constant over m-a.e. x ∈ X.

It is immediate that the Fi (x) are invariant in the sense that

Ax (Fi (x)) ⊂ Fi (T x) for m − a.e. x. (9)

.8

Note that we allow the inclusion to be strict. Observe also that

di (x) := Mi (x) − Mi−1(x) = codim Fi+1(x) − codim Fi (x) (10)

is the codimension of Fi+1(x) in Fi (x); we refer to di (x) as the multiplicity of
λi (x).

2.1.3. Lyapunov Exponents The values {λi } are called Lyapunov exponents,
while the collection of them is referred to as theLyapunov spectrum, in analogywith
the spectrum of a single closed operator. The value λc is a cutoff, past which we do
not resolve the spectrum further, while adjusting the value λc lower can potentially
‘uncover’ additional Lyapunov spectrum (i.e., rλc increases as λc decreases). Define

r(x) = lim
λc→−∞

rλc (x) = sup
λc∈R

rλc (x) ∈ Z!0 ∪ {∞} . (11)

To simplify the discussion below, assume T : (X,F ,m) # is ergodic, so that
r and the {λi } are constants. We distinguish three scenarios:

7 Throughout, we consider the space of closed subspaces of B with the Hausdorff metric
dHaus of unit spheres; see (17) for details. Here, we are asserting that x $→ Fi (x) is Borel
measurable w.r.t. the topology induced by dH .
8 Some authors refer to the property (9) as equivariance.
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(a) No Lyapunov exponents are uncovered (rλc = 0 for all values of cutoff λc). In
this case,

λ(x, v) = −∞

for a.e. x ∈ X and all v ∈ B. When this occurs, we follow the convention
λ1 = −∞, F1(x) := B, r = 0.

(b) Finitely many Lyapunov exponents λ1 > · · · > λr > −∞, r ∈ Z!1 are
uncovered. Each exponent corresponds to a member of the filtration

B =: F1(x) ! F2(x) ! · · · ! Fr (x) ! Fr+1(x) ⊃ {0}

such that λ(x, v) = λi for all i " r, v ∈ Fi (x)\Fi+1(x), while limn
1
n log

∥An
x |Fr+1(x)∥ = −∞. In this case, we follow the convention λr+1 = −∞.

(c) Infinitely many Lyapunov exponents λ1 > λ2 > · · · are uncovered. In this
case, compactness of A(x), x ∈ X (see, e.g., discussion after Corollary 2.2 in
[70]) implies that limi λi = −∞, and each exponent corresponds to a member
of the filtration

B =: F1(x) ! F2(x) ! · · · ! Fi (x) ! · · ·

for which λ(x, v) = λi for all i ! 1, v ∈ Fi (x)\Fi+1(x). The (possibly trivial)
closed space F∞(x) := ∩i Fi (x) has the property that limn

1
n log ∥An

x |F∞(x)∥ =
−∞. In this case we follow the convention r = ∞.

We note that in all three scenarios, the codimension codim Fi is constant along
trajectories {T kx}k!0, while if (T,m) is ergodic, codim Fi (x) is constantm-almost
surely.

Remark 2.3. When T : (X,F ,m) # is nonergodic, the limiting value r(x) in (11)
depends on x ∈ X . In particular, X can be subdivided into the T -invariant (possibly
empty) sets {r(x) = 0}, {1 " r(x) < ∞} and {r(x) = ∞} along which each of
scenarios (a)–(c) holds, respectively.

Remark 2.4. These scenarios are analogous to the situation for the spectrum σ (K )

of a compact linear operator K on B: (a) when σ (K ) = {0} (e.g., K is a compact
shift operator); (b) when σ (K ) is a finite set containing {0} (e.g., K is finite rank);
and (c) when σ (K ) is countable and accumulates only at {0} (e.g., K = '−1 is the
inverse Laplacian on L2([0, 1])with Dirichlet boundary conditions). Indeed, when
Ax ≡ K is a fixed compact operator not depending on x , the λi are precisely the
logarithms of the absolute values of the elements of σ (K ), while the Fi are direct
sums of the corresponding generalized eigenspaces.

Example 2.5. Let T : B → B be a continuousmapping as in Example 2.1 admitting
a compact invariant set A ⊂ B and an invariant Borel probability m. Assume in
addition that T isC1 Frechet differentiable, and that the derivative DxT is a compact
linear operator (as is the case for a broad class of dissipative parabolic evolution
equations [76]). Theorem 2.2 applies to the cocycle generated by A(x) = DxT ∈
L(B) (note that by our assumptions, x $→ log+ |DxT | is a continuous function and
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A is compact, so (8) holds automatically). It follows that for m-a.e. x ∈ X and for
all v ∈ B, the limit

λ(x, v) = lim
n→∞

1
n
log ∥DxT nv∥B ∈ [−∞,∞)

exists, and if finite, equals one of the values λi (x).

2.1.4. Rate at Which Lyapunov Exponents are “Realized” The MET guaran-
tees convergence of the exponential rates λ(x, v) for x ∈ X, v ∈ B as in equation
(7), but this convergence can be badly nonuniform in x ∈ X . While little can be
said at this level of generality, we can at least quantify this nonuniformity as we
show below.

To fix ideas, assume (T,m) is ergodic and r > 0 (scenarios (b) or (c) in
Sect. 2.1.3). Fix an i ∈ {1, . . . , r}, so by the statement of the MET we have that
λ(x, v) = λi for all v ∈ Fi (x)\Fi+1(x). With additional work, it is possible to
show (see [11]) that for any ε > 0, one has

∥An
xv∥B " Dε(x)en(λi+ε)∥v∥B , (12)

where

Dε(x) := sup
n!0

∥An
x |Fi (x)∥B
en(λi+ε)

is finite for m-a.e. x ∈ X .
For corresponding lower bound, note that the convergence of λ(x, v) to λi

should be slower as v approaches Fi+1(x). To account for this, given v ∈ B \ {0}
and a closed subspace F ⊂ V , write ∠B(v, F) for the unique “angle” in [0,π/2]
such that

sin∠B(v, F) = inf
w∈F

∥v − w∥B
∥v∥B

. (13)

Then,

∥An
xv∥B

∥v∥B
! (Dε(x))

−1en(λi−ε) sin∠B(v, Fi+1(x)) , (14)

where

Dε(x) := sup
n!0

sup
v∈B\Fi+1(x)

∥v∥B=1

en(λi−ε) sin∠B(v, Fi+1(x))
∥An

xv∥B

is again m-almost surely finite.
Define

Dε := max{Dε, Dε} , and 1ℓ := {Dε " ℓ}, ℓ > 1.
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The sets 1ℓ ⊂ X are sometimes referred to as uniformity sets or Pesin sets: when
ε is chosen sufficiently small, for any fixed ℓ > 1 we have

∥An
xv∥B ≈ℓ enλi ∥v∥B

uniformly over all x ∈ 1ℓ and v ∈ Fi (x)\Fi+1(x) with ∠B(v, Fi+1(x)) bounded
away from 0, up to the multiplicative constant ℓ and ignoring the slowly-growing
factors enε. This can be very useful, e.g., in smooth ergodic theory where the ex-
ponential expansion/contraction along various directions of B is used to construct
stable/unstablemanifolds of smooth systems (see references below). Unfortunately,
despite their importance, little else can be said about Dε without additional assump-
tions.

2.1.5. Additional Background andContext for theMET TheMET for station-
ary compositions of d × d matrices was first proved by Oseledets [63] in the late
60’s, although investigations on the properties of IID products of d × d matrices
date from the early 60’s [35,36]. There are now many proofs available—see, e.g.,
[66,69,82] and [32]. Since then the MET has been extended in several directions,
e.g., to the asymptotic behavior of random walks on semisimple Lie groups [43]
and on spaces of nonpositive curvature [44].

One of the most significant impacts of the MET has been in smooth ergodic
theory, the study of the ergodic properties of differentiable mappings. For such sys-
tems, theMET implies the existence of stable and unstable subspaces in the moving
frames along “typical” trajectories of the dynamics. Pesin discovered [65,69] soon
after that these could be used in the construction of stable and unstable manifolds,
generalizing directly from the classical theory of stable/unstable manifolds for
equilibria and periodic orbits. This development is at the core of our contemporary
understanding of chaotic dynamical systems and the fractal geometry of strange
attractors [28]. For more discussion, see, e.g., the the textbook [1] or the surveys
[64,84,88].

A part of Ruelle’s work in [70] was a version of the MET for stationary com-
positions of Hilbert space operators. By now, there are many works extending the
MET to various infinite-dimensional settings. Highlights include extensions to sta-
tionary products of compact linear operators on a Banach space [57], dropping
the compactness assumption [77], versions of the MET suited to the first variation
equations of SPDE [52,72], and a version of theMET for compositions of operators
drawn from a vonNeumann algebra [12]; see also, e.g., [9,37,79].

2.2. Statement of Main Results

To start, we will assume

(a) (B, ∥ · ∥B) is a Banach space and V ⊂ B is a dense subspace;
(b) The space V is equipped with its own norm ∥ · ∥V such that

∥ · ∥B " ∥ · ∥V ;
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(c) Both (B, ∥ · ∥B) and (V, ∥ · ∥V ) have separable duals. In particular, (B, ∥ · ∥B)
and (V, ∥ · ∥V ) are separable by a standard argument.

Additionally,
(1) T : (X,F ,m) # is an mpt;
(2) A : X → L(B) is strongly measurable and A(x) ∈ L(B) is compact for all

x ∈ X ;
(3) The restriction A(x)|V has range contained in V and is a compact linear operator

V → V , and moreover, x $→ A(x)|V is strongly measurable X → L(V ); and
finally,

(4) The operator A(x) satisfies the log-integrability condition regarded on both
(B, ∥ · ∥B) and (V, ∥ · ∥V ), i.e.,∫

log+ ∥A(x)∥Bdm(x) < ∞
∫

log+ ∥A(x)|V ∥V dm(x) < ∞
(15)

Under (1)–(4), the MET as in Theorem 2.2 applies to An
x regarded as a cocycle on

either B or V . Below, for either of W = B or V we write λW
i , rW and FW

i for the
objects in Theorem 2.2 applied to An

x regarded as a cocycle on W .

Theorem 2.6. Under (1)–(4), we have that rV (x) = r B(x) for m-a.e. x ∈ X.
Writing r(x) for this common value, the following holds for all i ! 1 and m-a.e.
x ∈ {r ! i}:

λV
i (x) = λB

i (x) and FV
i (x) = FB

i (x) ∩ V .

In particular, for m-a.e. x ∈ X and all v ∈ V , we have that

lim
n→∞

1
n
log ∥An

xv∥B = lim
n→∞

1
n
log ∥An

xv∥V .

Note also that scenarios (a), (b) and (c) above are carried over from B to V . For
instance, in the ergodic case, λB

1 = −∞, r B = 0 (our convention for scenario (a))
holds if and only if λV

1 = −∞, rV = 0.

Example 2.7. (i) Let T : B → B be a C1 Frechet differentiable mapping with
compact invariant set A ⊂ B as in Examples 2.1 and 2.5. Assume V ⊂ B
is a dense embedded subspace, ∥ · ∥V ! ∥ · ∥B . If A(x) = DxT satisfies
assumptions (1)–(4) above, then Theorem 2.6 applies: writing λW (x, v) =
limn→∞ 1

n log ∥DxT nv∥W for x ∈ A, v ∈ B and W = V or B, it follows that

λV (x, v) = λB(x, v) for m a.e. x ∈ A, and all v ∈ B.

(ii) When T is the time-1 mapping for a dissipative semilinear parabolic problem,
e.g., the 2dNavier–Stokes equations, one typicallyworkswith a scale of Banach
spaces Bα,α ∈ [a, b] ⊂ R, Bβ ⊂ Bα for α < β, e.g., the Sobolev spaces
Bα = Wα,2 = Hα . Fixing B = Bα and V = Bβ , it is often the case that
DxT : B → B is compact, and that DxT restricted to V maps into V and
is similarly compact; this is a consequence of parabolic regularity for the first
variation (linearization) equation. In particular, Theorem2.6 applies. See Sect. 4
for more details in the case of 2d Navier–Stokes.
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2.2.1. Comparison of Uniformity Sets It is natural to attempt to compare the
rate at which Lyapunov exponents are realized between the norms of B and V . Fix
i ! 1 and assume m{r ! i} > 0. Fix ε > 0 and let D

W
ε , DW

ε ,W = B, V be as in
(12), (14), respectively (note that we have not assumed (T,m) is ergodic, so λi (x)
can depend on x). Since ∥ ·∥B " ∥ ·∥V , it is of interest to bound D

V
ε from above by

D
B
ε and DB

ε from above by DV
ε . We prove such a comparison under the following

additional assumption:

(5) For all x ∈ X , the range of Ax : B → B is contained in V and is bounded as
a linear operator (B, ∥ · ∥B) → (V, ∥ · ∥V ). Moreover, assume that for some
p > 3 we have that

log+ ∥Ax∥B→V ∈ L p(m) . (16)

Corollary 2.8. Assume the setting of Theorem 2.6 and additionally that (16) above
holds. For any δ > 0, there exists a function Kδ : {r ! i} → R!1 such that

D
V
ε (x) " Kδ(x)D

B
ε+δ(x) and DB

ε (x) " Kδ(x)DV
ε+δ(x)

hold for any ε > 0 and m-a.e. x ∈ {r ! i}. The function Kδ satisfies the moment
estimate

∫

{r!i}
(log+ Kδ)

q dm %p,q δ−(p−q)(1+ ∥ log+ ϕ∥pL p(m)) for all q <
p(p − 3)
p − 1

,

where ϕ(x) := ∥Ax∥B→V .

That is, while usually one has little control over D
W
ε , DW

ε , these terms are
comparable between W = B and V , in a way that can be made explicit in terms
of the L p-norm of log+ ∥A·∥B→V . Viewing V as a “higher regularity” subspace
of B (c.f. the discussion in Sect. 1.1), condition (5) has the connotation that Ax
regularizes initial data from B into V . This condition is natural for linear cocycles
derived from dissipative parabolic PDE, and holds for all the applications covered
in Sect. 4 below.

Proof of Corollary 2.8 assuming Theorem 2.6. We restrict attention to the lower
bound for DB

ε ; the upper bound on D
V
ε is easier and omitted for brevity. Moreover,

we assume below that (T,m) is ergodic, so the value r ! i and the Lyapunov
exponents λi are almost-surely constant (the non-ergodic case is treated similarly
and is omitted for brevity).

To start, observe that for v ∈ FV
i (x), we have

∥An
xv∥B ! ∥An+1

x v∥V ∥ATnx∥−1
B→V

!
(
DV

ε (x)∥ATnx∥B→V

)−1
en(λi−ε)∥v∥V sin∠V (v, FV

i+1(x)) .

Since ∥ · ∥B " ∥ · ∥V , it holds directly from (13) that

∥v∥V∠V (v, FV
i+1(x)) ! ∥v∥B∠B(v, FV

i+1(x)).
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Since V is dense in B and FV
i+1 = V ∩ FB

i+1, the closure of F
V
i+1(x) in B coincides

with FB
i+1(x), hence ∠B(v, FV

i+1(x)) = ∠B(v, FB
i+1(x)). We conclude that

∥An
xv∥B !

(
DV

ε (x)∥ATnx∥B→V

)−1
en(λi−ε) · ∥v∥B sin∠B(v, FB

i+1(x)) .

The above estimate holds uniformly over v ∈ FV
i (x), and so by density of FV

i (x)
in FB

i (x) we conclude the same holds for v ∈ FB
i (x).

It remains to bound ∥ATnx∥B→V from above. Below, we write “%p,%p,q” for
bounds up to a universal multiplicative constant depending only on p, and/or q and
independent of all other parameters, e.g., δ. With Gn := {x ∈ X : ∥ATnx∥B→V >

enδ}, we have

m(Gn) = m{log+ ∥ATnx∥B→V > nδ} "
∥ log+ ϕ∥p

L p(m)

(nδ)p

by Chebyshev’s inequality, where ϕ(x) := ∥ATnx∥B→V . Since p > 3 > 2, it holds
that

∑
n m(Gn) < ∞, hence

Nδ(x) := max{n ! 0 : ∥ATnx∥B→V > enδ}
is almost-surely finite by the Borel-Cantelli Lemma, with the tail estimate

m{Nδ > n} "
∞∑

ℓ=n+1

m(Gℓ) %p δ−pn−p+1∥ log+ ϕ∥p
L p(m).

For m-a.e. x , we now have

∥ATnx∥B→V " enδ ·
(

1 ∨ max
0"i"Nδ

∥AT i x∥B→V

)

=: enδKδ(x) .

Plugging Kδ into our previous estimate, we conclude DB
ε " KδDV

ε+δ , as desired.
It remains to estimate the q-th moment of log+ Kδ , where from here on q < p

is fixed. We have

(log+ Kδ(x))q "
∑

i"Nδ

(log+ ∥AT i x∥B→V )
q , hence

∫
(log+ Kδ)

q dm "
∞∑

n=0

n∑

i=0

∫

{Nδ=n}
(log+ ∥AT i x∥B→V )

q dm(x) .

Using Hölder’s inequality on each summand and that m ◦ T−1 = m, we obtain
∫
(log+ Kδ)

qdm " ∥ log+ ϕ∥qL p

∞∑

n=0

(n + 1)(m{Nδ = n})1−
q
p

%p,q δ−(p−q)(1+ ∥ log+ ϕ∥p
L p )

∞∑

n=1

n1+(1−p)( p−q
p )

.

The sum in the RHS is finite iff q < p(p−3)
p−1 (note the right-hand quantity is> 0 iff

p > 3).
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2.3. Comments on Existing Results

To the authors’ knowledge, the first result on the dependence of Lyapunov ex-
ponents on the normwas given in [34], which considered two potentially nonequiv-
alent norms on the same Banach space.

During the preparation of this manuscript, the authors discovered that Theorem
37 in Appendix A of [40] is a version of the main result Theorem 2.6 of this
manuscript. On the other hand, the (short and elegant) proof given in [40] relies
on the invertibility of the base mpt T : (X,B,m) #, while the proof given here,
although longer, is inherently “one-sided” and does not rely at all on invertibility
of T . We also note that the setting of [40] requires only a “quasi-compactness”
assumption on the cocycle, not compactness as we assume here. However, in view
of our intended applications to dissipative parabolic PDE, we have opted for the
sake of simplicity to limit the proof of Theorem 2.6 to the compact case. While not
all details have been checked, the authors are confident an approach analogous to
that given here will work in the quasi-compact setting. Corollary 2.8 appears to be
new.

Lastly, we note that a version Theorem 2.6 for a class of linear delay-differential
equations appears in the paper [59].

3. Proof of Theorem 2.6

In Sect. 3.1 we collect some preliminary regarding the Grassmanian of closed
subspaces and a notion of determinant on finite-dimensional subspaces of Banach
spaces. In Sect. 3.2 we prove an intermediate result. We complete the proof of
Theorem 2.6 in Sect. 3.3.

3.1. Preliminaries

Let (B, ∥ · ∥B) be a Banach space. Let Gr(B) denote the Grassmanian of B,
i.e., the set of closed subspaces of B. For k ∈ N, write Grk(B) for the set of k-
dimensional subspaces of B and Grk(B) for the set of closed, k-codimensional
subspaces.

Throughout, Gr(B) is endowedwith themetric topology coming from theHaus-
dorff distance

dB
Haus(E, E

′) = max
{

sup
e∈E,∥e∥B=1

distB(e, SE ′), sup
e′∈E ′,∥e′∥B=1

distB(e′, SE )
}

(17)

Equation (17) is the usual Hausdorff distance between two closed subsets of a
metric space. In this case, we are taking the usual Hausdorff distance of the unit
spheres SE := {e ∈ E : ∥e∥B = 1}. Note that for v ∈ B and S ⊂ B we write
distB(v, S) = infs∈S ∥v − s∥B for the minimal distance between v and S in the
∥ · ∥B norm. We note that in dB

Haus , the sets Grk(B),Gr
k(B) are clopen in Gr(B)

for all k ! 1. For additional background, see Section IV.2 of [45].
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3.1.1. Norm Comparison Let (V, ∥ · ∥V ) be another Banach space such that
V ⊂ B and ∥ · ∥B " ∥ · ∥V .

Definition 3.1. For E ∈ Gr(V ), define

α(E) = sup
v∈E\{0}

∥v∥V
∥v∥B

,

noting 1 " α(E) < ∞ automatically by compactness of SE when dim E < ∞ (in
particular, the sup is a max).

For our purposes, we will require some degree of control over α(E) as E varies:

Lemma 3.2. Let k ! 1 and E0 ∈ Grk(V ). Then, E $→ α(E) is upper semi-
continuous at E = E0: for any ε > 0 there exists δ = δ(E0, ε) > 0 such that if
dVHaus(E, E0) < δ, then

α(E) " α(E0)+ ε.

It is not hard to check that if dVHaus(E, E0) < 1, then dim E = dim E0 (Corol-
lary 2.6 of Section IV.2 in [45]), hence α(E) < ∞ automatically. Lemma 3.2 goes
further, asserting that the B and V norms are uniformly equivalent for all E close
enough to E0 in dHaus .

Proof of Lemma 3.2. Let E ∈ Gr(V ) and assume dVHaus(E, E0) < δ for some
δ > 0 to be specified. Let v ∈ E, ∥v∥V = 1 be so that

α(E) = 1
∥v∥B

.

Let v0 ∈ E0, ∥v0∥V = 1 be such that ∥v − v0∥V " δ. We see that

α(E) = ∥v0∥B
∥v∥B

1
∥v0∥B

" ∥v0∥B
∥v∥B

α(E0)

by definition ofα(E0). Now, ∥v−v0∥B " ∥v−v0∥V < δ and so ∥v∥B ! ∥v0∥B−δ.
Using that ∥v0∥B ! α(E0)

−1, we see that

∥v0∥B
∥v∥B

" ∥v0∥B
∥v0∥B − δ

= 1

1 − δ∥v0∥−1
B

" 1
1 − δα(E0)

.

On taking δ > 0 sufficiently small (depending only on α(E0) and ε > 0), we
conclude α(E) " α(E0)+ ε as desired.

It is also useful to compare the Hausdorff distances dB
Haus, d

V
Haus :

Lemma 3.3. For any E, E ′ ∈ Grk(V ), k < ∞, we have that

dB
Haus(E, E

′) " 2max{α(E),α(E ′)}dVHaus(E, E
′).
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Proof. It is straightforward to check that distB(e′, E) " distV (e′, E) for all e′ ∈ E ′.
Since distB(ae′, E) = |a| distB(e′, E) holds for all a ∈ R, we see that

max
e′∈E ′,∥e′∥B=1

distB(e′, E) " max
e′∈E ′,∥e′∥B=1

∥e′∥V distV (∥e′∥−1
V e′, E)

" α(E ′) max
e′∈E ′,∥e′∥V=1

distV (e′, E) .

Reversing the roles of E, E ′, we conclude δB(E, E ′)
" max{α(E),α(E ′)}δV (E, E ′), where

δB(E, E ′) = max
{

sup
e∈E,∥e∥B=1

distB(e, E ′), sup
e′∈E ′,∥e′∥B=1

distB(e′, E)
}
.

The desired conclusion now follows from the following standard inequality (c.f.
Section IV.2 of [45]):

δB(E, E ′) " dB
Haus(E, E

′) " 2δB(E, E ′).

3.1.2. Determinants in Banach Spaces The following is an assignment to each
E ∈ Grk(B) a “volume element” along E .

Definition 3.4. (a) For E ∈ Grk(B), k ! 1, we define VolBE to be the Lebesgue
measure on E normalized so that

VolBE {v ∈ E : ∥v∥B " 1} = 1 . (18)

(b) For a linear operator A : B → B and E ∈ Grk(B), k ! 1, we define the
determinant detB(A|E) of A|E : E → B by

det B(A|E) =

⎧
⎨

⎩

VolBA(E)(A(S))

VolBE (S)
A|E injects ,

0 else,

where S ⊂ E is any Borel set of positive, finite mB
E -measure.

We note that the measure VolBE on E is characterized uniquely by (i) translation
invariance and (ii) the normalization (18).9 It follows from this unique characteri-
zation that detB(A|E) is well-defined irrespective of the choice S ⊂ E . Below we
recall some basic properties of detB(·|·); for proofs and additional background, see
[9].

In what follows, we define the minimum-norm of A|E by

mB(A|E ) := inf{∥Av∥B : v ∈ E, ∥v∥B = 1}. (19)

Note that if A|E is injective, then finite-dimensionality of E implies that A|E :
E → A(E) is invertible, and therefore we have mB(A|E ) = ∥(A|E )−1∥−1.

9 The measure VolBE is sometimes called the Busemann-Hausdorff measure [13] and ap-
pears naturally in Finsler geometry.
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Lemma 3.5. Let E ∈ Grk(B), k ! 1.

(a) For bounded linear operators A1, A2 : B → B, we have that

det B(A1A2|E) = det B(A1|A2(E)) det B(A2|E).

(b) If A : B → B is a bounded linear operator and A|E injects, then

mB(A|E )k " det B(A|E) " ∥A∥kB .

The following compares detB and detV :

Proposition 3.6. Let V ⊂ B be an embedded Banach space satisfying ∥ · ∥B "
∥ · ∥V . Let E ∈ Grk(V ), k ! 1. Let A : B → B be a bounded linear operator for
which A(E) ⊂ V and A|E injects. Then,

det B(A|E) " α(E)k det V (A|E) , and

det V (A|E) " α(A(E))k det B(A|E) .

Proof. Let DB
E denote the unit ball of E in the ∥ · ∥B norm. First, we show that, for

all Borel K ⊂ E , we have

VolBE (K ) " VolVE (K ) and VolVE (K ) " αk(E)VolBE (K ).

To see this, observe that by uniqueness of Haar measure, there exists c > 0 such
that that VolVE = c VolBE . Let D

W
E denote the unit ball of E in the W norm for

W = V, B. To estimate c, we have

1 = VolVE (D
V
E ) = c VolBE (D

V
E ) " c VolBE (D

B
E ) = c ,

hence c ! 1, while

1 = VolBE (D
B
E ) = c−1 VolVE (D

B
E ) " c−1α(E)k VolVE (D

V
E ) = c−1α(E)k ,

hence c " α(E)k .
To obtain the first inequality, observe that by definition of α(E), VolBE (D

E
V ) !

α(E)−k and therefore

det B(A|E) =
VolBA(E)(A(D

V
E ))

VolBE (D
V
E )

" VolBA(E)(A(D
V
E ))α(E)

k

" α(E)k VolVA(E)(A(D
V
E )) = α(E)k det V (A|E) .

For the second inequality, since VolV (DB
E ) ! VolV (DV

E ) = 1, we find

det V (A|E) =
VolVA(E)(A(D

B
E ))

VolVE (D
B
E )

" VolVA(E)(A(D
B
E ))

" α(A(E))k VolBA(E)(A(D
B
E )) = α(A(E))k det B(A|E) .
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3.1.3. Determinants and Lyapunov Exponents Our proof below uses the fol-
lowing characterization of Lyapunov exponents in terms of asymptotic growth rates
of determinants. Assume (B, ∥ ·∥B) is a separable Banach space, T : (X,F ,m) #
is an mpt, and A : X → L(B) is a strongly measurable such that A(x) is compact
for all x ∈ X (the setting of Theorem 2.2). Let x be anm-generic point and let r(x)
be as in (11). Let λi (x), di (x) denote the Lyapunov exponents and corresponding
multiplicities at x , and B =: F1 ⊃ F2(x) ⊃ · · · denote the corresponding fil-
tration. Recall (see (10)) that di (x) is the codimension of Fi+1(x) in Fi (x), and
Mi (x) = d1(x)+ · · · + di (x) is the codimension of Fi+1(x) in B.

Let us define χ1(x) ! χ2(x) ! · · · to be the Lyapunov exponents counted with
multiplicity, i.e.,

χMi−1(x)+1 = · · · = χMi (x) = λi (x) (20)

for all i " r(x) (here M0(x) := codim F1 = 0 by convention). If r(x) = 0, we
adopt the convention that χ j (x) = −∞ for all j ! 1, while if 0 < r(x) < ∞, we
define χ j (x) = −∞ for all j > Mr(x)(x). For k ! 1 we define

4k(x) := χ1(x)+ · · · + χk(x) ,

with the convention that 4k(x) = −∞ if r(x) < ∞ and k > Mr(x)(x).
Below, for a linear operator A : B → B and k ! 1 we define

V B
k (A) = sup{det B(A|E) : dim E = k}.

The following characterizes the sums4k(x) in terms of the maximal k-dimensional
volume growth V B

k (x).

Proposition 3.7. ([9]) Assume the setting of Theorem 2.2.

(a) For m-a.e. x ∈ X and for all k ! 1

4k(x) = lim
n→∞

1
n
logV B

k (A
n
x ) .

(b) For all i, k ! 1 and for m-a.e. x ∈ {r ! i} ∩ {Mi−1 < k " Mi }, it holds that
if E ∈ Grk(B) and E ∩ Fi+1(x) = {0}, then

4k(x) = lim
n→∞

1
n
log det B(An

x |E) . (21)

Equation (21)also holds form-a.e. x ∈ {r = i}∩{Mr < k}andall E ∈ Grk(B).
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3.2. Main Proposition

Let us assume the setting of Theorem 2.6: (B, ∥ ·∥B) and (V, ∥ ·∥V ) are Banach
spaces with separable duals, where V ⊂ B is dense and ∥ · ∥B " ∥ · ∥V . We are
given anmpt T : (X,F ,m) # and a strongly measurable mapping A : X → L(B)
satisfying (1)–(4) in Sect. 2.2. For simplicity and to spare heavy notation, we will
assume below that (T,m) is ergodic, so that Lyapunov exponents are constant in x .
The nonergodic case requires superficial changes, whichwe comment on inRemark
3.19 below.

For W = B or V , let rW denote the number of distinct Lyapunov exponents
λW
i with multiplicities dWi ,MW

i := dW1 + · · · + dWi . Let χW
j denote the Lyapunov

exponents counted with multiplicity as in (20), and let 4W
k = ∑k

j=1 χW
j .

The following is the main step in the proof of Theorem 2.6:

Proposition 3.8. (Main Proposition) Let i ! 1.

(a) If i " rV , then 4V
MV

i
= 4B

MV
i

(b) If i " r B, then 4V
MB

i
= 4B

MB
i

The proof of Proposition 3.8 occupies the remainder of Sect. 3.2; we complete
the proof of Theorem 2.6 in Sect. 3.3.

3.2.1. Measurable Selection of Projectors Next, we will need the following
Lemmas on the geometry ofBanach spaces. Below, given a splitting B = E⊕F into
closed subspaces E, F ⊂ V , we define πE//F to be the unique oblique projection
onto E with kernel F .

Lemma 3.9. (Corollary III.B.11 in [85]) Let F ∈ Grk(B) for k ! 1, then there
exists E ∈ Grk(B)with B = E ⊕ F such that

∥πE//F∥B "
√
k , and ∥πF//E∥B "

√
k + 1 .

The following is a version of Lemma 3.9 for a measurable family F(x), x ∈ X,
of finite-codimensional spaces.

Lemma 3.10. Let (X,F ) be a measurable space and let F : X → Grk(B) be a
measurable family.

Then, there exists ameasurable family E : X → Grk(B) such that for all x ∈ X,
(i) V = E(x) ⊕ F(x), (ii) the mapping x $→ πE(x)//F(x) is strongly measurable;
and (iii) we have that ∥πE(x)//F(x)∥B " Ck := 3

√
k + 2 for all x ∈ X.

Proof. Separability of B∗ implies separability of Grk(B) (Lemma B.12 in [38]; see
also Chapter IV, §2.3 of [45]). Let {Fn} ⊂ Grk(B) be a countable dense sequence
and for each n let En be a k-dimensional subspace of B such that ∥πEn//Fn∥B "

√
k

as in Lemma 3.9. Set ε = 1
2(

√
k+1)

and recursively define

S1 = {x ∈ X : dB
Haus(F(x), F1) < ε},

Sn = {x ∈ X : dB
Haus(F(x), Fn) < ε} \

n−1⋃

m=1

Sm .
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By the density of {Fn} and measurability of x $→ F(x), it holds that {Sn} is a
countable partition of X by F -measurable sets. Now, define

E(x) := En for x ∈ Sn .

It is immediate that x $→ E(x) is measurable. Measurability of x $→ πE(x)//F(x)
follows from Lemma B.18 of [38]. To estimate ∥πE(x)//F(x)∥B , Proposition 2.7 of
[9] implies that for x ∈ Sn ,

∥πEn//F(x)|Fn∥B " 2dB
Haus(Fn, F(x))

∥πFn//En∥−1
B − dB

Haus(Fn, F(x))
" 2

for our choice of ε. Therefore, for x ∈ Sn , en ∈ En, fn ∈ Fn ,

∥πE(x)//F(x)(en + fn)∥B = ∥en∥B + ∥πEn//F(x)|Fn∥B∥ fn∥B
" (3

√
k + 2)∥en + fn∥B .

Below we record various additional measurability properties, used freely and
without further mention in Sect. 3.3, below.

Lemma 3.11. Let (B, ∥ ·∥B) be a separable Banach space and let M : X → L(B)
be a strongly measurable mapping.

1. (LemmaB.16of [38]) If F : X → Gr(B) ismeasurable, then x $→ ∥M(x)|F(x)∥B
is measurable. Consequently, the function x $→ ∥M(x)∥B is measurable.

2. (Lemma A.5 of [38]) If M ′ : (X,F ) → L(B) is another strongly measurable
mapping, then M ′ ◦ M : (X,F ) → L(B), x $→ M ′(x) ◦ M(x) is also strongly
measurable.

For additional discussion of strong measurability, see, e.g., Appendices A, B of
[38].

3.2.2. QuotientCocycleConstruction Assume rV ! i for somefixed i ! 1, and
define F(x) := FV

i+1(x). By Lemma 3.10, there exists ameasurably-varying family
x $→ E(x) of closed, finite-dimensional complements in V to F(x), equipped
with a measurably-varying family of projectors x $→ π⊥

x := πE(x)//F(x) with
∥π⊥

x ∥V " Ck :=
√
k + 1 for all x ∈ X , where k = MV

i = codim F(x) is constant
in x . Note that dim E(x) = codim F(x) = k.

We define Âx : E(x) → E(T x), Ân
x : E(x) → E(T nx) as follows:

Âx := π⊥
T x Ax |E(x) , Ân

x = ÂT n−1x ◦ · · · ◦ Âx .

We note that invariance of F(x) under Ax as in (9) implies the identities

Ân
x = π⊥

T nx A
n
x |E(x) ,

Ân+1
x = ÂT nx ◦ An

x |E(x).
(22)
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Belowwewrite det V ( Ân
x ) below for the determinant of Ân

x : E(x) → E(T nx).
In view of the expression (22), we have that

det V ( Ân
x ) = det V (π⊥

T nx ◦ An
x |E(x)) . (23)

Lemma 3.12. For m-a.e. x ∈ X we have that

4V
MV

i
= lim

n→∞
1
n
log det V ( Ân

x ).

The proof uses the following corollary to theMET, which we recall here. Recall
that ∠V (v, F) ∈ [0,π/2] is the angle between v ∈ V \ {0} and a subspace F ⊂ V .
For a nontrivial subspace E ⊂ V , we write

∠V
min(E, F) := min

{
∠V (v, F) : v ∈ E \ {0}

}
.

Note that if E and F share a nontrivial subspace E ∩ F , then ∠V
min(E, F) = 0.

Corollary 3.13. For m-a.e. x ∈ X and for any complement E to F(x) in V , we
have that

lim
n→∞

1
n
log sin∠V

min(A
n
x (E), F(T

nx)) = 0.

The proof of Corollary 3.13 is contained in, e.g., paragraph “Proof of (h)” in
the proof of Theorem 16 in [39].

Proof of Lemma 3.12. To start, by (23) and multiplicativity of the determinant
(Lemma 3.5(a)), we have that

det V ( Ân
x ) = det V (π⊥

T nx |An
x (E(x))) det V (A

n
x |E(x)).

It suffices to check that

lim
n→∞

1
n
log det V (π⊥

T nx |An
x (E(x)) = 0 .

By Lemma 3.5(b), we have

mV (π
⊥
T nx |An

x (E(x)))
k " det V (π⊥

T nx |An
x (E(x)) " ∥π⊥

T nx∥kV ,

where k := MV
i andmV (π

⊥
T nx |An

x (E(x))) is the minimum norm defined by (19). The
RHS is uniformly bounded in x, n from above by a constant in k, so it remains to
bound the LHS from below. For this, we use the following estimate which related
the norm of πE//Fv to the distance between v and F .

Claim 3.14. Let E, F be complementary closed subspaces of the Banach space V .
Then

∥πE//Fv∥V ! sin∠V (v, F) ∥v∥V .
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Proof of Claim. Let v ∈ E ′, ∥v∥V = 1. Write v = u + w where u ∈ E, w ∈ F .
Then,

sin∠V (v, F) = inf
ŵ∈F

∥v − ŵ∥V
∥v∥V

" ∥v − w∥V
∥v∥V

= ∥u∥V
∥v∥V

.

Consequently, the above claim implies that

mV (π
⊥
T nx |An

x (E(x))) ! sin∠V
min(A

n
x (E(x)), F(T

nx)).

Applying Corollary 3.13 completes the proof.

Proof of Proposition 3.8(a) To start, we check unconditionally that

4B
k " 4V

k for all k ! 1 . (24)

Using Proposition 3.7(b) and the density of V ⊂ B, we can choose a k-dimensional
E ⊂ V such that 4B

k = limn→∞ 1
n log det B(A

n
x |E). Applying now Proposition

3.6, we have

4B
k = lim

n→∞
1
n
log det B(An

x |E)

" lim inf
n→∞

(
k
n
logα(E)+ 1

n
log det V (An

x |E)
)

" lim
n→∞

1
n
logVk(An

x ) = 4V
k .

It remains to check that4V
MV

i
" 4B

MV
i
. For this, observe thatwith themeasurable

selection x $→ E(x) as above, we have that α(E(x)) < ∞ m-almost everywhere.
Choose C0 > 0 large enough so that

m(U ) ! 99
100

, where U := {α(E(x)) " C0} ⊂ X.

Observe that m(T−1U ∩ U ) ! 98
100 > 0 by T -invariance of m. By the Poincaré

Recurrence Theorem, for m-a.e. x ∈ U ∩ T−1U , there is a sequence of times
nk → ∞ such that T nk x ∈ U ∩ T−1U for all k. Fixing such an x and sequence
(nk), we estimate

4V
MV

i
= lim

n→∞
1
n
log det V ( Ân

x )

" lim inf
n→∞

MV
i

n + 1
logα(E(T n+1x))+ lim inf

n→∞
1

n + 1
log det B( Ân+1

x )

where in the first line we used Lemma 3.12 and in the second we used Proposition
3.6. The first lim inf goes to 0, as α(E(T n+1x)) " C0 along the sequence of times
n = nk . For the second term, we estimate

det B( Ân+1
x ) = det B( ÂT nx ) det B(An

x |E(x))
" α(E(T nx))M

V
i det V ( ÂT nx )V B

MV
i
(An

x )

"
(
α(E(T nx))∥ATnx∥V

)MV
i V B

MV
i
(An

x )
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using Lemma 3.5(a) and (22) in the first line, Proposition 3.6 in the second line,
and Lemma 3.5(b) in the third line. By construction, along n = nk we have
α(E(T nx)) " C0. To control the ∥ATnx∥V term, define g(x) := log+ ∥Ax∥V .
By our assumptions, we have log+ g ∈ L1(m). By a standard corollary of the
Birkhoff Ergodic Theorem (see, e.g., Theorem 1.14 in [83]), it holds that

lim
n

1
n
g(T nx) = 0 m-a.e. .

In all, we conclude 4V
MV

i
" 4B

MV
i
= 4B

MV
i
, which in conjunction with (24) implies

4V
MV

i
= 4B

MV
i
.

Proof of Proposition 3.8(b) Since (24) holds for all k, it suffices to check that

4V
MB

i
" 4B

MB
i
.

The proof below is parallel to that of Proposition 3.8(a), the most notable change
being that we use a quotient cocycle parallel to the space F̃(x) := FB

i+1(x). The
following is an analogue of Lemma 3.10 above.

Claim 3.15. There exists ameasurable selection x $→ Ẽ(x) of complement to F̃(x)
with the properties that for a.e. x, (a) Ẽ(x) ⊂ V ; (b) we have that

4V
MB

i
= lim

n→∞
1
n
log det V (An

x |Ẽ(x)) and 4B
MB

i
= lim

n→∞
1
n
log det B(An

x |Ẽ(x)) ;
(25)

and (c) the projector π̃⊥
x := πẼ(x)//F̃(x) satisfies ∥π̃⊥

x ∥B " CMB
i
, where Ck =√

k + 1 for k ! 1.

The proof requires the following.

Lemma 3.16. For all m, k ! 1 there exists Cm,k > 0 such that the following holds.
Let {Vi }mi=1 ⊂ Grk(B). Then, there exists a common complement E ∈ Grk(B) to
each of the Vi , 1 " i " m, such that ∥πE//Vi ∥B = sin∠B

min(E, Vi )
−1 " Cm,k .

Proof of Lemma 3.16. We induct on the codimension k. The base case k = 1 is
Corollary 2.5 in [61]. Assume the induction hypothesis for k and fix {V1, · · · , Vm}
of codimension k + 1. For each i " m, let V̂i be an arbitrary extension of Vi to a
k-codimensional space. Using the induction hypothesis, fix E ∈ Grk(B) such that
sin∠B

min(E, Vi ) ! sin∠B
min(E, V̂i ) ! C−1

m,k . Define the hyperplanes V
′
i = E + Vi

and, using the base case k = 1 let v ∈ B be a unit vector with sin∠B(v, V ′
i ) ! C−1

m,1
for all i " m. Let us now bound sin∠B

min(E
′, Vi ) from below, where E ′ := E+ ⟨v⟩

and ⟨v⟩ is the line spanned by v. We compute:

πE ′//Vi = πE//Vi⊕⟨v⟩ + π⟨v⟩//E⊕Vi

= πE//Vi |V ′
i
◦ πV ′

i //⟨v⟩ + π⟨v⟩//V ′
i

8⇒ ∥πE ′//Vi ∥B " Cm,kCm,1 + Cm,1 =: Cm,k+1 .
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Proof of Claim. The proof is parallel to that of Lemma 3.10. Assume for now that
either rV = ∞ or rV < ∞ and MV

rV ! MB
i ; we address the alternative case at the

end. Fix j " rV so that MV
j−1 < MB

i " MV
j (following the convention MV

0 = 0).
For short, set k := MB

i , ℓ := MV
j and F(x) := FV

j+1(x).

Set F(x) := FV
j+1(x) ⊂ V . Let (Fm), (F̃n) denote countable dense sequences

in GrM
V
j (V ),GrM

B
i (B), respectively. Set ε = 1

2(C2,k+1) , with C2,k as in Lemma
3.16, and

S̃m,n = {x ∈ X : dVHaus(F(x), Fm) < ε and dB
Haus(F̃(x), F̃n) < ε}.

Refine to a partition Sm,n,m, n ! 1 of X such that Sm,n ⊂ S̃m,n for all m, n.
Form a B-closed k-codimensional extension F ′

m of Fm . Apply Lemma 3.16 to
obtain a complement Ẽ ′

m,n ∈ Grk(B) to both F̃n, F ′
m with

sin∠B
min(Ẽ

′
m,n, Fm) ! sin∠B

min(Ẽ
′
m,n, F

′
m) ! C−1

2,k , sin∠B
min(Ẽ

′
m,n, F̃n) ! C−1

2,k .

Finally, using density of V ⊂ B, fix Ẽm,n ∈ Grk(V ) so that sin∠B
min(Ẽm,n, Fm) !

(C2,k + 1)−1 and sin∠B
min(Ẽ

′
m,n, F̃n) ! (C2,k + 1)−1. This step can be justified

using, e.g., continuity of E $→ πE//F as E ranges over the set of complements to
F ∈ Grk(B) (Lemma B.18 in [38]).

One now sets

Ẽ(x) = Em,n for x ∈ Sm,n .

the estimate on the B-norm of π⊥
x = πẼ(x)//F̃(x) is completely parallel to that

in Lemma 3.10 and is omitted. That Ẽ(x) ∩ F(x) = {0} follows from a similar
argument.

The proof is now complete when either rV = ∞ or rV < ∞ and MV
rV ! MB

i .
When rV < ∞ and MrV < MB

i the proof is simpler: every E0 ∈ Grk(V ) satisfies
the right-hand equation in (25) by Proposition 3.7(b). So, in this case it suffices to
apply Lemma 3.10 directly to obtain a complement Ẽ(x) to F̃(x).

Form the quotient cocycle

Ãx := π̃⊥
T x Ax |Ẽ(x) , Ãn

x = ÃT n−1x ◦ · · · ◦ Ãx ,

noting as before that Ãn
x = π̃⊥

T nx A
n
x |Ẽ(x) by invariance of F̃(x) (equation (9)). The

proof is now largely the same as before with opposite signs: one checks that

4B
MB

i
= lim

n→∞
1
n
log det B( Ãn

x )

as in Lemma 3.12 (no changes needed), and estimates

4B
MB

i
= lim

n→∞
1
n
log det B( Ãn

x )

! lim sup
n→∞

1
n + 1

log det V ( Ãn+1
x ) − lim inf

n→∞
MB

i

n + 1
logα(E(T n+1))
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By a recurrence argument parallel to before, the lim inf term is 0 for a positive
m-measure set of x ∈ X , while the lim sup term is bounded by

det V ( Ãn+1
x ) = det V ( ÃT nx ) det V (An

x |E(x))

!
(
α(Ẽ(T nx))−1mB(ATnx |Ẽ(T nx))

)MB
i
det V (An

x |E(x)) ,

using the analogue of (22) for Ãn+1
x in the first line, and Lemma 3.5(b) and Propo-

sition 3.6 in the second line. By another recurrence argument, we can bound the
above parenthetical term from below by a fixed positive constant along an infi-
nite sequence of times nk → ∞ for an m-positive measure set of x . Overall, we
conclude 4B

MB
i

! limn→∞ 1
n log det V (A

n
x |Ẽ(x)) = 4V

MV
i
.

3.3. Completing the Proof of Theorem 2.6

To prove Theorem 2.6 we first establish the following claims.

Claim 3.17. If r V = 0, then r B = 0.

Proof of Claim. Pursuing a contradiction, observe that if λB
1 > −∞, then by

the density of V ⊂ B, for m-a.e. x there exists v ∈ V \{0}, ∥v∥V = 1 so that
1
n log ∥An

xv∥B → λB
1 as n → ∞. Therefore,

lim inf
n

1
n
log ∥An

x∥V ! lim inf
n

1
n
log ∥An

xv∥V ! lim
n

1
n
log ∥An

xv∥B = λB
1 > −∞.

That rV = 0 implies the LHS limit exists for m-a.e. x and equals −∞, a contra-
diction.

Claim 3.18. (a) For all i ! 1, we have that rV ! i if and only if r B ! i .
(b) If r V ! i , then λV

j = λB
j and dVj = dB

j for all 1 " j " i .

Proof of Claim 3.18. We will prove below, by induction on i , that rV ! i implies
r B ! i and λV

j = λB
j , d

V
j = dB

j for all 1 " j " i . The proof that r B ! i implies
rV ! i is identical on exchanging the roles of V and B below; further details are
omitted.

Assume first that rV ! 1: we will show that r B ! 1, λB
1 = λV

1 and dB
1 = dV1 .

To start, by Proposition 3.8(a) we have

4V
dV1

= 4B
dV1

, (26)

hence 4B
dV1

> −∞ and r B ! 1. Applying Proposition 3.8(b), we see that

4V
dB
1
= 4B

dB
1
. (27)

To proceed, assume dB
1 ! dV1 . Then, (26) implies dV1 λV

1 = dV1 λB
1 , hence λV

1 =
λB
1 = λ1, while combining with (27) gives

(dB
1 − dV1 )λ1 = χV

dV1 +1
+ · · · + χV

dB
1
.
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However, if dB
1 > dV1 this gives a contradiction sinceχ j < λ1 = λV

1 for all j > dV1 .
One can similarly rule out the case dB

1 < dV1 ; we conclude λB
1 = λV

1 and dB
1 = dV1 .

Assume now the induction hypothesis that for some i ! 1, we have that rV ! i
implies r B ! i and λB

j = λV
j , d

B
j = dVj for all j = 1, · · · , i . If rV < i + 1, there

is nothing to prove. If rV ! i + 1, we proceed: Proposition 3.8(a) implies

4V
MV

i+1
= 4B

MV
i+1

; (28)

since MB
i = MV

i , it follows that r B ! i + 1, hence by Proposition 3.8(b) we have

4V
MB

i+1
= 4B

MB
i+1

. (29)

If MB
i+1 ! MV

i+1, then (28) implies dVi+1λ
V
i+1 = dVi+1λ

B
i+1, hence λV

i+1 = λB
i+1 =

λi+1. Applying this to (29), we obtain

(dB
i+1 − dVi+1)λi+1 = χV

MV
i +1

+ · · · + χV
MB

i
.

If dB
i+1 > dVi+1 or dVi+1 > dB

i+1, then as before we obtain a contradiction, and
conclude dVi+1 = dB

i+1 =: di+1.

Completing the proof of Theorem 2.6. We have already shown that if rV = 0, then
r B = 0 and the proof is complete. We now consider the case rV = ∞; the case
0 < rV < ∞ is handled similarly and is omitted.

In this case, Claim 3.18 implies r B = ∞ and

λV
i = λB

i =: λi dVi = dB
i =: di

for all i ! 1. It remains to check that the identity

FV
i (x) = FB

i (x) ∩ V

holds for a.e. x ∈ X . To start, assume v ∈ FV
i (x)\{0}. Then,

λi ! lim
n→∞

1
n
log ∥An

xv∥V ! lim sup
n→∞

1
n
log ∥An

xv∥B ,

hence v ∈ FB
i . We conclude FV

i (x) ⊂ FB
i (x) ∩ V .

For the opposite inclusion, assume v ∈ V \ FV
i (x); we will show v ∈ FB

i (x).
For this, let E ⊂ V be a shared Mi−1-dimensional complement to both of FV

i (x)
and FB

i (x), and write v = v⊥ + v∥ where v∥ ∈ FV
i (x), v⊥ ∈ E , noting that

v /∈ FV
i (x) 8⇒ v⊥ ̸= 0. Since v⊥ ∈ E , it holds that v⊥ /∈ FB

i (x), and so
limn→∞ 1

n log ∥An
xv⊥∥B ! λi−1. Meanwhile,

limn→∞ 1
n log ∥An

xv∥∥B " limn→∞ 1
n log ∥An

xv∥∥V " λi , and so

lim
n→∞

1
n
log ∥An

xv∥B ! max
{
lim
n→∞

1
n
log ∥An

xv⊥∥B, lim
n→∞

1
n
log ∥An

xv∥∥B
}

! λi−1,

hence v /∈ FB
i (x). This completes the proof.
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Remark 3.19. (The nonergodic case) We provide here a list of changes needed in
the case when (T,m) is not ergodic. In the following steps, the main difficulty is
to deal with the possibility that the values rW , λW

i , dWi , etc., all depend on x ∈ X .

1. To start, we can reduce to the case where rV , r B are both constant in x by
restricting the measure m to sets of the form

S = {x ∈ X : rV (x) = kV , r B(x) = kB}

for arbitrary pairs kB, kV ∈ {0, 1, 2, . . . ,∞}. Sets of this form are T -invariant
(T−1S = S up to m-measure zero sets) and so the restrictions mS(K ) :=
m(K ∩S)/m(S) are T -invariant. Since there are at-most countably many such
sets S, it suffices to prove Theorem 2.6 for each mS separately.

2. Suppose one has already restricted to a set of the form S for some fixed kB, kV .
The volume rates 4W

k and multiplicities MW
i are now functions of X , and so

the analogue of Proposition 3.8 is to show that

kV ! i 8⇒ 4V
MV

i (x)
(x) = 4B

MV
i (x)

(x) ,

kB ! i 8⇒ 4B
MB

i (x)
(x) = 4V

MB
i (x)

(x).

As in the ergodic case, one starts by showing that kV ! i allows to con-
struct a cocycle Ân

x , x ∈ S, quotienting along F(x) = FV
i+1(x). One can build

the quotient spaces E(x) using Lemma 3.10 on restricting to sets of the form
{MV

i (x) = Const.}. The proof of Lemma 3.12 now proceeds with no real
changes. The only change to the remainder of the proof of Proposition 3.8(a)
is that one shows 4V

MV
i (x)

(x) = 4B
MV

i (x)
(x) on a set of the form U ∩ T−1U ,

where m(U ) > 1− δ. Taking δ → 0 completes the proof of part (a); part (b) is
treated similarly.

3. One checks that the case kB ̸= kV leads to a contradiction, implying m{rV =
r B} = 1.The arguments inSect. 3.3 nowcarryoverwithout substantive changes.

4. Applications

Here we outline in detail our two main applications of our main theorem to the
problems of advection diffusion and the 2d Navier-Stokes equations.

4.1. Preliminaries

Let Td denote the d-dimensional torus, d = 2 or 3, parametrized by [0, 2π)d .
For f : Td → R, we define the standard L2 inner product ⟨ f, g⟩L2 =

∫
Td f g dx

with corresponding norm ∥ f ∥L2 = ⟨ f, f ⟩1/2L2 . Recall the Fourier transform F f =
f̂ of an integrable f : Td → R is given by

f̂ : Zd → C , f̂ (k) = 1
(2π)d

∫

Td
f (x)e−ik·xdx,
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and that f̂ (0) = 0 if f has zero mean; in this case we view f̂ : Zd
0 → C where

Zd
0 = Zd\{0}. We define the homogeneous Hs norms for s ∈ R

∥ f ∥Hs :=

⎛

⎜⎝
∑

k∈Zd
0

|k|2s | f̂ (k)|2
⎞

⎟⎠

1/2

,

where |k| := |k|ℓ2 =
(∑d

i=1 k
2
i

)1/2
. This norm is equivalent to the Hs normswhen

restricted to spaces of mean-zero functions. Since we will only consider mean zero
functions in this paper, we will not make a point to distinguish the homogeneous
and non-homogeneous Sobolev spaces. Lastly, when it is clear from context, all
the above constructions will be applied to divergence free vector-valued functions
in the usual way, namely Hs corresponds to the Hilbert space of velocity fields u
whose Fourier transform û(k) ∈ Cd satisfies û(k) · k = 0 for each k ∈ Zd

0 and
∥u∥Hs is defined as in the scalar case above with | · | instead denoting the norm on
Cd .

Fix γ > d
2 + 1 and let H = Hγ be the Sobolev space of Hγ -regular, mean-

zero, divergence-free vector fields on Td with norm ∥ · ∥Hγ defined above. Note
that γ > d

2 + 1 implies the Sobolev embedding Hγ ↪→ W 1,∞, so all such velocity
fields are at least (globally) Lipschitz. When it is clear from context, we will not
distinguishwhen a norm is being applied to a scalar valued function or vector valued
one.

4.1.1. Skew Product Formulation In what follows, we will describe a class of
time dependent velocity fields that are subordinate to an ergodicmeasure preserving
flow. The formulation we present is in the general setting of a skew-product, defined
below, which providing a natural dynamical framework for systems evolving onH
driven by an external forcing, either random or deterministic.

Let (6,F ,P) be a probability space and let θ t : 6 # be a flow of measurable
ergodic, P-preserving transformations on 6. Assume that for each t ! 0, we have
a mapping τ t : 6 × H # of the form

τ t (ω, u) = (θ tω,+t
ω(u)),

where+t
· : 6×H → H is measurable and u $→ +t

ω(u) is continuous for allω ∈ 6.
Moreover, we will assume +t

ω satisfies +0
ω(u) = u and the cocycle property

+t+r
ω = +r

θtω
◦ +t

ω, t, r ! 0 , (30)

for all ω ∈ 6. Mappings of the form τ t are referred to as skew product flows
over θ t : 6 → 6.

Conceptually, for each ω ∈ 6 we view the (potentially non-invertible) map
+t

ω : H # as describing the evolution of a time-varying incompressible velocity
field

ut := +t
ω(u0).
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From this perspective, the set 6 encodes the set of nonautonomous driving or
forcing paths ω = (ω(t))t!0 and θ t denotes the time shift flow. Equation (30)
reflects that the forcing path evolving from time t to time t + r is given by θ tω.

This framework includes a variety of evolution equations on H, including the
2d Navier–Stokes equations with either stochastic (e.g. white in time forcing) or
deterministic (e.g. time-periodic) driving terms as (see [50] Section 2.4.4 for a
construction of such an RDS in the case of white in time forcing). Higher di-
mensional (d ! 3) examples of fluid motion can be considered by adding hy-
perviscosity or by Galerkin truncations. Other models can be formulated in terms
of a skew-product flow and don’t necessarily need to solve a fluid equation, e.g.,
time-stationary fields, time-periodic fields, and time dependent linear combinations
ut (x) =

∑
k uk(x)z

k(t) of fixed, time-independent vector fields {uk}, where {zk(t)}
are a collection of processes on R (e.g., Ornstein Uhlenbeck processes).

Lastly, throughout what follows we will assumem is a τ t -invariant measure on
(6 × H,F × Bor(H)) such that

m(A × H) = P(A) , A ∈ F . (31)

The measure m captures the statistics of typical velocity fields (ut ) with respect
to the model, while (31) reflects that P is the law of the underlying driving. For
additional discussion on ergodicity and invariance, see Sect. 2.1.1.

4.2. Passive Scalar Advection Linear Cocycle

Let τ t : 6 × H → 6 × H be as above. Given a fixed initial (ω, u0) ∈ 6 × H
and t > 0, define ut := +t

ω(u0). For κ > 0, we are interested in solutions ( ft )t!0
to the passive scalar advection diffusion equation

∂t ft + ut · ∇ ft = κ' ft (32)

for fixed initial mean-zero scalars f0 : Td → R. Being a parabolic equation with
Lipschitz velocity field, well-posedness of (32) Hs for any s ! 0 is classical. One
can extend to H−s by the density of Hs in H−s , linearity of the equation, and the
L2 duality of Hs and H−s .10

Proposition 4.1. For any s ∈ R and (ω, u0) ∈ 6 × H, there is a semiflow of
compact linear operators Stω,u0 : Hs #, t ! 0, such that ft := Stω,u0 f0 is a
solution to (32) with initial data f0 ∈ Hs. Moreover, the operators Stω,u0 form a
linear cocycle over τ t : for r, t ! 0 we have

St+r
ω,u0 = Srθ tω,ut ◦ Stω,u0 for all (ω, u0) ∈ 6 × H.

Our first result says that for measure-typical velocity fields (ut ), the asymptotic
exponential growth (or decay) rate of ( ft ) exists for any initial scalar f0, and that
‘typical’ initial scalars see only a single exponential growth rate λ1 independent of
the Hs norm one uses.

10 A version of this argument is carried out in the proof of Lemma 4.18.
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Theorem 4.2. Let γ ′ ! γ > 1+d/2 and assume that there is an invariant measure
m for τ t : 6 × Hγ # that satisfies the mild moment condition

∫ (∫ 1

0
∥us∥Hγ ′ ds

)
dm(ω, u0) < ∞ . (33)

Let κ > 0 be fixed. Then the following hold:

(a) Form-a.e. (ω, u0) ∈ 6×Hγ and for all s ∈ [−γ ′, γ ′] andmean-zero f0 ∈ Hs,
the global solution ft = Stω,u0 f0 to (32) has the property that the limit

λ(ω, u0; f0) := lim
t→∞

1
t
log ∥ ft∥Hs ∈ [−∞,∞) (34)

exists and is independent of s ∈ [−γ ′, γ ′].
(b) If m is also ergodic, then there exists λ1 ∈ R ∪ {−∞} and N ∈ Z!0, each

depending only on κ , with the following property: for all s ∈ [−γ ′, γ ′], for
m-a.e. (ω, u0) ∈ 6 × H, and for all f0 chosen off of an N-codimensional
subspace of Hs, we have

λ1 = lim
t→∞

1
t
log ∥ ft∥Hs .

Remark 4.3. In contrast to classical parabolic regularity theory, which gives Hs

regularity of ft for all s ! 0 as long as ut ∈ H locally uniformly in t , Theorem 4.2
requires more quantitative regularity estimates in terms of ut . Consequently, the
range of s to which equality of exponents applies is constrained by the regularity
of u where certain moments are available.

Proof. As an immediate implication of Lemmas 4.17 and 4.18 below, we obtain
that for any −γ ′ " s " γ ′, we have that Stω,u0 is a semiflow of compact linear
operators in Hs . By Lemmas 4.17 and 4.18, equation (33) implies the logarithmic
moment estimate

∫
log+ ∥S1ω,u0∥Hsdm(ω, u0) < ∞, (35)

which implies that the MET (Theorem 2.2) applies to Stω,u0 as a linear cocycle over
(τ t ,m) along integer times t . For the limits (34) taken along integer times, parts
(a) and (b) now follow immediately from Theorem 2.6. To pass from discrete to
continuous-time limits in part (a), it suffices11 that the cocycle Stω,u0 satisfies

log+ sup
t∈[0,1]

∥Stω,u0∥Hs , log+ sup
t∈[0,1]

∥S1−t
θ tω,ut

∥Hs ∈ L1(m) . (36)

This too follows from Lemmas 4.17 and 4.18.

11 This sufficient condition for passing from discrete to continuous time Lyapunov expo-
nents is classical; see, e.g., [52].
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As discussed in Sect. 1.1.1, at κ = 0 equality of exponents does not hold. This
suggests that as κ → 0 the “rate” at which the Lyapunov exponent is realized in Hs

depends heavily on s. For example, although the exponents in H1 and L2 agree and
are negative as t → ∞, there is a κ-dependent transient timescale along which the
H1 norm increases before decay starts [60], while the L2 norm can only decrease.
Now we provide a way of quantifying this κ-dependence. For simplicity, we state
the result in the case when (τ t ,m) is ergodic and the comparison between L2 and
Hs, s > 0.

For ε > 0, s ∈ [0, γ ′], define the Lyapunov regularity functions12

D
Hs

ε,κ(ω, u0) = sup
n∈Z!0

∥Snω,u0∥Hs

en(λ1+ε)
,

DHs

ε,κ(ω, u0) = sup
n∈Z!0

en(λ1−ε) sin∠Hs
(v, FHs

i+1(x))

∥Snω,u0∥Hs
. (37)

Corollary 4.4. Assume the setting of Theorem 4.2, and in addition, that (τ t ,m) is
ergodic. Fix p > 3 and 0 < q < p2−3p

p−1 , and assume the moment condition

I :=
∫ (∫ 1

0
(1+ ∥uτ∥Hγ )dτ

)p

dm(ω, u0) < ∞.

Then, for any δ, κ > 0 and −γ ′ " s′ < s " γ ′, there exists a function K s′,s
δ,κ :

6 × H → [1,∞) such that for any

D
Hs

ε,κ " Ks′,s
δ,κ D

Hs′

ε+δ,κ , DHs′
ε,κ " Ks′,s

δ,κ DHs

ε+δ,κ ,

and the following moment condition holds:
∫
(log+ Ks′,s

δ,κ )
qdm %p,q δ−(p−q) (1+ (s − s′)| log κ| + I

)
.

The proof is a straightforward consequence of Lemmas 4.17, 4.18 andCorollary
2.8.

4.3. 2d Navier–Stokes and Its Linearization Cocycle

We turn attention now to linearization along solutions to evolution equations
governing the dynamics of the velocity field ut itself. While much of what we say
here can be extended to different evolution equations, we focus in this manuscript
on trajectories of the 2d incompressible Navier–Stokes equations on T2:

∂t u + (u · ∇)u = ν'u − ∇ p + F, div u = 0. (38)

12 Recall the definition of the minimal angle ∠Hs
in (13).
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Here p is the pressure enforcing the divergence free constraint, ν > 0 is the kine-
matic viscosity and F is a spatially smooth body forcing which we will take to be
either stochastic and white-in-time or periodic in time. We will assume throughout
that the forcing F and solutions ut are mean-zero on T2.

In what follows, we present two cases where the 2d Navier–Stokes equations
give rise to a skew-product flow τ t in the sense of Sect. 4.1.1: periodic forcing and
white in time stochastic forcing (both of which we assume to be additive). We will
then study the cocyle associated to its linearization in vorticity form and present
Theorem 4.12 concerning Lyapunov exponents taken in Hs as s varies. Since many
of the results below are standard, where appropriate proof sketches are given with
most details omitted.

4.3.1. Periodic Forcing Below, we formulate evolution by the Navier–Stokes
equations in the skew product formulation of Sect. 4.1.1 in the case of additive,
time-periodic, spatially regular forcing. In this case, 6 = S1, where the circle S1
is parametrized by [0, 1) with the endpoints identified. The time shift θ t : 6 #
is given by θ tω = ω + t mod 1, while the measure P is normalized Lebesgue
measure.

The following well-posedness and regularity results on Sobolev spaces are
classical (see for instance [50,68,75]).

Proposition 4.5. ([50] Theorem 2.1.19)

(i) Fix an integer m ! 2 and F ∈ L2([0,∞),Hm−1). For each fixed initial
u0 ∈ H0 and for all ε > 0 there exists a unique solution u ∈ C([ε, T ]; Hm) ∩
L2([ε, T ]; Hm+1) for each ε > 0 and T ! 0. Moreover, there exists a constant
Cm such that the following inequality holds for each 0 " t " T :

tm∥ut∥2Hm +
∫ t

0
sm∥us∥Hm+1ds "

∫ t

0
sm∥Fs∥Hm−1ds

+ Cm

(
∥u0∥L2 + ∥u0∥4m+2

L2 + ∥F∥2L2([0,T ];L2)
+ ∥F∥4m+2

L2([0,T ];L2)

) (39)

(ii) For each 0 " r " m, there exists a continuous mapping +t
· : 6 × Hr → Hr ,

over θ t , (6,F ,P) such that ut = +t
ω(u0) is the unique solution to (38) with

initial data u0 and forcing Ft+ω. Moreover, +t
ω : Hr → Hr in injective and

C1 Fréchét differentiable for all ω ∈ 6, t ! 0.

Since Ft is periodic, it is natural to consider the time-one map +1
0 : L2 # since

θ1ω = ω and therefore +n
0 = +1

0 ◦ · · · ◦ +1
0 for n ∈ Z!0. This mapping admits a

compact global attractor A to which solutions converge:

Corollary 4.6. Assume Ft ∈ H = Hγ for all t ∈ [0, 1].
(a) The mapping +1

0 admits a compact global attractor A ⊂ H. Precisely, (i)
+1

0(A) = A, (ii) +1
0|A : A # is a homeomorphism, and (iii) for all u0 ∈ H

and ω ∈ 6, any subsequential limit u∗ = lim unk of the trajectory (un)n!0
belongs to A.
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(b) There exist invariant probability measures µ for +1
0. Moreover, all such invari-

ant measures are supported on A.

Proof sketch. For part (a), equation (39) implies that the time-1 semiflow +1
0 is

dissipative on H, and so admits a global compact attractor A; see, e.g., Chapter
10 of [68] for further details. Injectivity of +1

0 : A # ([68, Theorem 10.6]) now
implies +1

0 : A # is a homeomorphism. Finally, statement (a)(iii) is immediate
from the definition of a global attractor. Part (b) now follows from (a)(i)–(iii) and
the Krylov-Bogoliubov argument (c.f. Example 2.1).

Given a +1
0-invariant measure µ, we define an associated measurem on 6×H

via

dm(ω, u) = dµω(u)dP(ω), where µω := (+ω
0 )∗µ, (40)

and (+ω
0 )∗µ := µ ◦ (+ω

0 )
−1 is the pushforward of the measure µ under the map

+ω
0 .We see that themeasurem is an ergodic invariant measure for the skew-product

flow τ t (ω, u) = (θ tω,+t
ω(u)), and therefore we are in the general setup of Section

4.1.1.

Proposition 4.7. Let µ be a probability measure on H, and define m and µω as in
(40)

1. If µ is +1
0-invariant, then m is τ t -invariant.

2. If µ is +1
0-ergodic, then m is τ t -ergodic

Proof sketch. Part 1 follows from the definitions and [50, Proposition 1.3.27]. For
part 2, it is straightforward from the definitions that µω is ergodic for +1

ω : H #
for all ω ∈ 6. From here, it follows that any τ t -invariant function ψ(ω, u) is µω-
almost surely independent of u, while ergodicity of P on 6 implies almost-sure
constancy in ω, so that in the end ψ itself is m-almost surely constant.

4.3.2. White-In-TimeForcing Nextwe consider thewhite-in-time stochastically
forced case. Specifically, we will assume that the forcing F is the time derivative
of a Brownian process in H:

F = ∂tξ , ξ(t, x) =
∞∑

j=1

σ j e j (x)β j (t) , (41)

where {β j } are independent canonical 1dWiener processes, {e j } forms an orthonor-
mal basis for H, and the coefficients σ = {σ j } satisfy ∥σ∥2

ℓ2
= ∑∞

j=1 σ 2
j < ∞.

This last condition ensures that the process ξt = ξ(t, ·) is a continuous process
in H. Since ξt is not differentiable in time, the Navier–Stokes equations must be
interpreted in a time-integrated sense:

ut − u0 +
∫ t

0
((us · ∇)us − ν'us + ∇ ps) ds = ξt ,

where equality holds in H−1 with probability 1.
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In this setting we take 6 to be the space C0(R+;H) of continuous one-sided
paths ω : R+ → H vanishing at 0, with the standard Borel sigma algebra F
and equipped with a Gaussian measure P whose projection onto basis elements e j
through the map ω $→ ⟨e j ,ω⟩H is the canonical Wiener measure. We define the
semiflow θ t : 6 # to be the shift map

(θ tω)s = ωt+s − ωt , t, s ∈ R+,

which is easily seen to leave the measure P invariant.
The following well-posedness, regularity and construction of an RDS is well-

known (see e.g. [50] §2.4 ).

Proposition 4.8. Let d = 2, γ > 1 + d
2 = 2, and suppose that F is of the form

(41) where
∑

j j
2(γ−1)σ 2

j < ∞ (hence ξt ∈ Hγ−1 with probability 1). Then, there
exists a measurable mapping +t

· : 6×H → H such that ut = +t
ω(u0) is a strong

pathwise solution to (38) (in the integral sense) with initial data u0 and noise path
ω = (ξt ). Moreover, for P-a.e. ω, the mapping +t

ω : H → H is injective and C1

Fréchét differentiable, and satisfies the cocycle property

+t+r
ω = +r

θ tω ◦ +t
ω for all r, t ! 0, and for all ω ∈ 6 .

Lastly, ω $→ +t
ω only depends on ω|[0,t].

That +t
ω depends only on ω|[0,t] implies that it is Markovian, in the sense that

ut = +t
ω is a Markov process. We say that a probability measure µ on H is a

stationary measure for this Markov process if

E(+t
ω)∗µ = µ .

Existence of such a measure for dissipative RDS is generally guaranteed by a
simple Krylov Bogoliubov argument (see, e.g. [50]). However, in contrast to the
deterministic forcing case, it is often the case that this measure is in fact unique
under fairly mild conditions on the noise (see e.g. [30,41]). It is well known that
stationary measuresµ are in one-to-one correspondence with the invariant measure
m = P × µ on 6 × H for the skew product flow τ t (ω, u) = (θ tω,+t

ω(u)).

Theorem 4.9. (a) (Theorem 4.2.9 [50]) Let µ be a stationary probability measure
for (ut ). Then,m = P×µ is an invariant measure for the semiflow τ t : 6×H.

(b) (Theorem I.2.1 [47]) If µ is the unique stationary measure for (ut ), then P×µ

is ergodic for τ t .

Moreover depending on the regularity of Ft one can obtain moment estimates
of higher Sobolev norms with respect the the stationary measure µ. The following
estimate is a consequence of [49] (also c.f. Exercise 2.5.8 [50]).

Proposition 4.10. Suppose
∑

j j
2rσ 2

j < ∞ for some r ! γ . Then, any stationary
measure µ for (38) satisfies the estimate

∫ (

sup
t∈[0,1]

∥ut∥Hr

)p

dm(ω, u0) < ∞ .

for all p ! 0.
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4.3.3. LinearizedNavier–Stokes In either the time-periodically forcedor stochas-
tically forced setting, we will assume below that ut = +t

ω(u0) on H. Our main
goal is to study the linearizedNavier–Stokes cocycle given by the Fréchét derivative
Du0+

t
ω which acts as a linear operator on divergence free velocity fields. Specifi-

cally, given an initial divergence free velocity v0 ∈ H (viewed as an infinitesimal
perturbation), the trajectory vt = (Du0+

t
ω)v0 satisfies the linearized or first varia-

tion equation

∂tv + (u · ∇)v + (v · ∇)u = ν'v − ∇q , div v = 0 , (42)

where q is the pressure enforcing the divergence-free constraint on v. Hence Du0+
t
ω

is the solution operator to the above linear equation and defines a compact linear
co-cycle on H. By uniqueness of solutions to (42), the Du0+

t
ω satisfy the cocycle

property

Du0+
t+r
ω = Dut+

r
θ tω ◦ Du0+

t
ω for all r, t ! 0 . (43)

To apply Theorem 2.6 in this setting, we want to treat Du0+
t
ω as a cocycle over

Hs for a range of s, given a fixed base +t
ω on H = Hγ , where γ > 2 is fixed. The

following summarizes what is needed.

Proposition 4.11. Fix γ ′ ! γ ,ω ∈ 6, u0 ∈ H and suppose ut = +t
ω(u0) is a

solution to the 2d Navier-Stokes equations (38) in the setting of either Proposition
4.5 or 4.8. Assume that for m-a.e. (ω, u0) ∈ 6 × H, the solution ut = +t

ω(u0)
satisfies (ut ) ∈ L1

loc([0,∞),Hγ ′+2). Then:

(a) The mapping Du0+
t
ω : H # extends13 to a compact bounded linear operator

on Hs such that vt := Du0+
t
ωv0 is a solution to (42) with initial data v0 ∈ Hs .

Equation (43) is satisfied as a cocycle on Hs .
(b) The mapping (ω, u0) $→ Du0+

t
ω is strongly measurable in Hs .

Proof sketch. Since (42) is parabolic (up to a compact perturbation),well-posedness
inHs, s ! 0 is standard (see [42]), while well-posedness inH−s can be proved via a
duality argument and using linearity of the equation. A priori estimates sufficient to
deduce these statements for a range of s related to the regularity of u are presented
in Sect. 4.4.3.

We are now in position to state our results on the Lyapunov exponents of 2d
Navier–Stokes.

Theorem 4.12. Let ν > 0 be fixed. Let τ t : H×6 # be the skew product semiflow
associated to the Navier-Stokes equations and let m be a τ t -invariant probability
measure that satisfies the followingmoment condition for someγ ′ ! γ > 1+d/2 =
2:

∫ (∫ 1

0
∥ut∥Hγ ′+2dt

)
dm(ω, u0) < ∞. (44)

Then:

13 When there is no confusion, wewill abuse notation somewhat andwrite Du0+
t
ω : Hs →

Hs for the extended operator.
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(a) For m-a.e. (ω, u0) ∈ 6 × H and for all s ∈ [−γ ′ + 1, γ ′ + 1] and mean-zero
divergence free velocity fields v0 ∈ Hs , the global solution vt = Du0+

t
ωv0 to

(32) has the property that the limit

λ(ω, u0; v0) := lim
t→∞

1
t
log ∥vt∥Hs (45)

exists (note the limit−∞ is possible) and is independent of s ∈ [−γ ′+1, γ ′+1].
(b) If m is also τ t -ergodic, then there exists λ1 ∈ R ∪ {−∞} and d ∈ Z!0,

each depending only on m and ν, with the following property: for all s ∈
[−γ ′ + 1, γ ′ + 1], for m-a.e. (ω, u0) ∈ 6 × H, and for all v0 chosen off of a
d-codimensional subspace of Hs , we have

λ1 = lim
t→∞

1
t
log ∥vt∥Hs .

Proof. Lemmas 4.19 and 4.20 and the estimate (44) imply immediately that
∥Du0+

1
ω∥Hs satisfies the analogue of the logarithmic moment estimate (35) for

any s ∈ [−γ ′ + 1, γ ′ + 1]. The MET (Theorem 2.2) and Theorem 2.6 apply, im-
plying convergence of the limits (45) and independence from s when taken along
integer times. Passing from discrete to continuous time follows similarly, using the
analogue of (36).

Remark 4.13. Note that in light of the regularizing properties of Navier–Stokes
the moment condition (44) for solutions to Navier stokes is ultimately a condition
on the regularity of the force. In the periodically forced case, it is sufficient for
Ft ∈ Hγ+1 for all t , due the to fact that there is an absorbing ball in Hγ+2.
However, in the stochastically forced case, we require that Ft belongs to Hγ+2, so
that the moment bound (44) follows from Proposition 4.10 under the condition that∑

j j
2(γ ′+2)σ 2

j < ∞.

We now apply Corollary 2.8 concerning Lyapunov regularity functions to the
Navier–Stokes cocycle. For ε, ν > 0 and s ∈ [−γ ′ + 1, γ ′ + 1], let DHs

ε,ν , D
Hs

ε,ν :
6×H → [1,∞) denote the Lyapunov regularity functions for the cocycle Du0+

t
ω,

defined analogously to (37).

Corollary 4.14. Assume the setting of Theorem 4.12, and in addition, that (τ t ,m)

is ergodic. Fix p > 3 and 0 < q < p2−3p
p−1 , and assume the moment condition

Ip :=
∫ (∫ 1

0
(1+ ∥uτ∥Hγ+2)dτ

)p

dm(ω, u0) < ∞.

Then, for any δ, ν > 0 and −γ ′ + 1 " s′ < s " γ ′ + 1, there exists a function
K s′,s

δ,ν : 6 × H → [1,∞) such that

D
Hs

ε,κ " Ks′,s
δ,κ D

Hs′

ε+δ,κ , DHs′
ε,κ " Ks′,s

δ,κ DHs

ε+δ,κ ,

and the following moment condition holds:
∫
(log+ Ks′,s

δ,κ )
qdm %p,q δ−(p−q) (1+ (s − s′)| log ν| + Ip

)
.
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4.4. Verifying the Moment Conditions

In this section we record and prove the estimates needed to verify the moment
condition (15) to apply Theorem 2.6 to advection diffusion and the 2d linearized
Navier-Stokes equations described above. The techniques are straightforward, em-
ploying tools from Fourier multipliers and paradifferential calculus. It is likely that
the stability estimates (47), (49) and (52), (53) are not sharp and could be improved
with more work.

4.4.1. Preliminary Estimates For each s ∈ Rwe define the fractional derivative
operator :s to be the Fourier multiplier

F[:s f ](k) := |k|s f̂ (k).
We begin by proving a fundamental commutator estimate for the advection

operator u · ∇. While the following techniques are quite standard in the literature
(see for instance [46]),wewere unable to find the exact formneeded for our analysis.

Lemma 4.15. Let γ > d
2 +1, s ∈ [0, γ ]. Then, there exists a constant C depending

on γ , d such that for all mean-zero vector fields u ∈ H = Hγ andmean-zero scalars
f ∈ Hs, we have

∥[:s, u · ∇] f ∥L2 " C∥u∥Hγ ∥ f ∥Hs .

Here, [A, B] = AB − BA denotes the commutator of two operators A, B.

Proof. By an approximation argument, it suffices to consider the case when f, u
are both C∞. Fixing such f, u, note first that the Fourier transform of [:s, u ·∇] f
is given by

F[:s, u · ∇] f (k) = i
∑

ℓ∈Zd
0

(
(|k|s − |k − ℓ|s) f̂ (k − ℓ)

)
(k − ℓ) · û(ℓ) .

By Parseval’s identity, it suffices to bound this in ℓ2(Zd
0). For this, we split this sum

up into two regions |ℓ| < |k|/2 and |ℓ| ! |k|/2; we label the ∑
|ℓ|<|k|/2 term I (k)

and the
∑

|ℓ|!|k|/2 term I I (k).
When |ℓ| < |k|/2, it holds that |k − ℓ| ≈ |k|. It then follows from the mean

value theorem that ||k|s − |k − ℓ|s | % |k − ℓ|s−1|ℓ|, hence

|I (k)| %
∑

ℓ∈Zd
0

|ℓ||û(ℓ)||k − ℓ|s | f̂ (k − ℓ)| .

By Young’s inequality, it follows that the ℓ2 norm of (I (k))k∈Zd
0
is bounded by

∥u∥Hγ ∥ f ∥Hs where we used the fact that |ℓ|−r belongs to ℓ2(Zd
0) if r > d/2 and

γ ! r + 1 so that ∥u∥Hr+1 " ∥u∥Hγ .
When |ℓ| ! |k|/2, we instead have that |k − ℓ| % |ℓ|. Therefore, ||k|s − |k −

ℓ|s | % |ℓ|s and |ℓ|s−γ % |k − ℓ|s−γ since s " γ . This gives,

|I I (k)| %
∑

ℓ∈Zd
0

|ℓ|γ |̂u(ℓ)||k − ℓ|1−γ+s | f̂ (k − ℓ)|.
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Again, by Young’s inequality, this implies that the ℓ2 norm of (I I (k))k∈Zd
0
is

bounded by ∥u∥Hγ ∥ f ∥Hs .

When dealing with the compact term that arises in linearized Navier-Stokes
equation and its adjoint, we will also require the following Lemma, whose proof is
similar to that of Lemma 4.15 and is omitted for brevity.

Lemma 4.16. Let d = 2, γ > 1 + d/2 = 2, and s ∈ [0, γ ]. Then, there exists a
constant C depending on γ such that for all u ∈ H and mean-zero f ∈ Hs, the
following estimates hold:

∥:s('u · ∇):−2 f ∥L2 " C∥u∥Hγ+2∥ f ∥Hs ,

and

∥:s−2('u · ∇) f ∥L2 " C∥u∥Hγ+2∥ f ∥Hs .

4.4.2. Advection Diffusion Lets first consider the advection diffusion equa-
tion (32) on Td associated to some arbitrary time dependent velocity field u ∈
L∞([0, 1];H). Our first step is to prove the following quantitative L2 → Hs

regularity estimate:

Lemma 4.17. Let u : [0, 1]×Td → Rd be a time-varying, divergence-free vector
field with u ∈ L∞([0, 1],H). Let ( ft )t∈[0,1] be the solution to (32) with κ ∈ (0, 1)
and mean-zero f0 ∈ L2. Then, for all s ∈ [0, γ ], we have that

∥ f1∥Hs " κ−s/2 exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ ) dτ

)
∥ f0∥L2 . (46)

If f0 ∈ Hs, then

sup
t∈[0,1]

∥ ft∥Hs " exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ )dτ

)
∥ f ∥Hs . (47)

Proof. We prove below the regularization bound (46); the propagation bound (47)
follows similarly and its proof is omitted.

By an approximation argument, it suffices to prove the above estimate when f0
is C∞ and ut is a C∞ vector field for all t ∈ [0, 1]. For each t ∈ [0, 1], we consider
the time-dependent operator :r t and note that κst/2:st ft satisfies

∂t (κ
st/2:st ft ) = −κst/2:st (ut · ∇ ft )+ κst/2(s log(

√
κ:1)+ κ'):st ft ,

where the operator log(
√

κ:1) is defined by the Fourier multiplier

F[log(√κ:1) f ](k) = log(
√

κ|k|) f̂ (k),
which is defined on the space of mean-zero f . Note that there exists a C(s) > 0,
independent of k or κ , such that s log(

√
κ|k|) " κ|k|2+C(s), so that for t ∈ [0, 1]

we have by Parseval’s identity

⟨:r t ft , (s log(
√

κ:1)+ κ'):st ft ⟩L2

=
∑

k∈Zd
0

(s log(
√

κ|k|) − κ|k|2)|k|2st | f̂t (k)|2 % ∥ ft∥2Hst .
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Using this and that ft is smooth and ut is divergence-free gives the following energy
estimate

d
dt

(
1
2κ

st∥ ft∥2Hst

)
= −κst ⟨:st ft ,:st (ut · ∇ ft )⟩L2

+ κst ⟨:st ft , (r log(
√

κ:1)+ κ'):st ft ⟩L2

% −κst ⟨:st ft , [:st , ut · ∇] ft ⟩L2 + κst∥ ft∥2Hst

% κst
(
∥ ft∥Hst ∥[:st , ut · ∇] ft∥L2 + ∥ ft∥2Hst

)
.

Applying the commutator Lemma 4.15 with s = r t , assuming t ∈ [0, 1] and using
that γ > d

2 + 1, we conclude that

d
dt

(
κst∥ ft∥2Hst

)
% (1+ ∥ut∥Hγ )

(
κst∥ ft∥2Hst

)
.

In particular,

d
dt

log
(
κst∥ ft∥2Hst

)
% 1+ ∥ut∥Hγ ,

and integrating t from 0 to 1 completes the proof.

Lemma 4.18. Let u : [0, 1]×Td → Rd be a time-varying, divergence-free vector
field with u ∈ L∞([0, 1],H). Let f ∈ C([0, 1]; H−s) be a solution to (32) with
κ ∈ (0, 1] and initial f0 ∈ H−s for some s ∈ [0, γ ]. Then, f1 ∈ L2, and

∥ f1∥L2 " κ−s/2 exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ ) dτ

)
∥ f0∥H−s (48)

and

sup
t∈[0,1]

∥ ft∥H−s " exp
(
c
∫ 1

0
∥uτ∥Hγ dτ

)
∥ f ∥H−s . (49)

Proof. As before, we focus below on the proof of (48) and omit that of (49). By an
approximation argument, we can assume f0, ut are C∞. Our proof will use the L2

duality of H−s with Hs . To see this, let g0 be a smooth, mean-zero function and
let (gt ) solve the time reversed equation

∂t gt − u1−t · ∇gt = κ'gt . (50)

We compute

d
dt

⟨gt , f1−t ⟩ = ⟨∂t gt , f1−t ⟩ = −⟨gt , ∂t f1−t ⟩
= ⟨u1−t · ∇gt , f1−t ⟩ = −⟨gt ,−u1−t · ∇ f1−t ⟩ = 0

using (i) that ' is self adjoint in the L2 inner product and (ii) u ·∇ is skew-adjoint
when u is divergence free. We conclude that ⟨ f1, g0⟩ = ⟨ f0, g1⟩ . Now,

∥ f1∥L2 = sup
∥g0∥L2=1

⟨ f1, g0⟩ = sup
∥g0∥L2=1

⟨ f0, g1⟩ " ∥ f0∥H−s sup
∥g0∥L2=1

∥g1∥Hs ,
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treating the g0 under the sup as an initial condition for (50). By Lemma 4.17, it
holds that

∥g1∥Hs % κ−s/2 exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ )dτ

)

and so

∥ f1∥L2 " κ−s/2 exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ )dτ

)
∥ f0∥H−s

as desired.

4.4.3. Linearized Navier–Stokes It is convenient to work with Navier–Stokes
in vorticity form

∂tw + u · ∇w = ν'w + curl F

where w = curl u, and the velocity u is recovered by the Biot-Savart law u =
:−2(∇⊥w) =: Kw, where here ∇⊥ = (−∂y, ∂x ) denotes the skew gradient. In
this form, the first variation equation becomes

∂tη + u · ∇η + v · ∇w = ν'η (51)

where vt = Kηt .

Lemma 4.19. Let u ∈ L∞([0, 1],H)∩L1([0, 1],Hγ+2), and letη ∈ L∞([0, 1], L2)

be the solution to (51) with initial η0 ∈ L2. Then for each s ∈ [0, γ ], η1 ∈ Hs, and
satisfies

∥η1∥Hs % ν−s/2 exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ+2)dτ

)
∥η0∥L2 .

If η0 ∈ Hs, then

sup
t∈[0,1]

∥ηt∥Hs % exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ+2)dτ

)
∥η0∥Hs . (52)

Proof. Note that since w = 'ψ and ∇⊥ψ = u, we can also rewrite the second
term in 51 in the following more useful form:

∂tη + u · ∇η + 'u · ∇:−2η = ν'η.

Repeating previous computations, we have

d
dt

1
2
νst∥ηt∥2Hst = νst ⟨:stηt ,

(
s log(

√
ν:)+ ν'

)
:stηt ⟩

− νst ⟨:stηt , [:st , ut · ∇]ηt ⟩
− νst ⟨:stηt ,:

st ('ut · ∇):−2ηt ⟩
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The first and second terms are bounded% νst (1+∥ut∥Hγ )∥ηt∥2Hst as before, while
by Lemma 4.16 we have that the third term is

% νst∥η∥2Hst ∥ut∥Hγ+2 .

Applying these inequalities and combining all terms, we have shown that

d
dt

νst∥ηt∥2Hst % νst∥ηt∥2Hst ∥ut∥Hγ+2 .

The desired conclusion follows as before. The estimate when η0 ∈ Hs is similar
and omitted.

Using a time reversed adjoint argument, we also have the analogue of Lemma
4.18, whose proof we omit.

Lemma 4.20. Let u ∈ L∞([0, 1], Hγ ) for γ > 1+d/2 and let η ∈ L∞([0, 1], L2)

be the solution to (51) with initial η0 ∈ H−s for some s ∈ [0, γ ]. Then, η1 ∈ L2,
and satisfies the estimate

∥η1∥L2 " ν−s/2 exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ+2)dτ

)
∥ηt∥H−s .

If η0 ∈ H−s , then

sup
t∈[0,1]

∥ηt∥H−s " exp
(
c
∫ 1

0
(1+ ∥uτ∥Hγ+2)dτ

)
∥ηt∥H−s . (53)
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