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Abstract: In this paper, we give a quantitative estimate for the first N Lyapunov expo-
nents for random perturbations of a natural class of 2/N-dimensional volume-preserving
systems exhibiting strong hyperbolicity on a large but noninvariant subset of the phase
space. Concrete models covered by our setting include systems of coupled standard
maps, in both ‘weak’ and ‘strong’ coupling regimes.

1. Introduction

Many systems, including large classes of those of physical interest, exhibit strong sensi-
tivity with respect to initial conditions. One way to mathematically describe this behavior
is through Lyapunov exponents: for a smooth map F' : M — M on a manifold M and a
point x € M, the Lyapunov exponents of F along the orbit { F/x} are the possible values
of

1
Alx,v) = nll)n;o - log | D F"* (v)]|,

when these limits exist, as v ranges over tangent directions in 7y M. If A(x,v) > 0
for some (x,v) € TM, then ‘typical’ nearby initial conditions diverge from {F'x}
exponentially fast. For more discussion, see, e.g., [1,26,30].

Away from uniformly hyperbolic/Anosov settings, there can be extreme challenges
in actually verifying that a given system, even a simple, low-dimensional one, admits
positive Lyapunov exponents on an observable subset of phase space (i.e., positive-
volume). This can be the case even when a positive Lyapunov exponent is “obvious” in
numerical experiments.

Exemplifying these challenges is the Chirikov standard map family

1,0) = ®1(I,0) = +Lsin2n0,0 + 1+ Lsin2n0),
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where L € Ris areal parameter and both coordinates 7, 6 are taken modulo 1. Introduced
by Chirikov [9], the standard map is a fundamental toy model describing the dynamics
along ‘stochastic boundary layers’ formed by resonances in perturbed Hamiltonian sys-
tems, capturing the intricate interaction in phase space between ‘regular’ (elliptic) and
‘chaotic’ (seemingly stochastic) motion. For more discussion, see [8].

When L > 1, the mapping ®; exhibits strong hyperbolicity, except along an O (L)
neighborhood of the vertical lines {# = 7/2, 37 /2}. The volume of these critical strips,
where hyperbolicity fails, approaches 0 as L — oo, and so one might expect A(x, v) >
0 for most x; this is corroborated by a wealth of numerical evidence. However, to
prove this mathematically rigorously is a notorious open problem: to date, no-one has
proved that @ admits a positive Lyapunov exponent on a positive-area set for any value
of L (equivalently, by Pesin’s entropy formula, that Lebesgue measure has positive
metric entropy for @ ). The primary challenge to overcome is cone-twisting, i.e., when
previously expanded tangent directions can, upon the trajectory entering the critical set,
be ‘twisted’ into strongly contracting directions. Estimating Lyapunov exponents for
models of this kind amounts to an incredibly delicate cancellation problem between
phases of growth and decay, all depending on the (time-varying) orientation of tangent
directions.

These challenges are real, as evidenced by known results on the relative density of
elliptic periodic orbits in phase space (e.g., [10]), which imply that even when L is taken
arbitrarily large, there may be positive-area regions of phase space with zero Lyapunov
exponents. In the positive direction, Gorodetski has shown that for a residual subset of
[Lo, 00), Lo > 1 taken sufficiently large, the set with a positive Lyapunov exponent has
Hausdorff dimension 2 [14], although this is quite far from a positive-area set. We also
mention the more recent work of Berger and Turaev, whose work on perturbations of
elliptic islands for surface diffeomorphisms implies that ®; is C*° close to a volume-
preserving mapping admitting a positive Lyapunov exponent on a positive-area set [3].
Lastly, we note that this brief discussion omits many works and indeed entire subfields
related to the standard map, e.g., Schrodinger cocycles. We refer the readers to the
introduction of [4] for more discussion.

The aim of this paper is to extend this program to a class of volume-preserving systems
of arbitrarily high dimension exhibiting strong hyperbolicity on a large yet noninvariant
subset of phase space. We aim to make estimates on all Lyapunov exponents, not just
the ‘top’ exponent. Although our approach in this paper is inspired by that of [4], the
higher-dimensional setting introduces several new layers of complexity which must be
contended with, e.g., to estimate all Lyapunov exponents we must estimate the stationary
statistics of N-dimensional planes in TTZN (see Sects. 3 and 4).

The setting we introduce below includes systems of coupled Chirikov standard maps
in a variety of coupling regimes: for N > 1 we consider N standard map oscillators
(I;,0)) e T' x T, i =1, ---, N, with a time evolution (I;, 6;) — (I;, 6;) defined by

1; = I; + Lsin276; +ZMz‘j sin 27 (0 — 6;),
i M
gi :9i+1_ia

where T! is parametrized as [0, 1), with all quantities above regarded “modulo 1”. This
is a completely integrable, uncoupled system when L, (i;;) are zero; in this paper, we
will instead be interested in the so-called anti-integrable regime where L > 1 and the
(uij) can be potentially quite large. Note that the above mapping is symplectic, hence
volume-preserving, iff u;; = uj; foralli, j.



Lyapunov Exponents for Random Perturbations of Coupled Standard Maps 123

Coupled standard maps appear in the physical literature as toy models of Arnold dif-
fusion [9] as well as the statistical properties of chaotic maps. These maps exhibit strong
evidence of chaotic behavior in experiments, while mathematically rigorous verification
of this chaotic behavior is hopelessly out of reach in the absence of noise. We refer the
readers to, e.g., [5,18,21,27] and the references therein for more physics background
and research on coupled standard maps.

Related to our work is that of Berger and Carrasco [2], which considered the Lyapunov
exponents of a skew product of a hyperbolic CAT map with a Chirikov standard map.
This was generalized recently by Carrasco [7] to estimate the Lyapunov exponents
of arbitrarily many coupled standard maps. Applying a symbolic coding to the CAT
map, one can view the models in [2,7] as random perturbations by discrete noise (by
comparison, [4] and this paper both use the absolutely continuous noise). We note,
however, that both the models and techniques in [2, 7] are very different from the setting in
the present manuscript. A key difference is that the perturbations in [2,7] are necessarily
of order 1, and so the perturbed and unperturbed mappings have completely different
dynamics even after 1 timestep. In contrast, the perturbations in [4] and the present paper,
although absolutely continuous, may be extremely small.

The tractability of Lyapunov exponents for randomly perturbed systems is suggestive
of the possibility of using computer-assisted techniques: when enough ‘nondegenerate’
noise is present in the random system, it is possible to estimate asymptotic quantities
such as Lyapunov exponents rigorously by approximating the full random dynamics
by, e.g., a finite-state Markov chain. To our knowledge, this connection has only been
pursued recently: the work [12] uses computer-assisted proof (CAP) to study noise-
induced order for a Poincaré section of a model of the famous Belousov-Zhabotinsky
chemical reaction; and the work [6] uses CAP to estimate Lyapunov exponents for
a stochastically perturbed Hopf system conditioned on remaining a bounded distance
from the origin.

Farther from our work, there is a wealth of literature on Lyapunov exponents. We
mention, for instance, Furstenberg’s famous 1963 paper [11] on positivity of Lyapunov
exponents for IID products of determinant 1 matrices, and the vigorous activity that
followed extending this work to random products of matrices driven by more gen-
eral processes (e.g., [15,25]) and to simplicity of the Lyapunov spectrum (e.g., [13]).
We emphasize, though, that these works are qualitative and a priori provide no con-
crete estimates of Lyapunov exponents. We have only emphasized here works which
directly address nonuniform hyperbolicity (in the presence of cone twisting) only in
high-dimensional systems. For a broader discussion, we refer the reader to the introduc-
tion of [4].

1.1. Summary of results. We provide here an incomplete statement of the results in this
paper emphasizing applications to coupled standard maps, deferring statements at full
generality to the next section.

Maps from which we perturb Let T = T! denote the circle, parametrized as [0, 1) =
R/Z.For N > 1 we consider dynamics on the torus T?V = R*N /Z?N  which we regard
with the flat metric coming from R?Y. We consider mappings F : T*N — T2V of the
form

F(xsy)z(f(-x)_y’x) (2)
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where x = (x1,---,xy) € TV, y = (y1,--- ,yny) € TN and f : TV — TV is a given
smooth mapping. Below and throughout, all addition in T¥ is carried out ‘modulo 1’ in
each coordinate. Note that F' is always invertible and volume-preserving, irrespective of
the mapping f.

This class is a natural setting for high-dimensional volume-preserving systems with
strong expansion, and includes the coupled standard map systems from (1): the change
of coordinates x; = 6;, y; = 6; — I; (mod 1) conjugates the mapping (I, 6) — (I,0)
to F asin (2) with

F@) = (2u+ Lsin2mx; + Y gy sin 27 (xj — )1, 3)
J#
Let us comment briefly on the hyperbolicity of the mappings F. Throughout we iden-
tify TT?N = T2V x R?N and write R?V = R* @RY, where R* = Span{%, s %}
d

, =— t, €ach of which 1s parametrize .Fora > 0, we
T h of which is p ized by RY. F 0

and RY = Span{%, e
define

CL = {(u,v) € R*N : |Jv|| < afjull}

of vectors a-close to the ‘horizontal’ space R*. We show that for all L sufficiently large
and under rather general conditions on the coupling coefficients j;; that f as above
expands N-dimensional volumes to order ~ LY on a large (but noninvariant) subset of
phase space. As a consequence, when L is taken large enough, we have that

D(x,y) FC{;19 C C 120:

i.e., the cone Cf /10 is mapped well inside itself. We note, however, that cone invariance
can fail badly in some parts of phase space: vectors in Cy /10 €an be rotated to a vicinity
of the ‘vertical’ space R”.

Noise model We next randomize the system F . Fix a probability space (2, Fo, Po)
andletw — R, € CV2Ol (TN, T%V) be a measurable assignment toeach w € QpofaC 2,
volume-preserving diffeomorphism R,, : TN — T2V to be interpreted as the ‘noise’
applied to the dynamics at each timestep. Define Q2 = Q?N, F = fgm, P= IP’SZ’N and
let 6 : @ —  be the leftward shift (which is automatically invariant and ergodic for
P). Elements w € Q2 are written ® = (w1, w3, - - - ) for w; € Qp, i > 1. In this paper, we
consider random compositions

FésznO"'onls 7’121, Q:(wi)iENEQ

of the (IID) random maps F,, = R,o0 F, w € o, where F is as in (2). We also consider
the Markov chain (Z,) = (X, ¥,) on T*" defined by setting (X, Y,) = Fj(Xo, Yo)
for fixed initial Zg = (Xo, Yo) € T?V.

For the noise model R, we shall impose three sets of assumptions. The first two are
as follows:

(E) The only stationary measure for the Markov chain (X,,, Y;) is Lebpan, the Lebesgue
measure on T2V,
(C) The noise model R,, satisfies DZRw(Cf/m) - Cf/lo and || D. R, |, |(D:Rw) "1 <2

']IQN

forall z = (x,y) € with probability 1.
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Assumption (E) (short for ergodicity) is natural in the context of random systems, and
is satisfied by a wide variety of noise models R, e.g., if for all fixed z € T?/, the law
of R, (z) has a density ¢, which varies L'-continuously in z— see Lemma 9 for details.
Condition (E) implies that the Lyapunov exponents

1
Ai :=lim —logo; (D, F)}) “)
n on =

exist with probability 1 and are deterministic and constant over all z € T?V (Theorem
11). Here, o; (-) refers to the i-th singular value (“Appendix A”). See Sect. 3.1 for more
background on Markov chains and conditions for existence of the limit (4). Condition
(C) is reasonable in the context of this paper, and ensures the noise model R, does not
introduce any additional cone-twisting to the resulting random system.

The third, assumption (ND) (short for nondegeneracy) is somewhat more technical,
and has to do with the way that N-dimensional planes are randomized by the noise
model R,,. For additional discussion and motivation, see the Additional Comments at
the end of this section. Below, Gry (RZY) denotes the Grassmanian, the manifold of
N-dimensional subspaces of RN (for more on the Grassmanian, see Sect. 5.1).

(ND) For any fixed z € T2N and N-dimensional subspace E C RZN (viewed as C
T.T2N), we have that the measure

0.5y () = Po((Ryz, DR (E)) € ) ®)

on Gry(T?Y) := T2V x Gry(R?M) is absolutely continuous w.r.t. Lebesgue
measure m := Lebpon X Lebg,, g2v), and that the resulting density 4, F) ==

d0cr)
—Jm satisfies

G eyllLe <M
where M > 0 is a constant independent of (z, E).

Above, the measure Lebg, v (R2N) is the Riemannian volume on Gry (RZY); see Sect. 5.1
for details.

The value M itself has the connotation of an ‘inverse noise amplitude’: if R, is
typically C! close to the identity, then the value M must be large. An explicit noise
model satisfying (E), (C), and (ND) is constructed in Sect. 2.

Results for coupled standard maps. The following two results estimate all Lyapunov
exponents (A;) as in (4) of the random coupled standard maps introduced above.

Theorem 1. Let o, 6 € (0, 1). Let N > 2 and consider the coupled standard map F as
in (2) with

N

fx) = 2xi+Lsin2nxi+Zu,-j sin 2w (x; — x;) ,
J# i=1
where the coefficients u;; are fixed and L is sufficiently large depending on (u;;). Assume

that the randomizations R, satisfy (E), (C) and (ND), and that the noise parameter M
satisfies

818

M < L1 (6)
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Then, the Lyapunov exponents (A;) of this random composition satisfy
M>...2An>0>Ans1 = ... > doy, and min{|}r;|} > alogL. @)

Remark 2. Note that the parameter L can be freely taken arbitrarily large. In particular,
given an R, with a particular value of M, one is free to choose L large enough so that
(6) is satisfied.

The setting of Theorem 1 can be thought of as describing a kind of ‘weak’ to ‘mod-
erate’ coupling regime: the strength of the hyperbolicity L of each individual oscillator
overshadows the coupling amplitude max;; |;;]. The following applies in a regime
when the strength of the coupling matches that of the individual oscillators.

Theorem 3. Let o, 6 € (0, 1). Let N = 2 and consider the coupled standard map F as
in (2) with

fx1,x2) = <

2x1 + Lsin2mxy + L sin 2w (xp — x1)
2xy + Lsin2wxy + Lsin 2w (x; — xp) ) °

Let L be sufficiently large. Assume R, satisfies (E), (C) and (ND) as well as
M < LPL
Then, the Lyapunov exponents (A;) satisfy the estimate (7).

Theorems are consequences of our general main result Theorem 5, presented below
in full generality in Sect. 6.

Remark 4. We emphasize the order of quantifiers in our results: throughout, we fix the
dimension N and choose L sufficiently large depending on N, but not vice versa. It
would, though, be of interest to fix L, take the ‘hydrodynamic limit’ N — oo and study
the resulting Lyapunov spectrum. Limits of this kind provide toy models for, e.g., gases
of particles in the hydrodynamic limit; see, e.g., [28,29]. However, this is beyond the
scope of the present paper, since our analysis here does not take into account quantitative
dependence in N.

Additional comments We end this section with some discussion on the relationship be-
tween this paper and the previous work [4], as well as some discussion on the assumption
(ND) and how it could potentially be relaxed.

The paper [4] estimates Lyapunov exponents for random standard maps (N = 1) on
T2 subjected to IID ‘additive’ noise of the form R, (x, y) = (x +®, y) with @ uniformly
distributed in [—e¢, €] for some € > 0 small. The rough idea there is to relate Lyapunov
exponents to stationary statistics of the Markov chain

Dz FA(Vy)
(Zn, Vo) = | FA(Z0), 2

- |Dzy Fay (Vo)
on the unit tangent bundle ST? = T? x S'. The key idea in that paper is that the presence
of noise implies that stationary measures are absolutely continuous, and that stationary
mass cannot concentrate too much parallel to R, where strong contraction can occur.
This was used directly to show that the vast majority of stationary mass was nearly
parallel to R*, where the strong expansion ensures a large Lyapunov exponent. To check
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absolute continuity of stationary measures for (Z,, V), it was shown that the noise in
the base ‘propagates’ to tangent directions in three iterates of the random system (one
for each dimension of the projective bundle PT? = T2 x P!), in the sense that for fixed
(Zo, W), the law of (Z3, V3) is absolutely continuous on T2 x St

The goal of this paper is demonstrate that the basic mechanism introduced in [4]
generalizes to higher-dimensional systems, e.g., coupled standard maps, and to provide
estimates on all Lyapunov exponents, not just A;. To this end, for N > 1 we study
an analogous Markov chain (Z,, E,;) on the Grassmanian bundle Gry T2N >~ T2N »
Gry (R?V) of N-dimensional subspaces of TT?V and relate stationary measures for
(Z,, E,) to the sum of the first N Lyapunov exponents (with multiplicity). This brings
us to the purpose of condition (ND), which plays the same role that the 3-step noise
propagation played in [4]: this condition ensures that stationary measures for (Z,, E,)
are absolutely continuous and cannot concentrate too much in any one place.

On the other hand, condition (ND) is not satisfied by ‘additive’ noise models of the
form R, (x, y) = (x, y)+w where w is some random vector: condition (ND) requires that
the noise model R, induces some ‘twisting’ of tangent directions. That being said, the
methods in this paper are entirely compatible with the following hypothetical scheme,
more in line with [4]: start with additive noise R, (x, y) = (x, y)+w and show that there
is some k such that for all fixed (Zg, Eq) € Gry(T?V), we have that the law of (Zx, Ey)
is absolutely continuous on Gry (T2V). Although highly plausible, actually carrying
this out appears to be quite challenging for general N: the Grassmanian Gry (R*) has
dimension N2, and so even if the random vector w is absolutely continuous along all
2N coordinates in TV, it would take a minimum of k ~ N /4 iterates for the noise
to propagate to all directions in Gry (R*V). Already in the simple case N = 2 the
computations involved are quite involved, requiring separate estimates across multiple
charts in Gry(R*). So, for the sake of unity of focus and brevity, we have opted to
use noise models satisfying condition (ND), as this framework highlights the essential
features of the proof. Extensions to additive noise models are left to future work.

2. General Framework and Full Statement of Results; An Explicit Noise Model

‘We begin by providing the full general framework we work in and the main result from
which Theorems 1 and 3 are derived.

Let us start with a full description of the deterministic maps from which we perturb.
We consider one-parameter mappings of the form F = F; : T2V ©, Fr(x,y) =
(fr(x) — y,x),x,y € TV, L > 0, where the family f; : TV — TV is assumed to
satisfy the following:

(F1) There exists Co > 0 such that | D, f7|| < CoL forall x € TV and L > 1; and
(F2) For any B € (0, 1), there exist Cg, cg, Lg > 0 so that for all L > Lg, we have
that

Bg={xeTV:|det D, fr| < LN-U=Pyc TV
has Lebesgue measure < Cg L—¢8.

Condition (F2) implies that for a large Lebesgue-measure set x € TV, we have
| det D, f1 | is of order LY, and since || D, f7 || is no larger than order L by (F1), we see
that || D, f1 (v)|| must be approximately L|v| atall v € T, TV = R¥ and for all such
x. As aresult, the corresponding mappings F expand all directions roughly parallel to
R* by a factor of L. For more details, see Sect. 3.3 below.

‘We can now state our main abstract result.
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Theorem 5 (Main Theorem). Assume that the one parameter family f; : TN — TN
satisfies conditions (F1) and (F2). Fixa, B € (0, 1) and § € (0, cg), where cg is as in
(F2). Let L > Lg be sufficiently large in terms of these parameters. Lastly, let R, be
any noise model satisfying (E), (C) and (ND), and assume that the noise parameter M
as in condition (ND) satisfies

M < LIPLF

Then, the Lyapunov exponents (A;) of F& =F,, 0---0F, , F,:=R,oF, satisfy
M=o =2AN>0> Ay > ... > Aoy, and minf|A;]} > alog L.

Once Theorem 5 is proved, to prove Theorems 1 and 3 it will suffice to check that
the corresponding one-parameter families f7 satisfy conditions (F1) and (F2); this is
carried out in Sect. 4.

We note that conditions (F1) and (F2) are not limited just to coupled standard maps.
Indeed, for general ¥, ¢ : TV — RY, we can consider the one-parameter families

fLi=Ly +o.

Condition (F1) is evident for arbitrary v, ¢, while we are able to show (Lemma 25) that
condition (F2) holds under the transversality-type condition

{det Dy = 0} N {V det D,y = 0} = 0. (8)

This is clearly a C? open condition; for N = 2, we show (Proposition 27) that (8) in
fact holds for a C2-generic set of 1. On the other hand, (8) fails for v in the setting of
Theorem 1; for this reason we instead check (F1), (F2) directly for this model in Sect. 6.

An explicit noise model. Below we sketch the construction of anoise model R, : T*N —
T2V satisfying properties (E), (C) and (ND). Full proofs are deferred to “Appendix C”.
We write d = 2N for brevity. Below, we write O(d) for the space of orthogonal d x d
matrices. Let Skew(d) = TigO(d) denote the Lie algebra of skew-symmetric d x d
matrices, and recall that the matrix exponential eV of any U € Skew(d) is an orthogonal
matrix.

Let {z;} lK: | be a collection of points with the property that

T¢ = U; B1/20(zi). ©)

i.e., the balls {B1,20(z;)} of radius 1/20 cover T. For brevity, we write d = 2N below.
Let ¥ : [0,00) — [0, 1] be a C* bump function such that ¥|j0,1/10) = 1 and
V175,000 = 0. For z € T%, define A;(z) € RY to be the unique vector! in [—1/2, 1/2)¢
such that A;(z) = z — z; modulo 1 (recall that T is parametrized by [0, DY).
For U € Skew(d), define

oD T > T, o (2) =z +exp(Y(d(z, 2)U)Ai (2)

1 In other words, for each 1 < j < d, we set the j-th component (Ai(2))j tobe {(z —z;) j} — 1/2, where
here foro € R we write {a} = a — ] € [0, 1) for the fractional part of &, and (z —z;) j is the j-th coordinate
of z — z;.
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This yields a defined, continuous mapping of T into itself, which rigidly rotates the
shells of constant distance from z; by some fractional power of eV € O(d). With this

picture in mind, it is straightforward to show that CDS) preserves volumes (e.g., using
polar coordinates we write the volume form as dvol = r"~!drdQ where Q is the volume

form on the unit sphere. It is clear by definition that @8) preserves dvol since both dr
and d2 are preserved).

Given h € R4, define T - T4 — T9 to be the translation Thz = z + h. Given
UD, ... UK ¢ Skew(d) and v € R?, we define

— (K) (1)
R qpiy =Ty o CDUu() 0---0 CDUu)'

With ¢ = R x Skew(d)X, we see that a Borel probability Pp on Q¢ > w — Ry,
yields a ‘random’ volume-preserving diffeomorphism of T¢. This diffeomorphism is a
composition of a sequence of ‘twists” of T¢ by rigid rotations, post-composed by a rigid
translation in T?.

‘We now provide sufficient conditions on the law [P for the noise model R,, to satisfy
conditions (E), (C) and (ND). Below, we regard €2 as a copy of RA+Kdd=1)/2 equipped
with Lebesgue measure A and the standard Euclidean norm.

Proposition 6. There exists ¢ = cg.q > 0 sufficiently small so that the following holds.
Let Py be any Borel probability measure on Q2 such that

(i) Supp(Py) is contained in the ball of radius c centered at the origin;
(i1) Py <« A with ||dPy/d AL~ < oo, and
(>ii1) 3¢ > O such that dPy/d A > 0 on the ball of radius ¢ centered at the origin.

Then, R, equipped with Py satisfies conditions (E), (C) and (ND).

To summarize these conditions: item (i) ensures that the R, are not too far from the
identity in the C ! norm, hence (C) holds. Item (ii) is used to affirm condition (ND),
that N-dimensional planes are randomized by R,,. Finally, item (iii) is used to check
ergodicity of Leb. as in condition (E). See “Appendix C” for a full proof.

Organization of the paper In Sect. 3, we give some preliminary results on the Markov
chain on TV and on Gr N (TZN ), while in Sects. 4 and 5 we prove Theorem 5. Theorems
1 and 3 are proved in Sect. 6. Sufficient conditions for (F2) and genericity results, as
well as applications to coupled standard maps, are worked out in Sect. 6. Included in
“Appendix A” is a version of the standard singular value decomposition used in this
paper. In “Appendix B”, we give the proofs of Lemma 19 and 21 on Grassmannian. In
“Appendix C”, we prove that the noise model R, constructed above satisfies conditions
(E), (C) and (ND).

3. Preliminaries

Here we provide some preliminaries used in the rest of the paper. Section 3.1 recalls ele-
ments of random dynamics and formulations in terms of Markov chains, while Sect. 3.2
relates stationary measures of these Markov chains to Lyapunov exponents, crucial to
the approach we take in this paper. In Sect. 3.3 we provide some preliminary estimates
characterizing hyperbolic behavior of our random maps F,.
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3.1. Background on random dynamics and Markov chains. Let us recall the definition
and basic properties of a Markov chain. Let (S, S) be a measurable space, and let (X,,) be
a sequence of S-valued random variables, i.e., there is some probability space (2, F, P)
and a sequence of measurable mappings X, : Q — S. We say that (X,) is a (time-
homogeneous) Markov chain if for all n > 1 and sets Ag,---, A, € S), we have
that

HD(Xn € An|Xn71 € Anfly -, Xo € AO) = P(Xn € An|Xn71 € Anfl).

Under general conditions on (S, S) (e.g., S is a complete metric space and S = Bor(S)),
the law of X, conditioned on X,_; is proscribed by a transition kernel P, i.e., an
assignment to each s € S of a probability measure P (s, -) on (S, S) such that for all
n>land A €S,

P(X, € A|X,_1) = P(X,_1, A) with probability 1,

where above P(+| X,,_1) refers to the probability of an event conditioned on the o -algebra
generated by X,,_1.

In this paper we consider Markov chains arising from random dynamical systems.
Assume (as will always be the case for us) that S is a compact metric space and S =
Bor(S). Let (29, Fo, Pg) be a probability space, and let G : Qo — C(S,S) be a
measurable mapping into the space C (S, ) of continuous self-maps of S (equipped with
the uniform norm and corresponding Borel o -algebra). As in the previous section, form
(2, F,P) = (R0, Fo, IPO)®N and writeelements w € Qasw = (w1, wy, - -+ ), w; € Lo,
noting that {G,, }; is an IID sequence of C(S, S)-valued random variables. For fixed
initial Xo € S, this gives rise to the Markov chain X,, = G, o --- o0 G, (Xp) with
transition kernel

P(s,A) =P(s € G, ' (A)).

Recall that a probability measure p on (S, S) is called stationary if

w(A) :/P(s, A)dju(s)

forall A € S. Note thatif u is stationary, then forall ¢ : S — R bounded and measurable
and for all n > 1, we have that

fw(S)dM(S) Z/(ES(P(Xn))dU«(S)»

where [E; denotes the expectation w.r.t. P conditioned on Xo = s. When X,, = G, o

-0 Gy, (Xp) as above, we can view X, = X, (s; @) as a function of the random
sample @ € Q and the initial condition Xy = s; with these conventions, for ¢ bounded-
measurable and n > 1 we have by Fubini’s Theorem that

/w(S)d,u(S) Z/Q(/Sw(Xn)dM(S)> dP(@). (10)

Lastly, we recall that the random dynamics induced by G, can be thought of as a
“deterministic” dynamical system via the skew-product construction, which we recall
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below. Let 8 : 2 — 2 denoting the leftward shift, and define the mapping 7 : 2 x S O
by

T(w,s) = Ow, Gys).

We record below a well-known ‘glossary’ between invariant measures of T and stationary
measures of (X,). Recall that a stationary measure p for (X,,) is called ergodic any
P-invariant set A C S satisfies w(A) = 0 or 1. Here, a measurable set A is called
P-invariant if P(s, A) = 1 forall s € A.

Proposition 7. Assume S is a compact metric space. Let | be any Borel probability
measure on S.

(a) The measure P x w is t-invariant iff i is a stationary measure for (X,).
(b) (Ohno’s Theorem) The measure P x w is t-ergodic iff | is an ergodic stationary
measure.

Lastly, we recall the following consequence of the Krein-Milman Theorem applied
to the (convex, weak™ compact) set of stationary measures for (X,,).

Corollary 8. Assume (S, S) is a compact metric space. Then, the set of ergodic station-
ary measures for (X,) is nonempty.

In particular, if (X,) admits a unique stationary measure, then it must be ergodic.

3.2. Stationary measures and Lyapunov exponents. We now specialize to the random
dynamics of interest in this paper: let (€2, F, IP) be as in Sect. 1 corresponding to a noise
model R, and let F : T2V — T2V F(x,y) = (f(x) — v, x). Throughout, we write
Fy=RyoFand F} =F,, o---oF,,.Lastly, for fixed initial Zy = (X¢, Yp) € T2V,
we write B

Zyp =Xy, Yy) = FQ(XO» Yo)
for the Markov chain generated by the system Fj; and
P(z, A) :=P(z € F,'(A)

for the corresponding transition kernel. Below and throughout, 7 :  x T> (9 denotes
the corresponding skew product t(w, z) := (Pw, Fy, (z)).

3.2.1. A sufficient condition for (E): Lebron is ergodic Since R,,, F are always volume-
preserving, we see that the volume Lebpow is always a stationary measure for (Z,). The
following is a useful criterion for ensuring that the ergodicity condition (E) holds.

Lemma 9. Assume the following:

(a) For all z € T2V, the law Q. of Ru(2) is absolutely continuous w.rt. Lebpon; and

TZN

(b) We have that 7z — q; = % is L' continuous, i.e., for any z € ,n>0
T2N

there exists 8 > 0 such that d(z,7') < & implies | q; — CIZ/”Ll(Leb.H.ZN) <.

Then, condition (E) holds, i.e., Lebesgue measure Lebpon is the unique, hence ergodic,
stationary measure for the Markov chain (Z,,).
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Proof. The resultis similar to Lemma 5 of [4], but the proof we present here is somewhat
more general. To start, by Corollary 8, we may fix some ergodic stationary measure m
for (Z,,). Define

1 n—1
G=lzeT lim ~ > e(Fu)
k=0

= / @dm for all ¢ : T?>Y — R continuous and for P — a.e. w},

noting that G is Borel since the space C(T?") of continuous functions on T? with
the uniform norm is separable. By the Birkhoff ergodic theorem, applied to the skew
product 7 :  x T>V (9 with ergodic measure P x m, we see that m(G) = 1. Note that
P(z,G) = 1 must hold forall z € G.

The following is useful for checking membership in G.

Claim 10. P(z, G) > O implies that z € G

Proof of Claim. For fixed z € T?N and ¢ : T?Y — R continuous, we have that the

event £, , := {w € Q : lim, }l 8_1 Qo Fé(z) = [ @dm} is a tail event in €2, hence

P(E; ) = 0 or 1 by the Kolmogorov 0-1 Law. Since C (T?V) is separable, we see that
E,={weQ: 1im,,%23—1¢ o Fi(z) = [@dm forall g € C(T*V)} is also a tail
event. The proof is complete on noting that P(E,) > 0 if P(z, G) > 0. O

We now set about checking that G is open and closed, hence G = T2V . This precludes
the existence of ergodic stationary measures for (Z,,) distinct from m, hence m = Lebzan
follows.

For openness, observe that (b) implies z +— P(z, G) is uniformly continuous, hence
38 > 0 such that for all z, 7’ € T?V, d(z,z/) < & implies |P(z, G) — P(z/, G)| < 1/2.
With z € G fixed, we conclude that P(z’, G) > 1/2 for all 7 € Bs(z). By the Claim,
we conclude Bs(z) C G, hence G is open. For closedness, let z € T2V be the limit of
a sequence {z,} C G. With § > 0 as in the previous paragraph and N large enough so
that d(z,,, z) < 8 forall n < N, we conclude that P(z, G) > 1/2, hence z € G by the
Claim. We conclude G is closed, hence G = T2V, m]

3.2.2. Lyapunov exponents and stationary measures We now turn our attention to the
relation between Lyapunov exponents and stationary measures. The following is an
abridged version of the multiplicative ergodic theorem (MET) suitable for our purposes;
for more on the MET and its consequences in smooth ergodic theory, see, e.g. [20].

Below, for a matrix A we write 01(A), 02(A), - - - for the singular values of A. See
“Appendix A” for more discussion.

Theorem 11 (Multiplicative Ergodic Theorem). Assume condition (E) holds. Then,
there is a t-invariant set T C Q x T?N of full P x Lebpon -measure such that the
following holds.

(a) For eachi = 1,--- ,2N, there is a (deterministic) constant A; € R such that the
limit
1
L = lim —logo; (D F)) an
n—-oon =

holds for all (w,z) € T.
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(b) Let x1 > --- > x, denote the distinct values of the Lyapunov exponents {);} (note
r = 1 is possible). Then, for all (w, z7) € T, there is a flag of subspaces

RN =: Fi(0,2) 2 F(0,2) 2 - 2 Fr(w,2)
2 Frpi(w, 2) := {0}

such that for alli € {1, --- ,r}, we have that (i) D, F,,(F;(w, 2)) = F;(t(®, 2)) and
(ii) for all v € F;(w, 2)\ Fi+1(w, 2), we have

1
lim —log ||D.F,(v)| = xi -
n—o00 n =

Lastly, (iii) there are (deterministic) natural numbers my, - - - , My, Zi m; = 2N
such that forall, 1 <i <rand (w, z) € I', we have that the codimension of F;(w, 7)
in Fi_1(w, 2) is equal to m;_.

Proof. Condition (E) implies m := Lebyon is ergodic as a stationary measure, hence
P x m is t-ergodic (Proposition 7). From here, the usual multiplicative ergodic theorem
for ergodic measure-preserving transformations applies to the linear cocycle Aj) . =

DZF£ over 7 :  x T2V (9, c.f. [20]. O

3.2.3. Lyapunov exponents from statistics of N-dimensional planes We now turn our
attention to the method used in this paper to estimate Lyapunov exponents from below:
by considering the stationary statistics of N-dimensional subspaces of tangent space
evolving under the derivative D, F,,. More precisely, let Gr,, (R¥) denote the Grassma-
nian of m-dimensional subspaces of RX. For fixed initial (Zo, Eg) € Gry (T2Ny .=
T2V x Gry (R*Y), the Markov chain (Z,, E,,) on Gry (T?") is defined by setting

E, = DZFQ(EO).
This gives rise to the corresponding skew-product construction 7 : € x Gry (T?V) O

given by T(w, z, E) = (Bw, F,, (2), D;F,, (E)). Recall that a probability measure D on
Gry (T?V) is stationary for (Z,, E,) if

H(A) = / P((z, E), A)dd(z, E)

for all measurable A C Gry (T?V), where the transition kernel P is defined by
P((z, E), ) := P((Fu, (), D.F, (E)) € ). (12)

The following relates stationary measures v for the (Z,, E;) chain to Lyapunov
exponents.

Lemma 12. Assume condition (E). Let b be any ergodic stationary measure for (Z,,, Ey).
Then,

N
D oni= /logdet(DZle|E)d(IP’ x D) (@, z, E). (13)
i=1
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Above, for a 2N x 2N matrix A and E ¢ R*N dim E = N, we write A|g : E —
A(FE) for the linear mapping of E to A(E) obtained by restricting A to E. From this
standpoint, det(A|g) is defined as usual, e.g., as the volume ratio

LCbA(E) A(BE)

det(A|E) = LebE(BE)

3

where Bg C E is the unit ball, and Lebg denotes Lebesgue measure on E.

Proof. To start, it is straightforward to check that the projection of d onto T2V is a
stationary measure for (Z,), hence by (E) this projected measure coincides with m =
Lebpan . Next, by Proposition 7, we have that P x b is T-ergodic. By the Birkhoff ergodic

theorem applied to 7, we have

/logdet(Dszlg)d(]P’ x D) (w, z, E)

n—1

1 , 1
= lim —thofl(g,z, E) = lim —logdet(D,F"|f)
izo n—-oon —

n—oo n 4

for P x D-almost every (w, z, E), where ¢(w, z, E) := logdet(D,F,, |g). Note that
det(D Fll|g) < H,N:1 0i (D, F}}) (Lemma 30 in Appendix A). By Lemma 11, we con-
clude o

N N
. . 1
/logdet(Dsz|E)dv(z, E) <limsup . XI:IOgU"(DZF@ = ZA,-.
=

n—00 :
i=1

O

Remark 13. 1t is straightforward to check that equality holds in (13) if b <« m, the
Riemannian volume on Gry (T2V) (see Sect. 5.1 for details). However, this fact is not
used, and so we omit a proof.

A key component of our analysis is the use of the nondegeneracy condition (ND)
to provide a priori control on the density of stationary measures D for the Grassmanian
Markov chain (Z,, E,).

Lemma 14. Assume (E) and (ND) hold. Let v be any stationary measure for (Z,, E,).
Then, D < m, where m is the Riemannian volume on Gry (T*N), and satisfies

dv
R <M
dm| e

where all notation is as in condition (ND).

Proof. For (z, E) € Gry(T?N) and K C Gry(T?M), the transition kernel P for
(Z,, E,) satisfies

P((z, E), K) = Q((Fz, D,F(E)), K)
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where Q is the kernel for R, asin (5). In particular, by (ND), we have that P ((z, E), ) K
m, where m is normalized Lebesgue measure on Gry (T2, while d P((z E),)/dm =
dQ((Fz, D.F(E)), -)/dm satisfies

dP((z. E), ")
dm

<M

LOO

uniformly in (z, E) € Gry (’]I‘ZN ). Moreover, stationarity of D (see (12)) implies that for
K C Gry(T?Y) measurable, we have

D(K) = / P((z, E), K)dbd(z, E) < Mm(K).
Gry (T2N)

Therefore, ? <« m and db/dm is essentially bounded from above by M. O

3.3. Hyperbolicity estimates assuming (F1), (F2). Letusrecord some estimates describ-
ing the quality of the predominant hyperbolicity of the family F = Fr. Fix B € (0, 1).
Recall the notation

Co ={u,v) € RN - vl < aflull}

Bp = {x € TV : |det D, fr| < LN=(=P)) c TV,
We define Gg = BE-
Lemma 15. Fix 8 € (0, 1) and let L be sufficiently large. Let 7 = (x, y) € T* be such
that x € Gg.
(a) Let w = (u,v) € T,T2N = RV be such that w e Ci/10- Then, D-F (w) € Cy,yp,

and
3B
IDF(w)ll = L3"[lw].

(b) Let E C R?N be an N-dimensional subspace such that E C C¥ 1/10° Then,
(i) E' := D,F(E) is an N-dimensional subspace satisfying E' C 01/20’ and
(ii) det(D. F|g) = 55 LN=0=F).
Proof. For an N x N matrix A, write m(A) = [|A~Y|~' = min{|Av||//|[v] : v €

RN\ {0}} for the minimum norm of A (setting m(A) = 0 if A is not invertible). To start,
the estimate

m(Dy f) = Cy N VLP (14)

follows from (F1) and the standard fact that m (D, f) > det(Dxf)/||Dxf||N’1.
For the estimate in (a), assume w = (u, v) € C; for some o > 0. Then |[v]| < o||u]|

and |lu| < lwll < ~1+a?|ul. So,
D F(w)ll = [I1Dx f @)l — vl = (m(Dy f) — o) |ul]

~(N-D ;8 _
- Cy L o

\Y

[wl]

1 +a?

> L5 w]l.
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The last inequality above holds when L is large enough and ¢ = 1/10. Similar estimates
imply D, F(w) € Cf/lo when L is large enough.

For (b)(i): by hypothesis, we can express E = graph G = {(u, G(u)) : u € R},
where G : R* — R is a linear map with ||G|| < 1/10. To express E' = D, F(E) in
the form E’ = graph G’, we would need to have that for all u” € R* there exists u € R*

so that
u' _( Dof =1y u _ ( Def(w) — G(u)
Gw)) —\ Iy On Gu) ) — u

Formally, then, we ought to have G’ = (D, f — G)’l. That this exists follows from
(14); moreover,

1
Gl < —— <2L7 P« 1/20
I ”_m(Dxf)—l/lo_ <1/
when L is sufficiently large, hence E' = D, F(E) C Cf /20 AS desired.

For (b)(ii), define IT* : R?N = R* x RY — R* to be the orthogonal projection onto
R*. Then,

det(D,F|g) = det(Dy f — G) - det(Mle) _ det(D, f — G) det( + G")

det(TT* | 1) " det(I +G) (15

on noting that (IT*|z)~! = (I + G) : R — RN and similarly for I1*|gs. For these
terms we have (1 — 1/10)Y < det(I + G), det(I + G') < (1 + 1/10)", while for the
remaining D, f — G term we have

G 1
det(Dy f — G) > det Dy f — B L > L N-0U=h
m(Dy f) = |G|l ~ 2

using the elementary estimate | det(A + B) — det(A)| < || B||/(m(A) — || B]]). |
Condition (C) says that the randomizations R, ® € 2o do not ‘disrupt’ the hyper-
bolicity of the system too much. The following is an immediate consequence of (C) and

Lemma 15.

Lemma 16. The following holds for Py-a.e. w € Q. Fix B € (0,1) and let L be
sufficiently large. Let z = (x,y) € TN  x € Gg. Then,

() Let w = (u, v) € T,T*N = RN be such that w € Cf/l()' Then,
38
| D; Fo(w)|| = L27[|w]|

(ii) Let E C Cf/lo be an N-dimensional subspace. Then, E' = D,F,(E) is an N-
dimensional subspace with E' C Cf /10
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4. Proof of Theorem 5

In brief, our method will be to obtain a lower bound of the form

N
> xi=(1—e)NlogL
i=1
on the sum of the first N Lyapunov exponents for ¢ > 0 small and L sufficiently large.
This directly implies A; > (1 — (2N — 1)e)log L foreach 1 < i < N, in view of the
factthat A; <Ay < (1 +¢)logL foralli,e > 0and L > 1 (see condition (F1)). Since

leivl A; = 0, similar considerations apply to the exponents Ayy4i, -+, Aan. These
proofs are straightforward and omitted for brevity.

From this point forward, we will focus our attention on ZZNZI i, which we shall
estimate using an ergodic stationary measure U for the Markov chain (Z,, E,) on
Gry (T?V), following Lemma 12. Applying (13), condition (C), and the chain rule
D.F, = Df, R, o D F, we have

N
Z,\,- > —Nlog2+/log|det(DZF|E)|df)(z, E)

i=1

By stationarity, for any bounded measurable ¢ : Gry(T*) — R we have (by a slight
abuse of notation)

/‘b(Z: E)dG(L E)Z/(E(z,E)(b(ZmEn))dﬁ(Z, E)

for all n > 1 (recall that E(; g) denotes the expectation conditioned on the initial state
(Zo, Eo) = (z, E)). Treating (Z,, E,) as a function of the initial condition and the
random sample w, we also have

/ 6(z, E)dD(z, E) = E [ / (Zn, En)dD (. E)]

(see (10)). Applying to ¢(z, E) = log|det(D,F|g)|, we conclude

N
Z)‘i > —N10g2+E/10g|det(DZ"F|En)|dv(z, E).

i=1

(k)
To prove Theorem 5 it therefore suffices to bound () as follows.

Proposition 17. (Main estimate) Fix o, 8 € (0, 1) and § € (0, cg). Let L be sufficiently
large in terms of these parameters. Then, there exists n > 1, depending on L, such that
fora.e. w € 2, we have

(x%) = /log |det(Dz, F|g,)|dv(z, E) > aNlog L.

The proof of Theorem 5 is complete upon adjusting the parameter « and taking L
large enough to absorb the remaining additive term — N log 2.
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Proof of Proposition 17: exploiting predominant hyperbolicity. Below n > 1 is fixed,
to be determined later, and @ € 2 is an arbitrary random sample. Recall that D_F,, is
strongly expanding in the G g along which D, F, is strongly expanding in the horizontal
cone C; = {(u,v) : ||v|]l < aflull} for z € Gg (Lemma 15). For n > 1, define

h=1{zeT?":Z eGgforall0 <i <n-—1)

to be the set of trajectories experiencing this hyperbolicity for n timesteps, where as
usual we condition on Zy = z.
Fix z € Gg. Hyperbolic expansion along the x-direction R* implies that the ‘bulk’

of Grassmanian dynamics is attracted to a close vicinity of R*. This is, after all, the
conceptual picture underlying the N = 1 case studied in the previous paper [4]. The
following is the analogue of Lemma 10 in [4].

Proposition 18. Let w € Q2 be arbitrary, and let B € (0,1),n > 1. Fix z € G’/;. Set
En = Dng(E) Then,
Lebg, , g2vy{E € Gry (R*N) such that E, ¢ C3} < L™F".

The proof of Proposition 18 is deferred for now. Let us show how it can be used to
prove Proposition 17. For z € G% define G = {E € Gry(RN) . E, € C3}. Letting
B* € (0, 1) be a parameter to be chosen later, define

G" ={(z. E) € Gry(T*N) : 2 € Gy N (F2) "' Gy, E € G7)

and B" = Gry(T?Y)\G". The integral of (xx) along (z, E) € G" C Gry(T?) will
result in a tight lower bound for det(Dz,, F|g,), while 3" is an error set along which we
use the poor estimate

log|det(Dz, Flg,)| = —Nlog(2CoL) , (16)

which follows from (F1) and the form of the mapping F = F.
Splitting () along the partition G", 5", we have

/ log |det(Dz, Flg,)ldv(z, E) = (1 —v(B"))  inf c log|det(D_F|g)]| .
g 2

z€E f;*,EE

¥

Choosing B* sufficiently close to 1, we can arrange for f > “T“N log L (Lemma
15(b)(ii)) on taking L sufficiently large. Plugging in (16), we obtain

1+«
(x%) > TNlogL —2v(B") - Nlog(2CoL).
It remains to bound v(B") from above. We decompose B" = B™! U B2, where

B! = (G U (Fy) ™' Gf) x Grv (R
B"? ={(z.E):2€G}.E, ¢ G5} ={(z. E): 2 € G}, E ¢ G}

For B! we have the simple estimate

v(B"") = Lebpan (G})° U (F) 'GG.) <nCyL™% + Cpe L™
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For B"2, we estimate
V(B"?) < M Lebg,, an,(B"™?) < ML™P"

using our bound on j—r‘; from Lemma 14 and the estimate in Proposition 18.

In total, we have shown that
oa+1 —cp —pBn —cpg*
(k) > TNlogL—NlogL nCgL™ P + ML™"" + Cg« L

Fix n = [L%~°] for some small § < cg. Then, nCgL=% = O(L~?), while
ML=P" < 79 as long as

M < L3P

Thus, under this condition relating M and L, we have
|l -« — min{8,cgs}
(x*) > aNlog L + T_CL “p*1 ) NlogL > aNlog L

assuming L is sufficiently large in terms of «, B, 8*, §. This completes the proof of
Proposition 17.

5. Proof of Main Proposition (Proposition 18)

In Sect. 5.1 we recall some necessary preliminaries on the Grassmanian as a Riemannian
manifold. The proof of Proposition 18 is carried out in Sect. 5.2.

5.1. Grassmanian preliminaries. Fix m > 1 and 1 < k < m. Here we describe the
smooth and Riemannian structures of the manifold Grg (R™) of k-dimenisonal subspaces
of R™, and give a few preliminary lemmas. The following is all well-known; see, e.g.,
[23,24].

To fix ideas and avoid dealing with unnecessary cases, we will exclusively deal with
the case when k < 2, hence k < m — k. Otherwise, we can reduce to this case by noting
that orthogonal projection provides a natural identification Gry(R™) = Gr,—r (R™).
Throughout, R carries the standard Euclidean inner product (-, -).

Manifold structure of Gry(R™) Given E € Gri(R™), we define the coordinate patch
Up = {graphy H : H € L(E, E1)}, where we write L(E, EL) for the space of linear
maps from E to E-+, and the chart map

graph : Ug — Gri(R™)

is defined by graphy H = {v+ H(v) : v € E}.
We highlight the following facts:

(A) We have that U is the set of all E’ € Gr;(R™) intersecting E - transvsersally. In
particular, U is open and dense for any E € Gri (R™).
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(B) We have the following basis-independent identification:
Tg Gr(R™) = L(E, EY).

If bases for E, E+ are fixed, then we have the parametrization U = M,,—i x (R),
the space of (m — k) x k real matrices.

The following is a qualitative geometric description of the complement of any chart
UE.

Lemma 19. Assume k < m/2. Then, the set (Ug)€ is a finite union of closed submani-
folds of Gri(R™) of codimension > 1.

For the sake of completeness, we provide the proof of Lemma 19 in Appendix B.

Riemannian metric on Gr,,(R¥) With respect to the identification in (B) above, the
Riemannian metric g on Tg Grg (R™) can be expressed as

gr(Hy, Hy) = Trg(Hy Hy),

where Trg denotes the trace induced by the inner product (-, -) on R™ restricted to E.
As usual, the Riemannian metric induces a volume measure Lebg,, (r») and a geodesic
distance dge, between subspaces in Grg(R™). Recall that the orthogonal group O(m)
acts on M = Gri(R™) via the action E +— U(E) for U € O(m). It is standard that
the orthogonal group acts isometrically on (M, g). In fact, (M, g) is the unique (up to
scalar) Riemannian metric on M with respect to which O(m) acts isometrically.

The following alternative metric dy on Grassmannians is very useful in practice.

Definition 20. Let E, E’ € Gri(R™). We define the Hausdorff distance dy(E, E")
between them by

dy(E,E'y =max { max d(v, E), max d(v, E') } ,
v'eE’ cE

v
v ]I=1 lvll=1

where above d(v, E) denotes the minimal Euclidean distance between v € R™ and
E Cc R™,

The distance function dg is uniformly equivalent to the geodesic distance dgo:

Lemma 21. For any E, E' € Gri(R™), we have
2 ! ! /
;dgea(Ea E ) = dH(E9 E ) = dgeo(E, E)

This appears to be well-known, but we are unable to find a proof of Lemma 21 in the
literature. For the sake of completeness a sketch is provided below in “Appendix B”.
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5.2. The proof of Proposition 18. Throughout, the parameter 8 € (0, 1) is fixed, as are
n>1,weQandz e G’Z;. We now proceed to study the singular-value decomposition
for the iterated Jacobian D, Fj.

Lemma 22. Let 0; = 0;(D;F))),01 > 03 > --- > oon denote the singular values of
D,F".
(1) We have
oy > L"P? > 712 > oy
(i) Let hy, - -+ , hay, hy, - -+ , by denote orthonormal bases of R?N for which
DZFéhi = o;h;

Then, h;, I eCf/loforl <i <Nandh;,h; eCly/loforallN+ 1 <i<2N.

For o > 0, we have written C; = {(u,v) € R*N : |lu|| < «|v|]} for the cone of
vectors roughly parallel to R”.

Proof. Tt follows from Lemma 16(ii) that for any E € Gry(R*M), E C Cf/lo’ we have

A mild variation of the arguments for Lemma 16 similarly implies that (Dz, F, ; YI(E) C
Cf/lo. The same then holds for (Dz, FQ)TDZ0 F,,. By Lemma 31 in Appendix A, it fol-
lows that there are N orthonormal eigenvectors &;,, - - - , h; inC} /10 for (Dg, F, ; YI'D Zo

Fy, spanning an N-dimensional space E' C Cf/lo’ such that (Dz, FQ)TDZO Fy(hi;) =

2
i

J

We want to check that {i{,--- ,iy} = {1,---, N}. Note that Lemma 16(i) implies
that the singular values o;,, - - - , 0, satisfy o; = L™8/2 We combine this with the
fact (straightforward to check) that (Dz, F; )TDZO Fy is symplectic with symplectic

(0 =1y

form J = ( Iv 0
is well-known that the eigenvalues of a self-adjoint symplectic matrix come in pairs of
the form A, A~ !; since we already have N real eigenvalues oizl, cee, Gt%v which are > 1,
this argument implies the remaining N real eigenvalues for (Dz, F, ; )TD 7o F, ﬁ are in the
interval (0, 1). Consequently,

) (recall that a matrix A is symplectic for J if ATJA = J). It

—1 —1 -1
01 =0)N, 02=0pN_1» **"s ON=O0pyp-
This implies {i{, --- ,iny} = {1, - - - , N}, and moreover, that the estimate oy > L"B/2 >
L7"P/2 > gy, holds as in item @).
A repetition of the above argument implies that there are N orthonormal eigenvectors
Ry, -+, hly for Dz, Fi(Dz, F;)Tcontainedian/lo,forwhich Dz FA(Dzy F2) T (h}) =

ol.z. By Theorem 29, it follows that (up to changing signs and possible rearrangement of

indices of the h;, h}) that
DZOFé(/’l,‘) = O‘,‘h;

holds. It is now straightforward to complete {1, - - - , Ay} and {h/l, s, h;v} to orthonor-
mal bases of R*V with the desired properties. O
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Define
H = H(D.F,) = Span{hy, --- , hy}
H' =H'(D.F,) = Span{h}, -, hiy},
noting that H+ = Span{hn,1,--- , han}, (H)*+ = Span{h'y, .-+, hyy}. By Lemma

22. we have that H, H' C Cf/lo- Below, given n > O and S C Gry (R2N), we write
N (S) for the (open) n-neighborhood of S with respect to the geodesic distance dgc,.

Lemma 23. There exists a universal constant ¢ > 0 depending only on N such that
(E € Gry(R*M) : D F,(E) is not contained in C5} C Ny((Un)°), 17)

where n = ¢cL™P".

Proposition 18 follows, since ({47¢)¢ is the finite union of a collection of closed
submanifolds of Gry (RZY) (Lemma 19). Here, we use the standard fact that if M ¢ M
is a closed submanifold of a compact Riemannian manifold M with strictly positive
codimension, then the Lebesgue measure of any neighborhood N, (M’) is < Cn, where
C > 0 depends only on M.

Proof of Lemma 23. Let E € Gry(R*N) be such that E’ := D, F£ (E) is not contained

inC5. Let v' € E'\CJ; since C3 is a cone and E’ is a subspace, we can assume without
loss of generality that v’ is a unit vector.
Now, let

V= v"l +v/],
where vj € H', v/, € (H)*. Since v/ ¢ C5 and H' C C{/10- it follows that [[v/ || ~ 1.
Now, let v = (D F) = () /II(D; F2)~ ()], so that
(D F)~' () (DFy)~ ()

e TN N CO T TN T T OOY]

since D,F'(H) = H', D,F"(HY) = (H')* (see “Appendix A”). To estimate these
components, we have N

Fo) (I = (on(D:Fy)) vyl = L ,
(D Fj) ' f|)|| < (on(D Fﬁ)) o |/||| < [ B2
Fy) (WD = (on41(DF)) vy I 2
(D Fﬁ) 1( /)” > ( (D Fj)) 1” / I > Lﬂn/Z
using that [[v/, || & 1. Continuing,
ID:FD @) = 1D FD ™ D — D F) ™ Wl 2 L — L8 2 12,

Thus, we conclude that [Jvy]| < L=P" while 1 — |lvp || = O(L~A"). This immediately
implies that

dw, H") < v —d.| = 0L, (18)
where 0| = H:j_i\l € Ht is a unit vector.
Fix a basis wy, - - - , wy—1 for the orthogonal complement of v in E and define
E = Span{v, wi, -+, wy—1}.

It follows from (18) that dy (E, E) < L=P". Since E € (Uy)° and dp, dge, are uni-
formly equivalent by Lemma 21, we conclude that dgeo (E, (Up)¢) S L=, O
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6. Proof of Theorems 1 and 3

6.1. Proof of Theorem 1. 1t suffices to check that condition (F2) holds for the family

frCer, -+ xn) = Qx; + LsinQmxi) + Y uijsin 27 (xj — xi))}L),

J#i
where (u;;) is a fixed family of coefficients.
Write f = (f',---, fV) in component form. By the Leibniz formula for the deter-
minant,
N afl
detL™'D f= LN sgn(t)
Ni=
where the outer summation is over the permutations t € Sy of the set {1, ---, N} and

the sgn is the sign function of permutations in the permutation group, which returns +1
and —1 for even and odd permutations, respectively. The dominant term is the product
]_[l-N=1 27 L cos 27 x;; precisely,

N
det L7'D, f — @m)" [Jcos2mx; = O(L™)
i=1

when L is taken sufficiently large relative to max;; |u;;|. Therefore

BﬂC{

for L sufficiently large. To estimate the volume of the RHS, we bound | cos2wx| >
4min{|x — 1/4], |x —3/4|}, so that | [TX_, cos 27rx;| = min{[TX, |xi — r;|}, where the
minimum is taken over all possible choices of (ry, --- ,ry) € {1/4,3/4}N. Thus,

N
B C U [T =il szﬂ‘]

(ro)fLyeflya3/4n Li=l

N
l_[ cos 27 x;

i=1

< LZﬂ—l}

where the union is again over all possible configurations of (r1, - - - , ry). We conclude
that

Leb Bg < Leb{(x,---,xn) € [0, l]N : l—[xi < Lzﬂ—l}.

1

For the RHS, we have the asymptotic < L3f~! (see Lemma 24 below). Therefore,
condition (F2) is satisfied with cg = 1 — 38.

Lemma 24. Define Sy (8) = {(x1,---,xn) € [0, vy . ]_[i x;j < &}. Then, For any
§ > 0, we have

N—1 i

(—log 8)’

LebSy(8) =8 ) —
i=0
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Proof. Define

J=J(xt, e xy)i=min{l < j < N:0<xj < ———},
xl...‘xj_l

and note that J is defined on Sy (8). In particular,

8
{(J=j1NSn()= <xy<lforall <£<j-1,0<x; < ———
xl...x]_l

5
Hisefl Xi

with no constraint on x 41, - -+ , xy. Thus Leb(Sy (8) N {J = j}) = Leb(S;(§) N{J =
j} forall j. It therefore suffices to compute Leb(Sy () N {J = N}). This is given by

1 1 1 S
[ b
x1=4 x2:i XN—IZ$ X1 XN—1

o X[ XN-2

Forc € (0, 1), k > 0, we have

e c\F loge e\ c ¢ el
—|log—) dy= —/ log—) dlog— = — (loge)* .
y=c y log $=0 y y k+1

Thus, after k iterated integrals, we have

1 1 8
/ .. / —de_] DY dXN_k
X x

— 5 X1 XN—
N—k= Ty T N-1 1 N-1

TN

(=1)k 8 ( s >"
= log
k! X1 XN—k-1 X1 XN—k—1

and after k = N — 1 such integrals, we deduce Leb(Sy(§) N {J = N}) =
ﬁ(— log 8)N_1. This completes the proof. O

6.2. Transversality criterion and genericity for (F2) .

6.2.1. Transversality criterion for (F2) Below, we derive the general transversality cri-
terion (8) for condition (F2) for families of the form f1 = Ly + ¢.

Lemma 25 (Transversality Criterion). Let ¥, ¢ : TV — RN be C? mappings and
assume that

{det Dy =0} N {Dy det DY = 0} = @. (19)
Then, f1 = L + @ satisfies condition (F2) with cg = 1 — B for all L sufficiently large.

Precisely, for any B > 0, there exists Cg = Cg(r, @) so that for any L sufficiently large
(in terms of ¥, @), we have that

Leb{det(L™"'D, 1) < L~"P} < cy.=0-F).
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Remark 26. Note that 1 (x) = (sin 27 x;); does not satisfy the transversality condition
(19); this is why we had to check (F2) by hand in the proof of Theorem 1. However, (19)
does hold for a large class of models: as we check below in Proposition 27, it is satisfied
by a C? generic set of /.

Proof. We begin with the following straightforward consequence of the constant rank
theorem applied to x +— det D, : there exist C > 0 with the property that for any
0 < e < é(Y), we have

Leb{det Dy < €} < Ce.

We will also need the following estimate: if A, B are N x N matrices, then there exists
Ca,p > 0, depending only on max |A;;|, max |B;;|, and N, such that

det(A +nB) > det(A) — Ca 0.

This can be obtained, e.g., from the formula
n
det(A +nB) — det(A) = / Tr (Adj(A + sB)B)ds,
0

where Adj(-) denotes the adjugate of a square matrix and n < 1. With this notation,
define C = sup, Cp,y, D, -
To complete the proof, let x € TV be such that det Dy > 2L~U=A) Then,

det Dy( + L™'¢) = det Doy — CL™' > L=

if LP > C. Thus, {det D,y > 2L~U=A} < {det(L~'D, f1) > L~U=P)}. Taking
complements, we conclude that

Leb{det(L™'D, f;) < L™U7P} < Leb{det D,y < 2L~ 1P} <2CL=0-H

on taking L large enough so that 2L~(~#) « &(y). The proof is complete on setting
Cg =2C. |

6.2.2. Genericity of (F2) when N = 2 In this subsection, we consider genericity of the
transversality condition (19) used to prove property (F2). We expect that (19) is generic
in general. For simplicity, however, we prove this only in the special case N = 2.

Proposition 27. There is a residual set R in C" (']IQ, Rz), r > 2 such that forall yr € R,
equation (19) holds, i.e., we have that 0 is a regular value of x — det Dy .

Proof. We write v = (Y1, ¥») where {1, ¥ : T2 — R. It is well-known that Morse
functions are generic; without loss of generality, we may assume that ¥r; and ¥, are
Morse functions, hence have finitely many critical points. We also assume that the set
of critical points of v is disjoint from that of ¥, which can be achieved by an arbitrary
small translation ¥ (-) — ¥ (- +a), a € R2 small. Thus we conclude for all x € T2
either Dy or Dy, is nonzero.

Noting that det D,y = || Dx¥r1 A Dyxyr2||, we introduce the function

W (1, Y2, x) = Dxfri A Dy,

We seek to apply the following consequence of the Sard-Smale theorem to the functional
v,
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Theorem 28 (Theorem 5.4 of [17]). Let Y, Z be separable Banach manifolds, E —
Y X Z a Banach space fiber bundle and ¥ : Y x Z — E a smooth section. Suppose
we have for all (y, z) € W~1(0)

1. the differential V¥ (y, z) : TyY x T,Z — E(y y) is surjective;
2. the partial derivative 0,V (y, z) : T,Z — E(y ) is Fredholm of index {;

Then for generic y € Y, the set {z € Z | ¥(y, z) = 0} is an £-dimensional submanifold
of Z.

We apply Theorem 28 with ¥ = (Ck(Tz, Rz))z, Z=T2 and E = Y x A*(T?),
where A2(T?) is the vector bundle of differential 2-forms on T2. Concretely, we identify
E = (CK(T?, R?))? x T2 x R using TT? = T? x R% and A*(R?) = R. In particular,
item 2 is always satisfied since 3, W (Y11, Y2, x) : T T> — E(y, y,.x) is a linear mapping
between two finite-dimensional spaces.

Itremains to check item 1. The derivative of W actingon (41, k2, v) € (C B (T2, R))?x
R? is given by

D,y x) ¥ (M1, ho, v) = Dyhy A Dyyra + Dy A Dyha+
(D241 (v)) A Dyyra + Dyt A (D29 (v)).

It suffices to check surjectivity of Dy, y, )W at all (1, Y2, x) such that vy, Y, are
Morse. With x fixed, by symmetry we can assume without loss of generality that D, v #
0. Set i1 = 0, v = 0, and construct A, so that D, h; is not parallel with D,y|. Then,
Dy )Y (h1,0,0) = Dyyyy A Dyhy # 0, hence DW is surjective at (Y1, Y2, x).
This completes the proof. O

6.3. Proof of Theorem 3.

Proof. For ease of notation and to avoid factors of 277, we work below with the parame-
terization T2 = [0, 271)2. By Lemma 25, it suffices to check the transversality condition
19 for the function

V(X1 %) = <sin X1 +sin(xp — x1)> .

sin xp + sin(x; — x7)

That is, we seek to show that the system det Dy = 0, Dy det Dy = 0 does not have
any solutions. This system of equations is given by

cos(x1) cos(xp) + (cos(x1) + cos(xp)) cos(x; —xp) =0 (20)
— sin(xp) cos(xp) — sin xj cos(x; — x2) — (cosx; + cosxp) sin(x; —xp) =0 (21)
— sin(xp) cos(xq) — sinxp cos(x; — x2) + (cos x| +cosxp) sin(x; —x3) =0 (22)

Adding (21) to (22) gives

sin(xp) cos(xp) + sin x; cos(x; — xp) + sin(xp) cos(x) + sin xp cos(x; — x2) = 0.
(23)

Solving (23) and (20) for cos(x; — x2) separately yields

1 sin(xy + x2)

sec(x1) + sec(xp) - sin(x1) + sin(xp) ;
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division by cos x1, cos x> is justified since, as one can easily check, no solution (xp, x2)
can satisfy either of cosx; = 0, cosx, = 0. With some standard algebraic manipula-
tions, this equation can be cast as

(sinxy + sin x3)(1 — sin xy sinxy) = 0.

If sin x sinxpy = 1, then sinx; = sinxp = =1, which is inconsistent with (21). If
sinxj + sinxy = 0, then x| + xo = 2kw or x; — xo» = (2k + 1)7r for some k € Z.
If x; + x2 = 2k, (20) will give us cos(2x;) = —=5+L. Plugging this into (22), we
get sin(2x1) = . Since = 1 is a contradiction, we deduce that no
solution to (20),(21),(22) can satisfy x| +x2 = 2km. Similarly, one can rule out solutions
satisfying x; — x» = (2k + 1)7. This completes the proof. O

sin x| cos? x| + sin? x;
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Appendix A: Version of the Singular Value Decomposition

Lyapunov exponents are asymptotic exponential growth rates of singular values. For
this reason, we recall here some basic facts about the Singular Value Decomposition and
related results used in this paper. Below, d > 1 and A is a d x d matrix. The singular

values o1(A) > --- > o4(A) are defined to be the eigenvalues of v AT A, listed in
decreasing order and counted with multiplicity.

Theorem 29 (Singular Value Decomposition, Theorem 3.1.1 of [16]). There exist or-
thonormal bases {ey, - - - , eq} and {e’l, e, e;} ofRd with the property that

Ae; = o (A)el’-.

These bases are unique up to changes of sign and rearrangements of indices in case of
repeated singular values (i.e., 0;(A) = 0 j(A) for some i # j).

Recall that {¢;} is an (orthonormal) eigenbasis for AT A, while {e!} is an appropriate
ordering of an (orthonormal) eigenbasis for AAT.
The following characterization of singular values is also used.

Lemma 30 (Min-max Principles for Singular Values, Theorem 3.1.2 of [16]). For all
1 <i <d, we have that

k

[Toi4) = max |det(Alg)l.
i1 ECR?
= dim E=i

where A|g is regarded as a linear mapping E — A(E).
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The characterization in Lemma 30 is central to the approach taken in this paper: it directly
implies that to control ]_['f 0 (A), it suffices to control the volume growth of A along
k-dimensional subspaces. Since Lyapunov exponents are asymptotic exponential growth
rates of singular values, this motivates why we can control sums of the top-k Lyapunov
exponents by studying the ‘typical’ rate at which k-dimensional volumes grow.

Lastly, we state the following corollary of Theorem 29, which we use in Lemma 22 to
estimate singular directions. Below, Ej is a k-dimensional subspace, o« > 0 is fixed,
Iy : RY — Ej is orthogonal projection to Eq, and

Co = {v € R : (I = To)v|| < || Tpv]l}
is a cone of vectors roughly parallel to Ey.

Lemma 31. Assume A is invertible, and has the property that for any {-dimensional
subspace E C Co, £ < k, we have that A(E) C Co and AT(E) C Co. Then, 31 < iy <
- < iy <d such thateij,e;j eCyforl <j <k
Proof. Let & = {E € Griy(R™) : E C Cp} and observe that & is invariant under
B := AT A, which we view as a (continuous) mapping Gry(R™) — Gri(R™). In the
chart Ug, (see Sect. 5.1), the set & is convex. Since & is also compact, we see by the
Brouwer fixed point theorem that B must have a fixed point in &y, i.e., a k-dimensional
subspace E for which B(E) = E. Since B is self-adjoint, it follows that B has k linearly
independent, orthogonal eigenvectors in E, from which we conclude 3i;,1 < j < k,
for whiche;; € Co. Applying the hypothesis to the span of ¢;; (€ = 1), we conclude that
Aei; = 0j; (A)e;j € Cy, from which it follows immediately that e;j € Cp as well (note

0i(A) #0forall 1 <i <d if A is invertible). |

Appendix B: Proofs of Grassmanian Geometric Lemmas 19 and 21

Proof of Lemma 19. Given E € Gri(R™), write V. = E* and define V = Ug)¢,
which by point (A) at the beginning of Sect. 3 is the set of k-dimensional subspaces
intersecting V nontransversally. We will describe V' as the image of a fiber bundle
&, to be defined below, via a smooth mapping ® : £ — Gri(R™). As we will show,
dim £ < k(m —k) = dim Grg(R™), hence V can be covered by embedded submanifolds
of dimension < k(m — k).

To define ® and &, we first introduce some notation. Given v € R™ let I, = {S €
Gri(R™) : v € S}. Then, each S € I, is uniquely specified by a corresponding k — 1-
dimensional subspace S, := SN (v)l = (I — T1,)(S), where IT, : R™ — (v) is the
orthogonal projection. So, we can (canonically) identify I, = Grj_ ((v)J-). The latter is
essentially Gry_ 1 (R™~!) and has dimension (k — 1)(m — 1 — (k— 1)) = (k—1)(m —k).
Letr : £ — Gry (V) denote the fiber bundle over Gry (V) with fibers Gri_; ((v)1). Write
elements of £ as (v, 3’), where v € V, Se Grk_l((v)l). We define @ : £ — Grm(Rk)
to be the sum of subspaces

®,8) = (v)+S
in R™. Evidently, the image of ® coincides with V. Sincedim € = (k—1)+(k—1)(m —

k) = (k — 1)(m — (k — 1)), it follows that ) can be covered by finitely many closed
submanifolds of dimension < (k — 1)(m — (k — 1)) < k(m — k). O
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In what follows, given a subspace E C R™, we write [1g : R” — F for its correspond-
ing orthogonal projection.

Proof of Lemma 21. Let E,E' € Gri(R™). Then, dgeo(E, E') = \JYi+ -+ ¢}
where each ¥; = v;(E, E') € [0, /2] is the i-th Jordan angle between E, E’, de-
fined by, e.g.,

cosyY; = min max max (v, w) 24)
.PCE veP weE’'
dim P=i |[v||=1 |w|=1

(see Proposition 3(b) of [22]). Wehave yr; < /2 < --- < Yy, hence Y < dgeo(E, E <

k.
To connect this with the Hausdorff metric, by [19] Theorem I-6.34 and some elementary
arguments, we have

dy(E, E") = |(I = Og)TEg| = sup ||(I — TIg)v| = supd(v, E')
veE veE

= sin Z(v, [gv).
On the other hand, by (24), we have

HE/U
max (v, w) = (v, = cos Z(v, [Tgv),
weE’ [TIg vl

lwll=1
hence Yy = maxyeg, |v=1 £(v, [1g/v). We conclude, then, that dy (E, E') = sin .
In particular, %l/fk <dy(E, E") < vy. This completes the proof. m|

Appendix C: Proof of Proposition 6: Explicit Noise Model R, Satisfying (E), (C)
and (ND)

Below, we write d = 2N for short. Throughout, {zi}iK: | is a set such that the balls
{B1/20(z;)} of radius 1/20 centered at the z; form an open cover of T,

Proof. For (z, E) € Grg)» (T?) fixed, we write
Wik 0 Q0 = Grap(T), W g)(@) = (Ryz. D:Ry(E)).

Here and throughout, elements w € o are written @ = (v, (U)). Observe that
W = W, ) is a continuous mapping sending the origin to (z, E). From this, we see
that (C) is a straightforward consequence of hypothesis (i). Condition (E) follows from
Lemma 9, the hypotheses of which are guaranteed by (iii) and the fact (z, E) — W(; )
is continuous as a mapping from Gry /Q(Td ) into the space of continuous mappings
Qo — Gry /Z(Td) in the compact-open topology.

It remains to check condition (ND). For this, by a compactness argument and the Con-
stant Rank Theorem, it suffices to show that for (z, E) € Grg/2 (T?) fixed, the mapping
W = W, g is a submersion. To simplify the argument, we begin with the following ob-
servation regarding the ‘upper triangular’ structure of DW: writing v = (v, -+ - , vg) €
RY and 7 = (z1, -+, zd),2 we have that

d d
D(t’(U(i)))\Ij a—vl = a—Zl

2 That is, we are abandoning for the moment the distinction between x and y coordinates in T = T2V,
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Thatis, varying v does not change at all the Gry /> (R9) coordinate in the image. Therefore,
it suffices to show that when v is held fixed, we have that

UD) > DR, iy (E)

is a submersion Skew(d)X — Gry /2 (RY).
In fact, we will show that for each z, it suffices to consider tangent directions corre-
sponding to a single U . To see this, we make the following claim.
Claim 32. There exists ¢ = cg 4 > 0 with the following property. For any z € T there
exists I < j < K such that for any (UD) e Skew(d)X, ||(U(i))|| < ¢, we have that

1

G—=D (€]
d(q)U(j*l) o---0 (I)U(I)Z’ Z]) =< E

Indeed, the claim holds with j any index for which d(z, z;) < 1/20 (see (9)), assuming
¢ = ck,q 18 taken small enough.
With (z, E) and the above value of j fixed, we now set about checking that

UY > DR, yiry(E)

is a submersion. Since Ty, GDS)(,) are all diffeomorphisms of T¢, it suffices to check

that UY) > DZ/CIDg()j) (E’) is a submersion Skew(d) — Grd/z(Td), where 7/ =

@gjj(;,lf) o @821) (z) and E' = DZCDg(;R) o QSZU(E). By our choice of j, Claim 32

ensures d(z’, z;) < 1/10, hence DZ/CDg()_,) = exp(UY)). In view of the composition
UYD i exp(UD) > exp(UYV)(E")

and the fact that U — exp(U) is a local diffeomorphism Skew(d) — O(d), it suffices

to check that O +— O(E) is a submersion O(d) > Grg2 (RY). Since surjectivity of a

derivative is an open property, it suffices to check that the differential of O +— O(E) is

a submersion at the identity Id € O(d). O

Claim 33. Fix 1 < k < d and Eg € Gri(R?). Define & : O(d) — Grx(RY), E(0) :=
O(Ep). Then, Diy E : Skew(d) — Tg, Gry (Rd) is surjective.

Proof of Claim. We evaluate the differential explicitly in coordinates. Recall the chart
UE, = L(Ey, Eé‘) for Gri(R?) at Eg. As one can check, in this chart, 2(0) = O (Ep)
is represented as

E(0) = graph, g(0), g(0) := (Id —Tlg,) O(ME, O|g,) .
Therefore, in these coordinates we have (writing [1g, = IT, Mt =1d-11 Eo)
Dog(U) = I-UMO|g) ™" + - 0(MO|g)~ ' U(MO|g,) ™!
for U € ToO(d). Evaluating at O = Id, we see that
Dig(U) = MU/,

This is clearly surjective as a linear mapping Skew(d) — L(E, EOL); given an arbitrary
B € L(Ey, Ef"), we have Digg(U) = B for any U of the form

MU|g, MU « _BT
U=t L’ )= ~
MU g, MU B
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