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Abstract

Imaging of Earth’s interior has led to a large number of successful discoveries of plausible
structures and associated geophysical processes. However, due to the limitations of geophysical
data, Earth imaging has many tradeoffs between the underlying features, and most approaches
apply smoothing to reduce the effect of such tradeoffs. Unfortunately, this smoothing often
results in blurry images that are not clear enough either to infer the geologic processes of
interest or to make quantitative inferences about the various geologic properties. Here, we first
summarize some of the basic issues that make Earth imaging so difficult and explain how Earth
imagers must choose between more open-ended discovery oriented goals and more specific,
scientific inference oriented goals. We discuss how the choice of the optimal imaging
framework depends crucially on the desired goal, and particularly on whether plausible
discovery or inference is the desired outcome. We argue that as Earth imaging has become
more mature, sufficiently many plausible structures have been imaged that it is becoming more
crucial for Earth imaging to serve the inference goal and would benefit from an inference
oriented imaging framework, despite the additional challenges in posing imaging problems in
this manner. Examples of inference oriented imaging frameworks are provided and contrasted
with discovery oriented frameworks. We discuss how the success of the various frameworks
depends critically on the data quality and suggest that a careful balance must be struck
between the ambition of the imager and the reality of the data. If Earth imaging is to move
beyond presenting qualitatively plausible structures, it should move towards making
guantitative estimates of the underlying geologic processes, inferred through a self-consistent

framework.
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Introduction

The inaccessibility of the Earth's interior has led to much speculation about its nature, including
many myths, science fiction stories, and scientific debates. Myths include the hell of Dante's
Inferno (Alighieri, 1472), or earthquake-causing subterranean turtles or catfish (SCEC, 2014;
Nur, 2008). Science fiction stories include Jules Verne's Journey to the Center of the Earth
(Verne, 1864), Lewis Carroll's Alice in Wonderland (Carroll, 1865), many other subterranean
world novels (Fitting, 2004), and the movie The Core (Amiel, 2003). More interesting from a
science perspective are the numerous scientific debates about the Earth’s interior. These
include the 1690's-1930's debate over whether the Earth's interior was solid, fluid, gaseous or
hollow (Halley, 1692; Franklin, 1793; Brush, 1980), and the more recent debate about whether
narrow mantle plumes can be confirmed to exist or not (Montelli et al., 2004; van der Hilst and

de Hoop, 2005).

Due to its inaccessibility, many inferences about geophysical processes and the structure of
Earth's interior have come through imaging techniques, especially seismic imaging (e.g.,
Dziewonski and Anderson, 1981; Grand et al., 1997), but also imaging with other geophysical
data like gravity (Oldenburg, 1974), electromagnetic (Naif et al., 2013), muon (Tanaka et al.,
2009) and neutrino (Donini et al., 2019) data. The fact that the Earth has a core (Brush, 1980;
Muir & Tsai 2020a), that high-pressure mineral phases like Bridgmanite and Wadsleyite exist
(Ringwood & Major, 1966; Dziewonski & Anderson, 1981; Ringwood, 1991), and that
subducting plates likely impinge upon the lower mantle (Grand et al., 1997) have been

indicated primarily with seismic imaging.
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However, despite the past successes of seismic imaging, there remain many debated
interpretations of seismic images, and it is often unclear from a science philosophy standpoint
whether certain Earth features claimed to be imaged are true beyond reasonable doubt, likely,
plausible, or simply false. As Earth imaging matures, we argue that insufficient attention has
been paid to the critical inference related aspects needed for such imaging to make a lasting
impact on our knowledge of the Earth's interior. We begin with a discussion of the critical
reasons that Earth imaging is challenging. While previous studies have commented on some of
the same issues of non-uniqueness and underdeterminism (e.g., Jackson, 1972; Zelt, 1999),
most studies still approach the problem within the standard discovery driven approach. Next,
we describe how imaging approaches can be framed as either being discovery oriented or
inference oriented and that these approaches have fundamentally different scientific
philosophies and goals. Finally, we describe some of the emerging ideas for posing inference

oriented Earth imaging and how they contrast with discovery oriented approaches.

The Challenge of Earth Imaging

Imaging is the use of observed data to produce a picture of the object of interest. In the case of
standard, light-based imaging, relatively high quality images are produced even with cheap
mobile phone cameras (see Fig. 1a). The success of standard imaging is well known (e.g., by
amateur photographers; Audubon, 2022) and can be attributed to the fact that (1) photons are
generally abundant, (2) the wavelength of visible light is relatively short (400-900 nanometers)

leading to sub-micron resolution, (3) air is minimally refractive so that photons usually travel
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directly from the subject to the detector, and (4) modern cameras have millions of pixels that fit
easily into mm-sized semiconductor sensors. An example of such success is the photo of a cow
shown in Figure 1a, where it is clear that the subject is a cow. From an epistemological
standpoint, the viewer can have great confidence that the subject is a cow rather than a pig or a
walrus. Moreover, one can identify important characteristics of the cow, the relative sizes of
the cow’s features can be measured quantitatively, and one could determine whether any

features are unexpected in size or shape.

Imaging also has many scientific applications (see Fig. 1). We can obtain detailed images of flow
in the interior of the sun (e.g., Fig. 1b, Gizon et al., 2010), we can image an 8-week human fetus
in utero the size of a peanut (Fig. 1c, Jauniaux et al., 2005), and we can even image the
structure of a single protein (Fig. 1d, Dubochet, 2018). In an Earth context, Figure 1e shows an
example seismic image that has been interpreted to show the subducted Farallon plate in the

lower mantle (Grand et al., 1997).

Perhaps surprisingly, in some ways it is more difficult to obtain clear images of the Earth's
interior than it is to image the sun's interior, the peanut-sized fetus or a single protein. Earth
imaging is difficult for the same considerations that make standard imaging easy. First, the
geophysical data that are most sensitive to the Earth's deep interior, namely seismic wave data,
are limited given the paucity of large enough seismic sources to illuminate regions of the Earth's
interior of interest. Second, the wavelength of seismic waves used is relatively long (10’s-100’s

of km), resulting in resolvable features of similar length scales for global (Hosseini et al., 2020)
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and regional problems (Fichtner et al., 2009). Third, the Earth's interior is highly heterogeneous,
with geologic structures ranging from the micron to the hundreds-of-km scale that contribute
to significant refraction and reflection of seismic waves (Lay & Wallace, 1995). Finally, although
the number of sensitive, globally distributed seismic stations is impressive (e.g., Hosseini et al.,
2020), the few thousand broadband seismometers pales in comparison to the millions of
sensors in an iPhone camera, with major station coverage gaps in the oceans, Russia and Africa.
All of these reasons create tradeoffs that conspire to cause seismic images to be generally
blurrier than desired to make clear inferences about what structures exist in the Earth's interior
and what their characteristics are. Other geophysical data such as electromagnetic, gravity,
muon and neutrino data are even more limited than seismic data, and suffer many of the same
non-uniqueness problems. This explains why researchers have often struggled to use
geophysical imaging to go beyond suggesting that structures exist to clearly distinguishing
between different hypotheses about the existence and sizes of various structures and

geophysical processes.

Discovery Versus Inference

The dichotomy between the simultaneous success of Earth imaging in discovering plausible
features and yet the difficulty of using it to make clear inferences highlights the importance of
identifying its scientific purpose. Importantly, whether the result is successful or not depends
on the researcher's perspective and purpose, rather than there being an absolute metric of

success. Specifically, there is a significant difference between the goal of discovering plausible
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features versus the goal of inferring specific characteristics (including about existence of

features).

A simple example helps demonstrate the difference between the ‘discovery’ and ‘inference’
goals. We return to the cow image (repeated in Fig. 2b) and ask whether Figure 2a (a blurry but
traditional photo) or Figure 2c (a cartoon cow impression with certain specific features
estimated) would be preferable if the ‘true’ Figure 2b were unavailable (setting aside for now
how these images would be obtained). The answer depends on one’s goal. If no prior
information were available and the purpose is to determine what is plausible, you may prefer
Figure 2a, where no assumptions were made about possible features. Although the image is
blurry, it is unbiased and has a wide range of possible outcomes, an advantage if one has no
idea what to expect. In contrast, if you know there is a cow and your purpose is to determine
the various cow features, you may prefer Figure 2c, where it is much clearer than from Figure
2a that the cow has 4 legs, 2 ears, spots, and even 4 teats on its udder and a red tag (all of
measurable sizes). This example underscores how the goal of unbiased discovery (or
exploration) of plausible structures is distinct from the goal of inferring specific characteristics
of a hypothesized object, and implies different preferences in approach. Interestingly, while
Figure 2b has 3.7 million pixels and thus 11.0 million parameters (RGB values), the number of
effective parameters needed for Figure 2a is about 2300 (smoothed ~70x) and only about 600
for Figure 2c (~270 points plus colors). This is important if, for example, only 3000 pieces of
information were available. In this case, Figure 2b could not be produced, but Figure 2a and 2c

may be, depending on the structure of that information. Finally, we note that for Figure 2c, one
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needs to propose a set of possible cow characteristics to test; using the wrong features would

lead either to no features or misinterpretations of other features.

This example highlights two related problems that plague scientific imaging and especially Earth
imaging, but which are not usually problems for traditional imaging. As already noted, Earth
imaging is data poor in that there is never enough data to constrain all details of geologic
structure that should exist in the Earth's interior. For example, geologic outcrops have
important structure at the sub-meter scale (Waldron & Snyder, 2020), and the Earth's volume is
approximately 102! m3, meaning 10%! pieces of independent information (a zettabyte of
information) would be needed to determine Earth structure at a 1-meter resolution, an
impractical amount of data (equivalent to the global annual internet traffic). Even with a
growing amount of Earth data, Earth imagers will always be forced to make difficult decisions
about what features to focus on. Much like in the cow example with 3000 pieces of
information, the Earth imager simply cannot capture Figure 2b regardless of method, and must
embrace the strategy behind either Figure 2a, Figure 2c or some alternative that similarly uses
less than 3000 pieces of information. Thus, the choice between discovery-mode (Fig. 2a) and
inference-mode (Fig. 2c) approaches is apparent, and the Earth imager does not have the luxury

of avoiding the choice.

The fact that high-resolution Earth imaging problems have significant tradeoffs and are
therefore non-unique or underdetermined is well known (Jackson, 1972; Jordan, 1979) but, to

date, discovery-mode solutions to the Earth imaging problem have dominated. As elsewhere,
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Earth imaging often uses pixels, grids, splines, spherical harmonics or other cell type structures
as the fundamental building blocks. These mathematical objects are chosen to be as general as
possible in order to accommodate the flexible discovery philosophy. Furthermore, in designing
the smoothing or regularization to reduce the number of effective parameters, there has
usually been a preference towards flexible mathematical regularization approaches. Tikhonov
regularization is one such common smoothing used in Earth imaging (Aster et al., 2013), and is a
good example of a very general approach to stabilizing an inversion that has too many grid cells
for a robust unregularized inversion. Tikhonov regularization results in the typical smoothing of
underdetermined images that is common, for example in Figure 1e. Other mathematical
approaches for addressing the same regularization problem can produce somewhat different
results, but still share the same philosophy regarding flexibility. For example, sparsity
regularization (e.g., Candes & Wakin, 2008), also known as compressive sensing, lasso or L1
regularization, is a recently popular alternative where fewer jumps in parameter values
between adjacent grid cells are preferred and used to effectively reduce the number of free
parameters. The underlying structure is otherwise unchanged, making sparsity regularization
useful when one expects a small number of sharp boundaries between discrete, homogeneous
objects but one still wants to maintain flexibility in the outcome. As such, sparsity regularization
takes a small step in the direction of interpretability for objects with sharp boundaries but
keeps most of the discovery philosophy. Similarly, other mathematical regularization
approaches, such as using large Voronoi cells to sample an ensemble of possible models
through a sub-space approach (Bodin & Sambridge, 2009), share the same philosophy and

accomplish a similar goal. A number of such mathematical approaches exist (e.g., Rudin et al.,
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1992; Capdeville et al., 2010; Fichtner et al., 2021) and all fundamentally share the same

philosophy, while incorporating a small amount of a priori information.

The focus of Earth imaging on discovery and exploration was sensible, especially in the early
days of Earth imaging, when little was known about the Earth’s interior. Discovery-mode Earth
imaging approaches have successfully led to a large number of Earth images with various
qualitative interpretations for what geologic structures exist and what their properties might
be. However, just like it is difficult to say anything quantitative using the blurry cow image in
Figure 2a, the vast majority of Earth image interpretations remain qualitative rather than
providing quantitative estimates either of the likelihood of correctness or of the physical
characteristics. Given the prior discussion, this is unsurprising, but this highlights the need for
Earth imaging to move in the direction of quantitative inference, particularly for regions that
already have discovery-mode images. Inference-mode imaging has a number of challenges that
discovery-mode imaging does not, including the difficulty of asking the right questions and the
extra technical expertise needed to correctly pose the problem and efficiently solve for the
important features (Tsai et al., 2023). But it is the only way in which Earth imaging will be able
to truly answer scientific questions posed about the appropriate geophysical processes
operating within the Earth. Thus, despite the challenges, it is time for Earth imagers to embrace

the inference philosophy more fully.

Inference-Mode Imaging Approaches

10
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Just as there are a variety of discovery-mode approaches to Earth imaging, there have been a
number of suggested inference-mode approaches to Earth imaging, each with its pros and cons,
and some of which more completely embrace the inference goal than others. Many of these
approaches build upon discovery-mode approaches, including using them as starting points.
Here, we explain some of the differing approaches, with a focus on the differences in

philosophy and the implications for quantitatively answering geophysical questions.

Early examples of inference-mode imaging

The idea that imaging can benefit from an inference framework is an old one that can be traced
back at least to the earliest experiments on the nature of light and specifically whether light is a
wave or a classical particle. Young’s double-slit experiment (Young, 1804) was designed to test
whether the observed pattern would be the interference pattern predicted of the wave theory
or whether it would have the classically predicted two peak pattern. The goal of the imaging is
not to determine the detailed structure of the light pattern but rather to test between 2 very
specific hypotheses and determine which provides a better explanation of the observed data

(see Fig. 3).

This general idea has been used in Earth imaging, with Harold Jeffreys being one of the first to
clearly articulate (Jeffreys, 1939) what is now known as a Bayesian framework for how different
proposed models (with different parameter values) can be tested against observed geophysical
data. The general idea behind all such approaches is familiar to students of inverse theory in

that a prediction of each piece of data is made given a model framework and a range of

11



226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

parameter values, and the model is preferred based on how closely the model predictions
(forward model) fit the observed data (Tarantola, 2005; Aster et al., 2013). Within a Bayesian
context, the data misfit provides a quantitative assessment for how reasonable the model is
and specifically the probability that the model is correct. When applied to model frameworks
with different parameters, this comparison between models is more difficult and requires use
of a model selection criterion to weigh the importance of accuracy versus simplicity (e.g.,

Sambridge et al., 2006), but otherwise has a similar philosophy.

Nataf & Ricard (1996) was one of the earliest studies to embrace a forward modeling
philosophy in whole Earth imaging problems, with a direct prediction of seismic wave speeds
using a geodynamical model. Unlike strictly Bayesian studies, they only computed the predicted
data for a single best-guess geodynamical model and declined to adjust the geodynamical
parameters to fit observed seismic data, but the idea was that their model could be used by
future imagers by doing so. Khan et al. (2008) took this concept one step farther, and into a
Bayesian framework, by directly estimating the mineralogy of the mantle using a comparison of
a seismic model (Dziewonski & Anderson, 1981) with an ensemble of predictions from mineral
physics models. This study was a significant conceptual step forward and suggested a different
mineralogy from what was commonly assumed, but limited in its comparison of strictly one-
dimensional (depth) structure, and therefore only average bulk properties of the Earth.
Koelemeijer et al. (2018) took this approach an additional step farther, testing seismic
predictions of three-dimensional geodynamical models with and without post-perovskite

directly against seismic tomographic images. The philosophy taken here is close to the
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inference end-member discussed above. Unfortunately, a challenge of such an approach is
whether or not the model predictions can explore the full range of plausibly realistic models,
and whether the data are good enough to distinguish robustly between the numerous

possibilities or whether significant tradeoffs exist (see next section).

In a parallel line of research, Zelt (1999) pointed out that there are different strategies and
goals in imaging. Contrasting with the discovery-mode approach, he described what he called a
‘minimum-parameter, prior-structure model’ that includes strong prior information about what
physics or geometry exist, and in which imaging data is used to estimate a small number of
parameters related to these strong priors. This approach results in simple estimates of
geometric structures defined by prior ideas for what structures are reasonable. Similarly,
Magistrale et al. (2000) used various geophysical data including tomographic imaging data to
construct a simple rule-based model of seismic velocities in Southern California. In this work,
limitations on data availability necessitated the use of simple empirical constraints on
sedimentary basin velocities to construct a complete model across Southern California that
included such shallow basins. The resulting Southern California Earthquake Center (SCEC)
Community Velocity Model (CVM) Version 2 has been used by many researchers, but has since
been subsumed by more complex discovery-driven tomographic models like the SCEC CVM
Version 4.26 (Lee & Chen, 2016). While these early works of Zelt (1999) and Magistrale et al.
(2000) were simplistic in their assumed structures and ambitions, in many ways later work
described below builds upon the same philosophy but allowing for more sophisticated models

and hypotheses.
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Recent examples of inference-mode earth imaging

More recently, there has been a resurgence in the number of studies advocating for a variety of
different types of inference approaches to Earth imaging. We group these into 3 philosophically
distinct end-member contributions, which are exemplified by the works of Astic and Oldenburg
(2019), Arnold and Curtis (2018), and Tsai et al. (2023). Each of these involve inference as an
important principle and are archetypical of the range of modern approaches to inference-mode
imaging which are framed with modern data-quality constraints, available methodologies, and
uncertainty quantification. These emerging frameworks should help pave the road for future

inference-mode Earth imaging work.

The work of Astic and Oldenburg (2019) exemplifies a type of inference-based imaging in which
there are a small number of categories of structures with clearly distinct properties within an
arbitrarily complex spatial landscape. Their work demonstrates how 2 or 3 categories of known
(or modestly unknown) electrical conductivities can be determined from resistivity data more
robustly with a petrophysically and geologically guided inversion (PGI) compared with a
Tikhonov regularization approach. Importantly, this work is designed to offer maximum
flexibility regarding the spatial variability of the structures, using the data misfit and clustering
algorithms (e.g., Sun and Li, 2015) to converge close to a realistic geologic model. Other work
embraces a similar philosophy, though with different underlying methodologies and imaging
applications. For example, Linde et al. (2015) review how hydrogeological systems can be

categorized; Sun and Li (2015) demonstrate how to use gravity and crosswell seismic data to
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identify distinct geologic units through clustering; Giraud et al. (2017) discuss how to use
geologic classification constraints to reduce the tradeoffs in gravity and magnetic inversions
through uncertainty estimation; and Muir and Tsai (2020b) show how seismic data can be used
to solve for geometrically distinct subsurface units using an Ensemble Kalman Inversion (EKI)

approach. Other similar applications are summarized by Moorkamp et al. (2016).

In their ‘interrogation theory’ framework, Arnold and Curtis (2018) take a different approach in
which they frame the entire geophysical imaging problem with a single overarching science
guestion that the imaging is designed to answer and which is ‘interrogated’ with the
geophysical imaging data. The philosophy taken is analogous to that of Young’s double slit
experiment (see Fig. 3), where a single hypothesis is addressed and the imaging data is analyzed
only with respect to this hypothesis. Zhao et al. (2022) show how interrogation tomography can
be framed using different algorithms to answer the question ‘What is the volume of a
subsurface body?’ using seismic travel time data. The interrogation framework formalizes the
earlier approaches of Khan et al. (2008) and Koelemeijer et al. (2018). Those works could be
framed as asking the questions ‘What is the average depth-dependent mineralogy of the

mantle?’ and ‘Does post-perovskite exist in the deep mantle?’, respectively.

In yet another distinct approach to the inference problem, Tsai et al. (2023) advocate for
parametrizing imaging problems in terms of the geophysical processes and structures most
pertinent to the expected geologic setting, an approach they call ‘geological tomography’ (Fig.

4). They present a few examples of using idealized models of sedimentary basin formation,
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subduction zone processes, and continental-scale architecture to directly parametrize models
for inverting seismic imaging data. This work intentionally reduces the flexibility of the possible
imaging results in favor of geologic interpretability of each parameter. A key feature and
simultaneous challenge is that the realisticness of the outcome depends on the quality of the
data and the modeling sophistication and ambition of the imager. Furthermore, due to the
different physical processes, data quality and a priori information, each application is expected
to require its own independent evaluation of how to pose the inference problem such that the
idealized model is commensurate with the data. In an analogy to the cow imaging problem, the
number of pieces of information and structural complexity of the cow cartoon should be
simpler when less information is available, and can be more realistic when more information is
available, as schematically shown in Figure 5a-e. This philosophy applies similarly to geological
tomography (subduction example in Fig. 5f-j; shallow subsurface example in Fig. 5k-0), not just
to features but also to the underlying geophysical processes and deformation which can be
included explicitly in the model parametrization if warranted. The geological tomography
framework formalizes the old but never fulfilled goal of Jordan (1979) of performing structural
geology of the global Earth’s interior, and applies the ‘simplifying, specific modeling’ approach
discussed by van Zelst et al. (2022) to Earth imaging problems rather than the ad hoc geometric
approach of Zelt (1999). The philosophy is a pragmatic one that embodies the Einsteinian ‘as
simple as possible, but not simpler’ mantra (Dyson, 2004), with the result being explicit
guantitative estimates of exactly those physical parameters that the imager deems worthy of

investigation.
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Future Outlook for Inference-Mode Earth Imaging

As Earth imaging moves beyond pure exploration and towards learning more precise
information about the Earth, it will be necessary for researchers to grapple with the challenges
of thinking about the purpose of imaging and how the framework used has important
implications for how successful the result will be in addressing the imager’s goals. ‘Discovery-
mode’ imaging will always be useful in leading to hypotheses but ‘inference-mode’ frameworks
are crucial for robust discovery of hypothesized features, e.g., as used classically by Young to
discover the wave nature of light (Fig. 3) and also by Le Verrier (1846) to discover the planet
Neptune. Given the recent frameworks exemplified by Astic and Oldenburg (2019), Arnold and
Curtis (2018) and Tsai et al. (2023), the Earth imaging field is well prepared to take the next
steps towards inference. These and other recent inference oriented imaging studies have just
scratched the surface in terms of possible applications, but a set of possible directions has been
set for the Earth imaging community to follow. While inference-mode imaging has many
technical challenges that traditional imaging does not (e.g., Tsai et al., 2023) and can easily be
biased by the use of non-independent data (a form of data dredging), it is exciting to see the
field mature to the point where robust conclusions about the mysteries of the Earth’s interior
may finally see the light of day. Whether we reach this point may be a matter of whether we, as

a community, have the ambition, patience and education to follow this challenging path.
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No data were used in this paper.
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Figure Captions

Figure 1. Five imaging examples at different scales. (a) An image of a cow taken with a cheap
standard camera. (b) An image of the sun from helioseismic Doppler imaging (colors denote
magnetic field strength, arrows denote horizontal velocities up to 300 m/s). (c) Fetal ultrasound
image showing a live 8-week fetus (~1 cm) plus yolk sac (~3 mm) within the uterus. (d) Image of
an RNA polymerase protein reconstructed using cryo-electron microscopy. (e) Image of the
subducted Farallon plate underneath North America from seismic data. Images from (a)
reprinted from ars.usda.gov/oc/images/photos/k5176-3/, (b) reprinted from arXiv:1001.0930
and courtesy of Laurent Gizon, (c) courtesy of the author, (d) courtesy of Seychelle Vos, (e)

courtesy of Suzan van der Lee.

Figure 2. Comparison of different approaches to imaging. (b) represents the truth and contains
11.0 million pieces of information (assumed unavailable in the example). (a) is a version of (b)
that is blurry due to smoothing by a factor of 70 in both directions, resulting in ~2300 pieces of
information. (c) is an image constructed out of cow features (head, udder, legs, spots, eyes,
ears, tag) and uses ~600 pieces of information. The smoothed image in (a) is most useful in

discovery mode. The featured image in (c) is most useful in inference mode.

Figure 3. Young’s double slit experiment with 2 distinct imaging hypotheses. (a) The classical
theory predicts 2 lines. (b) The wave theory predicts a central peak and a large number of
adjacent lines of different intensities depending on the wavelength. The purpose of the

experiment is to test the 2 specific hypotheses.
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Figure 4. Example geologic parametrizations for imaging. (a) Example sedimentary basin
parametrization with 14 parameters, characterizing 2 graben forming and 2 deposition geologic
events. (b) Example subduction zone parametrization with 8 parameters, including cooling of

the mantle wedge by the subducting plate. Adapted from Tsai et al. (2023).

Figure 5. Schematic showing how models of a cow (a-e), a subduction zone (f-j) and a shallow
subsurface structure (k-o) can be simpler or more realistic and encode less information or more
information, respectively. The approximate number of pieces of information required to
produce the cartoon in each panel is provided below each image. (a) A ‘spherical cow’ cartoon.
(b-d) Intermediate complexity cartoon cows. (e) A realistic cartoon cow that approximates the
cow in Fig. 2b. The geologic models in (f-0) are not just composed of arbitrary geometric objects
but instead represent various geophysical processes and assumed deformation rules when used
for ‘geological tomography’. Structure in (k-0) inspired by the Marmousi model (Bourgeois et

al., 1990).
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Figure 1. Five imaging examples at different scales. (a) An image of a cow taken with a cheap
standard camera. (b) An image of the sun from helioseismic Doppler imaging (colors denote
magnetic field strength, arrows denote horizontal velocities up to 300 m/s). (c) Fetal ultrasound
image showing a live 8-week fetus (~1 cm) plus yolk sac (~3 mm) within the uterus. (d) Image of
an RNA polymerase protein reconstructed using cryo-electron microscopy. (e) Image of the
subducted Farallon plate underneath North America from seismic data. Images from (a)
reprinted from ars.usda.gov/oc/images/photos/k5176-3/, (b) reprinted from arXiv:1001.0930
and courtesy of Laurent Gizon, (c) courtesy of the author, (d) courtesy of Seychelle Vos, (e)

courtesy of Suzan van der Lee.
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Figure 2. Comparison of different approaches to imaging. (b) represents the truth and contains
11.0 million pieces of information (assumed unavailable in the example). (a) is a version of (b)
that is blurry due to smoothing by a factor of 70 in both directions, resulting in ~2300 pieces of
information. (c) is an image constructed out of cow features (head, udder, legs, spots, eyes,
ears, tag) and uses ~600 pieces of information. The smoothed image in (a) is most useful in

discovery mode. The featured image in (c) is most useful in inference mode.
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Figure 3. Young’s double slit experiment with 2 distinct imaging hypotheses. (a) The classical
theory predicts 2 lines. (b) The wave theory predicts a central peak and a large number of
adjacent lines of different intensities depending on the wavelength. The purpose of the

experiment is to test the 2 specific hypotheses.
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Figure 4. Example geologic parametrizations for imaging. (a) Example sedimentary basin
parametrization with 14 parameters, characterizing 2 graben forming and 2 deposition geologic
events. (b) Example subduction zone parametrization with 8 parameters, including cooling of

the mantle wedge by the subducting plate. Adapted from Tsai et al. (2023).
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Figure 5. Schematic showing how models of a cow (a-e), a subduction zone (f-j) and a shallow
subsurface structure (k-o) can be simpler or more realistic and encode less information or more
information, respectively. The approximate number of pieces of information required to
produce the cartoon in each panel is provided below each image. (a) A ‘spherical cow’ cartoon.
(b-d) Intermediate complexity cartoon cows. (e) A realistic cartoon cow that approximates the
cow in Fig. 2b. The geologic models in (f-0) are not just composed of arbitrary geometric objects
but instead represent various geophysical processes and assumed deformation rules when used
for ‘geological tomography’. Structure in (k-0) inspired by the Marmousi model (Bourgeois et

al., 1990).
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