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Abstract

Tropical cyclogenesis in the Atlantic is influenced by environmental parameters including vertical wind
shear, which is sensitive to forcing from the tropical Pacific. Reliable projections of the response of
such parameters to radiative forcing are key to understanding the future of hurricanes and coastal risk.
One of the least certain aspects of future climate is the warming of the eastern tropical Pacific Ocean.
Using climate model experiments isolating the warming of the eastern Pacific and controlling for other
factors including El Nifio-Southern Oscillation (ENSO), changes in Atlantic tropical cyclogenesis
potential by the end of this century are ~20% lower with enhanced eastern Pacific warming. The
ENSO signal in Atlantic tropical cyclogenesis potential amplifies with global warming, and that
amplification is larger with enhanced eastern Pacific warming. The largest changes and dependencies
on eastern Pacific warming are found in the south-central main development region, attributable to

changes in zonal overturning.
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Key Points
e FEnhanced surface warming in the eastern equatorial Pacific Ocean impacts the response of
Atlantic hurricanes to global warming.
e Genesis potential decreases in the south-central part of the main development region, but only
with enhanced eastern Pacific warming.
e The El Nifio/La Nifia signal in Atlantic genesis potential amplifies with global warming—

more so with enhanced eastern Pacific warming.

Plain Language Summary

Today, there are about 15 tropical storms per year in the Atlantic. That number varies considerably
from year to year, with El Nifo being one major factor. When the eastern Pacific Ocean warms
temporarily, Atlantic hurricanes tend to be suppressed (and vice versa for La Nifa). As the climate
warms due to greenhouse gas emissions, hurricanes are expected to change. Such changes could
include the average number of tropical storms per year, where they tend to form, how strong they
become, how far and fast they travel, how much rain they produce, and how El Nifio affects them.
This study investigates how the formation regions of Atlantic hurricanes may change in the future,
particularly as a function of how much the eastern Pacific Ocean warms in the future, which is one of
the most uncertain aspects of climate change. We find that the warming of the eastern Pacific strongly
influences predictions of future changes in Atlantic hurricanes, including how El Nino affects them.
Specifically, a strong eastern Pacific warming causes a change in the winds over the tropical Atlantic,

which shifts where hurtricanes will tend to form in the future, and increases the effect of El Nifio.
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1. Introduction

North Atlantic tropical cyclones (TCs) pose significant risk to coastal regions from the Mid-Atlantic
to the Caribbean (Peduzzi et al.,, 2012; Klotzbach et al., 2018). As their genesis and subsequent
development are closely related to such large-scale environmental parameters as sea surface
temperature (SST; Emanuel, 2005) and vertical wind shear (Gray, 1968), it is no surprise that a great
deal of research effort has been dedicated to understanding how TCs may change in the future under
climate change (Knutson et al., 2020). Such investigations usually rely on global models that simulate
changes in large-scale environmental parameters but are not capable of explicitly resolving TCs (a
form of statistical downscaling; Villarini and Vecchi, 2012), regional models that resolve TCs but are
subject to changes in environmental parameters prescribed from global models (dynamical
downscaling; Knutson et al., 1998), global models that resolve TCs within a changing environment
despite the computational expense (Chu et al., 2020; van Westen et al., 2023), or a hybrid approach in
which an extremely high resolution TC model is allowed to roam within the output of global models
post hoc (Emanuel et al., 2008; Zhang et al., 2017; Karnauskas et al., 2021).

Shortetr term, natural fluctuations in climate are also known to modulate the level of Atlantic
hurricane activity—in particular, the El Nino-Southern Oscillation (ENSO; Lin et al., 2021).
Specifically, Atlantic hurricane activity tends to be suppressed during the El Nifio phase, and elevated
during the La Nifna phase, primarily due to the remote influence of eastern tropical Pacific SST
anomalies on vertical wind shear over the Atlantic (Goldenberg and Shapiro, 1996; Aiyyer and
Thorncroft, 2006; 2011). In fact, the perceived importance of ENSO’s influence rivals that of local
SST in the Atlantic main development region (MDR). On May 25, 2023, for example, despite above-
average Atlantic Ocean temperatures, the National Oceanic and Atmospheric Administration
(NOAA) called for a 40% chance of “near-normal” Atlantic hurricane activity due to the ongoing and

forecasted development of El Nifio conditions (NOAA, 2023).
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It is reasonable to hypothesize that future changes in Atlantic hurricane activity will, to an
extent, be a function of changes in the eastern tropical Pacific. How the average conditions of climate
may change in the future, and how natural modes of variability and their remote influences may
change, are separate but intertwined questions. In the case of the tropical Pacific, these questions have
considerable uncertainty and are subject to vigorous debate within the climate dynamics community
(Lee et al., 2022). For several generations of coupled climate models, the consensus projection has
featured an enhanced surface warming of the eastern tropical Pacific Ocean (Knutson and Manabe,
1995; Vecchi and Soden, 2007; Coats and Karnauskas, 2017; Fredriksen et al., 2020; Heede and
Fedorov, 2021). One reason for hesitation to simply accept this projection, despite the physical
mechanisms being reasonably well articulated and understood, lies in its persistent and profound
discrepancy with historical records of SST (Karnauskas et al., 2009; Seager et al., 2022; Heede and
Fedorov, 2023a). Moreover, the ability of global climate models to adequately represent the key
physical processes in the equatorial ocean and its coupling with the atmosphere have recently been
called into question due to persistent model biases in the eastern tropical Pacific (Coats and
Karnauskas, 2018; Seager et al., 2019; Karnauskas et al., 2020). Sobel et al. (2023) recently called
attention to the consequences of such uncertainties for future TC projections, and motivated the
development of projections that represent a broader range of future changes in the tropical Pacific.

For the question of future ENSO changes, the underlying uncertainty resides less in model-
observation discrepancy (as we know we are unlikely to have long enough historical records to
attribute—or even detect changes in ENSO; Wittenberg, 2009), and more in the spread among
similarly-constructed models (Collins et al, 2010). While the majority of Coupled Model
Intercomparison Project phase 6 (CMIP6) models project a significant change in ENSO with
anthropogenic forcing (Cai et al., 2022), the response varies widely depending on type of experiment,

timeframe, and model (Maher et al., 2023; Heede and Fedorov, 2023b), which leaves low confidence
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in our current ability to project changes to ENSO. Moreover, even if ENSO variability does not
respond to anthropogenic forcing, the teleconnections linking ENSO to remote basins—particularly
the North Atlantic, are sensitive to changes in the mean state (Drouard and Cassou, 2019). Therefore,
to consider the future changes of impacts that depend upon the tropical Pacific such as Atlantic
hurricane activity, one is plagued by both a relatively robust mean-state projection that is at odds with
historical records, and by wildly unconstrained changes in variability where coupled modes and mean-
state dependent teleconnections are mixed.

In this study, we examine a suite of global model experiments designed to circumvent these
issues. Our experiments strictly control for ENSO variability, while embracing both potential future
mean state changes (with and without enhanced eastern Pacific warming). Therefore, our analyses
expose the range of uncertainty in future Atlantic hurricane activity as a function of this key aspect of
climate change projections, without the confounding factor introduced by using multiple models. This
set of experiments is used to understand both the future change in average conditions in the North
Atlantic of relevance to TCs, and the future change in the impact of ENSO variability on Atlantic
hurricane activity. The latter analysis makes the implicit assumption that ENSO itself (including its
amplitude, seasonality, and spatial pattern) does not change—Ileaving the emergent changes in the
North Atlantic a function only of the teleconnections as modulated by the changing background state.
The model experiments are described in the following section, followed by results, summary and

discussion.

2. Methods
a. Model and excperimental design
The global climate model used in this study is the National Center for Atmospheric Research (NCAR)

Community Earth System Model, version 2 (CESM2). All of our experiments use prescribed SST and
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sea ice boundary conditions, leaving only the atmosphere and land surface as interactive components.
The atmospheric component in our experiments is the NCAR Community Atmosphere Model,
version 6 (CAMOG) with ~1° horizontal resolution and 32 vertical levels. Further details are given by
Danabasoglu et al. (2020).

We conduct three experiments, each integrated for 85 years: control, EP, and noEP (Figure
1). The control experiment is integrated with all radiative forcing such as CO, concentration held
constant at year 2000 levels. The prescribed SST forcing includes the observed seasonal cycle of SST
computed over 1982-2001 (Hurrell et al., 2008), and an idealized ENSO cycle (Figures 1d and 1e).
The ENSO sequence features a large El Nifio, a large La Nifia, a smaller El Nifio, and a smaller La
Nifia, with neutral years between each event. The events are phased in and out in a Gaussian fashion,
peaking in boreal winter, consistent with observed ENSO behavior. This ENSO sequence spans 10
years, and is repeated 8.5 times to cover the 85-year integration. The spatial pattern of the ENSO
events (Figure 1c) is obtained by taking the leading Empirical Orthogonal Function (EOF) of
observed, detrended SST anomalies over 1950—2021 from the NOAA Extended Reconstructed SST,
version 5 (Huang et al., 2017). The prescribed ENSO cycle is idealized in that the spatial pattern of
SST anomalies is constant, and there is neither temporal nor spatial asymmetry between phases.

The EP experiment is similar to control in terms of the SST climatology and idealized ENSO
cycle, but with a global SST trend pattern linearly ramped from 2015-2100, obtained from the
Representative Concentration Pathway 8.5 (RCP8.5) experiment of the fully coupled version of
CESM1 (Figure 1a). The CESM1 forced SST pattern is selected as it exemplifies a typical eastern
Pacific warming response and climate sensitivity of current generation climate models. Atmospheric
CO; increases over time in the EP experiment according to Shared Socioeconomic Pathway 585
(SSP585). The noEP experiment is identical to EP, except that the enhanced warming in the eastern

equatorial Pacific Ocean was first removed from the SST trend pattern through an iterative smoothing
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technique that ensures that the eastern Pacific warms at the same rate as the tropical mean (Figure 1b).
Opverall, the homogenization process to construct the noEP forcing involved Pacific SSTs spanning
50°S—20°N. Perturbed initial condition ensembles of five runs apiece were formed for both the EP
and noEP experiments. Only a single integration of the control experiment was conducted, but since
CO:;, forcing is constant and there is no SST trend, each 10-year segment is considered an independent

realization and may be averaged into an 8.5-member quasi-ensemble mean.

b. Diagnostic calenlations

In general, the level of TC activity in a given climate is a function of the number of initial disturbances
that can develop into TCs (e.g, easterly waves), and the extent to which the large-scale environment
supports TC development (Gray, 1968; 1990). In this study, we focus on the latter, and employ the
Genesis Potential Index (GPI) to characterize the environment as a function of time and the
experimental parameters described above. The GPI, developed by Emanuel and Nolan (2004), has
proven to be a useful metric for such applications (Camargo et al., 2007a; Camargo et al., 2007b;
Zhang et al., 2017) as it incorporates many of the environmental parameters known to influence TC
development including vertical wind shear, lower-tropospheric absolute vorticity, mid-tropospheric
relative humidity, and potential intensity—which is a function of SST and tropospheric stability.

Following Emanuel and Nolan (2004) and others, GPI is calculated here as

RH\3 (Vpotr\3 -
GPI = 110572 (55)" (22) (1 + 0.1Vipeqr) 2 (1)

where 1) is absolute vorticity at 850 mb, RH is relative humidity at 600 mb, V), is potential intensity,

and Vgpeqr 1s the magnitude of vertical wind shear between 250 mb and 850 mb. Following Bister

(2002), potential intensity is defined as

__ SST Cy

Vot = —— [CAPE* — CAPE]|,, ©)
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where Ty is the outflow temperature, Cj, is the exchange coefficient for enthalpy, Cp is the drag
coeflicient, CAPE™ is the convective available potential energy of air lifted from saturation at sea level
in reference to the environmental sounding, CAPE is that of boundary layer air, and subscript m
indicates evaluation at the radius of maximum winds. In addition to wind shear, an important
mechanism for the teleconnection from ENSO to the tropical Atlantic is tropospheric warming by
equatorial waves (Tang and Neelin, 2004), which would influence GPI by way of the CAPE term in
potential intensity. These parameters are calculated using the monthly outputs of the CESM2
experiments described above, and averages over the official Atlantic hurricane season (June—

November) are presented. Before describing the main results, the control experiment is evaluated

against the ECMWF Reanalysis, version 5 (ERA5; Hersbach et al., 2020).

3. Results

a. Description and evaluation of the mean state

The control experiment exhibits GPI maxima along the southeastern flank of the canonical MDR, in
the southern Caribbean Sea, throughout the Gulf of Mexico, and in the northwestern subtropical
Atlantic Ocean (Figure 2f). As anticipated from (1), these regions of relatively high GPI coincide with
a confluence of low shear, static instability, high humidity, and warm SST—yet constrained to north
of ~5°N, where absolute vorticity is not prohibitively small for the maintenance of gradient wind
balance critical to TCs (Figure 2a—e).

With minor exception, the mean fields simulated by CESM2 are similar to those estimated
from ERA5 (Figure S1), and it can be seen that maxima in the ERA5 GPI field broadly aligns with
observed TC genesis locations over the same time period from in the International Best Track Archive
for Climate Stewardship (IBTrACS) dataset (Knapp et al., 2010) (Figure S2). In terms of GPI, the

most obvious differences are that CESM2 exhibits lower near the MDR, and higher in the Caribbean,
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Gulf of Mexico and northwestern subtropical Atlantic. The former bias appears to be reconcilable
through differences in vertical wind shear, while the latter appears related to SST, humidity and
stability. Some differences, particularly in thermodynamic parameters, are to be expected given the
slight difference in time periods including CO. concentrations. Overall, the CESM2-simulated
climatological TC environment in the North Atlantic appears suitable for investigating its response to

internal and external forcings.

b. Changes in the mean state

In response to rising CO; and global SST changes, the EP experiment exhibits several GPI changes
in key regions of interest (Figure 3). Across most of the MDR from the Caribbean to the central
tropical Atlantic, GPI is reduced by up to 24%, accompanied by a very strong increase (over 100%0)
in the southeastern corner of the MDR extending to the coast of Africa (Figure 3d). Substantial
increases in GPI (by 50-100%) also occur throughout the northern Gulf of Mexico and northwestern
subtropical Atlantic. Most of the spatial structure of these changes is explained by that of wind shear
(Figure 3a), with the exception of the northern Gulf of Mexico and the southward extent of the
increase in the northwestern subtropical Atlantic (maximizing in the Sargasso Sea near 32°N). This is
confirmed by recalculating the change in GPI where vertical wind shear from the control experiment
is used in the GPI calculations for both control and EP (Figure S3). In the northern Gulf of Mexico
and northwestern subtropical Atlantic, the increase in GPI is explained by an increase in potential
intensity, absolute vorticity and relative humidity. The effect of removing the enhanced eastern Pacific
warming is to eliminate the aforementioned GPI reduction in the central MDR, and damp (by ~25%)
the increase in GPI near the coast of Africa (Figures 3e and 3f). These intensity of these changes in

GPI, including their dependence on the enhanced eastern Pacific warming, are roughly uniform from
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the onset of the climatological hurricane season into the peak months, but very weak by November
(Figure S4).

The large GPI changes along the southern flank of the MDR can be understood through
consideration of vertical wind shear that arises as part of the zonal atmospheric overturning (z.e., the
Atlantic Walker cell). In the control experiment, upper-level winds are more westerly than the lower-
level winds from about 80-32°W (Figure 4a). East of 32°W, the opposite is the case (meaning the
overturning is not Walker-like). The response to rising CO; and global SST changes is an increase in
the westetly wind at 250 mb—equivalent to a roughly uniform anomaly of 2-4 m/s, and negligible
change in the surface easterlies. West of 32°W, this upper-level change serves to increase the initial
shear, while east of 32°W, there is a transition to a reduction in shear (by bringing the zonal wind at
250 mb closer to that at 850 mb). The overall change also includes an eastward shift by ~790 km of
the location of zero shear. The response in the experiment without enhanced eastern Pacific warming

is qualitatively similar, but scaled by about half.

¢. Changes in ENSO’s impact

Finally, we examine the influence of global warming, including the specific impact of enhanced eastern
Pacific warming, on the ENSO signal in North Atlantic GPI. The control experiment exhibits an
ENSO signal consistent with observations, where El Nifo reduces Atlantic hurricane activity by
lowering GPI along the southern flank of the MDR extending from the coast of Africa into the
Caribbean and throughout the Gulf of Mexico and northwestern subtropical Atlantic (Figures 5a and
5e). Under global warming, the ENSO signal is qualitatively similar in most aspects to control, but
greatly amplified (Figure 5e) and includes a new anomaly near the coast of Africa where El Nifio
increases GPI (Figure 5b). With few exceptions, enhanced warming in the eastern Pacific serves to

increase these responses (Figure 5d). In the noEP experiment, lack of enhanced eastern Pacific
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warming reverses the sign of the ENSO signal in the Gulf of Mexico such that El Nifio leads to higher
GPI there (Figure 5c). Interestingly, La Nina exhibit higher GPI in the noEP experiment than in
control (Fig. 5e), illustrating nonlinearities in the tradeoft between the patterns of background warming
versus those of interannual anomalies.

The physical mechanism for the increase in ENSO signal in the south-central MDR region,
and the emergence of an opposing signal closer to the African coastline, is analogous to that previously
described for the mean state change. El Nifio increases the westerly zonal wind at 250 mb, which
increases (decreases) shear to the west (east) of the point at which the zonal winds at 250 mb and 850
mb intersect (Figure 4b). This remote response to ENSO is amplified in both EP and noEP

experiments relative to control, but more so in the EP experiment (Figures 4c and 4d).

4. Summary and Discussion
A suite of global warming experiments thatisolate the role of mean state changes in the eastern tropical
Pacific reveal the key dependencies of future Atlantic hurricane activity on this highly uncertain aspect
of climate change. Overall, we conclude that future Atlantic hurricane activity—both the average
statistics and the ENSO signal therein—does depend on whether enhanced warming of the eastern
tropical Pacific Ocean is an emergent feature of the climate response to anthropogenic radiative
forcing. In some regions, increases in genesis potential are doubled by the presence of enhanced
eastern Pacific warming; in the Gulf of Mexico, even the sign of change is sensitive to the level of
warming in the eastern Pacific.

In particular, along the southern flank of the MDR, a strong dipole response emerges in the
case with enhanced eastern Pacific warming such that genesis potential decreases west of about 32°W
and increases east thereof, similar to high-resolution coupled model simulations (Murakami et al.,

2012; van Westen et al., 2023). These changes, shown here to be critically dependent on the enhanced
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eastern Pacific warming, are associated with a positive (westerly) anomaly in the upper-level zonal
winds, which is itself part of a global-scale contraction of the tropical upper-tropospheric easterlies
rather than a regional-scale phenomenon (Figure S5). Such a change in a key region of TC
development may have considerable implications for coastal risk in the western Atlantic. For example,
the eastward shift in the region of maximum GPI may allow westward propagating TCs to spend more
time over the relatively warm tropical Atlantic Ocean before approaching land. Given the seasonality
of these changes (Figure S4), one may anticipate an earlier onset of the Atlantic hurricane season—
but not a lengthening toward winter months. Such development scenarios could be verified through
TC-resolving simulations or other downscaling approaches such as those mentioned in the
introduction.

Previous studies have revealed several important societal impacts that critically depend on
whether the eastern tropical Pacific warms the way generations of models have projected, for example,
the drying of the American Southwest (Seager and Vecchi, 2010) and many others (Lee et al., 2022).
This study adds one additional, particularly destructive impact to that list, further underscoring the
pressing need to resolve the mismatch between historical observations and climate models. Some
caution is warranted when interpreting GPI quantitatively in different climates, as the relationships
between GPI input parameters and TC genesis may be state dependent. Other regions such as
typhoons in the northwestern Pacific are beyond the scope of this study, but may hold considerable

sensitivities to the eastern Pacific warming response as well.
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Figure 1. Spatial pattern of prescribed global warming pattern (a) including and (b) excluding
enhanced eastern Pacific warming, composed as the SST difference (°C) between EP or noEP
experiments averaged from 2090-2100 and the control experiment. (c) Spatial pattern of prescribed
ENSO pattern, composed as SST anomalies (°C) in the control experiment regressed onto the NINO3
index in the control experiment. (d) Time series of SST in the NINO3 region in the control (black),
EP (red) and noEP (blue) experiments. (e) As in d but with the seasonal cycle removed, and the time
series aligned by subtracting the average of the first year of each time series. The gray shaded region
in d and e marks the first 10-year segment; the prescribed ENSO sequence repeats every 10 years, as

described in Section 2.
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Figure 2. (a) Vertical wind shear between 250 mb and 850 mb (m s™), (b) 850-mb absolute vorticity
(s, (c) vertical temperature gradient between 850 mb and 250 mb (°C m™), (d) 600-mb relative
humidity (%), (€) potential intensity (m s™), and (f) genesis potential index during hurricane season
(June—November) averaged over the control experiment. Color scales are oriented such that darker
implies greater genesis potential. The thick black rectangle denotes the main development region. The
dashed rectangles in f denote the regions used for bar charts in Figure 5. Equivalent fields calculated

from ERAS5 over the period 1991-2020 are provided in Figure S1.
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Figure 3. (2) Change in vertical wind shear (m s™') during hurricane season (June-November) at 2080—
2100 in the EP expetiment relative to the control experiment. For reference, the 4 m s~ wind shear
contour from Figure 2a (control) and the MDR are plotted. (b) As in a but for the noEP experiment.
(c) Difference between wind shear during hurricane season at 2080-2100 in the EP experiment relative
to the noEP experiment. (d)—(f) As in a—c, but for genesis potential index, and the GPI = 4 contour
from Figure 2f (control) is plotted for reference. The dashed rectangles in d—f denote the regions used

for bar charts in Figure 5.
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Figure 4. (a) Profiles of zonal wind at 850 mb and 250 mb averaged from 8-11°N during hurricane
season in the control experiment (black), EP experiment at 2080—2100 (red), and noEP experiment at
2080-2100 (blue). (b) ENSO signal in zonal wind profiles in the control experiment: El Nifio (thick),
all years (thin solid), and La Nifia (thin dashed). (c) As in b, but for the EP experiment at 2080-2100.
(d) as in b, but for the noEP experiment at 2080—-2100. Within this latitudinal range, the coast of Africa

is at approximately 14°W.
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Figure 5. (a) ENSO signal in hurricane season GPI in the control experiment, composed as the
difference between GPI during strong El Nifio and strong L.a Nifia events. For reference, the GPI =
4 contour and the MDR are plotted. (b) As in a, but taken over 2080-2100 in the EP experiment. (c)
As in b, but for the noEP experiment. (d) Difference in the ENSO signal in hurricane season GPI at
2080-2100 between the EP and noEP experiments. The dashed rectangles in a—d denote the regions
used for bar charts in e—f. Outliers in the Gulf of Mexico in b—d arising due to noise in the CAPE
field (part of the potential intensity calculation and thus part of GPI) are masked white. (¢) Hurricane
season GPI in the control experiment (black bars), EP experiment (red bars), and noEP experiment
(blue bars) averaged over La Nifia years (LN), all years (All), and El Nifo years (EN), averaged over
the south-central MDR (60-30°W x 5-15°N). (f) As in e but for the northwestern subtropical Atlantic

(80—60°W x 20—30°N).
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