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Abstract 8 

Imaging of Earth’s interior has led to a large number of successful discoveries of plausible 9 

structures and associated geophysical processes. However, due to the limitations of geophysical 10 

data, Earth imaging has many tradeoffs between the underlying features, and most approaches 11 

apply smoothing to reduce the effect of such tradeoffs. Unfortunately, this smoothing often 12 

results in blurry images that are not clear enough either to infer the geologic processes of 13 

interest or to make quantitative inferences about the various geologic properties. Here, we first 14 

summarize some of the basic issues that make Earth imaging so difficult and explain how Earth 15 

imagers must choose between more open-ended discovery oriented goals and more specific, 16 

scientific inference oriented goals. We discuss how the choice of the optimal imaging 17 

framework depends crucially on the desired goal, and particularly on whether plausible 18 

discovery or inference is the desired outcome. We argue that as Earth imaging has become 19 

more mature, sufficiently many plausible structures have been imaged that it is becoming more 20 

crucial for Earth imaging to serve the inference goal and would benefit from an inference 21 

oriented imaging framework, despite the additional challenges in posing imaging problems in 22 

this manner. Examples of inference oriented imaging frameworks are provided and contrasted 23 

with discovery oriented frameworks. We discuss how the success of the various frameworks 24 

depends critically on the data quality and suggest that a careful balance must be struck 25 

between the ambition of the imager and the reality of the data. If Earth imaging is to move 26 

beyond presenting qualitatively plausible structures, it should move towards making 27 

quantitative estimates of the underlying geologic processes, inferred through a self-consistent 28 

framework.   29 
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Introduction 30 

The inaccessibility of the Earth's interior has led to much speculation about its nature, including 31 

many myths, science fiction stories, and scientific debates. Myths include the hell of Dante's 32 

Inferno (Alighieri, 1472), or earthquake-causing subterranean turtles or catfish (SCEC, 2014; 33 

Nur, 2008). Science fiction stories include Jules Verne's Journey to the Center of the Earth 34 

(Verne, 1864), Lewis Carroll's Alice in Wonderland (Carroll, 1865), many other subterranean 35 

world novels (Fitting, 2004), and the movie The Core (Amiel, 2003). More interesting from a 36 

science perspective are the numerous scientific debates about the Earth’s interior. These 37 

include the 1690's-1930's debate over whether the Earth's interior was solid, fluid, gaseous or 38 

hollow (Halley, 1692; Franklin, 1793; Brush, 1980), and the more recent debate about whether 39 

narrow mantle plumes can be confirmed to exist or not (Montelli et al., 2004; van der Hilst and 40 

de Hoop, 2005).  41 

 42 

Due to its inaccessibility, many inferences about geophysical processes and the structure of 43 

Earth's interior have come through imaging techniques, especially seismic imaging (e.g., 44 

Dziewonski and Anderson, 1981; Grand et al., 1997), but also imaging with other geophysical 45 

data like gravity (Oldenburg, 1974), electromagnetic (Naif et al., 2013), muon (Tanaka et al., 46 

2009) and neutrino (Donini et al., 2019) data. The fact that the Earth has a core (Brush, 1980; 47 

Muir & Tsai 2020a), that high-pressure mineral phases like Bridgmanite and Wadsleyite exist 48 

(Ringwood & Major, 1966; Dziewonski & Anderson, 1981; Ringwood, 1991), and that 49 

subducting plates likely impinge upon the lower mantle (Grand et al., 1997) have been 50 

indicated primarily with seismic imaging. 51 
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 52 

However, despite the past successes of seismic imaging, there remain many debated 53 

interpretations of seismic images, and it is often unclear from a science philosophy standpoint 54 

whether certain Earth features claimed to be imaged are true beyond reasonable doubt, likely, 55 

plausible, or simply false. As Earth imaging matures, we argue that insufficient attention has 56 

been paid to the critical inference related aspects needed for such imaging to make a lasting 57 

impact on our knowledge of the Earth's interior. We begin with a discussion of the critical 58 

reasons that Earth imaging is challenging. While previous studies have commented on some of 59 

the same issues of non-uniqueness and underdeterminism (e.g., Jackson, 1972; Zelt, 1999), 60 

most studies still approach the problem within the standard discovery driven approach. Next, 61 

we describe how imaging approaches can be framed as either being discovery oriented or 62 

inference oriented and that these approaches have fundamentally different scientific 63 

philosophies and goals. Finally, we describe some of the emerging ideas for posing inference 64 

oriented Earth imaging and how they contrast with discovery oriented approaches.  65 

 66 

The Challenge of Earth Imaging 67 

Imaging is the use of observed data to produce a picture of the object of interest. In the case of 68 

standard, light-based imaging, relatively high quality images are produced even with cheap 69 

mobile phone cameras (see Fig. 1a). The success of standard imaging is well known (e.g., by 70 

amateur photographers; Audubon, 2022) and can be attributed to the fact that (1) photons are 71 

generally abundant, (2) the wavelength of visible light is relatively short (400-900 nanometers) 72 

leading to sub-micron resolution, (3) air is minimally refractive so that photons usually travel 73 
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directly from the subject to the detector, and (4) modern cameras have millions of pixels that fit 74 

easily into mm-sized semiconductor sensors. An example of such success is the photo of a cow 75 

shown in Figure 1a, where it is clear that the subject is a cow. From an epistemological 76 

standpoint, the viewer can have great confidence that the subject is a cow rather than a pig or a 77 

walrus. Moreover, one can identify important characteristics of the cow, the relative sizes of 78 

the cow’s features can be measured quantitatively, and one could determine whether any 79 

features are unexpected in size or shape. 80 

 81 

Imaging also has many scientific applications (see Fig. 1). We can obtain detailed images of flow 82 

in the interior of the sun (e.g., Fig. 1b, Gizon et al., 2010), we can image an 8-week human fetus 83 

in utero the size of a peanut (Fig. 1c, Jauniaux et al., 2005), and we can even image the 84 

structure of a single protein (Fig. 1d, Dubochet, 2018). In an Earth context, Figure 1e shows an 85 

example seismic image that has been interpreted to show the subducted Farallon plate in the 86 

lower mantle (Grand et al., 1997).  87 

 88 

Perhaps surprisingly, in some ways it is more difficult to obtain clear images of the Earth's 89 

interior than it is to image the sun's interior, the peanut-sized fetus or a single protein. Earth 90 

imaging is difficult for the same considerations that make standard imaging easy. First, the 91 

geophysical data that are most sensitive to the Earth's deep interior, namely seismic wave data, 92 

are limited given the paucity of large enough seismic sources to illuminate regions of the Earth's 93 

interior of interest. Second, the wavelength of seismic waves used is relatively long (10’s-100’s 94 

of km), resulting in resolvable features of similar length scales for global (Hosseini et al., 2020) 95 
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and regional problems (Fichtner et al., 2009). Third, the Earth's interior is highly heterogeneous, 96 

with geologic structures ranging from the micron to the hundreds-of-km scale that contribute 97 

to significant refraction and reflection of seismic waves (Lay & Wallace, 1995). Finally, although 98 

the number of sensitive, globally distributed seismic stations is impressive (e.g., Hosseini et al., 99 

2020), the few thousand broadband seismometers pales in comparison to the millions of 100 

sensors in an iPhone camera, with major station coverage gaps in the oceans, Russia and Africa. 101 

All of these reasons create tradeoffs that conspire to cause seismic images to be generally 102 

blurrier than desired to make clear inferences about what structures exist in the Earth's interior 103 

and what their characteristics are. Other geophysical data such as electromagnetic, gravity, 104 

muon and neutrino data are even more limited than seismic data, and suffer many of the same 105 

non-uniqueness problems. This explains why researchers have often struggled to use 106 

geophysical imaging to go beyond suggesting that structures exist to clearly distinguishing 107 

between different hypotheses about the existence and sizes of various structures and 108 

geophysical processes. 109 

 110 

Discovery Versus Inference 111 

The dichotomy between the simultaneous success of Earth imaging in discovering plausible 112 

features and yet the difficulty of using it to make clear inferences highlights the importance of 113 

identifying its scientific purpose. Importantly, whether the result is successful or not depends 114 

on the researcher's perspective and purpose, rather than there being an absolute metric of 115 

success. Specifically, there is a significant difference between the goal of discovering plausible 116 
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features versus the goal of inferring specific characteristics (including about existence of 117 

features).  118 

 119 

A simple example helps demonstrate the difference between the ‘discovery’ and ‘inference’ 120 

goals. We return to the cow image (repeated in Fig. 2b) and ask whether Figure 2a (a blurry but 121 

traditional photo) or Figure 2c (a cartoon cow impression with certain specific features 122 

estimated) would be preferable if the ‘true’ Figure 2b were unavailable (setting aside for now 123 

how these images would be obtained). The answer depends on one’s goal. If no prior 124 

information were available and the purpose is to determine what is plausible, you may prefer 125 

Figure 2a, where no assumptions were made about possible features. Although the image is 126 

blurry, it is unbiased and has a wide range of possible outcomes, an advantage if one has no 127 

idea what to expect. In contrast, if you know there is a cow and your purpose is to determine 128 

the various cow features, you may prefer Figure 2c, where it is much clearer than from Figure 129 

2a that the cow has 4 legs, 2 ears, spots, and even 4 teats on its udder and a red tag (all of 130 

measurable sizes). This example underscores how the goal of unbiased discovery (or 131 

exploration) of plausible structures is distinct from the goal of inferring specific characteristics 132 

of a hypothesized object, and implies different preferences in approach. Interestingly, while 133 

Figure 2b has 3.7 million pixels and thus 11.0 million parameters (RGB values), the number of 134 

effective parameters needed for Figure 2a is about 2300 (smoothed ~70x) and only about 600 135 

for Figure 2c (~270 points plus colors). This is important if, for example, only 3000 pieces of 136 

information were available. In this case, Figure 2b could not be produced, but Figure 2a and 2c 137 

may be, depending on the structure of that information. Finally, we note that for Figure 2c, one 138 
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needs to propose a set of possible cow characteristics to test; using the wrong features would 139 

lead either to no features or misinterpretations of other features. 140 

 141 

This example highlights two related problems that plague scientific imaging and especially Earth 142 

imaging, but which are not usually problems for traditional imaging. As already noted, Earth 143 

imaging is data poor in that there is never enough data to constrain all details of geologic 144 

structure that should exist in the Earth's interior. For example, geologic outcrops have 145 

important structure at the sub-meter scale (Waldron & Snyder, 2020), and the Earth's volume is 146 

approximately 1021 m3, meaning 1021 pieces of independent information (a zettabyte of 147 

information) would be needed to determine Earth structure at a 1-meter resolution, an 148 

impractical amount of data (equivalent to the global annual internet traffic). Even with a 149 

growing amount of Earth data, Earth imagers will always be forced to make difficult decisions 150 

about what features to focus on. Much like in the cow example with 3000 pieces of 151 

information, the Earth imager simply cannot capture Figure 2b regardless of method, and must 152 

embrace the strategy behind either Figure 2a, Figure 2c or some alternative that similarly uses 153 

less than 3000 pieces of information. Thus, the choice between discovery-mode (Fig. 2a) and 154 

inference-mode (Fig. 2c) approaches is apparent, and the Earth imager does not have the luxury 155 

of avoiding the choice.  156 

 157 

The fact that high-resolution Earth imaging problems have significant tradeoffs and are 158 

therefore non-unique or underdetermined is well known (Jackson, 1972; Jordan, 1979) but, to 159 

date, discovery-mode solutions to the Earth imaging problem have dominated. As elsewhere, 160 
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Earth imaging often uses pixels, grids, splines, spherical harmonics or other cell type structures 161 

as the fundamental building blocks. These mathematical objects are chosen to be as general as 162 

possible in order to accommodate the flexible discovery philosophy. Furthermore, in designing 163 

the smoothing or regularization to reduce the number of effective parameters, there has 164 

usually been a preference towards flexible mathematical regularization approaches. Tikhonov 165 

regularization is one such common smoothing used in Earth imaging (Aster et al., 2013), and is a 166 

good example of a very general approach to stabilizing an inversion that has too many grid cells 167 

for a robust unregularized inversion. Tikhonov regularization results in the typical smoothing of 168 

underdetermined images that is common, for example in Figure 1e. Other mathematical 169 

approaches for addressing the same regularization problem can produce somewhat different 170 

results, but still share the same philosophy regarding flexibility. For example, sparsity 171 

regularization (e.g., Candes & Wakin, 2008), also known as compressive sensing, lasso or L1 172 

regularization, is a recently popular alternative where fewer jumps in parameter values 173 

between adjacent grid cells are preferred and used to effectively reduce the number of free 174 

parameters. The underlying structure is otherwise unchanged, making sparsity regularization 175 

useful when one expects a small number of sharp boundaries between discrete, homogeneous 176 

objects but one still wants to maintain flexibility in the outcome. As such, sparsity regularization 177 

takes a small step in the direction of interpretability for objects with sharp boundaries but 178 

keeps most of the discovery philosophy. Similarly, other mathematical regularization 179 

approaches, such as using large Voronoi cells to sample an ensemble of possible models 180 

through a sub-space approach (Bodin & Sambridge, 2009), share the same philosophy and 181 

accomplish a similar goal. A number of such mathematical approaches exist (e.g., Rudin et al., 182 
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1992; Capdeville et al., 2010; Fichtner et al., 2021) and all fundamentally share the same 183 

philosophy, while incorporating a small amount of a priori information. 184 

 185 

The focus of Earth imaging on discovery and exploration was sensible, especially in the early 186 

days of Earth imaging, when little was known about the Earth’s interior. Discovery-mode Earth 187 

imaging approaches have successfully led to a large number of Earth images with various 188 

qualitative interpretations for what geologic structures exist and what their properties might 189 

be. However, just like it is difficult to say anything quantitative using the blurry cow image in 190 

Figure 2a, the vast majority of Earth image interpretations remain qualitative rather than 191 

providing quantitative estimates either of the likelihood of correctness or of the physical 192 

characteristics. Given the prior discussion, this is unsurprising, but this highlights the need for 193 

Earth imaging to move in the direction of quantitative inference, particularly for regions that 194 

already have discovery-mode images. Inference-mode imaging has a number of challenges that 195 

discovery-mode imaging does not, including the difficulty of asking the right questions and the 196 

extra technical expertise needed to correctly pose the problem and efficiently solve for the 197 

important features (Tsai et al., 2023). But it is the only way in which Earth imaging will be able 198 

to truly answer scientific questions posed about the appropriate geophysical processes 199 

operating within the Earth. Thus, despite the challenges, it is time for Earth imagers to embrace 200 

the inference philosophy more fully. 201 

 202 

Inference-Mode Imaging Approaches 203 



 11 

Just as there are a variety of discovery-mode approaches to Earth imaging, there have been a 204 

number of suggested inference-mode approaches to Earth imaging, each with its pros and cons, 205 

and some of which more completely embrace the inference goal than others. Many of these 206 

approaches build upon discovery-mode approaches, including using them as starting points. 207 

Here, we explain some of the differing approaches, with a focus on the differences in 208 

philosophy and the implications for quantitatively answering geophysical questions.  209 

 210 

Early examples of inference-mode imaging 211 

The idea that imaging can benefit from an inference framework is an old one that can be traced 212 

back at least to the earliest experiments on the nature of light and specifically whether light is a 213 

wave or a classical particle. Young’s double-slit experiment (Young, 1804) was designed to test 214 

whether the observed pattern would be the interference pattern predicted of the wave theory 215 

or whether it would have the classically predicted two peak pattern. The goal of the imaging is 216 

not to determine the detailed structure of the light pattern but rather to test between 2 very 217 

specific hypotheses and determine which provides a better explanation of the observed data 218 

(see Fig. 3).  219 

 220 

This general idea has been used in Earth imaging, with Harold Jeffreys being one of the first to 221 

clearly articulate (Jeffreys, 1939) what is now known as a Bayesian framework for how different 222 

proposed models (with different parameter values) can be tested against observed geophysical 223 

data. The general idea behind all such approaches is familiar to students of inverse theory in 224 

that a prediction of each piece of data is made given a model framework and a range of 225 
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parameter values, and the model is preferred based on how closely the model predictions 226 

(forward model) fit the observed data (Tarantola, 2005; Aster et al., 2013). Within a Bayesian 227 

context, the data misfit provides a quantitative assessment for how reasonable the model is 228 

and specifically the probability that the model is correct. When applied to model frameworks 229 

with different parameters, this comparison between models is more difficult and requires use 230 

of a model selection criterion to weigh the importance of accuracy versus simplicity (e.g., 231 

Sambridge et al., 2006), but otherwise has a similar philosophy.  232 

 233 

Nataf & Ricard (1996) was one of the earliest studies to embrace a forward modeling 234 

philosophy in whole Earth imaging problems, with a direct prediction of seismic wave speeds 235 

using a geodynamical model. Unlike strictly Bayesian studies, they only computed the predicted 236 

data for a single best-guess geodynamical model and declined to adjust the geodynamical 237 

parameters to fit observed seismic data, but the idea was that their model could be used by 238 

future imagers by doing so. Khan et al. (2008) took this concept one step farther, and into a 239 

Bayesian framework, by directly estimating the mineralogy of the mantle using a comparison of 240 

a seismic model (Dziewonski & Anderson, 1981) with an ensemble of predictions from mineral 241 

physics models. This study was a significant conceptual step forward and suggested a different 242 

mineralogy from what was commonly assumed, but limited in its comparison of strictly one-243 

dimensional (depth) structure, and therefore only average bulk properties of the Earth. 244 

Koelemeijer et al. (2018) took this approach an additional step farther, testing seismic 245 

predictions of three-dimensional geodynamical models with and without post-perovskite 246 

directly against seismic tomographic images. The philosophy taken here is close to the 247 
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inference end-member discussed above. Unfortunately, a challenge of such an approach is 248 

whether or not the model predictions can explore the full range of plausibly realistic models, 249 

and whether the data are good enough to distinguish robustly between the numerous 250 

possibilities or whether significant tradeoffs exist (see next section). 251 

 252 

In a parallel line of research, Zelt (1999) pointed out that there are different strategies and 253 

goals in imaging. Contrasting with the discovery-mode approach, he described what he called a 254 

‘minimum-parameter, prior-structure model’ that includes strong prior information about what 255 

physics or geometry exist, and in which imaging data is used to estimate a small number of 256 

parameters related to these strong priors. This approach results in simple estimates of 257 

geometric structures defined by prior ideas for what structures are reasonable. Similarly, 258 

Magistrale et al. (2000) used various geophysical data including tomographic imaging data to 259 

construct a simple rule-based model of seismic velocities in Southern California. In this work, 260 

limitations on data availability necessitated the use of simple empirical constraints on 261 

sedimentary basin velocities to construct a complete model across Southern California that 262 

included such shallow basins. The resulting Southern California Earthquake Center (SCEC) 263 

Community Velocity Model (CVM) Version 2 has been used by many researchers, but has since 264 

been subsumed by more complex discovery-driven tomographic models like the SCEC CVM 265 

Version 4.26 (Lee & Chen, 2016). While these early works of Zelt (1999) and Magistrale et al. 266 

(2000) were simplistic in their assumed structures and ambitions, in many ways later work 267 

described below builds upon the same philosophy but allowing for more sophisticated models 268 

and hypotheses.  269 
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 270 

Recent examples of inference-mode earth imaging  271 

More recently, there has been a resurgence in the number of studies advocating for a variety of 272 

different types of inference approaches to Earth imaging. We group these into 3 philosophically 273 

distinct end-member contributions, which are exemplified by the works of Astic and Oldenburg 274 

(2019), Arnold and Curtis (2018), and Tsai et al. (2023). Each of these involve inference as an 275 

important principle and are archetypical of the range of modern approaches to inference-mode 276 

imaging which are framed with modern data-quality constraints, available methodologies, and 277 

uncertainty quantification. These emerging frameworks should help pave the road for future 278 

inference-mode Earth imaging work. 279 

 280 

The work of Astic and Oldenburg (2019) exemplifies a type of inference-based imaging in which 281 

there are a small number of categories of structures with clearly distinct properties within an 282 

arbitrarily complex spatial landscape. Their work demonstrates how 2 or 3 categories of known 283 

(or modestly unknown) electrical conductivities can be determined from resistivity data more 284 

robustly with a petrophysically and geologically guided inversion (PGI) compared with a 285 

Tikhonov regularization approach. Importantly, this work is designed to offer maximum 286 

flexibility regarding the spatial variability of the structures, using the data misfit and clustering 287 

algorithms (e.g., Sun and Li, 2015) to converge close to a realistic geologic model. Other work 288 

embraces a similar philosophy, though with different underlying methodologies and imaging 289 

applications. For example, Linde et al. (2015) review how hydrogeological systems can be 290 

categorized; Sun and Li (2015) demonstrate how to use gravity and crosswell seismic data to 291 
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identify distinct geologic units through clustering; Giraud et al. (2017) discuss how to use 292 

geologic classification constraints to reduce the tradeoffs in gravity and magnetic inversions 293 

through uncertainty estimation; and Muir and Tsai (2020b) show how seismic data can be used 294 

to solve for geometrically distinct subsurface units using an Ensemble Kalman Inversion (EKI) 295 

approach. Other similar applications are summarized by Moorkamp et al. (2016). 296 

 297 

In their ‘interrogation theory’ framework, Arnold and Curtis (2018) take a different approach in 298 

which they frame the entire geophysical imaging problem with a single overarching science 299 

question that the imaging is designed to answer and which is ‘interrogated’ with the 300 

geophysical imaging data. The philosophy taken is analogous to that of Young’s double slit 301 

experiment (see Fig. 3), where a single hypothesis is addressed and the imaging data is analyzed 302 

only with respect to this hypothesis. Zhao et al. (2022) show how interrogation tomography can 303 

be framed using different algorithms to answer the question ‘What is the volume of a 304 

subsurface body?’ using seismic travel time data. The interrogation framework formalizes the 305 

earlier approaches of Khan et al. (2008) and Koelemeijer et al. (2018). Those works could be 306 

framed as asking the questions ‘What is the average depth-dependent mineralogy of the 307 

mantle?’ and ‘Does post-perovskite exist in the deep mantle?’, respectively. 308 

 309 

In yet another distinct approach to the inference problem, Tsai et al. (2023) advocate for 310 

parametrizing imaging problems in terms of the geophysical processes and structures most 311 

pertinent to the expected geologic setting, an approach they call ‘geological tomography’ (Fig. 312 

4). They present a few examples of using idealized models of sedimentary basin formation, 313 
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subduction zone processes, and continental-scale architecture to directly parametrize models 314 

for inverting seismic imaging data. This work intentionally reduces the flexibility of the possible 315 

imaging results in favor of geologic interpretability of each parameter. A key feature and 316 

simultaneous challenge is that the realisticness of the outcome depends on the quality of the 317 

data and the modeling sophistication and ambition of the imager. Furthermore, due to the 318 

different physical processes, data quality and a priori information, each application is expected 319 

to require its own independent evaluation of how to pose the inference problem such that the 320 

idealized model is commensurate with the data. In an analogy to the cow imaging problem, the 321 

number of pieces of information and structural complexity of the cow cartoon should be 322 

simpler when less information is available, and can be more realistic when more information is 323 

available, as schematically shown in Figure 5a-e. This philosophy applies similarly to geological 324 

tomography (subduction example in Fig. 5f-j; shallow subsurface example in Fig. 5k-o), not just 325 

to features but also to the underlying geophysical processes and deformation which can be 326 

included explicitly in the model parametrization if warranted. The geological tomography 327 

framework formalizes the old but never fulfilled goal of Jordan (1979) of performing structural 328 

geology of the global Earth’s interior, and applies the ‘simplifying, specific modeling’ approach 329 

discussed by van Zelst et al. (2022) to Earth imaging problems rather than the ad hoc geometric 330 

approach of Zelt (1999). The philosophy is a pragmatic one that embodies the Einsteinian ‘as 331 

simple as possible, but not simpler’ mantra (Dyson, 2004), with the result being explicit 332 

quantitative estimates of exactly those physical parameters that the imager deems worthy of 333 

investigation. 334 

 335 
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Future Outlook for Inference-Mode Earth Imaging 336 

As Earth imaging moves beyond pure exploration and towards learning more precise 337 

information about the Earth, it will be necessary for researchers to grapple with the challenges 338 

of thinking about the purpose of imaging and how the framework used has important 339 

implications for how successful the result will be in addressing the imager’s goals. ‘Discovery-340 

mode’ imaging will always be useful in leading to hypotheses but ‘inference-mode’ frameworks 341 

are crucial for robust discovery of hypothesized features, e.g., as used classically by Young to 342 

discover the wave nature of light (Fig. 3) and also by Le Verrier (1846) to discover the planet 343 

Neptune. Given the recent frameworks exemplified by Astic and Oldenburg (2019), Arnold and 344 

Curtis (2018) and Tsai et al. (2023), the Earth imaging field is well prepared to take the next 345 

steps towards inference. These and other recent inference oriented imaging studies have just 346 

scratched the surface in terms of possible applications, but a set of possible directions has been 347 

set for the Earth imaging community to follow. While inference-mode imaging has many 348 

technical challenges that traditional imaging does not (e.g., Tsai et al., 2023) and can easily be 349 

biased by the use of non-independent data (a form of data dredging), it is exciting to see the 350 

field mature to the point where robust conclusions about the mysteries of the Earth’s interior 351 

may finally see the light of day. Whether we reach this point may be a matter of whether we, as 352 

a community, have the ambition, patience and education to follow this challenging path. 353 

 354 
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Figure Captions 491 

Figure 1. Five imaging examples at different scales. (a) An image of a cow taken with a cheap 492 

standard camera. (b) An image of the sun from helioseismic Doppler imaging (colors denote 493 

magnetic field strength, arrows denote horizontal velocities up to 300 m/s). (c) Fetal ultrasound 494 

image showing a live 8-week fetus (~1 cm) plus yolk sac (~3 mm) within the uterus. (d) Image of 495 

an RNA polymerase protein reconstructed using cryo-electron microscopy. (e) Image of the 496 

subducted Farallon plate underneath North America from seismic data. Images from (a) 497 

reprinted from ars.usda.gov/oc/images/photos/k5176-3/, (b) reprinted from arXiv:1001.0930 498 

and courtesy of Laurent Gizon, (c) courtesy of the author, (d) courtesy of Seychelle Vos, (e) 499 

courtesy of Suzan van der Lee. 500 

 501 

Figure 2. Comparison of different approaches to imaging. (b) represents the truth and contains 502 

11.0 million pieces of information (assumed unavailable in the example). (a) is a version of (b) 503 

that is blurry due to smoothing by a factor of 70 in both directions, resulting in ~2300 pieces of 504 

information. (c) is an image constructed out of cow features (head, udder, legs, spots, eyes, 505 

ears, tag) and uses ~600 pieces of information. The smoothed image in (a) is most useful in 506 

discovery mode. The featured image in (c) is most useful in inference mode. 507 

 508 

Figure 3. Young’s double slit experiment with 2 distinct imaging hypotheses. (a) The classical 509 

theory predicts 2 lines. (b) The wave theory predicts a central peak and a large number of 510 

adjacent lines of different intensities depending on the wavelength. The purpose of the 511 

experiment is to test the 2 specific hypotheses. 512 
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 513 

Figure 4. Example geologic parametrizations for imaging. (a) Example sedimentary basin 514 

parametrization with 14 parameters, characterizing 2 graben forming and 2 deposition geologic 515 

events. (b) Example subduction zone parametrization with 8 parameters, including cooling of 516 

the mantle wedge by the subducting plate. Adapted from Tsai et al. (2023). 517 

 518 

Figure 5. Schematic showing how models of a cow (a-e), a subduction zone (f-j) and a shallow 519 

subsurface structure (k-o) can be simpler or more realistic and encode less information or more 520 

information, respectively. The approximate number of pieces of information required to 521 

produce the cartoon in each panel is provided below each image. (a) A ‘spherical cow’ cartoon. 522 

(b-d) Intermediate complexity cartoon cows. (e) A realistic cartoon cow that approximates the 523 

cow in Fig. 2b. The geologic models in (f-o) are not just composed of arbitrary geometric objects 524 

but instead represent various geophysical processes and assumed deformation rules when used 525 

for ‘geological tomography’. Structure in (k-o) inspired by the Marmousi model (Bourgeois et 526 

al., 1990). 527 
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11.0 million pieces of information (assumed unavailable in the example). (a) is a version of (b) 541 
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 548 

Figure 3. Young’s double slit experiment with 2 distinct imaging hypotheses. (a) The classical 549 

theory predicts 2 lines. (b) The wave theory predicts a central peak and a large number of 550 

adjacent lines of different intensities depending on the wavelength. The purpose of the 551 

experiment is to test the 2 specific hypotheses. 552 

 553 

(a) Classical particle prediction

(b) Wave prediction
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 554 

Figure 4. Example geologic parametrizations for imaging. (a) Example sedimentary basin 555 

parametrization with 14 parameters, characterizing 2 graben forming and 2 deposition geologic 556 

events. (b) Example subduction zone parametrization with 8 parameters, including cooling of 557 

the mantle wedge by the subducting plate. Adapted from Tsai et al. (2023). 558 
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 560 

Figure 5. Schematic showing how models of a cow (a-e), a subduction zone (f-j) and a shallow 561 

subsurface structure (k-o) can be simpler or more realistic and encode less information or more 562 

information, respectively. The approximate number of pieces of information required to 563 

produce the cartoon in each panel is provided below each image. (a) A ‘spherical cow’ cartoon. 564 

(b-d) Intermediate complexity cartoon cows. (e) A realistic cartoon cow that approximates the 565 

cow in Fig. 2b. The geologic models in (f-o) are not just composed of arbitrary geometric objects 566 

but instead represent various geophysical processes and assumed deformation rules when used 567 

for ‘geological tomography’. Structure in (k-o) inspired by the Marmousi model (Bourgeois et 568 

al., 1990). 569 
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