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Abstract: In this paper, we give a quantitative estimate for the first N Lyapunov expo-
nents for random perturbations of a natural class of 2N -dimensional volume-preserving
systems exhibiting strong hyperbolicity on a large but noninvariant subset of the phase
space. Concrete models covered by our setting include systems of coupled standard
maps, in both ‘weak’ and ‘strong’ coupling regimes.

1. Introduction

Many systems, including large classes of those of physical interest, exhibit strong sensi-
tivitywith respect to initial conditions. Oneway tomathematically describe this behavior
is through Lyapunov exponents: for a smooth map F : M → M on a manifold M and a
point x ∈ M , the Lyapunov exponents of F along the orbit {Fi x} are the possible values
of

λ(x, v) := lim
n→∞

1
n
log ∥Dx Fn(v)∥,

when these limits exist, as v ranges over tangent directions in TxM . If λ(x, v) > 0
for some (x, v) ∈ T M , then ‘typical’ nearby initial conditions diverge from {Fi x}
exponentially fast. For more discussion, see, e.g., [1,26,30].

Away from uniformly hyperbolic/Anosov settings, there can be extreme challenges
in actually verifying that a given system, even a simple, low-dimensional one, admits
positive Lyapunov exponents on an observable subset of phase space (i.e., positive-
volume). This can be the case even when a positive Lyapunov exponent is “obvious” in
numerical experiments.

Exemplifying these challenges is the Chirikov standard map family

(I, θ) %→ #L(I, θ) = (I + L sin 2πθ, θ + I + L sin 2πθ),
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where L ∈ R is a real parameter and both coordinates I, θ are takenmodulo 1. Introduced
by Chirikov [9], the standard map is a fundamental toy model describing the dynamics
along ‘stochastic boundary layers’ formed by resonances in perturbed Hamiltonian sys-
tems, capturing the intricate interaction in phase space between ‘regular’ (elliptic) and
‘chaotic’ (seemingly stochastic) motion. For more discussion, see [8].

When L ≫ 1, themapping#L exhibits strong hyperbolicity, except along anO(L−1)
neighborhood of the vertical lines {θ = π/2, 3π/2}. The volume of these critical strips,
where hyperbolicity fails, approaches 0 as L →∞, and so one might expect λ(x, v) >
0 for most x ; this is corroborated by a wealth of numerical evidence. However, to
prove this mathematically rigorously is a notorious open problem: to date, no-one has
proved that#L admits a positive Lyapunov exponent on a positive-area set for any value
of L (equivalently, by Pesin’s entropy formula, that Lebesgue measure has positive
metric entropy for #L ). The primary challenge to overcome is cone-twisting, i.e., when
previously expanded tangent directions can, upon the trajectory entering the critical set,
be ‘twisted’ into strongly contracting directions. Estimating Lyapunov exponents for
models of this kind amounts to an incredibly delicate cancellation problem between
phases of growth and decay, all depending on the (time-varying) orientation of tangent
directions.

These challenges are real, as evidenced by known results on the relative density of
elliptic periodic orbits in phase space (e.g., [10]), which imply that even when L is taken
arbitrarily large, there may be positive-area regions of phase space with zero Lyapunov
exponents. In the positive direction, Gorodetski has shown that for a residual subset of
[L0,∞), L0 ≫ 1 taken sufficiently large, the set with a positive Lyapunov exponent has
Hausdorff dimension 2 [14], although this is quite far from a positive-area set. We also
mention the more recent work of Berger and Turaev, whose work on perturbations of
elliptic islands for surface diffeomorphisms implies that #L is C∞ close to a volume-
preserving mapping admitting a positive Lyapunov exponent on a positive-area set [3].
Lastly, we note that this brief discussion omits many works and indeed entire subfields
related to the standard map, e.g., Schrödinger cocycles. We refer the readers to the
introduction of [4] for more discussion.

The aimof this paper is to extend this program to a class of volume-preserving systems
of arbitrarily high dimension exhibiting strong hyperbolicity on a large yet noninvariant
subset of phase space. We aim to make estimates on all Lyapunov exponents, not just
the ‘top’ exponent. Although our approach in this paper is inspired by that of [4], the
higher-dimensional setting introduces several new layers of complexity which must be
contendedwith, e.g., to estimate all Lyapunov exponents wemust estimate the stationary
statistics of N -dimensional planes in TT2N (see Sects. 3 and 4).

The setting we introduce below includes systems of coupled Chirikov standard maps
in a variety of coupling regimes: for N > 1 we consider N standard map oscillators
(Ii , θi ) ∈ T1 × T1, i = 1, · · · , N , with a time evolution (Ii , θi ) %→ ( Īi , θ̄i ) defined by

I i = Ii + L sin 2πθi +
∑

j ̸=i

µi j sin 2π(θ j − θi ),

θ i = θi + Īi ,

(1)

where T1 is parametrized as [0, 1), with all quantities above regarded “modulo 1”. This
is a completely integrable, uncoupled system when L , (µi j ) are zero; in this paper, we
will instead be interested in the so-called anti-integrable regime where L ≫ 1 and the
(µi j ) can be potentially quite large. Note that the above mapping is symplectic, hence
volume-preserving, iff µi j = µ j i for all i, j .
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Coupled standard maps appear in the physical literature as toy models of Arnold dif-
fusion [9] as well as the statistical properties of chaotic maps. These maps exhibit strong
evidence of chaotic behavior in experiments, while mathematically rigorous verification
of this chaotic behavior is hopelessly out of reach in the absence of noise. We refer the
readers to, e.g., [5,18,21,27] and the references therein for more physics background
and research on coupled standard maps.

Related to ourwork is that ofBerger andCarrasco [2],which considered theLyapunov
exponents of a skew product of a hyperbolic CAT map with a Chirikov standard map.
This was generalized recently by Carrasco [7] to estimate the Lyapunov exponents
of arbitrarily many coupled standard maps. Applying a symbolic coding to the CAT
map, one can view the models in [2,7] as random perturbations by discrete noise (by
comparison, [4] and this paper both use the absolutely continuous noise). We note,
however, that both themodels and techniques in [2,7] are very different from the setting in
the present manuscript. A key difference is that the perturbations in [2,7] are necessarily
of order 1, and so the perturbed and unperturbed mappings have completely different
dynamics even after 1 timestep. In contrast, the perturbations in [4] and the present paper,
although absolutely continuous, may be extremely small.

The tractability of Lyapunov exponents for randomly perturbed systems is suggestive
of the possibility of using computer-assisted techniques: when enough ‘nondegenerate’
noise is present in the random system, it is possible to estimate asymptotic quantities
such as Lyapunov exponents rigorously by approximating the full random dynamics
by, e.g., a finite-state Markov chain. To our knowledge, this connection has only been
pursued recently: the work [12] uses computer-assisted proof (CAP) to study noise-
induced order for a Poincaré section of a model of the famous Belousov-Zhabotinsky
chemical reaction; and the work [6] uses CAP to estimate Lyapunov exponents for
a stochastically perturbed Hopf system conditioned on remaining a bounded distance
from the origin.

Farther from our work, there is a wealth of literature on Lyapunov exponents. We
mention, for instance, Furstenberg’s famous 1963 paper [11] on positivity of Lyapunov
exponents for IID products of determinant 1 matrices, and the vigorous activity that
followed extending this work to random products of matrices driven by more gen-
eral processes (e.g., [15,25]) and to simplicity of the Lyapunov spectrum (e.g., [13]).
We emphasize, though, that these works are qualitative and a priori provide no con-
crete estimates of Lyapunov exponents. We have only emphasized here works which
directly address nonuniform hyperbolicity (in the presence of cone twisting) only in
high-dimensional systems. For a broader discussion, we refer the reader to the introduc-
tion of [4].

1.1. Summary of results. We provide here an incomplete statement of the results in this
paper emphasizing applications to coupled standard maps, deferring statements at full
generality to the next section.

Maps from which we perturb Let T = T1 denote the circle, parametrized as [0, 1) ∼=
R/Z. For N ≥ 1 we consider dynamics on the torus T2N ∼= R2N/Z2N , which we regard
with the flat metric coming from R2N . We consider mappings F : T2N → T2N of the
form

F(x, y) = ( f (x)− y, x) (2)
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where x = (x1, · · · , xN ) ∈ TN , y = (y1, · · · , yN ) ∈ TN and f : TN → TN is a given
smooth mapping. Below and throughout, all addition in TN is carried out ‘modulo 1’ in
each coordinate. Note that F is always invertible and volume-preserving, irrespective of
the mapping f .

This class is a natural setting for high-dimensional volume-preserving systems with
strong expansion, and includes the coupled standard map systems from (1): the change
of coordinates xi = θi , yi = θi − Ii (mod 1) conjugates the mapping (I, θ) %→ ( Ī , θ̄)
to F as in (2) with

f (x) =
(
2xi + L sin 2πxi +

∑

j ̸=i

µi j sin 2π(x j − xi )
)N
i=1. (3)

Let us comment briefly on the hyperbolicity of the mappings F . Throughout we iden-
tify TT2N ∼= T2N ×R2N and writeR2N = Rx ⊕Ry , where Rx = Span{ ∂

∂x1
, · · · , ∂

∂xN
}

and Ry = Span{ ∂
∂y1

, · · · , ∂
∂yN

}, each of which is parametrized by RN . For α > 0, we
define

Cx
α := {(u, v) ∈ R2N : ∥v∥ ≤ α∥u∥}

of vectors α-close to the ‘horizontal’ space Rx . We show that for all L sufficiently large
and under rather general conditions on the coupling coefficients µi j that f as above
expands N -dimensional volumes to order ≈ LN on a large (but noninvariant) subset of
phase space. As a consequence, when L is taken large enough, we have that

D(x,y)FCx
1/10 ⊂ Cx

1/20,

i.e., the cone Cx
1/10 is mapped well inside itself. We note, however, that cone invariance

can fail badly in some parts of phase space: vectors in Cx
1/10 can be rotated to a vicinity

of the ‘vertical’ space Ry .

Noise model We next randomize the system FL . Fix a probability space ('0,F0,P0)
and letω %→ Rω ∈ C2

vol(T2N ,T2N ) be ameasurable assignment to eachω ∈ '0 of aC2,
volume-preserving diffeomorphism Rω : T2N → T2N , to be interpreted as the ‘noise’
applied to the dynamics at each timestep. Define ' = '⊗N0 ,F = F⊗N0 ,P = P⊗N0 and
let θ : ' → ' be the leftward shift (which is automatically invariant and ergodic for
P). Elements ω ∈ ' are written ω = (ω1,ω2, · · · ) for ωi ∈ '0, i ≥ 1. In this paper, we
consider random compositions

Fn
ω = Fωn ◦ · · · ◦ Fω1, n ≥ 1, ω = (ωi )i∈N ∈ '

of the (IID) randommaps Fω = Rω ◦ F, ω ∈ '0,where F is as in (2). We also consider
the Markov chain (Zn) = (Xn, Yn) on T2N defined by setting (Xn,Yn) = Fn

ω(X0,Y0)
for fixed initial Z0 = (X0, Y0) ∈ T2N .

For the noise model Rω we shall impose three sets of assumptions. The first two are
as follows:

(E) The only stationarymeasure for theMarkov chain (Xn, Yn) is LebT2N , the Lebesgue
measure on T2N .

(C) The noisemodel Rω satisfies DzRω(Cx
1/20) ⊂ Cx

1/10 and ∥DzRω∥, ∥(Dz Rω)
−1∥ ≤ 2

for all z = (x, y) ∈ T2N with probability 1.
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Assumption (E) (short for ergodicity) is natural in the context of random systems, and
is satisfied by a wide variety of noise models Rω, e.g., if for all fixed z ∈ T2N , the law
of Rω(z) has a density qz which varies L1-continuously in z– see Lemma 9 for details.
Condition (E) implies that the Lyapunov exponents

λi := lim
n

1
n
log σi (DzFn

ω) (4)

exist with probability 1 and are deterministic and constant over all z ∈ T2N (Theorem
11). Here, σi (·) refers to the i-th singular value (“Appendix A”). See Sect. 3.1 for more
background on Markov chains and conditions for existence of the limit (4). Condition
(C) is reasonable in the context of this paper, and ensures the noise model Rω does not
introduce any additional cone-twisting to the resulting random system.

The third, assumption (ND) (short for nondegeneracy) is somewhat more technical,
and has to do with the way that N -dimensional planes are randomized by the noise
model Rω. For additional discussion and motivation, see the Additional Comments at
the end of this section. Below, GrN (R2N ) denotes the Grassmanian, the manifold of
N -dimensional subspaces of R2N (for more on the Grassmanian, see Sect. 5.1).

(ND) For any fixed z ∈ T2N and N -dimensional subspace E ⊂ R2N (viewed as ⊂
TzT2N ), we have that the measure

Q̂(z,E)(·) := P0((Rωz, Dz Rω(E)) ∈ ·) (5)

on GrN (T2N ) := T2N × GrN (R2N ) is absolutely continuous w.r.t. Lebesgue
measure m := LebT2N ×LebGrN (R2N ), and that the resulting density q̂(z,E) :=
d Q̂(z,E)
dm satisfies

∥q̂(z,E)∥L∞ ≤ M

where M > 0 is a constant independent of (z, E).

Above, the measure LebGrN (R2N ) is the Riemannian volume on GrN (R2N ); see Sect. 5.1
for details.

The value M itself has the connotation of an ‘inverse noise amplitude’: if Rω is
typically C1 close to the identity, then the value M must be large. An explicit noise
model satisfying (E), (C), and (ND) is constructed in Sect. 2.

Results for coupled standard maps. The following two results estimate all Lyapunov
exponents (λi ) as in (4) of the random coupled standard maps introduced above.

Theorem 1. Let α, δ ∈ (0, 1). Let N ≥ 2 and consider the coupled standard map F as
in (2) with

f (x) =

⎛

⎝2xi + L sin 2πxi +
∑

j ̸=i

µi j sin 2π(x j − xi )

⎞

⎠
N

i=1

,

where the coefficientsµi j are fixed and L is sufficiently large depending on (µi j ). Assume
that the randomizations Rω satisfy (E), (C) and (ND), and that the noise parameter M
satisfies

M ≤ L
δ
12 L

1−δ
(6)
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Then, the Lyapunov exponents (λi ) of this random composition satisfy

λ1 ≥ . . . ≥ λN > 0 > λN+1 ≥ . . . ≥ λ2N , and min{|λi |} ≥ α log L . (7)

Remark 2. Note that the parameter L can be freely taken arbitrarily large. In particular,
given an Rω with a particular value of M , one is free to choose L large enough so that
(6) is satisfied.

The setting of Theorem 1 can be thought of as describing a kind of ‘weak’ to ‘mod-
erate’ coupling regime: the strength of the hyperbolicity L of each individual oscillator
overshadows the coupling amplitude maxi j |µi j |. The following applies in a regime
when the strength of the coupling matches that of the individual oscillators.

Theorem 3. Let α, δ ∈ (0, 1). Let N = 2 and consider the coupled standard map F as
in (2) with

f (x1, x2) =
(
2x1 + L sin 2πx1 + L sin 2π(x2 − x1)
2x2 + L sin 2πx2 + L sin 2π(x1 − x2)

)
.

Let L be sufficiently large. Assume Rω satisfies (E), (C) and (ND) as well as

M ≤ L
1
2 δL1−δ

.

Then, the Lyapunov exponents (λi ) satisfy the estimate (7).

Theorems are consequences of our general main result Theorem 5, presented below
in full generality in Sect. 6.

Remark 4. We emphasize the order of quantifiers in our results: throughout, we fix the
dimension N and choose L sufficiently large depending on N , but not vice versa. It
would, though, be of interest to fix L , take the ‘hydrodynamic limit’ N →∞ and study
the resulting Lyapunov spectrum. Limits of this kind provide toy models for, e.g., gases
of particles in the hydrodynamic limit; see, e.g., [28,29]. However, this is beyond the
scope of the present paper, since our analysis here does not take into account quantitative
dependence in N .

Additional comments We end this section with some discussion on the relationship be-
tween this paper and the previous work [4], as well as some discussion on the assumption
(ND) and how it could potentially be relaxed.

The paper [4] estimates Lyapunov exponents for random standard maps (N = 1) on
T2 subjected to IID ‘additive’ noise of the form Rω(x, y) = (x +ω, y)with ω uniformly
distributed in [−ϵ, ϵ] for some ϵ > 0 small. The rough idea there is to relate Lyapunov
exponents to stationary statistics of the Markov chain

(Zn, Vn) =
(

Fn
ω(Z0),

DZ0F
n
ω(V0)

|DZ0Fn
ω(V0)|

)

on the unit tangent bundle ST2 ∼= T2× S1. The key idea in that paper is that the presence
of noise implies that stationary measures are absolutely continuous, and that stationary
mass cannot concentrate too much parallel to Ry , where strong contraction can occur.
This was used directly to show that the vast majority of stationary mass was nearly
parallel toRx , where the strong expansion ensures a large Lyapunov exponent. To check
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absolute continuity of stationary measures for (Zn, Vn), it was shown that the noise in
the base ‘propagates’ to tangent directions in three iterates of the random system (one
for each dimension of the projective bundle PT2 ∼= T2× P1), in the sense that for fixed
(Z0, V0), the law of (Z3, V3) is absolutely continuous on T2 × S1.

The goal of this paper is demonstrate that the basic mechanism introduced in [4]
generalizes to higher-dimensional systems, e.g., coupled standard maps, and to provide
estimates on all Lyapunov exponents, not just λ1. To this end, for N > 1 we study
an analogous Markov chain (Zn, En) on the Grassmanian bundle GrN T2N ∼= T2N ×
GrN (R2N ) of N -dimensional subspaces of TT2N and relate stationary measures for
(Zn, En) to the sum of the first N Lyapunov exponents (with multiplicity). This brings
us to the purpose of condition (ND), which plays the same role that the 3-step noise
propagation played in [4]: this condition ensures that stationary measures for (Zn, En)
are absolutely continuous and cannot concentrate too much in any one place.

On the other hand, condition (ND) is not satisfied by ‘additive’ noise models of the
form Rω(x, y) = (x, y)+ωwhereω is some randomvector: condition (ND) requires that
the noise model Rω induces some ‘twisting’ of tangent directions. That being said, the
methods in this paper are entirely compatible with the following hypothetical scheme,
more in line with [4]: start with additive noise Rω(x, y) = (x, y)+ω and show that there
is some k such that for all fixed (Z0, E0) ∈ GrN (T2N ), we have that the law of (Zk, Ek)
is absolutely continuous on GrN (T2N ). Although highly plausible, actually carrying
this out appears to be quite challenging for general N : the Grassmanian GrN (R2N ) has
dimension N 2, and so even if the random vector ω is absolutely continuous along all
2N coordinates in T2N , it would take a minimum of k ≈ N/4 iterates for the noise
to propagate to all directions in GrN (R2N ). Already in the simple case N = 2 the
computations involved are quite involved, requiring separate estimates across multiple
charts in Gr2(R4). So, for the sake of unity of focus and brevity, we have opted to
use noise models satisfying condition (ND), as this framework highlights the essential
features of the proof. Extensions to additive noise models are left to future work.

2. General Framework and Full Statement of Results; An Explicit Noise Model

We begin by providing the full general framework we work in and the main result from
which Theorems 1 and 3 are derived.

Let us start with a full description of the deterministic maps from which we perturb.
We consider one-parameter mappings of the form F = FL : T2N !, FL(x, y) =
( fL(x) − y, x), x, y ∈ TN , L > 0, where the family fL : TN → TN is assumed to
satisfy the following:
(F1) There exists C0 > 0 such that ∥Dx fL∥ ≤ C0L for all x ∈ TN and L ≥ 1; and
(F2) For any β ∈ (0, 1), there exist Cβ , cβ , Lβ > 0 so that for all L ≥ Lβ , we have

that

Bβ = {x ∈ TN : | det Dx fL | ≤ LN−(1−β)} ⊂ TN

has Lebesgue measure ≤ CβL−cβ .

Condition (F2) implies that for a large Lebesgue-measure set x ∈ TN , we have
| det Dx fL | is of order LN , and since ∥Dx fL∥ is no larger than order L by (F1), we see
that ∥Dx fL(v)∥ must be approximately L∥v∥ at all v ∈ TxTN ∼= RN and for all such
x . As a result, the corresponding mappings FL expand all directions roughly parallel to
Rx by a factor of L . For more details, see Sect. 3.3 below.

We can now state our main abstract result.
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Theorem 5 (Main Theorem). Assume that the one parameter family fL : TN → TN

satisfies conditions (F1) and (F2). Fix α,β ∈ (0, 1) and δ ∈ (0, cβ), where cβ is as in
(F2). Let L ≥ Lβ be sufficiently large in terms of these parameters. Lastly, let Rω be
any noise model satisfying (E), (C) and (ND), and assume that the noise parameter M
as in condition (ND) satisfies

M ≤ L
1
2βLcβ−δ

.

Then, the Lyapunov exponents (λi ) of Fn
ω = Fωn ◦ · · · ◦ Fω1 , Fω := Rω ◦ F, satisfy

λ1 ≥ . . . ≥ λN > 0 > λN+1 ≥ . . . ≥ λ2N , and min{|λi |} ≥ α log L .

Once Theorem 5 is proved, to prove Theorems 1 and 3 it will suffice to check that
the corresponding one-parameter families fL satisfy conditions (F1) and (F2); this is
carried out in Sect. 4.

We note that conditions (F1) and (F2) are not limited just to coupled standard maps.
Indeed, for general ψ,ϕ : TN → RN , we can consider the one-parameter families

fL := Lψ + ϕ.

Condition (F1) is evident for arbitrary ψ,ϕ, while we are able to show (Lemma 25) that
condition (F2) holds under the transversality-type condition

{det Dxψ = 0} ∩ {∇ det Dxψ = 0} = ∅. (8)

This is clearly a C2 open condition; for N = 2, we show (Proposition 27) that (8) in
fact holds for a C2-generic set of ψ . On the other hand, (8) fails for ψ in the setting of
Theorem 1; for this reason we instead check (F1), (F2) directly for this model in Sect. 6.

Anexplicit noisemodel. Belowwe sketch the construction of a noisemodel Rω : T2N →
T2N satisfying properties (E), (C) and (ND). Full proofs are deferred to “Appendix C”.
We write d = 2N for brevity. Below, we write O(d) for the space of orthogonal d × d
matrices. Let Skew(d) = TIdO(d) denote the Lie algebra of skew-symmetric d × d
matrices, and recall that the matrix exponential eU of anyU ∈ Skew(d) is an orthogonal
matrix.

Let {zi }Ki=1 be a collection of points with the property that

Td = ∪i B1/20(zi ), (9)

i.e., the balls {B1/20(zi )} of radius 1/20 cover Td . For brevity, we write d = 2N below.
Let ψ : [0,∞) → [0, 1] be a C∞ bump function such that ψ |[0,1/10] ≡ 1 and

ψ |[1/5,∞) ≡ 0. For z ∈ Td , define /i (z) ∈ Rd to be the unique vector1 in [−1/2, 1/2)d
such that /i (z) = z − zi modulo 1 (recall that Td is parametrized by [0, 1)d ).

For U ∈ Skew(d), define

#
(i)
U : Td → Td , #

(i)
U (z) = zi + exp(ψ(d(z, zi ))U )/i (z)

1 In other words, for each 1 ≤ j ≤ d, we set the j-th component (/i (z)) j to be {(z − zi ) j }− 1/2, where
here for α ∈ Rwe write {α} = α−⌊α⌋ ∈ [0, 1) for the fractional part of α, and (z− zi ) j is the j-th coordinate
of z − zi .
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This yields a defined, continuous mapping of Td into itself, which rigidly rotates the
shells of constant distance from zi by some fractional power of eU ∈ O(d). With this
picture in mind, it is straightforward to show that #

(i)
U preserves volumes (e.g., using

polar coordinates wewrite the volume form as dvol = rn−1drd'where' is the volume
form on the unit sphere. It is clear by definition that #

(i)
U preserves dvol since both dr

and d' are preserved).
Given h ∈ Rd , define Th : Td → Td to be the translation Thz = z + h. Given

U (1), · · · ,U (K ) ∈ Skew(d) and v ∈ Rd , we define

R(v;{U (i)}) := Tv ◦#
(K )

U (K ) ◦ · · · ◦#
(1)
U (1) .

With '0 = Rd × Skew(d)K , we see that a Borel probability P0 on '0 ∋ ω %→ Rω

yields a ‘random’ volume-preserving diffeomorphism of Td . This diffeomorphism is a
composition of a sequence of ‘twists’ of Td by rigid rotations, post-composed by a rigid
translation in Td .

We now provide sufficient conditions on the law P0 for the noise model Rω to satisfy
conditions (E), (C) and (ND). Below, we regard '0 as a copy ofRd+Kd(d−1)/2 equipped
with Lebesgue measure 0 and the standard Euclidean norm.

Proposition 6. There exists c = cK ,d > 0 sufficiently small so that the following holds.
Let P0 be any Borel probability measure on '0 such that

(i) Supp(P0) is contained in the ball of radius c centered at the origin;
(ii) P0 ≪ 0 with ∥dP0/d0∥L∞ <∞; and
(iii) ∃ζ > 0 such that dP0/d0 > 0 on the ball of radius ζ centered at the origin.

Then, Rω equipped with P0 satisfies conditions (E), (C) and (ND).

To summarize these conditions: item (i) ensures that the Rω are not too far from the
identity in the C1 norm, hence (C) holds. Item (ii) is used to affirm condition (ND),
that N -dimensional planes are randomized by Rω. Finally, item (iii) is used to check
ergodicity of LebTd as in condition (E). See “Appendix C” for a full proof.

Organization of the paper In Sect. 3, we give some preliminary results on the Markov
chain on T2N and on GrN (T2N ), while in Sects. 4 and 5 we prove Theorem 5. Theorems
1 and 3 are proved in Sect. 6. Sufficient conditions for (F2) and genericity results, as
well as applications to coupled standard maps, are worked out in Sect. 6. Included in
“Appendix A” is a version of the standard singular value decomposition used in this
paper. In “Appendix B”, we give the proofs of Lemma 19 and 21 on Grassmannian. In
“Appendix C”, we prove that the noise model Rω constructed above satisfies conditions
(E), (C) and (ND).

3. Preliminaries

Here we provide some preliminaries used in the rest of the paper. Section 3.1 recalls ele-
ments of random dynamics and formulations in terms of Markov chains, while Sect. 3.2
relates stationary measures of these Markov chains to Lyapunov exponents, crucial to
the approach we take in this paper. In Sect. 3.3 we provide some preliminary estimates
characterizing hyperbolic behavior of our random maps Fω.
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3.1. Background on random dynamics and Markov chains. Let us recall the definition
and basic properties of aMarkov chain. Let (S,S) be ameasurable space, and let (Xn) be
a sequence of S-valued random variables, i.e., there is some probability space (',F ,P)
and a sequence of measurable mappings Xn : ' → S. We say that (Xn) is a (time-
homogeneous) Markov chain if for all n ≥ 1 and sets A0, · · · , An ∈ S), we have
that

P(Xn ∈ An|Xn−1 ∈ An−1, · · · , X0 ∈ A0) = P(Xn ∈ An|Xn−1 ∈ An−1).

Under general conditions on (S,S) (e.g., S is a complete metric space and S = Bor(S)),
the law of Xn conditioned on Xn−1 is proscribed by a transition kernel P , i.e., an
assignment to each s ∈ S of a probability measure P(s, ·) on (S,S) such that for all
n ≥ 1 and A ∈ S,

P(Xn ∈ A|Xn−1) = P(Xn−1, A) with probability 1,

where aboveP(·|Xn−1) refers to the probability of an event conditioned on the σ -algebra
generated by Xn−1.

In this paper we consider Markov chains arising from random dynamical systems.
Assume (as will always be the case for us) that S is a compact metric space and S =
Bor(S). Let ('0,F0,P0) be a probability space, and let G : '0 → C(S, S) be a
measurable mapping into the spaceC(S, S) of continuous self-maps of S (equipped with
the uniform norm and corresponding Borel σ -algebra). As in the previous section, form
(',F ,P) = ('0,F0,P0)

⊗N and write elementsω ∈ ' asω = (ω1,ω2, · · · ),ωi ∈ '0,
noting that {Gωi }i is an IID sequence of C(S, S)-valued random variables. For fixed
initial X0 ∈ S, this gives rise to the Markov chain Xn = Gωn ◦ · · · ◦ Gω1(X0) with
transition kernel

P(s, A) = P(s ∈ G−1ω (A)) .

Recall that a probability measure µ on (S,S) is called stationary if

µ(A) =
∫

P(s, A)dµ(s)

for all A ∈ S. Note that ifµ is stationary, then for allϕ : S→ R bounded andmeasurable
and for all n ≥ 1, we have that

∫
ϕ(s)dµ(s) =

∫
(Esϕ(Xn)) dµ(s),

where Es denotes the expectation w.r.t. P conditioned on X0 = s. When Xn = Gωn ◦
· · · ◦ Gω1(X0) as above, we can view Xn = Xn(s;ω) as a function of the random
sample ω ∈ ' and the initial condition X0 = s; with these conventions, for ϕ bounded-
measurable and n ≥ 1 we have by Fubini’s Theorem that

∫
ϕ(s)dµ(s) =

∫

'

(∫

S
ϕ(Xn)dµ(s)

)
dP(ω). (10)

Lastly, we recall that the random dynamics induced by Gω can be thought of as a
“deterministic” dynamical system via the skew-product construction, which we recall
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below. Let θ : '→ ' denoting the leftward shift, and define the mapping τ : '× S !
by

τ (ω, s) = (θω,Gωs).

We record below awell-known ‘glossary’ between invariantmeasures of τ and stationary
measures of (Xn). Recall that a stationary measure µ for (Xn) is called ergodic any
P-invariant set A ⊂ S satisfies µ(A) = 0 or 1. Here, a measurable set A is called
P-invariant if P(s, A) = 1 for all s ∈ A.

Proposition 7. Assume S is a compact metric space. Let µ be any Borel probability
measure on S.

(a) The measure P× µ is τ -invariant iff µ is a stationary measure for (Xn).
(b) (Ohno’s Theorem) The measure P × µ is τ -ergodic iff µ is an ergodic stationary

measure.

Lastly, we recall the following consequence of the Krein-Milman Theorem applied
to the (convex, weak∗ compact) set of stationary measures for (Xn).

Corollary 8. Assume (S,S) is a compact metric space. Then, the set of ergodic station-
ary measures for (Xn) is nonempty.

In particular, if (Xn) admits a unique stationary measure, then it must be ergodic.

3.2. Stationary measures and Lyapunov exponents. We now specialize to the random
dynamics of interest in this paper: let (',F ,P) be as in Sect. 1 corresponding to a noise
model Rω, and let F : T2N → T2N , F(x, y) = ( f (x) − y, x). Throughout, we write
Fω = Rω ◦ F and Fn

ω = Fωn ◦ · · · ◦ Fω1 . Lastly, for fixed initial Z0 = (X0,Y0) ∈ T2N ,
we write

Zn = (Xn, Yn) = Fn
ω(X0, Y0)

for the Markov chain generated by the system Fn
ω and

P(z, A) := P(z ∈ F−1ω (A))

for the corresponding transition kernel. Below and throughout, τ : '× T2N ! denotes
the corresponding skew product τ (ω, z) := (θω, Fω1(z)).

3.2.1. A sufficient condition for (E): LebT2N is ergodic Since Rω, F are always volume-
preserving, we see that the volume LebT2N is always a stationary measure for (Zn). The
following is a useful criterion for ensuring that the ergodicity condition (E) holds.

Lemma 9. Assume the following:

(a) For all z ∈ T2N , the law Qz of Rω(z) is absolutely continuous w.r.t. LebT2N ; and
(b) We have that z %→ qz := dQz

d LebT2N
is L1 continuous, i.e., for any z ∈ T2N , η > 0

there exists δ > 0 such that d(z, z′) < δ implies ∥qz − qz′ ∥L1(LebT2N ) < η.

Then, condition (E) holds, i.e., Lebesgue measure LebT2N is the unique, hence ergodic,
stationary measure for the Markov chain (Zn).
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Proof. The result is similar to Lemma 5 of [4], but the proof we present here is somewhat
more general. To start, by Corollary 8, we may fix some ergodic stationary measure m
for (Zn). Define

G = {z ∈ T2N : lim
n

1
n

n−1∑

k=0

ϕ(Fn
ω(z))

=
∫

ϕdm for all ϕ : T2N → R continuous and for P− a.e. ω},

noting that G is Borel since the space C(T2N ) of continuous functions on T2N with
the uniform norm is separable. By the Birkhoff ergodic theorem, applied to the skew
product τ : '× T2N ! with ergodic measure P×m, we see that m(G) = 1. Note that
P(z,G) = 1 must hold for all z ∈ G.

The following is useful for checking membership in G.

Claim 10. P(z,G) > 0 implies that z ∈ G

Proof of Claim. For fixed z ∈ T2N and ϕ : T2N → R continuous, we have that the
event Ez,ϕ := {ω ∈ ' : limn

1
n

∑n−1
0 ϕ ◦ Fi

ω(z) =
∫

ϕdm} is a tail event in ', hence
P(Ez,ϕ) = 0 or 1 by the Kolmogorov 0-1 Law. Since C(T2N ) is separable, we see that
Ez = {ω ∈ ' : limn

1
n

∑n−1
0 ϕ ◦ Fi

ω(z) =
∫

ϕdm for all ϕ ∈ C(T2N )} is also a tail
event. The proof is complete on noting that P(Ez) > 0 if P(z,G) > 0. ⊓⊔

Wenow set about checking thatG is open and closed, henceG = T2N . This precludes
the existence of ergodic stationarymeasures for (Zn) distinct fromm, hencem = LebT 2N

follows.
For openness, observe that (b) implies z %→ P(z,G) is uniformly continuous, hence

∃δ > 0 such that for all z, z′ ∈ T2N , d(z, z′) < δ implies |P(z,G)− P(z′,G)| < 1/2.
With z ∈ G fixed, we conclude that P(z′,G) > 1/2 for all z′ ∈ Bδ(z). By the Claim,
we conclude Bδ(z) ⊂ G, hence G is open. For closedness, let z ∈ T2N be the limit of
a sequence {zn} ⊂ G. With δ > 0 as in the previous paragraph and N large enough so
that d(zn, z) < δ for all n < N , we conclude that P(z,G) > 1/2, hence z ∈ G by the
Claim. We conclude G is closed, hence G = T2N . ⊓⊔

3.2.2. Lyapunov exponents and stationary measures We now turn our attention to the
relation between Lyapunov exponents and stationary measures. The following is an
abridged version of the multiplicative ergodic theorem (MET) suitable for our purposes;
for more on the MET and its consequences in smooth ergodic theory, see, e.g. [20].

Below, for a matrix A we write σ1(A), σ2(A), · · · for the singular values of A. See
“Appendix A” for more discussion.

Theorem 11 (Multiplicative Ergodic Theorem). Assume condition (E) holds. Then,
there is a τ -invariant set 4 ⊂ ' × T2N of full P × LebT2N -measure such that the
following holds.

(a) For each i = 1, · · · , 2N, there is a (deterministic) constant λi ∈ R such that the
limit

λi = lim
n→∞

1
n
log σi (DzFn

ω) (11)

holds for all (ω, z) ∈ 4.
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(b) Let χ1 > · · · > χr denote the distinct values of the Lyapunov exponents {λi } (note
r = 1 is possible). Then, for all (ω, z) ∈ 4, there is a flag of subspaces

R2N =: F1(ω, z) ! F2(ω, z) ! · · · ! Fr (ω, z)
! Fr+1(ω, z) := {0}

such that for all i ∈ {1, · · · , r}, we have that (i) Dz Fω(Fi (ω, z)) = Fi (τ (ω, z)) and
(ii) for all v ∈ Fi (ω, z)\Fi+1(ω, z), we have

lim
n→∞

1
n
log ∥DzFn

ω(v)∥ = χi .

Lastly, (iii) there are (deterministic) natural numbers m1, · · · ,mr ,
∑

i mi = 2N
such that for all, 1 < i ≤ r and (ω, z) ∈ 4, we have that the codimension of Fi (ω, z)
in Fi−1(ω, z) is equal to mi−1.

Proof. Condition (E) implies m := LebT2N is ergodic as a stationary measure, hence
P×m is τ -ergodic (Proposition 7). From here, the usual multiplicative ergodic theorem
for ergodic measure-preserving transformations applies to the linear cocycle An

ω,z :=
DzFn

ω over τ : '× T2N !, c.f. [20]. ⊓⊔

3.2.3. Lyapunov exponents from statistics of N-dimensional planes We now turn our
attention to the method used in this paper to estimate Lyapunov exponents from below:
by considering the stationary statistics of N -dimensional subspaces of tangent space
evolving under the derivative DzFω. More precisely, let Grm(Rk) denote the Grassma-
nian of m-dimensional subspaces of Rk . For fixed initial (Z0, E0) ∈ GrN (T2N ) :=
T2N × GrN (R2N ), the Markov chain (Zn, En) on GrN (T2N ) is defined by setting

En := DzFn
ω(E0).

This gives rise to the corresponding skew-product construction τ̂ : ' × GrN (T2N ) !
given by τ̂ (ω, z, E) = (θω, Fω1(z), DzFω1(E)). Recall that a probability measure ν̂ on
GrN (T2N ) is stationary for (Zn, En) if

ν̂(A) =
∫

P̂((z, E), A)d ν̂(z, E)

for all measurable A ⊂ GrN (T2N ), where the transition kernel P̂ is defined by

P̂((z, E), ·) := P((Fω1(z), DzFω1(E)) ∈ ·). (12)

The following relates stationary measures ν̂ for the (Zn, En) chain to Lyapunov
exponents.

Lemma 12. Assume condition (E). Let ν̂ be any ergodic stationarymeasure for (Zn, En).
Then,

N∑

i=1

λi ≥
∫

log det(DzFω1 |E ) d(P× ν̂)(ω, z, E). (13)
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Above, for a 2N × 2N matrix A and E ⊂ R2N , dim E = N , we write A|E : E →
A(E) for the linear mapping of E to A(E) obtained by restricting A to E . From this
standpoint, det(A|E ) is defined as usual, e.g., as the volume ratio

det(A|E ) :=
LebA(E) A(BE )

LebE (BE )
,

where BE ⊂ E is the unit ball, and LebE denotes Lebesgue measure on E .

Proof. To start, it is straightforward to check that the projection of ν̂ onto T2N is a
stationary measure for (Zn), hence by (E) this projected measure coincides with m =
LebT2N . Next, by Proposition 7, we have that P× ν̂ is τ̂ -ergodic. By the Birkhoff ergodic
theorem applied to τ̂ , we have

∫
log det(DzFω|E ) d(P× ν̂)(ω, z, E)

= lim
n→∞

1
n

n−1∑

i=0

ϕ ◦ τ̂ i (ω, z, E) = lim
n→∞

1
n
log det(DzFn

ω |E )

for P × ν̂-almost every (ω, z, E), where ϕ(ω, z, E) := log det(DzFω1 |E ). Note that
det(DzFn

ω |E ) ≤
∏N

i=1 σi (DzFn
ω) (Lemma 30 in Appendix A). By Lemma 11, we con-

clude

∫
log det(DzFω|E ) d ν̂(z, E) ≤ lim sup

n→∞
1
n

N∑

i=1

log σi (DzFn
ω) =

N∑

i=1

λi .

⊓⊔

Remark 13. It is straightforward to check that equality holds in (13) if ν̂ ≪ m, the
Riemannian volume on GrN (T2N ) (see Sect. 5.1 for details). However, this fact is not
used, and so we omit a proof.

A key component of our analysis is the use of the nondegeneracy condition (ND)
to provide a priori control on the density of stationary measures ν̂ for the Grassmanian
Markov chain (Zn, En).

Lemma 14. Assume (E) and (ND) hold. Let ν̂ be any stationary measure for (Zn, En).
Then, ν̂ ≪ m, where m is the Riemannian volume on GrN (T2N ), and satisfies

∥∥∥∥
d ν̂

dm

∥∥∥∥
L∞
≤ M

where all notation is as in condition (ND).

Proof. For (z, E) ∈ GrN (T2N ) and K ⊂ GrN (T2N ), the transition kernel P̂ for
(Zn, En) satisfies

P̂((z, E), K ) = Q̂((Fz, DzF(E)), K )
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where Q̂ is the kernel for Rω as in (5). In particular, by (ND),we have that P̂((z, E), ·)≪
m, wherem is normalized Lebesgue measure on GrN (T2N ), while d P̂((z, E), ·)/dm =
d Q̂((Fz, DzF(E)), ·)/dm satisfies

∥∥∥∥∥
d P̂((z, E), ·)

dm

∥∥∥∥∥
L∞
≤ M

uniformly in (z, E) ∈ GrN (T2N ). Moreover, stationarity of ν̂ (see (12)) implies that for
K ⊂ GrN (T2N ) measurable, we have

ν̂(K ) =
∫

GrN (T2N )
P̂((z, E), K )d ν̂(z, E) ≤ Mm(K ).

Therefore, ν̂ ≪ m and d ν̂/dm is essentially bounded from above by M . ⊓⊔

3.3. Hyperbolicity estimates assuming (F1), (F2). Let us record some estimates describ-
ing the quality of the predominant hyperbolicity of the family F = FL . Fix β ∈ (0, 1).
Recall the notation

Cx
α := {(u, v) ∈ R2N : ∥v∥ ≤ α∥u∥},

Bβ = {x ∈ TN : | det Dx fL | ≤ LN−(1−β)} ⊂ TN .

We define Gβ = Bc
β .

Lemma 15. Fix β ∈ (0, 1) and let L be sufficiently large. Let z = (x, y) ∈ T2N be such
that x ∈ Gβ .

(a) Let w = (u, v) ∈ TzT2N ∼= R2N be such that w ∈ Cx
1/10. Then, Dz F(w) ∈ Cx

1/10,
and

∥DzF(w)∥ ≥ L
2
3β∥w∥.

(b) Let E ⊂ R2N be an N-dimensional subspace such that E ⊂ Cx
1/10. Then,

(i) E ′ := DzF(E) is an N-dimensional subspace satisfying E ′ ⊂ Cx
1/20, and

(ii) det(DzF |E ) ≥ 1
2N L

N−(1−β).

Proof. For an N × N matrix A, write m(A) = ∥A−1∥−1 = min{∥Av∥/∥v∥ : v ∈
RN\{0}} for the minimum norm of A (setting m(A) = 0 if A is not invertible). To start,
the estimate

m(Dx f ) ≥ C−(N−1)0 Lβ (14)

follows from (F1) and the standard fact that m(Dx f ) ≥ det(Dx f )/∥Dx f ∥N−1.
For the estimate in (a), assume w = (u, v) ∈ Cx

α for some α > 0. Then ∥v∥ ≤ α∥u∥
and ∥u∥ ≤ ∥w∥ ≤

√
1 + α2∥u∥. So,

∥DzF(w)∥ ≥ ∥Dx f (u)∥ − ∥v∥ ≥ (m(Dx f )− α)∥u∥

≥ C−(N−1)0 Lβ − α√
1 + α2

∥w∥

≥ L2β/3∥w∥ .
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The last inequality above holds when L is large enough and α = 1/10. Similar estimates
imply DzF(w) ∈ Cx

1/10 when L is large enough.
For (b)(i): by hypothesis, we can express E = graphG = {(u,G(u)) : u ∈ Rx },

where G : Rx → Ry is a linear map with ∥G∥ ≤ 1/10. To express E ′ = DzF(E) in
the form E ′ = graphG ′, we would need to have that for all u′ ∈ Rx there exists u ∈ Rx

so that

(
u′

G ′(u′)

)
=

(
Dx f −IN
IN 0N

) (
u

G(u)

)
=

(
Dx f (u)− G(u)

u

)

Formally, then, we ought to have G ′ = (Dx f − G)−1. That this exists follows from
(14); moreover,

∥G ′∥ ≤ 1
m(Dx f )− 1/10

≤ 2L−β ≪ 1/20

when L is sufficiently large, hence E ′ = DzF(E) ⊂ Cx
1/20 as desired.

For (b)(ii), define 7x : R2N ∼= Rx ×Ry → Rx to be the orthogonal projection onto
Rx . Then,

det(DzF |E ) = det(Dx f − G) · det(7
x |E )

det(7x |E ′)
= det(Dx f − G) · det(I + G ′)

det(I + G)
(15)

on noting that (7x |E )−1 = (I + G) : Rx → R2N , and similarly for 7x |E ′ . For these
terms we have (1 − 1/10)N ≤ det(I + G), det(I + G ′) ≤ (1 + 1/10)N , while for the
remaining Dx f − G term we have

det(Dx f − G) ≥ det Dx f −
∥G∥

m(Dx f )− ∥G∥
≥ 1

2
LN−(1−β)

using the elementary estimate | det(A + B)− det(A)| ≤ ∥B∥/(m(A)− ∥B∥). ⊓⊔

Condition (C) says that the randomizations Rω,ω ∈ '0 do not ‘disrupt’ the hyper-
bolicity of the system too much. The following is an immediate consequence of (C) and
Lemma 15.

Lemma 16. The following holds for P0-a.e. ω ∈ '0. Fix β ∈ (0, 1) and let L be
sufficiently large. Let z = (x, y) ∈ T2N , x ∈ Gβ . Then,

(i) Let w = (u, v) ∈ TzT2N ∼= R2N be such that w ∈ Cx
1/10. Then,

∥DzFω(w)∥ ≥ L
1
2β∥w∥

(ii) Let E ⊂ Cx
1/10 be an N-dimensional subspace. Then, E ′ = DzFω(E) is an N-

dimensional subspace with E ′ ⊂ Cx
1/10.
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4. Proof of Theorem 5

In brief, our method will be to obtain a lower bound of the form

N∑

i=1

λi ≥ (1− ε)N log L

on the sum of the first N Lyapunov exponents for ε > 0 small and L sufficiently large.
This directly implies λi ≥ (1 − (2N − 1)ε) log L for each 1 ≤ i ≤ N , in view of the
fact that λi ≤ λ1 ≤ (1 + ε) log L for all i , ε > 0 and L ≫ 1 (see condition (F1)). Since∑2N

i=1 λi = 0, similar considerations apply to the exponents λN+1, · · · , λ2N . These
proofs are straightforward and omitted for brevity.

From this point forward, we will focus our attention on
∑N

i=1 λi , which we shall
estimate using an ergodic stationary measure ν̂ for the Markov chain (Zn, En) on
GrN (T2N ), following Lemma 12. Applying (13), condition (C), and the chain rule
DzFω = DFωz Rω ◦ DzF , we have

N∑

i=1

λi ≥ −N log 2 +
∫

log | det(DzF |E )| d ν̂(z, E)

By stationarity, for any bounded measurable φ : GrN (T2N )→ R we have (by a slight
abuse of notation)

∫
φ(z, E)d ν̂(z, E) =

∫ (
E(z,E)φ(Zn, En)

)
d ν̂(z, E)

for all n ≥ 1 (recall that E(z,E) denotes the expectation conditioned on the initial state
(Z0, E0) = (z, E)). Treating (Zn, En) as a function of the initial condition and the
random sample ω, we also have

∫
φ(z, E)d ν̂(z, E) = E

[∫
φ(Zn, En)d ν̂(z, E)

]

(see (10)). Applying to φ(z, E) = log | det(DzF |E )|, we conclude
N∑

i=1

λi ≥ −N log 2 + E
∫

log | det(DZn F |En )|dν(z, E)
︸ ︷︷ ︸

(∗∗)

.

To prove Theorem 5 it therefore suffices to bound (∗∗) as follows.
Proposition 17. (Main estimate) Fix α,β ∈ (0, 1) and δ ∈ (0, cβ). Let L be sufficiently
large in terms of these parameters. Then, there exists n ≫ 1, depending on L, such that
for a.e. ω ∈ ', we have

(∗∗) =
∫

log | det(DZn F |En )|dν(z, E) ≥ αN log L .

The proof of Theorem 5 is complete upon adjusting the parameter α and taking L
large enough to absorb the remaining additive term −N log 2.
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Proof of Proposition 17: exploiting predominant hyperbolicity. Below n ≥ 1 is fixed,
to be determined later, and ω ∈ ' is an arbitrary random sample. Recall that DzFω is
strongly expanding in the Gβ along which DzFω is strongly expanding in the horizontal
cone Cx

α = {(u, v) : ∥v∥ ≤ α∥u∥} for z ∈ Gβ (Lemma 15). For n ≥ 1, define

Gn
β = {z ∈ T2N : Zi ∈ Gβ for all 0 ≤ i ≤ n − 1}

to be the set of trajectories experiencing this hyperbolicity for n timesteps, where as
usual we condition on Z0 = z.

Fix z ∈ Gn
β . Hyperbolic expansion along the x-direction Rx implies that the ‘bulk’

of Grassmanian dynamics is attracted to a close vicinity of Rx . This is, after all, the
conceptual picture underlying the N = 1 case studied in the previous paper [4]. The
following is the analogue of Lemma 10 in [4].

Proposition 18. Let ω ∈ ' be arbitrary, and let β ∈ (0, 1), n ≥ 1. Fix z ∈ Gn
β . Set

En = DzFn
ω(E). Then,

LebGrN (R2N ){E ∈ GrN (R2N ) such that En /∈ Cx
2 } ≤ L−βn .

The proof of Proposition 18 is deferred for now. Let us show how it can be used to
prove Proposition 17. For z ∈ Gn

β define Gn
z = {E ∈ GrN (R2N ) : En ∈ Cx

2 }. Letting
β∗ ∈ (0, 1) be a parameter to be chosen later, define

Gn = {(z, E) ∈ GrN (T2N ) : z ∈ Gn
β ∩ (Fn

ω)
−1Gβ∗ , E ∈ Gn

z }

and Bn = GrN (T2N )\Gn . The integral of (∗∗) along (z, E) ∈ Gn ⊂ GrN (T2N ) will
result in a tight lower bound for det(DZN F |En ), while Bn is an error set along which we
use the poor estimate

log | det(DZn F |En )| ≥ −N log(2C0L) , (16)

which follows from (F1) and the form of the mapping F = FL .
Splitting (∗∗) along the partition Gn,Bn , we have
∫

Gn
log | det(DZn F |En )|dν(z, E) ≥ (1− ν(Bn)) inf

z∈Gβ∗ ,E∈Cx
2

log | det(DzF |E )|
︸ ︷︷ ︸

†

.

Choosing β∗ sufficiently close to 1, we can arrange for † ≥ 1+α
2 N log L (Lemma

15(b)(ii)) on taking L sufficiently large. Plugging in (16), we obtain

(∗∗) ≥ 1 + α

2
N log L − 2ν(Bn) · N log(2C0L).

It remains to bound ν(Bn) from above. We decompose Bn = Bn,1 ∪ Bn,2, where

Bn,1 =
(
(Gn

β)
c ∪ (Fn

ω)
−1Gc

β∗
)
× GrN (R2N )

Bn,2 = {(z, E) : z ∈ Gn
β , En /∈ Cx

2 } = {(z, E) : z ∈ Gn
β , E /∈ Gn

z }.

For Bn,1 we have the simple estimate

ν(Bn,1) = LebT2N ((Gn
β)

c ∪ (Fn
ω)
−1Gc

β∗) ≤ nCβL−cβ + Cβ∗L−cβ∗ .
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For Bn,2, we estimate

ν(Bn,2) ≤ M LebGrN (T2N )(Bn,2) ≤ ML−βn

using our bound on dν
dm from Lemma 14 and the estimate in Proposition 18.

In total, we have shown that

(∗∗) ≥ α + 1
2

N log L − N log L
(
nCβL−cβ + ML−βn + Cβ∗L−cβ∗

)

Fix n = ⌈Lcβ−δ⌉ for some small δ ≪ cβ . Then, nCβL−cβ = O(L−δ), while
ML−βn " L−δ as long as

M ≤ L
1
2βLcβ−δ

.

Thus, under this condition relating M and L , we have

(∗∗) ≥ αN log L +
(
1− α

2
− CL−min{δ,cβ∗ }

)
N log L ≥ αN log L

assuming L is sufficiently large in terms of α,β,β∗, δ. This completes the proof of
Proposition 17.

5. Proof of Main Proposition (Proposition 18)

In Sect. 5.1 we recall some necessary preliminaries on the Grassmanian as a Riemannian
manifold. The proof of Proposition 18 is carried out in Sect. 5.2.

5.1. Grassmanian preliminaries. Fix m ≥ 1 and 1 ≤ k < m. Here we describe the
smooth and Riemannian structures of themanifold Grk(Rm) of k-dimenisonal subspaces
of Rm , and give a few preliminary lemmas. The following is all well-known; see, e.g.,
[23,24].

To fix ideas and avoid dealing with unnecessary cases, we will exclusively deal with
the case when k ≤ m

2 , hence k ≤ m− k. Otherwise, we can reduce to this case by noting
that orthogonal projection provides a natural identification Grk(Rm) ∼= Grm−k(Rm).
Throughout, Rm carries the standard Euclidean inner product ⟨·, ·⟩.

Manifold structure of Grk(Rm) Given E ∈ Grk(Rm), we define the coordinate patch
UE = {graphE H : H ∈ L(E, E⊥)}, where we write L(E, E⊥) for the space of linear
maps from E to E⊥, and the chart map

graphE : UE → Grk(Rm)

is defined by graphE H = {v + H(v) : v ∈ E}.
We highlight the following facts:

(A) We have that UE is the set of all E ′ ∈ Grk(Rm) intersecting E⊥ transvsersally. In
particular, UE is open and dense for any E ∈ Grk(Rm).
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(B) We have the following basis-independent identification:

TE Grk(Rm) = L(E, E⊥).

If bases for E, E⊥ are fixed, then we have the parametrization UE ∼= Mm−k,k(R),
the space of (m − k)× k real matrices.

The following is a qualitative geometric description of the complement of any chart
UE .

Lemma 19. Assume k ≤ m/2. Then, the set (UE )
c is a finite union of closed submani-

folds of Grk(Rm) of codimension ≥ 1.

For the sake of completeness, we provide the proof of Lemma 19 in Appendix B.

Riemannian metric on Grm(Rk) With respect to the identification in (B) above, the
Riemannian metric g on TE Grk(Rm) can be expressed as

gE (H1, H2) = TrE (H⊤2 H1),

where TrE denotes the trace induced by the inner product ⟨·, ·⟩ on Rm restricted to E .
As usual, the Riemannian metric induces a volume measure LebGrk (Rm) and a geodesic
distance dgeo between subspaces in Grk(Rm). Recall that the orthogonal group O(m)
acts on M = Grk(Rm) via the action E %→ U (E) for U ∈ O(m). It is standard that
the orthogonal group acts isometrically on (M, g). In fact, (M, g) is the unique (up to
scalar) Riemannian metric on M with respect to which O(m) acts isometrically.

The following alternative metric dH on Grassmannians is very useful in practice.

Definition 20. Let E, E ′ ∈ Grk(Rm). We define the Hausdorff distance dH (E, E ′)
between them by

dH (E, E ′) = max

⎧
⎨

⎩ max
v′∈E ′
∥v′∥=1

d(v′, E), max
v∈E
∥v∥=1

d(v, E ′)

⎫
⎬

⎭ ,

where above d(v, E) denotes the minimal Euclidean distance between v ∈ Rm and
E ⊂ Rm .

The distance function dH is uniformly equivalent to the geodesic distance dgeo:

Lemma 21. For any E, E ′ ∈ Grk(Rm), we have

2
π
dgeo(E, E ′) ≤ dH (E, E ′) ≤ dgeo(E, E ′)

This appears to be well-known, but we are unable to find a proof of Lemma 21 in the
literature. For the sake of completeness a sketch is provided below in “Appendix B”.



Lyapunov Exponents for Random Perturbations of Coupled Standard Maps 141

5.2. The proof of Proposition 18. Throughout, the parameter β ∈ (0, 1) is fixed, as are
n ≥ 1, ω ∈ ' and z ∈ Gn

β . We now proceed to study the singular-value decomposition
for the iterated Jacobian DzFn

ω .

Lemma 22. Let σi = σi (DzFn
ω), σ1 ≥ σ2 ≥ · · · ≥ σ2N denote the singular values of

Dz Fn
ω .

(i) We have

σN ≥ Lnβ/2 ≥ L−nβ/2 ≥ σN+1

(ii) Let h1, · · · , h2N , h′1, · · · , h′2N denote orthonormal bases of R2N for which

DzFn
ωhi = σi h′i

Then, hi , h′i ∈ Cx
1/10 for 1 ≤ i ≤ N and hi , h′i ∈ C y

1/10 for all N + 1 ≤ i ≤ 2N.

For α > 0, we have written C y
α = {(u, v) ∈ R2N : ∥u∥ ≤ α∥v∥} for the cone of

vectors roughly parallel to Ry .

Proof. It follows from Lemma 16(ii) that for any E ∈ GrN (R2N ), E ⊂ Cx
1/10, we have

DZ0F
n
ω(E) ⊂ Cx

1/10.

Amild variation of the arguments for Lemma 16 similarly implies that (DZ0F
n
ω)
⊤(E) ⊂

Cx
1/10. The same then holds for (DZ0F

n
ω)
⊤DZ0F

n
ω . By Lemma 31 in Appendix A, it fol-

lows that there are N orthonormal eigenvectors hi1 , · · · , hiN in Cx
1/10 for (DZ0F

n
ω)
⊤DZ0

Fn
ω spanning an N -dimensional space E ⊂ Cx

1/10, such that (DZ0F
n
ω)
⊤DZ0F

n
ω(hi j ) =

σ 2
i j
.
We want to check that {i1, · · · , iN } = {1, · · · , N }. Note that Lemma 16(i) implies

that the singular values σi1 , · · · , σiN satisfy σi j ≥ Lnβ/2. We combine this with the
fact (straightforward to check) that (DZ0F

n
ω)
⊤DZ0F

n
ω is symplectic with symplectic

form J =
(
0 −IN
IN 0

)
(recall that a matrix A is symplectic for J if A⊤ J A = J ). It

is well-known that the eigenvalues of a self-adjoint symplectic matrix come in pairs of
the form λ, λ−1; since we already have N real eigenvalues σ 2

i1
, · · · , σ 2

iN
which are > 1,

this argument implies the remaining N real eigenvalues for (DZ0F
n
ω)
⊤DZ0F

n
ω are in the

interval (0, 1). Consequently,

σ1 = σ−12N , σ2 = σ−12N−1, · · · , σN = σ−1N+1 .

This implies {i1, · · · , iN } = {1, · · · , N }, andmoreover, that the estimate σN ≥ Lnβ/2 ≥
L−nβ/2 ≥ σN+1 holds as in item (i).

A repetition of the above argument implies that there are N orthonormal eigenvectors
h′1, · · · , h′N forDZ0F

n
ω(DZ0F

n
ω)
⊤ contained inCx

1/10, forwhich DZ0F
n
ω(DZ0F

n
ω)
⊤(h′i ) =

σ 2
i . By Theorem 29, it follows that (up to changing signs and possible rearrangement of

indices of the hi , h′i ) that

DZ0F
n
ω(hi ) = σi h′i

holds. It is now straightforward to complete {h1, · · · , hN } and {h′1, · · · , h′N } to orthonor-
mal bases of R2N with the desired properties. ⊓⊔
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Define

H = H(DzFn
ω) = Span{h1, · · · , hN }

H′ = H′(DzFn
ω) = Span{h′1, · · · , h′N },

noting that H⊥ = Span{hN+1, · · · , h2N }, (H′)⊥ = Span{h′N+1, · · · , h′2N }. By Lemma
22, we have that H,H′ ⊂ Cx

1/10. Below, given η > 0 and S ⊂ GrN (R2N ), we write
Nη(S) for the (open) η-neighborhood of S with respect to the geodesic distance dgeo.
Lemma 23. There exists a universal constant c > 0 depending only on N such that

{E ∈ GrN (R2N ) : DzFn
ω(E) is not contained in Cx

2 } ⊂ Nη((UH)c), (17)

where η = cL−βn.
Proposition 18 follows, since (UH)c is the finite union of a collection of closed

submanifolds of GrN (R2N ) (Lemma 19). Here, we use the standard fact that if M ′ ⊂ M
is a closed submanifold of a compact Riemannian manifold M with strictly positive
codimension, then the Lebesgue measure of any neighborhoodNη(M ′) is≤ Cη, where
C > 0 depends only on M .
Proof of Lemma 23. Let E ∈ GrN (R2N ) be such that E ′ := Dx Fn

ω(E) is not contained
in Cx

2 . Let v
′ ∈ E ′\Cx

2 ; since C
x
2 is a cone and E ′ is a subspace, we can assume without

loss of generality that v′ is a unit vector.
Now, let

v′ = v′∥ + v′⊥,

where v′∥ ∈ H′, v′⊥ ∈ (H′)⊥. Since v′ /∈ Cx
2 and H′ ⊂ Cx

1/10, it follows that ∥v′⊥∥ ≈ 1.
Now, let v = (DzFn

ω)
−1(v′)/∥(DzFn

ω)
−1(v′)∥, so that

v = v∥ + v⊥ =
(DzFn

ω)
−1(v′∥)

∥(DzFn
ω)
−1(v′)∥ +

(DzFn
ω)
−1(v′⊥)

∥(DzFn
ω)
−1(v′)∥

since DzFn
ω(H) = H′, DzFn

ω(H⊥) = (H′)⊥ (see “Appendix A”). To estimate these
components, we have

∥(DzFn
ω)
−1(v′∥)∥ ≤ (σN (DzFn

ω))
−1∥v′∥∥ ≤ L−βn/2,

∥(DzFn
ω)
−1(v′⊥)∥ ≥ (σN+1(DzFn

ω))
−1∥v′⊥∥ # Lβn/2

using that ∥v′⊥∥ ≈ 1. Continuing,

∥(DzFn
ω)
−1(v′)∥ ≥ ∥(DzFn

ω)
−1(v′⊥)∥ − ∥(DzFn

ω)
−1(v′∥)∥ # Lβn/2 − L−βn/2 # Lβn/2.

Thus, we conclude that ∥v∥∥ " L−βn , while 1− ∥v⊥∥ = O(L−βn). This immediately
implies that

d(v,H⊥) ≤
∥∥v − v̂⊥

∥∥ = O(L−βn), (18)

where v̂⊥ = v⊥
∥v⊥∥ ∈ H⊥ is a unit vector.

Fix a basis w1, · · · , wN−1 for the orthogonal complement of v in E and define

Ê := Span{v̂, w1, · · · , wN−1}.
It follows from (18) that dH (Ê, E) " L−βn . Since Ê ∈ (UH)c and dH , dgeo are uni-
formly equivalent by Lemma 21, we conclude that dgeo(E, (UH)c) " L−βn . ⊓⊔
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6. Proof of Theorems 1 and 3

6.1. Proof of Theorem 1. It suffices to check that condition (F2) holds for the family

fL(x1, · · · , xN ) = (2xi + L sin(2πxi ) +
∑

j ̸=i

µi j sin 2π(x j − xi ))Ni=1,

where (µi j ) is a fixed family of coefficients.
Write f = ( f 1, · · · , f N ) in component form. By the Leibniz formula for the deter-

minant,

det L−1Dx f = L−N
∑

τ∈SN

N∏

i=1

sgn(τ )
∂ f i

∂xτ (i)

where the outer summation is over the permutations τ ∈ SN of the set {1, · · · , N } and
the sgn is the sign function of permutations in the permutation group, which returns +1
and −1 for even and odd permutations, respectively. The dominant term is the product∏N

i=1 2πL cos 2πxi ; precisely,

det L−1Dx f − (2π)N
N∏

i=1

cos 2πxi = O(L−1)

when L is taken sufficiently large relative to maxi j |µi j |. Therefore

Bβ ⊂
{∣∣∣∣∣

N∏

i=1

cos 2πxi

∣∣∣∣∣ ≤ L2β−1
}

for L sufficiently large. To estimate the volume of the RHS, we bound | cos 2πx | ≥
4min{|x − 1/4|, |x − 3/4|}, so that |∏N

i=1 cos 2πxi | ≥ min{∏N
i=1 |xi − ri |}, where the

minimum is taken over all possible choices of (r1, · · · , rN ) ∈ {1/4, 3/4}N . Thus,

Bβ ⊂
⋃

(ri )Ni=1∈{1/4,3/4}N

{
N∏

i=1

|xi − ri | ≤ L2β−1
}

where the union is again over all possible configurations of (r1, · · · , rN ). We conclude
that

Leb Bβ " Leb{(x1, · · · , xN ) ∈ [0, 1]N :
∏

i

xi ≤ L2β−1}.

For the RHS, we have the asymptotic " L3β−1 (see Lemma 24 below). Therefore,
condition (F2) is satisfied with cβ = 1− 3β.

Lemma 24. Define SN (δ) = {(x1, · · · , xN ) ∈ [0, 1]N : ∏
i xi ≤ δ}. Then, For any

δ > 0, we have

Leb SN (δ) = δ

N−1∑

i=0

(− log δ)i

i !
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Proof. Define

J = J (x1, · · · , xN ) := min{1 ≤ j ≤ N : 0 ≤ x j ≤
δ

x1 · · · x j−1
},

and note that J is defined on SN (δ). In particular,

{J= j} ∩ SN (δ)=
{

δ∏
i≤ℓ−1 xi

≤ xℓ ≤ 1 for all 1 ≤ ℓ≤ j−1, 0 ≤ x j ≤
δ

x1 · · · x j−1

}

with no constraint on x j+1, · · · , xN . Thus Leb(SN (δ) ∩ {J = j}) = Leb(S j (δ) ∩ {J =
j}) for all j . It therefore suffices to compute Leb(SN (δ) ∩ {J = N }). This is given by

∫ 1

x1=δ

∫ 1

x2= δ
x1

· · ·
∫ 1

xN−1= δ
x1···xN−2

δ

x1 · · · xN−1
dxN−1 · · · dx1

For c ∈ (0, 1), k ≥ 0, we have

∫ 1

y=c

c
y

(
log

c
y

)k

dy = −
∫ log c

log c
y=0

(
log

c
y

)k

d log
c
y
= − c

k + 1
(log c)k+1 .

Thus, after k iterated integrals, we have

∫ 1

xN−k= δ
x1 ···xN−k−1

· · ·
∫ 1

xN−1= δ
x1 ···xN−2

δ

x1 · · · xN−1
dxN−1 · · · dxN−k

= (−1)k
k!

δ

x1 · · · xN−k−1

(
log

δ

x1 · · · xN−k−1

)k

and after k = N − 1 such integrals, we deduce Leb(SN (δ) ∩ {J = N }) =
δ

(N−1)! (− log δ)N−1. This completes the proof. ⊓⊔

6.2. Transversality criterion and genericity for (F2) .

6.2.1. Transversality criterion for (F2) Below, we derive the general transversality cri-
terion (8) for condition (F2) for families of the form fL = Lψ + ϕ.

Lemma 25 (Transversality Criterion). Let ψ,ϕ : TN → RN be C2 mappings and
assume that

{det Dxψ = 0} ∩ {Dx det Dψ = 0} = ∅. (19)

Then, fL = Lψ + ϕ satisfies condition (F2) with cβ = 1− β for all L sufficiently large.
Precisely, for any β > 0, there exists Cβ = Cβ(ψ,ϕ) so that for any L sufficiently large
(in terms of ψ,ϕ), we have that

Leb{det(L−1Dx fL) ≤ L−(1−β)} ≤ CβL−(1−β).
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Remark 26. Note that ψ(x) = (sin 2πxi )i does not satisfy the transversality condition
(19); this is why we had to check (F2) by hand in the proof of Theorem 1. However, (19)
does hold for a large class of models: as we check below in Proposition 27, it is satisfied
by a C2 generic set of ψ .

Proof. We begin with the following straightforward consequence of the constant rank
theorem applied to x %→ det Dxψ : there exist Ĉ > 0 with the property that for any
0 ≤ ϵ ≤ ϵ̂(ψ), we have

Leb{det Dxψ ≤ ϵ} ≤ Ĉϵ.

We will also need the following estimate: if A, B are N × N matrices, then there exists
CA,B > 0, depending only on max |Ai j |,max |Bi j |, and N , such that

det(A + ηB) ≥ det(A)− CA,Bη.

This can be obtained, e.g., from the formula

det(A + ηB)− det(A) =
∫ η

0
Tr

(
Adj(A + sB)B

)
ds,

where Adj(·) denotes the adjugate of a square matrix and η ≤ 1. With this notation,
define C̃ = supx CDxψ,Dxϕ .

To complete the proof, let x ∈ TN be such that det Dxψ ≥ 2L−(1−β). Then,

det Dx (ψ + L−1φ) ≥ det Dxψ − C̃ L−1 ≥ L−(1−β)

if Lβ ≫ C̃ . Thus, {det Dxψ ≥ 2L−(1−β)} ⊂ {det(L−1Dx fL) ≥ L−(1−β)}. Taking
complements, we conclude that

Leb{det(L−1Dx fL) ≤ L−(1−β)} ≤ Leb{det Dxψ ≤ 2L−(1−β)} ≤ 2Ĉ L−(1−β)

on taking L large enough so that 2L−(1−β) ≪ ϵ̂(ψ). The proof is complete on setting
Cβ = 2Ĉ . ⊓⊔

6.2.2. Genericity of (F2) when N = 2 In this subsection, we consider genericity of the
transversality condition (19) used to prove property (F2). We expect that (19) is generic
in general. For simplicity, however, we prove this only in the special case N = 2.

Proposition 27. There is a residual setR in Cr (T2,R2), r ≥ 2 such that for allψ ∈ R,
equation (19) holds, i.e., we have that 0 is a regular value of x %→ det Dxψ .

Proof. We write ψ = (ψ1,ψ2) where ψ1,ψ2 : T2 → R. It is well-known that Morse
functions are generic; without loss of generality, we may assume that ψ1 and ψ2 are
Morse functions, hence have finitely many critical points. We also assume that the set
of critical points of ψ1 is disjoint from that of ψ2, which can be achieved by an arbitrary
small translation ψ1(·) %→ ψ1(· + a), a ∈ R2 small. Thus we conclude for all x ∈ T2

either Dxψ1 or Dxψ2 is nonzero.
Noting that det Dxψ = ∥Dxψ1 ∧ Dxψ2∥, we introduce the function

;(ψ1,ψ2, x) = Dxψ1 ∧ Dxψ2.

We seek to apply the following consequence of the Sard-Smale theorem to the functional
;.
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Theorem 28 (Theorem 5.4 of [17]). Let Y, Z be separable Banach manifolds, E →
Y × Z a Banach space fiber bundle and ; : Y × Z → E a smooth section. Suppose
we have for all (y, z) ∈ ;−1(0)

1. the differential ∇;(y, z) : TyY × Tz Z → E(y,z) is surjective;
2. the partial derivative ∂z;(y, z) : Tz Z → E(y,z) is Fredholm of index ℓ;

Then for generic y ∈ Y , the set {z ∈ Z | ;(y, z) = 0} is an ℓ-dimensional submanifold
of Z.

We apply Theorem 28 with Y =
(
Ck(T2,R2)

)2
, Z = T2, and E = Y × 02(T2),

where02(T2) is the vector bundle of differential 2-forms onT2. Concretely, we identify
E ∼= (Ck(T2,R2))2 × T2 × R using TT2 ∼= T2 × R2 and

∧2(R2) ∼= R. In particular,
item 2 is always satisfied since ∂x;(ψ1,ψ2, x) : TxT2 → E(ψ1,ψ2,x) is a linear mapping
between two finite-dimensional spaces.

It remains to check item1.The derivative of; acting on (h1, h2, v) ∈ (Ck(T2,R))2×
R2 is given by

D(ψ1,ψ2,x);(h1, h2, v) = Dxh1 ∧ Dxψ2 + Dxψ1 ∧ Dxh2+

(D2
xψ1(v)) ∧ Dxψ2 + Dxψ1 ∧ (D2

xψ2(v)).

It suffices to check surjectivity of D(ψ1,ψ2,x); at all (ψ1,ψ2, x) such that ψ1,ψ2 are
Morse.With x fixed, by symmetrywe can assumewithout loss of generality that Dxψ1 ̸=
0. Set h1 = 0, v = 0, and construct h2 so that Dxh2 is not parallel with Dxψ1. Then,
D(ψ1,ψ2,x);(h1, 0, 0) = Dxψ1 ∧ Dxh2 ̸= 0, hence D; is surjective at (ψ1,ψ2, x).
This completes the proof. ⊓⊔

6.3. Proof of Theorem 3.

Proof. For ease of notation and to avoid factors of 2π , we work below with the parame-
terization T2 ∼= [0, 2π)2. By Lemma 25, it suffices to check the transversality condition
19 for the function

ψ(x1, x2) =
(
sin x1 + sin(x2 − x1)
sin x2 + sin(x1 − x2)

)
.

That is, we seek to show that the system det Dxψ = 0, Dx det Dψ = 0 does not have
any solutions. This system of equations is given by

cos(x1) cos(x2) + (cos(x1) + cos(x2)) cos(x1 − x2) = 0 (20)
− sin(x1) cos(x2)− sin x1 cos(x1 − x2)− (cos x1 + cos x2) sin(x1 − x2) = 0 (21)
− sin(x2) cos(x1)− sin x2 cos(x1 − x2) + (cos x1 + cos x2) sin(x1 − x2) = 0 (22)

Adding (21) to (22) gives

sin(x1) cos(x2) + sin x1 cos(x1 − x2) + sin(x2) cos(x1) + sin x2 cos(x1 − x2) = 0.
(23)

Solving (23) and (20) for cos(x1 − x2) separately yields

1
sec(x1) + sec(x2)

= sin(x1 + x2)
sin(x1) + sin(x2)

;
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division by cos x1, cos x2 is justified since, as one can easily check, no solution (x1, x2)
can satisfy either of cos x1 = 0, cos x2 = 0. With some standard algebraic manipula-
tions, this equation can be cast as

(sin x1 + sin x2)(1− sin x1 sin x2) = 0.

If sin x1 sin x2 = 1, then sin x1 = sin x2 = ±1, which is inconsistent with (21). If
sin x1 + sin x2 = 0, then x1 + x2 = 2kπ or x1 − x2 = (2k + 1)π for some k ∈ Z.
If x1 + x2 = 2kπ , (20) will give us cos(2x1) = − cos x1

2 . Plugging this into (22), we

get sin(2x1) = sin x1
4 . Since cos2 x1

4 + sin2 x1
16 = 1 is a contradiction, we deduce that no

solution to (20),(21),(22) can satisfy x1 +x2 = 2kπ . Similarly, one can rule out solutions
satisfying x1 − x2 = (2k + 1)π . This completes the proof. ⊓⊔
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Appendix A: Version of the Singular Value Decomposition

Lyapunov exponents are asymptotic exponential growth rates of singular values. For
this reason, we recall here some basic facts about the Singular Value Decomposition and
related results used in this paper. Below, d ≥ 1 and A is a d × d matrix. The singular
values σ1(A) ≥ · · · ≥ σd(A) are defined to be the eigenvalues of

√
A⊤A, listed in

decreasing order and counted with multiplicity.

Theorem 29 (Singular Value Decomposition, Theorem 3.1.1 of [16]). There exist or-
thonormal bases {e1, · · · , ed} and {e′1, · · · , e′d} of Rd with the property that

Aei = σi (A)e′i .

These bases are unique up to changes of sign and rearrangements of indices in case of
repeated singular values (i.e., σi (A) = σ j (A) for some i ̸= j ).

Recall that {ei } is an (orthonormal) eigenbasis for A⊤A, while {e′i } is an appropriate
ordering of an (orthonormal) eigenbasis for AA⊤.
The following characterization of singular values is also used.

Lemma 30 (Min-max Principles for Singular Values, Theorem 3.1.2 of [16]). For all
1 ≤ i ≤ d, we have that

k∏

j=1

σ j (A) = max
E⊂Rd

dim E=i

| det(A|E )|,

where A|E is regarded as a linear mapping E → A(E).
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The characterization in Lemma30 is central to the approach taken in this paper: it directly
implies that to control

∏k
1 σ j (A), it suffices to control the volume growth of A along

k-dimensional subspaces. Since Lyapunov exponents are asymptotic exponential growth
rates of singular values, this motivates why we can control sums of the top-k Lyapunov
exponents by studying the ‘typical’ rate at which k-dimensional volumes grow.
Lastly, we state the following corollary of Theorem 29, which we use in Lemma 22 to
estimate singular directions. Below, E0 is a k-dimensional subspace, α > 0 is fixed,
70 : Rd → E0 is orthogonal projection to E0, and

C0 := {v ∈ Rd : ∥(I −70)v∥ ≤ α∥70v∥}

is a cone of vectors roughly parallel to E0.

Lemma 31. Assume A is invertible, and has the property that for any ℓ-dimensional
subspace E ⊂ C0, ℓ ≤ k, we have that A(E) ⊂ C0 and A⊤(E) ⊂ C0. Then, ∃1 ≤ i1 <
· · · < ik ≤ d such that ei j , e

′
i j
∈ C0 for 1 ≤ j ≤ k.

Proof. Let E0 := {E ∈ Grk(Rm) : E ⊂ C0} and observe that E0 is invariant under
B := A⊤A, which we view as a (continuous) mapping Grk(Rm) → Grk(Rm). In the
chart UE0 (see Sect. 5.1), the set E0 is convex. Since E0 is also compact, we see by the
Brouwer fixed point theorem that B must have a fixed point in E0, i.e., a k-dimensional
subspace E for which B(E) = E . Since B is self-adjoint, it follows that B has k linearly
independent, orthogonal eigenvectors in E , from which we conclude ∃i j , 1 ≤ j ≤ k,
for which ei j ∈ C0. Applying the hypothesis to the span of ei j (ℓ = 1), we conclude that
Aei j = σi j (A)e

′
i j
∈ C0, from which it follows immediately that e′i j ∈ C0 as well (note

σi (A) ̸= 0 for all 1 ≤ i ≤ d if A is invertible). ⊓⊔

Appendix B: Proofs of Grassmanian Geometric Lemmas 19 and 21

Proof of Lemma 19. Given E ∈ Grk(Rm), write V = E⊥ and define V = (UE )
c,

which by point (A) at the beginning of Sect. 3 is the set of k-dimensional subspaces
intersecting V nontransversally. We will describe V as the image of a fiber bundle
E , to be defined below, via a smooth mapping # : E → Grk(Rm). As we will show,
dim E < k(m−k) = dimGrk(Rm), hence V can be covered by embedded submanifolds
of dimension < k(m − k).
To define # and E , we first introduce some notation. Given v ∈ Rm let Iv = {S ∈
Grk(Rm) : v ∈ S}. Then, each S ∈ Iv is uniquely specified by a corresponding k − 1-
dimensional subspace Sv := S ∩ ⟨v⟩⊥ = (I − 7v)(S), where 7v : Rm → ⟨v⟩ is the
orthogonal projection. So, we can (canonically) identify Iv ∼= Grk−1(⟨v⟩⊥). The latter is
essentially Grk−1(Rm−1) and has dimension (k−1)(m−1− (k−1)) = (k−1)(m−k).
Letπ : E → Gr1(V )denote thefiber bundle overGr1(V )withfibersGrk−1(⟨v⟩⊥).Write
elements of E as (v, Ŝ), where v ∈ V, Ŝ ∈ Grk−1(⟨v⟩⊥). We define # : E → Grm(Rk)
to be the sum of subspaces

#(v, Ŝ) = ⟨v⟩ + Ŝ

inRm . Evidently, the image of# coincides with V . Since dim E = (k−1)+ (k−1)(m−
k) = (k − 1)(m − (k − 1)), it follows that V can be covered by finitely many closed
submanifolds of dimension ≤ (k − 1)(m − (k − 1)) < k(m − k). ⊓⊔
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In what follows, given a subspace E ⊂ Rm , we write 7E : Rm → E for its correspond-
ing orthogonal projection.

Proof of Lemma 21. Let E, E ′ ∈ Grk(Rm). Then, dgeo(E, E ′) =
√

ψ2
1 + · · · + ψ2

k

where each ψi = ψi (E, E ′) ∈ [0,π/2] is the i-th Jordan angle between E, E ′, de-
fined by, e.g.,

cosψi = min
P⊂E

dim P=i

max
v∈P
∥v∥=1

max
w∈E ′
∥w∥=1

⟨v,w⟩ (24)

(seeProposition3(b) of [22]).Wehaveψ1 ≤ ψ2 ≤ · · · ≤ ψk , henceψk ≤ dgeo(E, E ′) ≤
kψk .
To connect this with the Hausdorff metric, by [19] Theorem I-6.34 and some elementary
arguments, we have

dH (E, E ′) = ∥(I −7E ′)7E∥ = sup
v∈E
∥(I −7E ′)v∥ = sup

v∈E
d(v, E ′)

= sin∠(v,7E ′v).

On the other hand, by (24), we have

max
w∈E ′
∥w∥=1

⟨v,w⟩ =
〈
v,

7E ′v

∥7E ′v∥

〉
= cos∠(v,7E ′v),

hence ψk = maxv∈E,∥v∥=1 ∠(v,7E ′v). We conclude, then, that dH (E, E ′) = sinψk .

In particular, 2
π ψk ≤ dH (E, E ′) ≤ ψk . This completes the proof. ⊓⊔

Appendix C: Proof of Proposition 6: Explicit Noise Model Rω Satisfying (E), (C)
and (ND)

Below, we write d = 2N for short. Throughout, {zi }Ki=1 is a set such that the balls
{B1/20(zi )} of radius 1/20 centered at the zi form an open cover of Td .

Proof. For (z, E) ∈ Grd/2(Td) fixed, we write

;(z,E) : '0 → Grd/2(Td), ;(z,E)(ω) := (Rωz, DzRω(E)).

Here and throughout, elements ω ∈ '0 are written ω = (v, (U (i))). Observe that
; = ;(z,E) is a continuous mapping sending the origin to (z, E). From this, we see
that (C) is a straightforward consequence of hypothesis (i). Condition (E) follows from
Lemma 9, the hypotheses of which are guaranteed by (iii) and the fact (z, E) %→ ;(z,E)
is continuous as a mapping from Grd/2(Td) into the space of continuous mappings
'0 → Grd/2(Td) in the compact-open topology.
It remains to check condition (ND). For this, by a compactness argument and the Con-
stant Rank Theorem, it suffices to show that for (z, E) ∈ Grd/2(Td) fixed, the mapping
; = ;(z,E) is a submersion. To simplify the argument, we begin with the following ob-
servation regarding the ‘upper triangular’ structure of D;: writing v = (v1, · · · , vd) ∈
Rd and z = (z1, · · · , zd),2 we have that

D(t,(U (i)));

(
∂

∂vi

)
= ∂

∂zi
.

2 That is, we are abandoning for the moment the distinction between x and y coordinates in Td = T2N .
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That is, varyingv does not change at all theGrd/2(Rd) coordinate in the image.Therefore,
it suffices to show that when v is held fixed, we have that

(U (i)) %→ DzR(v,(U (i)))(E)

is a submersion Skew(d)K → Grd/2(Rd).
In fact, we will show that for each z, it suffices to consider tangent directions corre-
sponding to a single U (i). To see this, we make the following claim.
Claim 32. There exists c = cK ,d > 0 with the following property. For any z ∈ Td there
exists 1 ≤ j ≤ K such that for any (U (i)) ∈ Skew(d)K , ∥(U (i))∥ ≤ c, we have that

d(#( j−1)
U ( j−1) ◦ · · · ◦#

(1)
U (1) z, z j ) ≤

1
10

.

Indeed, the claim holds with j any index for which d(z, z j ) ≤ 1/20 (see (9)), assuming
c = cK ,d is taken small enough.
With (z, E) and the above value of j fixed, we now set about checking that

U ( j) %→ DzR(t,U (i))(E)

is a submersion. Since Tv,#
(i)
U (i) are all diffeomorphisms of Td , it suffices to check

that U ( j) %→ Dz′#
( j)
U ( j) (E

′) is a submersion Skew(d) → Grd/2(Td), where z′ =
#

( j−1)
U ( j−1) ◦ #

(1)
U (1) (z) and E ′ = Dz#

( j−1)
U ( j−1) ◦ #

(1)
U (1) (E). By our choice of j , Claim 32

ensures d(z′, z j ) ≤ 1/10, hence Dz′#
( j)
U ( j) = exp(U ( j)). In view of the composition

U ( j) %→ exp(U ( j)) %→ exp(U ( j))(E ′)

and the fact that U %→ exp(U ) is a local diffeomorphism Skew(d)→ O(d), it suffices
to check that O %→ O(E) is a submersion O(d) %→ Grd/2(Rd). Since surjectivity of a
derivative is an open property, it suffices to check that the differential of O %→ O(E) is
a submersion at the identity Id ∈ O(d). ⊓⊔
Claim 33. Fix 1 ≤ k ≤ d and E0 ∈ Grk(Rd). Define < : O(d)→ Grk(Rd), <(O) :=
O(E0). Then, DId< : Skew(d)→ TE0 Grk(Rd) is surjective.
Proof of Claim. We evaluate the differential explicitly in coordinates. Recall the chart
UE0

∼= L(E0, E⊥0 ) for Grk(Rd) at E0. As one can check, in this chart, <(O) = O(E0)
is represented as

<(O) = graphE0
g(O), g(O) := (Id−7E0)O(7E0O|E0)

−1.

Therefore, in these coordinates we have (writing 7E0 = 7,7⊥ = Id−7E0 )

DOg(U ) = 7⊥U (7O|E0)
−1 + 7⊥O(7O|E0)

−1U (7O|E0)
−1

for U ∈ TOO(d). Evaluating at O = Id, we see that

DIdg(U ) = 7⊥U |E0

This is clearly surjective as a linear mapping Skew(d) %→ L(E0, E⊥0 ); given an arbitrary
B ∈ L(E0, E⊥0 ), we have DIdg(U ) = B for any U of the form

U =
(

7U |E0 7U |E⊥0
7⊥U |E0 7⊥U |E⊥0

)

=
(
∗ −B⊤
B ∗

)
.

⊓⊔
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