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We deduce almost-sure exponentially fast mixing of passive scalars ad-
vected by solutions of the stochastically-forced 2D Navier–Stokes equations
and 3D hyper-viscous Navier–Stokes equations in Td subjected to nondene-
generate Hσ -regular noise for any σ sufficiently large. That is, for all s > 0
there is a deterministic exponential decay rate such that all mean-zero Hs pas-
sive scalars decay in H−s at this same rate with probability one. This is equiv-
alent to what is known as quenched correlation decay for the Lagrangian flow
in the dynamical systems literature. This is a follow-up to our previous work,
which establishes a positive Lyapunov exponent for the Lagrangian flow—
in general, almost-sure exponential mixing is much stronger than this. Our
methods also apply to velocity fields evolving according to finite-dimensional
models, for example, Galerkin truncations of Navier–Stokes or the Stokes
equations with very degenerate forcing. For all 0 ≤ k < ∞, this exhibits many
examples of Ck

t C∞
x random velocity fields that are almost-sure exponentially

fast mixers.
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1. Introduction. Passive scalar mixing by fluid motion is an important aspect of many
physical phenomena (see, e.g., [63, 69, 71, 72]) and understanding mixing has been a topic
of active research in mathematics recently; see, for example, [2, 18, 22, 23, 34, 35, 46, 52,
54, 58, 68] and the references therein (see below for more discussion). In this paper, we will
study the mixing of a passive scalar gt advected by an incompressible velocity field ut in the
absence of diffusivity,

∂t gt + ut · ∇gt = 0.(1.1)

The previous work in mathematics does not yet consider the case that arises most commonly
in physics: velocity fields evolving under the nonlinear dynamics of an ergodic system. The
velocity fields we consider are governed by a variety of stochastic fluid models, for example,
the stochastically-forced 2D Navier–Stokes equations on T2:

⎧
⎪⎪⎨

⎪⎪⎩

∂tut + ut · ∇ut + ∇pt = ν&ut + QẆt ,

divut = 0,

u0 =: u,

where Wt is a cylindrical Wiener process and Q is a smoothing operator that spatially colors
the noise.

We will show that when Q forces all modes directly with a symbol Q̂(ξ) that approximates
a power law with both upper and lower bounds Q̂(ξ) ≈ |ξ |−α for some α > 5d

2 (see Assump-
tion 1 below), for instance, we could take Q = (−&)−α/2, then ut is almost-surely exponen-
tially mixing. Roughly speaking (see Theorem 1.4 for the rigorous statement and discussion),
this means that for all s > 0, there is a deterministic constant γ̂ > 0 and an almost-surely
finite random constant D = D(u,ω) (depending on the initial velocity u and the Brownian
path ω), such that the following holds for all initial g0 = g ∈ Hs with

∫
T2 g dx = 0:

∥gt∥H−s = sup
∥f ∥Hs =1

∫

T2
f (x)gt (x)dx ≤ De−γ̂ t∥g∥Hs ,(1.2)

where the supremum is taken over mean-zero functions f ∈ Hs . Alternatively, (1.2) can be
formulated in terms of the Lagrangian flow map φt : T2 (→ T2, solving

(1.3)
d
dt

φt (x) = ut
(
φt (x)

)
, φ0(x) = x.
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Indeed, by incompressibility and gt = g ◦ (φt )−1, (1.2) is equivalent to
∣∣∣∣

∫

T2
f

(
φt (x)

)
g(x)dx

∣∣∣∣ ≤ De−γ̂ t∥f ∥Hs∥g∥Hs .(1.4)

We see that (1.4) quantifies an almost sure, exponentially fast decay of correlations. Such
estimates are known in the dynamics literature as quenched correlation decay [1, 8, 11, 12,
29].

Previously, for random incompressible flows, almost-sure exponential correlation decay as
in (1.4) was established in [14, 27] in the case when φt is the stochastic flow of diffeomor-
phisms generated by an SDE (in our terminology, when the velocity field is white-in-time).
Our study is built mostly on analyzing (1.3) using ideas from random dynamical systems and
the geometric ergodicity of Markov processes, including both ideas from [14, 27], and also
many new ones, required to handle the fact that the forcing acts only on the velocity field,
evolving according to its own nonlinear SPDE.

A key ingredient is the result from our previous work [15] that the flow map φt has a pos-
itive Lyapunov exponent, that is, Dxφ

t (x) grows exponentially fast for all x with probability
1 (see (2.3) below for rigorous statement). However, quenched correlation decay is a much
stronger statement a priori than simply having a positive Lyapunov exponent (see, e.g., [67]
and the discussion in Section 1.2).

Let us now set up the rigorous statement of the results. We first state the results for the
infinite-dimensional evolution equations, namely 2D Navier–Stokes and 3D hyperviscous
Navier–Stokes. Then we specialize the results to finite dimensional evolutions, for example,
Galerkin truncations of Navier–Stokes or the Stokes equations subject to very degenerate
noise. In the latter case, a more general class of problems can be treated, producing families
of random velocity fields that are Ck

t C∞
x and almost-surely exponential mixers for any fixed

k < ∞.

1.1. Infinite-dimensional fluid models. We will consider two (infinite-dimensional)
stochastic fluid models on the periodic box Td = (−π,π ]d , the 2D Navier–Stokes equa-
tions and the 3D hyperviscous Navier–Stokes equations. With a slight abuse of notation, we
will define a natural Hilbert space on velocity fields u : Td → Rd by

L2 :=
{
u ∈ L2(

Td;Rd) :
∫

udx = 0,divu = 0
}
.

However, each model has a different natural L2-based “energy.” For 2D Navier–Stokes, it
is the enstrophy ∥ curlu∥2

L2 and for 3D hyperviscous Navier–Stokes it is the kinetic energy
∥u∥2

L2 . In order to take advantage of this energy structure for both the 2D and 3D cases, we
will find it notationally convenient to define the following dimension dependent norm:

(1.5) ∥u∥W :=
{
∥ curlu∥L2 if d = 2,

∥u∥L2 if d = 3,

and let W be the subspace of L2 with finite ∥ · ∥W norm. We will also need to keep track of
higher regularity: for s > 0, define

Hs =
{
u ∈ Hs(Td,Rd) :

∫
udx = 0,divu = 0

}
.

Following the convention used in [15, 32], we define a natural real Fourier basis on L2 diver-
gence free fields by defining for each m = (k, i) ∈ K := Zd

0 × {1, . . . , d − 1},

em(x) =
{
cdγ i

k sin(k · x), k ∈ Zd
+,

cdγ i
k cos(k · x), k ∈ Zd

−,
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where Zd
0 := Zd \ {0, . . . ,0}, Zd

+ = {k ∈ Zd
0 : k(d) > 0} ∪ {k ∈ Zd

0 : k(1) > 0, k(d) = 0} and
Zd

− = −Zd
+, and for each k ∈ Zd

0 , {γ i
k }d−1

i=1 is a set of d − 1 orthonormal vectors spanning
the plane perpendicular to k ∈ Rd with the property that γ i

−k = −γ i
k . The constant cd =√

2(2π)−d/2 is a normalization factor so that em(x) are a complete orthonormal basis on L2

divergence free vector fields. Note that in dimension d = 2 K = Zd
0 , hence γ 1

k = γk is just a
vector in R2 perpendicular to k and is therefore given by γk = ±k⊥/|k|.

The white-in-time noise that we will force our equations with is QẆt , where Wt is a
cylindrical Wiener process on L2 with respect to an associated canonical stochastic basis
(,,F , (Ft ),P) and Q is a positive Hilbert–Schmidt operator on L2, which we assume can
be diagonalized with respect to {em} with eigenvalues {qm} ∈ ℓ2(K) defined by

Qem = qmem, m = (k, i) ∈ K.

In this way, QẆt can be represented in terms of the basis {em} by

QẆt =
∑

m∈K
qmemẆm

t ,

where {Wm
t }m∈K are a collection of i.i.d. one-dimensional Wiener processes with respect to

(,,F , (Ft ),P).
We will assume that Q satisfies the following regularity and nondegeneracy assumption.

ASSUMPTION 1. There exists α satisfying α > 5d
2 and a constant C such that

1
C

∥∥(−&)−α/2u
∥∥

L2 ≤ ∥Qu∥L2 ≤ C
∥∥(−&)−α/2u

∥∥
L2 .

Equivalently,

|qm| ≈ |k|−α.(1.6)

REMARK 1.1. Assumption 1 essentially says that the forcing is QWt has high spatial
regularity but cannot be C∞. The nondegeneracy requirement on Q can be weakened to a
more mild nondegeneracy at only high frequencies, that is, enforcing (1.6) only when |k| ≥ L
for some fixed L ≫ 1 (see [15] for more details), but fully nondegenerate noise simplifies
some arguments. We are currently unable to treat noise, which is degenerate at high frequen-
cies as in [42, 44]. See Remark 2.20 below for a more precise discussion of the two places
we fundamentally depend on Assumption 1 at high frequencies.

We will define our primary phase space of interest to be the following:

H = Hσ , for some fixed σ ∈
(
α − 2(d − 1),α − d

2

)
.

Note that we have chosen α sufficiently large to ensure that σ > d
2 + 3 so that we have the

embedding H ↪→ C3. We will consider a stochastic evolution (ut ) in H, which we refer to as
the velocity process, solving one of the two following stochastic PDEs:

SYSTEM 1 (2D Navier–Stokes equations).
{
∂tut + ut · ∇ut = −∇pt + ν&ut + QẆt ,

divut = 0,

where u0 = u ∈ H and the viscosity parameter ν > 0 is fixed.
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SYSTEM 2 (3D hyperviscous Navier–Stokes).
{
∂tut + ut · ∇ut = −∇pt − ν&2ut + QẆt ,

divut = 0,

where u0 = u ∈ H. Here, the hyperviscosity parameter ν > 0 is fixed.

REMARK 1.2. It is well known that System 2 is globally well posed when the bi-
Laplacian &2 is replaced by −(−&)α for any α > 5/4 (by a straightforward generalization
of the proof in 2D). We leave it to a future work to check that the proof here of Theorem 1.4
below is valid for these alternative hyperviscosity terms.

The following well-posedness theorem is classical (See Section 3.1).

PROPOSITION 1.3. For both Systems 1, 2 and all initial data u ∈ H, there exists a P-
a.s. unique, global-in-time, Ft -adapted mild solution (ut ) satisfying u0 = u. Moreover, (ut )

defines a Feller–Markov process and the corresponding Markov semigroup has a unique
stationary probability measure µ on H.

With the (ut ) process on H as in Proposition 1.3, we write φt = φt
u for the stochastic flow

of diffeomorphisms on Td solving (1.3) with initial velocity field u. This gives rise to an
Ft -adapted, Feller–Markov process (ut , xt ) on H × Td , which we refer to as the Lagrangian
process defined by xt = φt (x), where x0 = x ∈ Td . Uniqueness of the stationary measure
µ × Leb for the process (ut , xt ) for both of Systems 1 and 2 was proved in [15].

1.2. Main results and discussion. We are now ready to state our main results, for which
we give further context and discussion afterwards.

THEOREM 1.4. Let (ut ) be as in any of Systems 1–2, initiated at µ-generic u ∈ H, with
µ as in Proposition 1.3. Fix s > 0 and p ≥ 1. Then there exists a (deterministic) constant γ̂ =
γ̂ (s,p) > 0, depending only on s, p and the parameters of the system (e.g., Q, ν, etc.), and
a random constant D = D(ω, u) : , × H → [1,∞) depending on the same parameters as γ̂

and additionally on (ω, u), the sample path and the initial data, which satisfy the following
properties:

(i) For any f,g ∈ Hs(Td), satisfying
∫

f dx = ∫
g dx = 0 the following holds for all

t ≥ 0:
∣∣∣∣

∫
f (x)g

(
φt

u(x)
)

dx

∣∣∣∣ ≤ D∥f ∥Hs∥g∥Hse−γ̂ t .(1.7)

(ii) For u fixed, D(·, u) is P-a.e. finite and moreover satisfies the following: ∃β ≥ 2 (in-
dependent of u, p, s) such that ∀η > 0 there holds

EDp !p,η,s
(
1 + ∥u∥2

H
)pβ exp

(
η∥u∥2

W
)
< ∞.(1.8)

For s ≤ 1 and p ≥ 1, one can take γ̂ " s
p .

As discussed above (1.4), an immediate corollary of Theorem 1.4 is H−s decay for pas-
sively advected scalars in the absence of dissipation and with no sources as in (1.1) above.
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COROLLARY 1.5. In the setting of Theorem 1.4, fix s > 0, p ≥ 1, and let γ̂ = γ̂ (s,p) as
in Theorem 1.4. Then, for any mean-zero initial g ∈ Hs , the solution gt to the passive scalar
problem (1.1) satisfies the estimate

∥gt∥H−s ≤ De−γ̂ t∥g∥Hs ,(1.9)

where D is the random constant appearing in Theorem 1.4.

REMARK 1.6. By time reversibility of the advection equation, no pointwise in time de-
cay, such as in (1.9), can hold without some regularity assumption on g. Indeed, it is well
known that nonuniformity of correlation decay in this sense is ubiquitous among mixing sys-
tems; see, for example, Section 2.5 of [61]. On the other hand, by a density argument, for
µ-generic u and all mean-zero g ∈ L2, we have gt ⇀ 0 in L2 as t → ∞ P-a.e. at a rate which
is uniform over compact sets in L2. See [34] for more discussion.

REMARK 1.7. It is known that uniformly W 1,p velocity fields for p > 1 can mix
scalars at-most exponentially fast (see [46, 68]). On the other hand, the stochastic mod-
els in Systems 1, 2 are never uniformly bounded in time in any Sobolev space due to in-
evitable large fluctuations in the Brownian paths. Nevertheless, an exponential decay rate
is still effectively optimal in this setting, due to control on large deviations of the velocity
fields (see Lemma 3.10). From this, it is not hard to show the following: ∀s > 0, p ≥ 1,
∃γ̂ ′ = γ̂ ′(s,p) > 0 (deterministic) and a random constant D′ = D′(ω, u) : , × H → [1,∞)
satisfying (1.8) such that for all g ∈ H−s ,

∥gt∥H−s ≥ (
D′)−1

e−γ̂ ′t∥g∥H−s .

REMARK 1.8. One always has ∥gt∥H−s ≤ ∥g∥L2 , hence D quantifies an upper bound on
the random time-scale one will have to wait in order to see the exponential decay γ̂ . If one
normalizes ∥g∥L2 = 1, then mixing occurs for times t " τ = 1

γ̂
log(D∥g∥Hs ) and estimates

such as (1.8) shows that ∃δ > 0 such that the following exponential moment holds: ∃β ′ large
so that ∀η > 0,

Eeδτ !η
(
1 + ∥u∥2

H
)β ′

exp
(
η∥u∥2

W
)∥g∥Hs .

REMARK 1.9. After the completion of this work, we have since produced two follow-
up papers: first [17], which uses the main results herein to extend to the advection-diffusion
equation uniformly in diffusivity; and second, [16], which uses the results therein to provide
a rigorous proof of the Batchelor power spectrum in passive scalar turbulence (see, e.g., [3,
13, 28, 69] and the references therein for more background).

It is well known that sufficiently regular velocity fields can mix at most exponentially
fast. Refining exactly the relation between regularity and mixing rate is the content of Bres-
san’s conjecture [18] and has been studied in several works, for example [46, 68], and the
references therein. In the other direction, the construction of exponential mixers has also
proved challenging. Roughly speaking, deterministic, time-autonomous flows possess a co-
herent flow direction along which no mixing can occur, presenting significant difficulties in
the construction of such mixers. Classical results on exponential mixing for Axiom A (uni-
formly hyperbolic) flows include [26, 53]; see also [66] for a discussion of challenges in
establish correlation decay in this setting.

Exponential mixers which are Hölder continuous and smooth away from a finite set of
hyperplanes were constructed in [34] (the fields studied in Theorem 1.4 are not C∞

x but for
all k < ∞, can be chosen Ck

x by choosing α large enough). See also the work [2] where the
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velocity is chosen depending on the scalar, and [73] where the decay is on long but finite
time-intervals.

Informally, the local/infinitesimal mechanism responsible for mixing is hyperbolicity, or
stretching and contracting in various directions in phase space. Given a Lagrangian flow φt ,
hyperbolicity measured by the Lyapunov exponent, that is, the asymptotic exponential growth
rate

λ := lim
t

1
t

log
∥∥Dxφ

t
∥∥

at which spatial gradients grow for typical x (when this limit exists); note that when φt is
incompressible, λ ≥ 0. A positive value (λ > 0) indicates exponential-in-time separation of
nearby Lagrangian trajectories, hence hyperbolic stretching / contraction. Checking this pos-
itivity, even for seemingly innocent toy models of incompressible flow such as the Chirikov
standard map [21], is a notoriously challenging (and largely open) problem due to the con-
voluted coexistence of hyperbolic trajectories and coherent structures such as elliptic islands
along which no hyperbolicity takes place [30, 40, 60, 74].

The introduction of randomness is a natural way to rule out the formation of permanent
coherent structures. The classical work of Pierrehumbert [62] studied passive scalar advec-
tion under alternating sine shear flows with random phase, obtaining numerical evidence
of almost-sure exponential mixing for this model.1 Following the seminal work of Fursten-
berg [37] on i.i.d. compositions of random matrices, a variety of authors (see, e.g., [20, 51]
and references therein) developed techniques to prove that under nondegeneracy conditions
on the noise (ruling out, in particular, the almost-sure preservation of permanent coherent
structures), incompressible SDE generate stochastic flows of diffeomorphisms with positive
Lyapunov exponents. Building on this, for such models, almost-sure exponential mixing for
a class of nondegenerate SDEs was proved in [14, 27].

Note that incompressible SDE correspond to white-in-time velocity fields, that is, La-
grangian particles are directly driven by noise. Our contribution is to adapt this circle of ideas
to the more general setting where the Lagrangian flow is indirectly forced by noise acting on a
velocity field, itself evolving according to a stochastic fluid model in an infinite-dimensional
phase space. This presents fundamental difficulties requiring many new ideas to treat; see
Section 2 below.

This manuscript and the proof of Theorem 1.4 builds off our previous work [15], where
we established a positive Lyapunov exponent for φt for all initial x ∈ Td and velocity fields
u. Going from this to exponential mixing often requires more: hyperbolic expansion is lo-
cal in x, and is therefore much weaker than the global statement of Theorem 1.4. Indeed,
a positive Lyapunov exponent is basically equivalent to an (almost-sure, eventual) exponen-
tial growth of ∥∇gt∥L2 for any nonzero g ∈ H 1 (see the discussion in [15]), which is much
weaker than (1.7). One can construct many examples of dynamical systems with a positive
Lyapunov exponent but arbitrarily slow (e.g., polynomial or logarithmic) decay of correla-
tions, for example, Pommeau–Manneville maps (see, e.g., [67]).

REMARK 1.10 (The role of nonlinearity). If one drops the nonlinearity from Systems 1
or 2, one is left with the Stokes equation, and the velocity field is simply

ut (x) =
∑

m∈K
βm

t em(x),

1To our knowledge, at time of writing there is no proof in the literature that this is model provides an exponential
mixer with probability 1.
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where {βm
t }m∈K is a family of independent Ornstein–Uhlenbeck processes with variances

q2
m

2ν|k|2 (with m = (k, i)). Heuristically, one can expect the Lagrangian flow to behave similar
to successively applying i.i.d. random shear flows of all orientations, which would resemble
a hyperbolic toral automorphism. In accordance with this intuition, the Stokes equations is
by far the easiest case to treat.

In our work here and in [15], the nonlinearity in the Navier–Stokes equations is (a priori) an
enemy. The modes become correlated through the nonlinearity which can introduce structure
that could inhibit hyperbolicity of the flow map. For example, in two dimensions, the Navier–
Stokes equations form coherent vortices inside of which there is no hyperbolicity. See, for
example, [9, 10, 63, 64] and the references therein for discussions on this and its implications
for passive scalar dynamics. The Furstenberg criteria arguments in [15], for example, prove
that such vortices cannot permanently entrain any part of the Lagrangian flow. Theorem 1.4
gives exponential tail control on any slow down of hyperbolicity caused by transient coherent
vortices.

The Navier–Stokes equations require the creation of significantly more robust tools than
those that existed previously in the literature (see Section 2). Finally, it bears remarking that
the case of Navier–Stokes for 0 < ν ≪ 1 is the model of primary physical relevance for
Batchelor-regime passive scalar turbulence (see [16] and the references therein). Other mod-
els are significantly less physical (i.e., toy models) or apply only to a very small set of exper-
imental settings. Hence, it is crucial to develop methods capable of treating Navier–Stokes at
arbitrary Reynolds number.

1.3. Finite dimensional evolution and Ck
t C∞

x almost-sure exponential mixers. When
considering finite dimensional evolutions for the velocity fields, our methods significantly
simplify it suffices to impose much weaker nondegeneracy conditions on the noise.

ASSUMPTION 2 (Low mode nondegeneracy). Define K0 ⊂ K to be the set of m ∈ K
such that qm ≠ 0. Assume m ∈ K0 if |m|∞ ≤ 2 (for m = (k, i), k = (ki)

d
i=1 ∈ Zd we write

|m|∞ = maxi |ki |).

We write HK0 ⊂ H for the subspace spanned by the Fourier modes m ∈ K0 and HN ⊂ H
for the subspace spanned by the Fourier modes satisfying |m|∞ ≤ N . Consider the Stokes
system (with very degenerate forcing) and Galerkin–Navier–Stokes systems defined as the
following.

SYSTEM 3. We refer to the Stokes system in Td (d = 2,3) as the following, for u0 = u ∈
HK:

{
∂tut = −∇pt + &ut + QẆt ,

divut = 0,

where Q satisfies Assumption 2 and K0 is finite.

SYSTEM 4. We refer to the Galerkin–Navier–Stokes system in Td (d = 2,3) as the fol-
lowing, for u0 = u ∈ HN :

{
∂tut + 5N(ut · ∇ut + ∇pt) = ν&ut + QẆt ,

divut = 0,

where Q satisfies Assumption 2; N ≥ 3 is an integer; 5N denotes the projection to Fourier
modes with | · |∞ norm ≤ N ; HN denotes the span of the first N Fourier modes; and ν > 0 is
fixed and arbitrary.
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In addition to Systems 3 and 4, which feature fluid models subjected to white-in-time forc-
ing, the methods easily extend to treat fluid systems subjected to certain types of forcing that
we refer to as “OU tower noise.” This is basically an external forcing that is a projection
of an Ornstein–Uhlenbeck process on RM . Note that the force can be Ck

t , k ≥ 1 (see Re-
mark 1.13 below). In particular, we consider the following set of systems (stated in a general
Navier–Stokes-like setting).

SYSTEM 5. We refer to the (generalized) Galerkin–Navier–Stokes system with OU
tower noise in Td (d = 2,3) as the following stochastic ODE for u0 ∈ HN :

∂tut + X(u,u) = ν&ut + QZt,

∂tZt = −AZt + 6Ẇt ,

where Zt ∈ HM , the operator A : HM → HM is diagonalizable and has a strictly positive
spectrum, and the bilinear term X(u,u) : HN × HN → HN satisfies u · X(u,u) = 0 and ∀j ,
X(ej , ej ) = 0. Note that (ut ) is not Markov, but (ut ,Zt ) is Markov.

Theorem 1.4 extends to all of Systems 3, 4 and 5.

THEOREM 1.11. Consider any of Systems 3–5. Assume that Q satisfies Assumption 2
and that the parabolic Hörmander condition is satisfied for (ut ) or (ut ,Zt ) (see, e.g., [41]).
Then:

(i) the Lagrangian flow (1.3) has a strictly positive Lyapunov exponent in the same sense
as described in [15];

(ii) all of the results of Theorem 1.4 hold.

REMARK 1.12. We have chosen to include Theorem 1.11 to emphasize that our meth-
ods do not fundamentally require nonspatially smooth velocity fields, nor do they require
velocity fields that are directly subjected to white-in-time forcing. The difficulty in extending
Theorem 1.4 to include Ck

t C∞
x velocity fields is the lack of sufficiently strong hypoellip-

ticity results in infinite-dimensions, that is, the lack of a sufficiently strong replacement for
Hörmander’s theorem. See Remark 2.20 below.

REMARK 1.13. Theorem 1.11 contains many examples of Ck
t C∞

x velocity fields for any
k ≥ 0. For example, consider the following:

ut (x) =
∑

m∈K:|m|∞≤2

ûm
t em(x),

where the coefficients are given by the system

∂t û
m
t = −ûm

t + Zm,0
t ,

∂tZ
m,ℓ = −(ℓ + 1)Zm,ℓ

t + Z
j,ℓ−1
t 1 ≤ ℓ ≤ n,

∂tZ
m,n = −Zm,n

t + Ẇm
t .

By indexing correctly, one can rewrite this in the form stated in System 5 with X ≡ 0. One
can check that the parabolic Hörmander condition is satisfied. This example also explains the
terminology “OU tower.”

2. Outline of the proof. In this section, we give the main steps for the proof of The-
orem 1.4; details will be given in Sections 3–7. The exposition we give here focuses on
the infinite-dimensional Systems 1, 2, with the finite-dimensional systems described in Sec-
tion 1.3 addressed in a series of remarks as we go along.
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2.1. Correlation decay via geometric ergodicity of the two point Lagrangian motion. Our
primary tool for investigating quenched correlation decay as in Theorem 1.4 is to study the
following Markov process.

DEFINITION 2.1. We define the two-point Lagrangian process (ut , xt , yt ) on H × Td ×
Td by

xt = φt
u(x), yt = φt

u(y)

for fixed initial (u, x, y) ∈ H × Td × Td .

The two-point process (ut , xt , yt ) simultaneously tracks the velocity field ut as well as two
separate Lagrangian flow trajectories xt , yt . Throughout, we assume x ≠ y, hence xt ≠ yt for
all t > 0, since the diagonal

D = {
(x, x) : x ∈ Td} ⊂ Td × Td

and its complement Dc are invariant sets.
In what follows, we write P

(2)
t for the Markov semigroup associated to the Markov process

(ut , xt , yt ) on H × Dc, defined on observables ψ : H × Dc → R by

P
(2)
t ψ(u, x, y) := E(u,x,y)ψ(ut , xt , yt )

whenever the right-hand side is defined. Note that µ×Leb×Leb is automatically a stationary
measure for the two-point process. We will deduce Theorem 1.4 from geometric ergodicity
with respect to this measure.

THEOREM 2.2. There exist α̂ > 0 and a measurable function V : H × Dc → [1,∞),
with V ∈ L1(µ × Leb×Leb) such that for each measurable bounded ψ : H × Td × Td with∫∫∫

ψ dµdx dy = 0 and each (u, x, y) ∈ H × Dc, we have that
∣∣P (2)

t ψ(u, x, y)
∣∣ ≤ V(u, x, y)e−α̂t∥ψ∥L∞

for all t ≥ 0.

REMARK 2.3. The idea of using geometric ergodicity of a two-point process to deduce
quenched correlation decay is known to experts in random dynamical systems, although it
does not appear to be generally well known. To the best of our knowledge, this idea first
appears in the literature in [27] on quenched correlation decay for SDE on compact manifolds
(see also [8]).

The bulk of the work in this paper is aimed at proving Theorem 2.2. Before proceeding
to describe the proof, we first give an indication of how Theorem 2.2 will be used to deduce
Theorem 1.4. Fix mean-zero f,g ∈ L∞(Td) and γ̂ ∈ (0, α̂

2 ). For all n ∈ Z≥0, u ∈ H,

P
{∣∣∣∣

∫
f

(
g ◦ φn

u

)
dx

∣∣∣∣ > e−γ̂n
}

≤ e2γ̂ nE
(∫

f
(
g ◦ φn

u

)
dx

)2

= e2γ̂n
∫

f̃ (x, y)
(
P (2)

n g̃
)
(u, x, y)dx dy,

where f̃ (x, y) = f (x)f (y), g̃(x, y) = g(x)g(y). By Theorem 2.2, the above right-hand side
is bounded !u,f,g e(2γ̂−α̂)n. We conclude by the Borel–Cantelli lemma that

∣∣∣∣

∫
f

(
g ◦ φn

u

)
dx

∣∣∣∣ ≤ D̃e−γ̂n,
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for all n ≥ 1, where D̃ = D̃(f, g,ω, u) is a random constant depending on f , g and the initial
velocity field u. Additional work is needed to determine the dependence of the random con-
stant D̃ on f , g and u, as well as to pass from discrete to continuous time. These arguments
are carried out in detail in Section 7.

2.2. Conditions for geometric ergodicity. A prevailing strategy for proving correlation
decay for Markov chains on noncompact spaces is to verify conditions guaranteeing that the
Markov process visits a given “bounded” region of phase space with a positive asymptotic fre-
quency. Many criteria of this kind have been developed (sometimes called Harris theorems):
for a detailed account see, for example, the reference [57]. Note that when considering the 2-
point process, the diagonal x = y must be considered “at infinity” and the primary difficulty
of the proof will be localizing the process away from this degenerate set in phase space.

For obtaining geometric ergodicity of the 2-point process, we will implement a series of
criteria developed by Goldys and Maslowski [39], particularly useful for semigroups gener-
ated by SPDE, for checking the conditions of the abstract Harris-type theorems (cf. [57]; see
also, for example, [19, 47–49, 56] for other approaches to geometric ergodicity for SPDE).
A simplified version of their framework is as follows. Let Z be a Polish space and let (Zt )t≥0
be a continuous-time Markov process on Z with transition kernels Pt(z,K) = Pz(Zt ∈ K).
As usual we define the Markov semigroup on observables ψ : Z → R by

Ptψ(z) = Ez
(
ψ(Zt )

) =
∫

Z
ψ

(
z′)Pt

(
z, dz′).

CONDITION 1 (Strong Feller). We say that a Markov process (Zt ) is strong Feller if for
all t > 0 and bounded measurable ψ : Z → R, we have that z (→ Ptψ(z) is continuous on Z
for all t > 0.

CONDITION 2 (Topological irreducibility). We say that a Markov process (Zt ) is topo-
logically irreducible if for all open U ⊂ Z , we have that Pt(z,U) > 0 for all t > 0, z ∈ Z .

The next two conditions refer to a given measurable function V : Z → [1,∞).

CONDITION 3 (Uniform lower bounds). For each r > 1, there exists a compact set K ⊂
Z and a time t0 = t0(r) > 0 such that

inf
{V(z)≤r}

Pt0(z,K) > 0.

CONDITION 4 (Drift condition). We say V : Z → [1,∞) satisfies a drift condition (aka
Lyapunov function) if there are constants k,κ, c > 0 such that

PtV ≤ ke−κtV + c

holds pointwise.

Below, given V : Z → [1,∞), we write CV for the Banach space of continuous observ-
ables ψ : Z → R for which the norm

∥ψ∥CV := sup
z∈Z

|ψ(z)|
V(z)

(2.1)

is finite.
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THEOREM 2.4 (Follows from Theorem 3.1 and Lemma 3.2 in [39]). Suppose that the
Markov process (Zt ) and the function V : Z → [1,∞) satisfy Conditions 1, 2, 3 and 4. Then
the Markov process (Zt ) admits a unique stationary measure m, with respect to which (Zt )

is geometrically ergodic in CV . That is, for all ψ ∈ CV , we have that
∣∣∣∣Ptψ(z) −

∫
ψ dm

∣∣∣∣ ≤ CV(z)e−βt∥ψ∥CV for all t > 0,

where C > 0, β > 0 are constants.

REMARK 2.5. Harris-type theorems typically have two sets of assumptions: a minoriza-
tion condition satisfied by a subset S of phase space, which guarantees that orbits initiated
from S couple with some uniform probability > 0, and a drift condition (Condition 4), which
controls excursions from S. Conditions 1–3 are sufficient for verifying a suitable minorization
condition for the sublevel sets {V ≤ r}, r > 0. See [45, 57] for more discussion on abstract
Harris theorems.

We will apply Theorem 2.4 to the two-point Markov process (ut , xt , yt ) on the state space
H × Dc. Along the way, in Section 4.1 we also apply Theorem 2.4 to another related Markov
process.

2.3. Strong Feller and irreducibility. Let us now begin sketching how to verify the con-
ditions of Theorem 2.4 for the two-point process (ut , xt , yt ) on H × Dc. First, we will prove
the strong Feller property as in Condition 1 on a scale of Sobolev spaces– this refinement is
useful in verifying Condition 3 later on. Note that the evolution of (xt , yt ) in Definition 2.1
is not subject to noise. After verifying the requisite uniform Hörmander conditions (Sec-
tion 6.1.1), the proof follows by methods used previously in [15]. A brief sketch is included
in Section 6.1 for completeness.

PROPOSITION 2.6. For any σ ′ ∈ (α − 2(d − 1),α − d
2 ) the two-point Markov process

(ut , xt , yt ) on Hσ ′ × Dc is strong Feller.

Next, we verify topological irreducibility as in Condition 2. This follows by a relatively
simple approximate controllability statement; see Section 6.2 for the details.

PROPOSITION 2.7. For any σ ′ ∈ (d
2 + 2,α − d

2 ), the two-point process (ut , xt , yt ), re-
garded as a process on Hσ ′ × Dc, is topologically irreducible.

REMARK 2.8. Checking Conditions 1–4 for the finite-dimensional systems in Sec-
tion 1.3 is considerably easier. Conditions 1 and 2 follow immediately from Hörmander’s
theorem. By similar arguments, Condition 3 follows immediately as long as the function V
has the property that its sublevel sets {V ≤ r} ⊂ H × Dc are bounded (also away from D),
hence compact, for all r > 1. We return to the construction of V and Condition 4 for these
systems in Remark 2.19 below.

2.4. Construction of the Lyapunov function V . Let us now turn to the most difficult task:
constructing a Lyapunov function V for the two-point process which satisfies Conditions 3
and 4.
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2.4.1. Lyapunov functions for the (ut ) process. The first step is to find a suitable Lya-
punov functional for the (ut ) process. Unlike previous works we are aware of treating ge-
ometric ergodicity of stochastic Navier–Stokes (see, e.g., [39, 43]), we need the Lyapunov
functions to control (ut ) in H regularity. To our knowledge, these have not previously ap-
peared in the literature and a somewhat nontrivial additional effort is needed to deduce them
(but see closely related results in Section 3.5.3 of [50]). The resulting geometric ergodicity
statements are of some independent interest.

To simplify notation, we will denote each corresponding Lyapunov function by the same
symbol Vβ,η. Lemma 2.9 is proved below in Section 3 (see Lemma 3.7).

LEMMA 2.9. If d = 2, define Q = supm=(k,i)∈K |k||qm|, and if d = 3 define Q =
supm=(k,i)∈K |qm|. Let 0 < η < η∗ = ν/64Q, β ≥ 0, and define

Vβ,η(u) = (
1 + ∥u∥2

H
)β exp

(
η∥u∥2

W
)
,(2.2)

where ∥ · ∥W is as in (1.5). Then (2.2) satisfies Condition 4 for the (ut ) process.

REMARK 2.10. Naturally, for Systems 3 and 4 we need only to consider the case β = 0
in Lemma 2.9. For the System 5, V must also depend on Z ((ut ,Zt ) is now the relevant
Markov process). Let A = 7D7−1 be the diagonalization of A. Then, for η1, η2 chosen
sufficiently small (depending on D, 7, Q, 6, ν) it suffices to take the following for V :

V (u,Z) = exp
(
η1∥u∥2 + η2

∥∥7−1Z
∥∥2)

.

Indeed, note that Yt = 7−1Zt solves dYt = −DYt + 7−16Ẇt , which is compatible with
the 7−1Z factor in V ; the QZt term in the (ut ) evolution is absorbed by −∥∇ut∥2 and
−∥D1/2Yt∥2 (cf. Section 3.2).

2.4.2. Repulsion from the diagonal D for the two-point process. The families of Lya-
punov functions defined in Lemma 2.9 for the (ut ) process capture repulsion from parts of
phase space where ∥ut∥H is unboundedly large. For the two-point process, however, we ad-
ditionally require repulsion from the diagonal D, which is considered part of “infinity” for
the two point motion (xt , yt ). For this, we will crucially use the fact that near the diagonal
the positive Lyapunov exponent for the Lagrangian flow φt (as established in [15]) causes xt

and yt to diverge from each other at an exponential rate with probability 1.
To make this more precise, suppose x, y are close together and consider the coordinate

change (x, y) (→ (x,w), where w = w(x, y) is the minimal displacement vector from x to y.
This induces a Markov process (ut , xt ,wt ), with wt = w(xt , yt ) ∈ Rd , which is continuous
in time as long as xt , yt remain close together. Note that Td × {0} plays the same role for the
linearized process (xt ,w

∗
t ) as the diagonal D does for the two-point process (xt , yt ). Near

the diagonal, we can approximate wt by the linearized process (w∗
t ) on Rd \ {0},

wt ≈ w∗
t := Dxφ

tw, w = w(x, y).

In [15], we proved that there exists λ1 > 0 (deterministic) such that

lim
t→∞

1
t

log
∣∣w∗

t

∣∣ = λ1 > 0,(2.3)

with probability 1 for all initial (u, x) ∈ H×Td and w ∈ Rd \ {0}. Hence, one anticipates that
on average, |w∗

t |−p ≈ e−pλt |w|−p for p > 0. Thus, to capture repulsion from the diagonal it
is natural to consider candidate Lyapunov functions of the form

fp(u, x,w) = |w|−pψp
(
u,x,w/|w|),(2.4)
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where ψp : H × Td × Sd−1 → R is nonnegative (actually, it is natural to enforce ψp(u, x,
−w) = ψp(u, x,w), so ψp will be thought of as a function on the projective bundle2 H ×
PTd ).

Let us write T Pt for the Markov semigroup on H×Td ×Rd corresponding to (ut , xt ,w
∗
t ).

Repulsion as in (2.3) suggests to look for an fp that is an eigenvector of T Pt with eigenvalue
< 1. Then it is straightforward to see that we would have the following drift condition for
T Pt :

T Ptfp = e−8(p)tfp,

for some 8(p) > 0.
More precisely, let V = Vβ,η be as in Lemma 2.9. We write CV for the space of contin-

uous functions on H × PTd with bounded ∥ · ∥CV norm and define C1
V to be the space of

continuously differentiable functions on H × PTd for which

∥ψ∥C1
V

:= ∥ψ∥CV + sup
(u,x,v)∈H×PTd

∥Dψ(u, x, v)∥H∗

V (u)

is finite. As discussed in [43], since CV and C1
V are not separable, it is sometimes necessary

to work with the spaces C̊V and C̊1
V , which are the CV -closure and C1

V -closure of the space
of smooth “cylinder functions”:

C̊∞
0

(
H × PTd) = {

ψ |ψ(u, x, v) = φ(5Ku,x, v),K ⊂ K,φ ∈ C∞
0

}
,(2.5)

where 5K denotes orthogonal projection onto HK ∼= R|K|. These spaces are separable, closed
subspaces on which finite-dimensional approximation can be made. It can be shown that, for
example, CV is strictly larger than C̊V : indeed, Vβ,η /∈ C̊Vβ,η (see Section 5.3 of [43]).

PROPOSITION 2.11. For all |p| ≪ 1, there exists ψp ∈ C̊1
V , with the following proper-

ties:

(a) ψp is strictly positive and is bounded uniformly from below on bounded subsets of
H × PTd .

(b) fp(u, x,w) = |w|−pψp(u, x,w/|w|) is an eigenfunction of T Pt with eigenvalue
e−8(p)t .

(c) As p → 0 we have 8(p) = λ1p + o(p), where λ1 the Lyapunov exponent (2.3).

REMARK 2.12. The value −8(p) is sometimes referred to as the moment Lyapunov
exponent [5], and arises naturally in the study of large deviations in the convergence of Lya-
punov exponents; see, for example, [6, 7]. As we show, it satisfies the formula

−8(p) = lim
t→∞

1
t

log E
∣∣Dxφ

t
uv

∣∣−p

for all (u, x, v) ∈ H × PTd .

REMARK 2.13. As mentioned previously, the idea of using the two-point process to
establish quenched correlation decay is due to [27], which studied quenched statistical prop-
erties of an incompressible SDE (in our terminology, a white-in-time velocity field). As in
our setting, the phase space Dc for their two-point process is noncompact, and so a similar

2Here, PTd ∼= Td × Pd−1 is the projective bundle over Td , where Pd−1 = P(Rd) is the projective space for
Rd .
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drift condition is required: the one used in [27] cites the detailed study by Baxendale and
Stroock [14] obtaining large deviations estimates sojourns to small neighborhoods of the di-
agonal D. Our approach to drift conditions repelling from D borrows several ideas from [14],
for example, the use of moment Lyapunov exponents and the linearized semigroup T Pt . We
note, however, that the unbounded and infinite-dimensional phase space in our setting in-
troduces numerous challenges to be overcome, for example, difficulties involving the use of
infinitesimal generators in our setting.

2.4.3. Verifying the drift condition. Returning to the nonlinear two-point motion, in light
of (2.4), it is natural to look for a Lyapunov function of the form

V(u, x, y) = hp(u, x, y) + Vβ+1,η(u),

where β is sufficiently large, η ∈ (0,η∗), and hp(u, x, y) := χ(|w(x, y)|)fp(u, x,w(x, y)),
where χ is a smooth cutoff satisfying χ |[0,1/10] ≡ 1, χ |[1/5,∞) ≡ 0.

For V as above, let us sketch how to satisfy Conditions 3 and 4. For Condition 3, by
parabolic regularity and the strong Feller property in Condition 1, it suffices (Lemma 6.2) to
show that for any r > 0, the sublevel set {V ≤ r} satisfies

{V ≤ r} ⊂ {∥u∥H ≤ R1 and d(x, y) ≥ R2
}
,

where Ri = Ri(r), i = 1,2. We are guaranteed this as long as ψp is uniformly bounded from
below on bounded sets as in Proposition 2.11(c).

For Condition 4, the validity of the linear approximation depends on the size of the velocity
field. Since the latter can be arbitrarily large, the time scale on which this approximation can
be used is nonuniform in u. For this reason, it is convenient to work at the time-infinitesimal
level, that is, with infinitesimal generators. Temporarily neglecting technical issues regarding
the domain, let L(2) = limt→0

1
t (P

(2)
t − Id) be the infinitesimal generator of the two-point

motion. We will essentially show that

L(2)V ≤ −8(p)V + C(2.6)

for some C > 0. As one may expect, (2.6) cannot be rigorously justified exactly as such in
infinite dimensions due to the fact that V /∈ C̊V , but standard arguments are used to obtain an
almost equivalent analogue (see Section 6.3).

Let us briefly sketch this argument, ignoring technical issues. When L(2) hits hp , we obtain

L(2)hp ≤ −8(p)hp + C′Vβ+1,η;(2.7)

the first term is good and comes from the fact that T Ptfp = e−8(p)tfp and that T Pt well
approximates P

(2)
t near the diagonal, while the second term is an error coming from the

linearization approximation.
Unlike (2.6), we are able to show that hp is in the domain of L(2) and rigorously justify

(2.7) (see Lemma 6.13). In order to make this perturbation argument, we crucially need that
ψp ∈ C̊1

V , V = Vβ,η.
For V , we effectively deduce

L(2)V ≤ −8(p)hp + C′Vβ+1,η + LVβ+1,η,

where L denotes the (formal) infinitesimal generator of the (ut ) process (see Definition 3.4).
From here, we will absorb the C′Vβ+1,η linearization error into LVβ+1,η by showing a “super
drift condition”: formally, we can essentially view it as ∀κ > 0, ∃Cκ > 0 such that

LVβ+1,η ≤ −κVβ+1,η + Cκ .
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In other words, the drift condition for V as in Condition 4 can be taken with as strong an
exponential decay rate as desired. This is much stronger than a standard drift condition; see
(6.12) for details (also Remark 3.9). Taking κ > 0 sufficiently large absorbs the C′Vβ+1,η

error term, resulting in (2.6).
The above sketch is far from complete and there are many details to fill in make it rigorous,

including an appropriate C0 semigroup framework for P
(2)
t and issues relating to the domain

of L(2). Much of the difficulty in carrying out this argument rigorously stems from infinite
dimensionality of H×Dc; see Section 6 for a detailed discussion. Nevertheless, we ultimately
verify the following.

PROPOSITION 2.14. The Lyapunov function V satisfies Condition 4, that is, there exists
K > 0 such that

P
(2)
t V ≤ e−8(p)tV + K.(2.8)

With Condition 4 in place, Theorem 2.2 now follows.

2.4.4. Outline of the proof of Proposition 2.11. In our analysis, it is convenient to trans-
form the eigenproblem T Ptfp = e−8t fp , with fp as in (2.4), into the equivalent problem
P̂

p
t ψp = e−8tψp , where P̂

p
t denotes the following “twisted” Markov semigroup acting on

observables ψ : H × PTd → R:

(2.9) P̂
p
t ψ(u, x, v) = E(u,x,v)

(∣∣Dxφ
t v

∣∣−p
ψ(ut , xt , vt )

)
.

Above, we write (ut , xt , vt ) for the projective process on H×PTd , where vt ∈ P d−1 denotes
the projective class of the vector w∗

t = Dxφ
tw. We will refer to the Markov semigroup asso-

ciated with the projective process as P̂t = P̂ 0
t . The projective process is natural here and also

plays a major role in the proof of the positive Lyapunov exponent in [15].
Ultimately, we seek to define ψp to be an eigenfunction corresponding to the dominant

eigenvalue of the semigroup P̂
p
t in some function space. Since we require ψp ∈ C̊1

V , it is
natural to consider spectral theory for the semigroup P̂

p
t on C̊1

V . To work in this framework,
however, entails significant technical problems. To start, it is already a challenge to prove that
P̂t , let alone P̂

p
t , is bounded on C1

V → C1
V for any value of t > 0. Moreover, we are unable

to show C0 continuity for P̂
p
t in C̊1

V . We note that this problem does not arise when working
on the lower regularity space W as in [43].

We will show that P̂
p
T0

: C1
V → C1

V is bounded for a sufficiently large T0, permitting us

to define ψp to be an eigenfunction of the discrete-time operator P̂
p
T0

. Then we show that

P̂
p
t defines a C0 semigroup on C̊V and the relation P̂

p
t ψp = e−8(p)tψp , t ≥ 0 as in Proposi-

tion 2.11(b) is proved via semigroup theory.
Let us now make this more precise.

DEFINITION 2.15 (Spectral gap). Let A be a bounded linear operator on a Banach space
B with simple leading eigenvalue r . We say A has a spectral gap if there exists an ϵ > 0 such
that

σ (A)\{r} ⊆ B|r|−ϵ(0).

For T0 sufficiently large and all p sufficiently small, we will show that P̂
p
T0

is bounded

C1
V → C1

V and maps C̊1
V into itself (Lemmas 5.2 and 5.3). We then seek to prove that P̂

p
T0

has

a spectral gap in C̊1
V , and then construct ψp as an eigenfunction of P̂

p
T0

corresponding to its
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leading eigenvalue (see (2.10) below). This is deduced from a spectral gap for the “untwisted”
operator P̂T0 in C̊1

V and a spectral perturbation argument (see Lemma 5.1) using the fact that
P̂

p
T0

→ P̂T0 in the C1
V norm as p → 0 (Lemma 5.2).

In turn, a spectral gap for P̂T0 in C1
V is deduced from a combination of a spectral gap for

P̂T0 in CV and a Lasota–Yorke-type gradient estimate (Proposition 4.6) analogous to those
used to prove asymptotic strong Feller in, for example, [42, 44]. The CV spectral gap is de-
duced from Theorem 2.4 and essentially follows from ingredients already needed elsewhere
(see Section 4.1). The gradient estimate is proved via an adaptation of the the Malliavin cal-
culus scheme in [44] adapted to our more complicated nonlinearity, H regularity and the
H ×PTd geometry. A brief sketch is provided in Section 4. In all, these arguments imply the
following.

PROPOSITION 2.16. Let V = Vβ,η be as in Lemma 2.9, where η ∈ (0,η∗) is arbitrary
and β is sufficiently large. Then there exist T0 > 0, p0 > 0 such that for all p ∈ [−p0,p0],
P̂

p
T0

has a spectral gap on C̊1
V with real leading eigenvalue e−T08(p) for some 8(p) ∈ R.

Moreover, the limit

ψp := lim
n→∞ enT08(p)P̂

p
nT0

1(2.10)

exists in C1
V and defines an eigenfunction corresponding to the leading eigenvalue.

As observed earlier, to prove that ψp is an eigenfunction of P̂
p
t for all t ≥ 0 as in Proposi-

tion 2.11(b), we cannot work on C̊1
V . Instead we will regard P̂

p
t as a semigroup on C̊V : here,

P̂
p
t is bounded for all t ≥ 0 and gives rise to a C0 semigroup on C̊V (Proposition 5.5). Car-

rying out an analogous spectral perturbation argument to Proposition 2.16 and using spectral
theory for C0 semigroups gives the following.

PROPOSITION 2.17. Let V , p0, 8(p) and ψp be as in Proposition 2.16. For all p ∈
[−p0,p0], P̂

p
t has a spectral gap on C̊V for all t > 0 with leading eigenvalue e−8(p)t , where

8(p) is as in Proposition 2.16. Moreover, ψp is an eigenfunction for P̂
p
t corresponding to

this eigenvalue, and

P̂
p
t ψp = e−8(p)tψp.(2.11)

At this point, we have the information required to prove Proposition 2.11. The formula
(2.10) implies that ψp is nonnegative; positivity of P̂

p
T0

and irreducibility of (ut , xt , vt )
(Proposition 4.2) imply that ψp > 0 pointwise. The uniform positivity condition in Propo-
sition 2.11 (a) follows from a compactness argument; see Lemma 5.7.

To prove the asymptotic 8(p) = λ1p + o(p) as in Proposition 2.11(c): first, we check that
p (→ 8(p) is differentiable for p sufficiently small (Lemma 5.9) by combining (2.11) with
Fréchet differentiability of p (→ P̂

p
t in the CV operator norm. The formula 8′(0) = λ1 is

then checked using a convexity argument and the characterization given in Remark 2.12; see
Lemma 5.10 for details.

REMARK 2.18. Note that the twisted Markov semigroup in (2.9) can be written as

P̂
p
t ψ(u, x, v) = E(u,x,v)

(
exp

(
−p

∫ t

0
H(us, xs, vs)ds

)
ψ(ut , xt , vt )

)
,

where

H(u,x, v) := 〈
v,Du(x)v

〉
,
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so that P̂
p
t is the Feynman–Kac semigroup with potential H (see, e.g., [70]). This particular

H and the resulting moment Lyapunov exponent 8(p) are useful in studying large deviations
in the convergence of Lyapunov exponents for random dynamics; see, for example, [5–7].

REMARK 2.19. For the finite-dimensional models defined in Section 1.3, the construc-
tion of ψp and the corresponding Lyapunov function V can be simplified (though the above
proof certainly suffices). Naturally, to treat System 5, everywhere there is (ut ) one must in-
stead use (ut ,Zt ). The conditions in Theorem 2.4 for geometric ergodicity for the projective
process (ut , xt , vt ) (or (ut ,Zt , xt , vt )) follow more-or-less immediately from hypoellipticity
(see [15]) and the existence of Lyapunov functions for the (ut ) or (ut ,Zt ) processes (Re-
mark 2.10). Moreover, P̂t defines a C0 semigroup on CV . The spectral picture for the twisted
Markov kernels P̂

p
t follows as discussed above (though simpler to check).

This provides, 0 < |p| ≪ 1, the ψp as in Proposition 2.11 (in the OU tower case, it also
depends on Z). It is not necessary to study a spectral gap in C1

V , as ψp is C∞ by Hörmander’s
theorem and Dψp ∈ CV follows from a more refined use of hypoelliptic regularity using the
scale of available V . The construction of V proceeds as above, as does the generator argument
for checking the drift condition (2.8) (though these are much easier to justify). This completes
the proof of Theorem 2.2 for these models.

REMARK 2.20. There are two fundamental places in our proof where we depend on the
nondegenerate noise in Assumption 1. The first is in the Furstenberg criterion [Theorem 4.7,
[15]] for the positive Lyapunov exponent (2.3). The Lasota–Yorke-type gradient bounds used
in the asymptotically strong Feller frameworks of [42, 44] (and Section 4 below) do not
seem to be the correct tool for obtaining this criterion. We are currently unsure what suitable
hypoelliptic smoothing can be applied aside from strong Feller. The other place is in this
work. The twisted Markov semigroup P̂

p
t does not seem to define a bounded semigroup on

C1
V as currently required by the weak Harris theorem frameworks of [43, 45] due to the higher

regularity needed for our methods. This forces a “strong” Harris theorem-type framework
as in Theorem 2.4, which requires nondegenerate noise such as Assumption 1 (at least at
high frequencies). All of the other uses of the strong Feller property/nonspatially smooth
noise in this work and our previous [15] are not of fundamental importance and could be
easily eliminated with some well-understood methods at the expense of additional technical
complexity (e.g., those discussed in [38, 43] and the references therein). In these places,
we use the nondegenerate noise only to reduce the length and complexity of the present
manuscript.

2.5. Notation. We use the notation f ! g if there exists a constant C > 0 such that
f ≤ Cg where C is independent of the parameters of interest. Sometimes we use the no-
tation f ≈a,b,c,... g to emphasize the dependence of the implicit constant on the parame-
ters, for example, C = C(a, b, c, . . .). We denote f ≈ g if f ! g and g ! f . Throughout,
Rd is endowed with the standard Euclidean inner product (·, ·) and corresponding norm
| · |. We continue to write | · | for the corresponding matrix norm. When the domain of
the Lp space is omitted, it is understood to be Td : ∥f ∥Lp = ∥f ∥Lp(Td ). We use the nota-
tion EX = ∫

, X(ω)P(dω) and ∥X∥Lp(,) = (E|X|p)1/p . When (zt ) is a Markov process, we
write Ez, Pz for the expectation and probability, respectively, conditioned on the event z0 = z.
We use the notation ∥f ∥Hs = ∑

k∈Zd |k|2s |f̂ (k)|2 (denoting f̂ (k) = 1
(2π)d/2

∫
Td e−ik·xf (x) dx

the usual complex Fourier transform). We occasionally use Fourier multiplier notation
m̂(∇)f (ξ) := m(iξ)f̂ (ξ). Additionally, we will often use r0 to denote a number in (d

2 +1,3)

such that the Sobolev embedding Hr0 ↪→ W 1,∞ holds.
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We denote PTd ∼= Td ×P d−1 for projective bundle. We are often working with the Hilbert
spaces L2 × TvPTd and H × TvPTd . For these spaces, we denote the inner product ⟨·, ·⟩W
(resp., H) and correspondingly for the norms as the finite-dimensional contribution to the
inner product is unambiguous. For linear operators A : L2 × TvPTd → L2 × TvPTd , we
similarly denote the operator norm ∥A∥L2 and for linear operators A : L2 × TvPTd → R we
use the notation ∥A∥L2∗ (analogously for H). For K ⊂ K, define 5K : L2 ×PTd → K×PTd

to be the orthogonal projection onto the subset of modes in K. For n ∈ N, 5n denotes the
orthogonal projection onto the modes with k ∈ K, |k| ≤ n.

3. Preliminaries, drift conditions and Jacobian estimates.

3.1. Preliminaries. We will write the Navier–Stokes system as an abstract evolution
equation on H by

(3.1) ∂tu + B(u,u) + Au = QẆ =
∑

m∈K
qmemẆm,

where

B(u, v) = (
Id−∇(−&)−1∇·)∇ · (u ⊗ v),

Au =
{
−ν&u if d = 2,

−ν′&u + ν&2u if d = 3.

The (ut ) process with initial data u is defined as the solution to (3.1) in the mild sense [25,
50]:

ut = e−tAu −
∫ t

0
e−(t−s)AB(us, us)ds +

∫ t

0
e−(t−s)AQdW(s),(3.2)

where the above identity holds P almost surely for all t > 0. For (3.2), we have the following
well-posedness theorem.

PROPOSITION 3.1 ([25, 50]). For each of Systems 1–2, we have the following. For all
initial u ∈ H∩Hγ with γ < α − d

2 and all T > 0, p ≥ 1, there exists a P almost surely unique
solution (ut ) to (3.2). Moreover, (ut ) is Ft -adapted, and belongs to Lp(,;C([0, T ];H ∩
Hγ )) ∩ L2(,;L2(0, T ;Hγ+(d−1))).

Additionally, for all p ≥ 1 and 0 ≤ γ < γ ′ < α − d
2 ,

E sup
t∈[0,T ]

∥ut∥p
Hγ !T ,p,γ 1 + ∥u0∥p

H∩Hγ ,

E
∫ T

0
∥us∥2

Hγ+(d−1) ds !T ,δ 1 + ∥u0∥2
Hγ ,

E sup
t∈[0,T ]

(
t

γ ′−γ
2(d−1) ∥ut∥Hγ ′

)p !p,T ,γ ,γ ′ 1 + ∥u0∥p
Hγ .

Before proceeding, we need the following useful Sobolev interpolation inequalities.

LEMMA 3.2. For all r ∈ (0,3), ∀σ > 2 and ∀ϵ > 0, ∃C = C(r, ϵ,σ ) > 0 such that ∀u ∈
Hσ+1,

∥u∥Hr ≤ ϵ∥&u∥2
L2 + ϵ

∥∇u∥2
Hσ

1 + ∥u∥2
Hσ

+ C.(3.3)
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PROOF. Without loss of generality, we can assume r > 2 as otherwise the estimate is
immediate. Similarly, we assume that ∥u∥Hr > ϵ∥&u∥2

L2 , as otherwise the estimate is auto-
matic. By Sobolev interpolation,

∥u∥Hr ! ∥&u∥1−θ
L2 ∥∇u∥θ

Hσ ! ∥u∥
1−θ

2
Hr ∥∇u∥θ

Hσ ,

where θ = r−2
σ−1 . Therefore,

∥u∥Hr ! ∥∇u∥
2θ

1+θ

Hσ .(3.4)

A similar argument also implies that

(3.5) ∥u∥Hσ ! ∥u∥
1−γ

2
Hr ∥∇u∥γ

Hσ ! ∥∇u∥
γ+θ
1+θ

Hσ ,

where γ = σ−2
σ−1 . It follows from (3.4) and (3.5) that

∥∇u∥2
Hσ

1 + ∥u∥2
Hσ

" ∥∇u∥
2(1−γ )

1+θ

Hσ " ∥u∥
1−γ

θ
Hr .

Inequality (3.3) follows from the fact that for all ϵ > 0 there exists a C = C(ϵ,σ, r) such that

∥u∥Hr ≤ ϵ∥u∥
1−γ

θ
Hr + C

provided 1−γ
θ = 1

r−2 > 1, which holds if and only if r < 3. #

LEMMA 3.3. For all ϵ > 0, σ ≥ 1, there exists a Cϵ > 0 such that the following holds
for all u ∈ Hσ+1:

log
(
1 + ∥u∥2

Hσ

) ≤ ϵ∥&u∥2
L2 + ϵ

∥∇u∥2
Hσ

1 + ∥u∥2
Hσ

+ Cϵ .

PROOF. For all ϵ, δ > 0, ∃Cδ,ϵ > 0 such that the following holds ∀x ≥ 0:

log
(
1 + x2) ≤ Cδ,ϵ + ϵxδ.

Similar to Lemma 3.2, we may assume σ > 1 and

∥u∥δ
Hσ > ϵ∥&u∥2

L2 .(3.6)

By Sobolev interpolation (for suitable θ ∈ (0,1)),

∥&u∥L2 ≤ ∥u∥Hσ ! ∥&u∥1−θ
L2 ∥∇u∥θ

Hσ ,

and hence by (3.6), there holds

∥u∥1− 1
2 δ(1−θ)

Hσ ! ∥∇u∥θ
Hσ ,

which implies

∥∇u∥2
Hσ

1 + ∥u∥2
Hσ

" ∥∇u∥2− 4θ
2−δ(1−θ)

Hσ .

The desired estimate follows taking δ sufficiently small. #
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3.2. Fundamental estimates and super-Lyapunov property. Let C2(H) be the space of
twice Frechet differentiable functions on H. We denote by DuG(u) the Frechet derivative at
u, which is a linear functional on H defined for each v ∈ H by

DuG(u)v = lim
h→0

h−1(
G(u + hv) − G(u)

)
.

Likewise, the second Frechet derivative D2
uG(u) can be identified is a bilinear form on H

defined for each v,w ∈ H by

D2
uG(u)[v,w] = lim

h→0
h−1(

DuG(u + hw)v − DuG(u)v
)
.

We will define the formal generator of the process (3.1) as follows.

DEFINITION 3.4. Suppose G ∈ C2(H) has the property that for each u ∈ Hσ+1, and
v ∈ Hσ−1, the mapping u (→ DuG(u)v is continuous on Hσ+1 and satisfies

∣∣DuG(u)v
∣∣ ≤ K

(∥u∥H
)∥u∥Hσ+1∥v∥Hσ−1

for some continuous function K(r), r > 0. We define the formal generator L of the process
(3.1) to be the linear operator acting on G such that for each u ∈ Hσ+1,

(3.7) LG(u) := −DuG(u)
(
B(u,u) + Au

) + 1
2

∑

m∈K
|qm|2D2

uG(u)[em, em].

REMARK 3.5. One cannot identify L as the infinitesimal generator of the Markov semi-
group associated to the (3.1), but they coincide on a core of smooth cylinder functions (see
[43] Lemma 5.11). Note that one can also apply L to functions that do not necessarily belong
to the domain of the generator (see [43] Remark 5.7 for a discussion of this).

The next lemma provides the energy estimate that eventually implies the drift condition on
Vβ,η.

LEMMA 3.6. For all V = Vβ,η with β ≥ 2 and η > 0, there exists a C = C(β,η) > 0
such that the following estimates hold for all u ∈ Hσ+1:

L logV (u) ≤ −νη∥&u∥2
L2 − νβ

∥∇u∥2
H

1 + ∥u∥2
H

+ C,(3.8)

PROOF. First, consider (3.8). For simplicity, consider the case d = 2; the case d = 3
follows similarly with only trivial modification. By direct calculation, we find

Du logV (u)v = 2η⟨u, v⟩W + 2β⟨u, v⟩H

1 + ∥u∥2
H

,

and

D2
u logV (u)[v, v] = 2η∥v∥2

W + 2β∥v∥2
H

1 + ∥u∥2
H

− 4β|⟨u, v⟩H|2
(1 + ∥u∥2

H)2
,
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where the ⟨·, ·⟩H inner product is to be interpreted as the natural pairing between Hσ+1 and
Hσ−1. Consequently, we have

L logV ≤ −2η
〈
u,B(u,u) + Au

〉
W︸ ︷︷ ︸

Tω

+−2β⟨u,B(u,u) + Au⟩H

1 + ∥u∥2
H︸ ︷︷ ︸

Tσ

+
∑

k∈Zd
0

|qk|2
(
η∥ek∥2

W + β∥ek∥2
H

1 + ∥u∥2
H

)

︸ ︷︷ ︸
TQ

.

By the divergence-free structure and standard Hσ estimates, ∃Cσ > 0 such that (see, e.g.,
[55]) the following holds for some r ∈ (d

2 + 1,3),

Tω = −2νη∥&u∥2
L2,

Tσ ≤ −2νβ
∥∇u∥2

H

1 + ∥u∥2
H

+ Cσ∥u∥Hr .

The term involving ∥u∥Hr is then estimated by applying Lemma 3.2. Similarly, we have by
∥ek∥W ≤ |k|, ∥ek∥H = |k|σ and |qk|! |k|−α and α − σ > d/2 that

|TQ| ≤
∑

k∈Zd
0

|qk|2
(
η∥ek∥2

W + β∥ek∥2
H

) !β,η

∑

k∈Zd
0

|k|−2(α−σ ) !β,η 1.

#

Lemma 3.6 allows us to prove the following bound on (ut ) a solution to either of Systems 1
or 2. The following lemma is fundamental to our analysis and is used repeatedly in what
follows. It controls not only an improvement in the moments of V (ut ) but also controls the
inclusion of exponential factors of time-integrations of ∥us∥Hr for r ∈ (0,3), which arise very
naturally in our analysis.

LEMMA 3.7. Let (ut ) solve either Systems 1 or 2. There exists a γ∗ > 0, such that for
all 0 ≤ γ < γ∗, T ≥ 0, r ∈ (0,3), κ ≥ 0 and V (u) = Vβ,η where β ≥ 0 and 0 < eγT η < η∗,
there exists a constant C = C(γ , T , r,κ,β,η) > 0 such that the following estimate holds:

(3.9) Eu exp
(
κ

∫ T

0
∥us∥Hr ds

)
sup

0≤t≤T
V eγ t

(ut ) ≤ CV (u).

REMARK 3.8. In fact, it suffices to take γ∗ = ν
8 .

PROOF. By Itô’s lemma applied to the functional logV (u) (see [50] Theorem 7.7.5), we
know that

Mt := eγ t logV (ut ) − logV (u) −
∫ t

0
eγ s(γ logV (us) + L logV (us)

)
ds

is a mean-zero, time-continuous, local martingale with quadratic variation satisfying

⟨M⟩t =
∑

m∈K

∫ t

0
e2γ s |qk|2

∣∣Du logV (us)em

∣∣2 ds ≤ 8
∫ t

0
e2γ s(β2 + η2Q∥&us∥2

L2

)
ds,

where Q is defined in Lemma 2.9. Recall the exponential martingale estimate

(3.10) Eu exp
(
sup
t≥0

(
Mt − ⟨M⟩t

)) ≤ 2.
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In light of this, note that

Mt − ⟨M⟩t ≥ eγ t logV (ut ) − logV (u)

−
∫ t

0
eγ s(γ logV (us) + L logV (us) + 8eγ s(β2 + η2Q∥&us∥2

L2

))
ds.

Applying Lemma 3.3 to γ logV and Lemma 3.6 to L logV , collecting like terms, and bound-
ing ∥u∥W by ∥&u∥L2 we find that for each ϵ > 0,

(3.11)

γ logV (us) + L logV (us) + 8eγ s(β2 + η2Q∥&us∥2
L2

)

≤ −η
(
ν − γ − 8eγ sηQ

)∥&us∥2
L2 − (νβ − ϵ)

∥∇us∥2
Hσ

1 + ∥us∥2
Hσ

+ Ceγ s .

Using that eγT η ≤ η∗, we can choose γ and ϵ small enough so that

γ + 8η∗Q ≤ 1
2
ν and ϵ <

1
2
νβ.

Therefore, we can apply the interpolation Lemma 3.2 to deduce that for each κ > 0 the right-
hand side of inequality (3.11) is bounded by −κ∥us∥Hr + Ceγ s and, therefore,

Mt − ⟨M⟩t ≥ eγ t logV (ut ) − logV (u) + κ

∫ T

0
eγ s∥us∥Hr ds − C

Applying (3.10) and restricting the supremum to 0 ≤ t ≤ T gives the estimate. #

REMARK 3.9. Note that Lemma 3.7 is strictly stronger than a drift condition. The im-
provement in the power of V is sometimes called a super-Lyapunov property and it provides
an important strengthening of the notion of a drift condition. To see that (3.9) implies a
drift condition, we write P1ϕ(u) = Euϕ(u1) as the Markov semigroup for Navier–Stokes, set
κ = 0 in (3.9), and then Jensen’s inequality implies that for some CL > 0, there holds

P1V ≤ (
eCLV

)e−γ

,

which immediately implies that for all δ > 0, there exists Cδ > 0 such that

P1V ≤ δV + Cδ.

Furthermore, the bound (3.9) can be iterated with repeated applications of Jensen’s inequality
(cf. [Proposition 5.11, [44]]) to produce

PnV ≤ e
CL

e−γ

1−e−γn V e−γn
.(3.12)

The inequality (3.12) gives a strong quantification of the tendency to return back to uniform
sublevel sets of V irrespective of the initial distribution as n → ∞ (i.e., the initial data is
forgotten exponentially fast).

The following is a useful consequence of Lemma 3.7.

LEMMA 3.10. For all p ∈ [1,∞), η ∈ (0,η∗), there exists a (deterministic) C0 > 0 and
a random constant D0 : H × , → R≥1, satisfying E(D0(·, u))p ! exp(η∥u∥2

W), such that

exp
(∫ t

0
∥∇uτ∥L∞ dτ

)
≤ D0(ω, u)eC0t .
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PROOF. We provide the proof when p = 1; other values of p require straightforward
adjustments.

Set V = V0,η, where η ∈ (0,η∗) is arbitrary. To start, note that by Lemma 3.7 and Cheby-
shev’s inequality, ∃c = c(η) > 0 such that

P
(

exp
(

2
∫ t

0
∥∇us∥L∞ ds

)
> V (u)e4ct

)
≤ E exp(2

∫ t
0 ∥∇us∥L∞ ds)

V (u)e4ct
!η e−3ct .

By Borel–Cantelli, there exists N(ω, u) ≥ 1 with P(N(·, u) ≥ n)!η e−3cn such that

exp
(∫ n

0
∥∇us∥L∞ ds

)
≤ V (u)e4cn for n ≥ N(ω, u).

To bound when n < N(ω, u), we find

exp
(∫ n

0
∥∇us∥L∞ ds

)
≤ D0(ω, u) := exp

(∫ N(ω,u)

0
∥∇us∥L∞ ds

)

and note that by Cauchy–Schwarz,

ED0(·, u) ≤
∑

n

(
P(N = n)

)1/2
[
E exp

(
2

∫ n

0
∥∇us∥L∞ ds

)]1/2

≤
∑

n

(
e−3cn)1/2(

V (u)ecn)1/2 ≤ V (u)
∑

n

e−cn ! V (u). #

3.3. Estimates on the Jacobian of the projective process. In this section, we provide the
necessary estimates on the Jacobian of the projective process. Recall the projective process
(ẑt ) = (ut , xt , vt ) solves the abstract SDE in H × PTd ,

∂t ẑt = F(ẑt ) + QẆt ,

where we view QẆ as extended to H × Tvt PTd and for each ẑ = (u, x, v) ∈ H × PTd ,

F(ẑ) =
⎛

⎝
−B(u,u) − Au

u(x)
(I − v ⊗ v)

(
Du(x)v

)

⎞

⎠ .

The Jacobian process Js,t denotes the Fréchet derivative of the solution ẑt with respect to the
value at time s < t . Hence, Js,t solves the operator-valued equation

(3.13) ∂t Js,t = DF(ẑt )Js,t , Js,s = Id .

We will prove that this is a bounded operator Js,t : W × TvsPTd → W × Tvt PTd (this is
not obvious due to the evolution on PTd requiring pointwise evaluations u and Du). Addi-
tionally, we let Ks,t : W × Tvt PTd → W × TvsPTd denote the adjoint of Js,t , in the sense
that

⟨f,Js,tξ⟩W = ⟨Ks,tf, ξ⟩W.

A straightforward calculation (see [44]) shows that Ks,t solves the following backward-in-
time equation:

∂sKs,t = −DF(ẑs)
∗Ks,t , Kt,t = I,

where DF(ẑs)
∗ : W × TvsPTd → W × TvsPTd is the adjoint to DF(ẑs).

In what follows, we will find it convenient to let z̃ = (ũ, x̃, ṽ) ∈ W × TvsPTd an initial
perturbation and denote

z̃t := (ũt , x̃t , ṽt ) = Js,t w̃ = (
Ju

s,t w̃, J x
s,t w̃, J v

s,t w̃
) ∈ W × Tvt PTd,

which readily solves the linear evolution equation

∂t z̃t = DF(ẑt )z̃t , z̃s = z̃.
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LEMMA 3.11. ∀σ > d
2 + 1, ∀r ∈ (d

2 + 1,3), ∃C,q ′ > 0 such that the following holds
pathwise:

∥ũt∥W ≤ ∥ũ∥W exp
(
C

∫ t

s
∥uτ∥Hr dτ

)
(3.14a)

∥Js,t∥Hσ →Hσ ! exp
(
C

∫ t

s
∥uτ∥Hr dτ

)(
1 + ⟨t − s⟩3 sup

s<τ<t
∥uτ∥q ′

Hσ

)
.(3.14b)

PROOF. We consider the case d = 2; d = 3 follows analogously. We start by estimating
ũt , which solves

∂t ũt + B(ut , ũt ) + B(ũt , ut ) = Aũt .

Integration by parts, vector calculus and the divergence-free condition gives for any p ∈
(2,∞),

d
dt

∥ũt∥2
W + ν∥∇ũt∥2

W = 〈
curl ũt ,∇ · (ut curl ũt + ũt curlut )

〉
L2

! ∥∇ curlut∥Lp∥ũt∥W∥ũt∥
L

2p
p−2

.

Then Sobolev embedding implies that for r = 2 + p−2
2 ,

d
dt

∥ũt∥2
W !p ∥ut∥Hr ∥ũt∥2

W,

which implies

∥ũt∥W ≤ ∥ũ∥W exp
(
C

∫ t

s
∥uτ∥Hr dτ

)
.

This completes the proof of (3.14a) by choosing p sufficiently close to 2 (in the case d = 2).
Note the case d = 3 is easier for (3.14a), as one can simply choose p = ∞ at the analogous
step.

Next, we turn to the Hσ estimate on ũt for the proof of (3.14b). By the divergence-free
constraint,

d
dt

∥ũt∥2
Hσ + ν∥∇ũt∥2

Hσ = 〈
ũt ,∇ · (ut ⊗ ũt )

〉
Hσ︸ ︷︷ ︸

T 1

+ 〈
ũt ,∇ · (ũt ⊗ ut)

〉
Hσ︸ ︷︷ ︸

T 2

.(3.15)

Using the divergence-free property to introduce a commutator (recall the Fourier multiplier
from Section 2.5), and the triangle inequality ⟨k⟩σ !σ ⟨k − ℓ⟩σ + ⟨ℓ⟩σ , there holds

T 1 = 〈⟨∇⟩σ ũt , ⟨∇⟩σ∇ · (ut ⊗ ũt ) − ∇ · (
ut ⊗ ⟨∇⟩σ ũt

)〉
L2

≤
( ∑

|k−ℓ|>|ℓ|
+

∑

|k−ℓ|≤|ℓ|

)
⟨k⟩σ ∣∣ ˆ̃

tu(k)
∣∣∣∣⟨k⟩σ − ⟨ℓ⟩σ ∣∣|k|∣∣ût (k − ℓ) ˆ̃

tu(ℓ)
∣∣(3.16)

! ∥∇ũt∥Hσ ∥ut∥Hσ ∥ũt∥Hr−1 + ∥ut∥Hr ∥ũt∥2
Hσ ,

where in the penultimate line we used that in the second summation there holds |⟨k⟩σ −
⟨ℓ⟩σ |! ⟨ℓ⟩σ−1|k − ℓ| and in the last line we used Cauchy–Schwarz and Young’s convolution
inequality. By a similar argument (but no commutator necessary), there holds

T 2 ! ∥∇ũt∥Hσ ∥ut∥Hσ ∥ũt∥Hr−1 + ∥ut∥Hr ∥ũt∥2
Hσ .(3.17)

Note by interpolation, for some θ = θ(σ ) ∈ (0,1), there holds

∥ũt∥Hr−1 ≤ ∥ũt∥1−θ
W ∥∇ũt∥θ

Hσ ,
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and, therefore, putting (3.16) and (3.17) together with (3.15) gives (for suitable C > 0),

d
dt

∥ũt∥2
Hσ ≤ −ν

2
∥∇ũt∥2

Hσ + C∥ut∥Hr ∥ũt∥2
Hσ + C∥ũt∥2

W∥ut∥
2

1−θ

Hσ .

Integrating and (3.14a) completes the estimate on the velocity field necessary for (3.14b).
Next, consider the remaining contributions of the projective process necessary for (3.14b).

Using that

∂t x̃t = ∇ut(xt )x̃t + ũt (xt )

and applying Grönwall’s inequality followed by the estimate on the Hσ norm of the velocity
field gives

|x̃t | ≤ exp
(
C

∫ t

s
∥∇uτ∥L∞ dτ

)
|x̃| +

∫ t

s
exp

(
C

∫ t

τ
∥∇uτ ′∥L∞ dτ ′

)
∥uτ∥L∞ dτ

! exp
(
C

∫ t

s
∥uτ∥Hr dτ

)(
1 + ⟨t − s⟩ sup

s<τ<t
∥uτ∥q ′

Hσ

)(|x̃| + ∥ũ∥Hσ
)
,

which suffices for estimates x̃t . Similarly, for the projective process we have

∂t ṽt = − ṽt ⊗ vt∇ut(xt )vt − vt ⊗ ṽt∇ut(xt )vt + (1 − vt ⊗ vt )∇ut(xt )ṽt

+ (1 − vt ⊗ vt )x̃t · ∇2ut (xt )vt + (1 − vt ⊗ vt )∇ũt (xt )vt .

Hence,

d
dt

|ṽt |! ∥∇u∥L∞ |ṽt | + |x̃t |
∥∥∇2u

∥∥
L∞ + ∥∇ũ∥L∞,

and the required estimate on ṽt follows by Grönwall’s inequality as in the case of x̃t . #

The pathwise estimates in Lemma 3.11 together with Lemma 3.7 implies the following.

LEMMA 3.12 (Jacobian bounds in expectation). For all σ and all η > 0, there is a con-
stant CJ such that the following holds for all 1 ≤ p < ∞:

sup
s≤t≤1

E∥Js,t∥p
Hσ →Hσ ≤ V

p
q ′,η(us) exp(pCJ ).

Next, we deduce a parabolic smoothing estimate on the Jacobian. One small subtle point:
pointwise evaluations of ũ and Dũ are appear in the ODEs for x̃t and ṽt (resp.), and hence a
little care must be taken to control low regularity data for ũt using the local-in-time parabolic
smoothing.

LEMMA 3.13. Let γ ∈ [0,α − d
2 ) and r ∈ (d

2 + 1,3). Then ∃κ′ the following holds
pathwise for 0 ≤ s ≤ t ≤ 1:

(t − s)
γ

2(d−1) ∥Js,t∥W→Hγ ! exp
(
C

∫ t

s
∥uτ∥Hr dτ

)(
1 + sup

τ∈(s,t)
∥uτ∥κ

′
Hσ

)
.

PROOF. We consider only the case d = 2; the case d = 3 is a straightforward variation.
First, the desired estimate on ũt follows from standard semilinear PDE methods (see, for
instance, [44]) and is omitted for the sake of brevity.

Turn next to x̃t and ṽt . Estimating the Lagrangian process as in Lemma 3.11 gives

|x̃t |! exp
(∫ t

0
∥∇uτ∥L∞ dτ

)
|x̃| +

∫ t

0
exp

(∫ t

τ
∥∇us∥L∞ ds

)
∥ũτ∥L∞ dτ.
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By Sobolev embedding and the smoothing estimates deduced on ũt , ∀δ > 0,

∥ũτ∥L∞ ! ∥ũτ∥H1+δ ! 1
τ δ/2 exp

(
C

∫ τ

0
∥us∥Hr ds

)(
1 + sup

0<s<τ
∥us∥q ′

Hσ

)
∥ũ∥W,

which yields the desired estimate.
The situation for ṽt is similar but higher regularity is required. Observe that ∀s, δ > 0,

∥∇ũτ∥L∞ !δ ∥ũτ∥H2+δ ! τ− 1+δ
2 exp

(∫ τ

0
∥us∥Hr ds

)(
1 + sup

0<s<τ
∥us∥q ′

Hσ

)
∥ũ∥W.

Then the desired estimate then follows similar to the estimate on |x̃t |. #

REMARK 3.14. The above smoothing estimate implies the following: For some constant
C5 ≈ logN , there holds the following ∀p with pη < η∗ and a β sufficiently large:

E
∥∥J0,1(Id−5N)

∥∥p
W→Hσ ≤ V

p
β,η(u) exp(−pC5).

REMARK 3.15. Lemma 3.13 is already nontrivial for γ = 0, that is, Js,t is a bounded
linear operator.

The analogue of Lemma 3.11 holds also for Ks,t . The proof is actually easier and is omitted
for brevity.

LEMMA 3.16. ∀σ > d
2 + 1, ∀r ∈ (d

2 + 1,3), ∃C,q ′ > 0 such that the following hold
pathwise:

∥Ks,t∥W→W ! exp
(
C

∫ t

s
∥uτ∥Hr dτ

)
,

∥Ks,t∥H→H ! exp
(
C

∫ t

s
∥uτ∥Hr dτ

)(
1 + ⟨t − s⟩3 sup

s<τ<t
∥uτ∥q ′

Hσ

)
.

4. Lasota–Yorke bound and spectral gap for the projective process.

4.1. Geometric ergodicity in CV . In this section, we apply Theorem 2.4 to the projective
process (ut , xt , vt ). In [15], we already showed that there exists a unique stationary measure
ν on H × PTd . Strong Feller in a scale of Sobolev spaces is proved in [15].

PROPOSITION 4.1 (From [15]). For any σ ′ ∈ (α−2(d −1),α− d
2 ) the projective Markov

process (ut , xt , vt ) on Hσ ′ × PTd is strong Feller.

By an easy variation of the irreducibility arguments in Section 6.2 together with those in
[15], one deduces the following irreducibility property as well. The straightforward details
are omitted for brevity.

PROPOSITION 4.2 (Essentially from [15]). For any σ ′ ∈ (d
2 + 2,α − d

2 ), the projective
process (ut , xt , yt ), regarded as a process on Hσ ′ × PTd , is topologically irreducible.

The previous two properties imply equivalence of transition kernels by standard arguments
(Lemma 3.2 in [39]; see also Theorem 4.1 in [36] for a special case).

LEMMA 4.3. Propositions 4.1 and 4.2 imply that the family of transition kernels
{P̂t ((u, x, y), ·) : t > 0, (u, x, y) ∈ H × PTd} are equivalent.
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Equivalence of transition measures provides the main tool for proving Condition 3.

LEMMA 4.4. Let V be any of the Lyapunov functions for the projective process defined
in Lemma 2.9. Let K ⊂ H × PTd be any compact set with ν(K) > 0. Fix arbitrary t > 0 and
r > 0. Then we have

inf
(u,x,v):V (u)≤r

P̂t
(
(u, x, v),K

)
> 0.

PROOF. First, all transition kernels P̂t ((u, x, v), ·) are equivalent, and so we conclude
that they are all equivalent with the unique stationary measure ν, which we regard as a mea-
sure on each Hσ ′ × PTd . In particular, with K as in the hypothesis of Lemma 4.4, we have
P̂t ((u, x, v),K) > 0 for all (u, x, v) ∈ Hσ ′ × PTd , σ ′ ∈ (α − 2(d − 1),α − d

2 ).
For the sake of contradiction, assume Condition 3 fails. Then there is a sequence {zn =

(un, xn, vn) : V (un) ≤ r} for which P̂t (z
n,K) → 0 as n → ∞. Fix σ ′ ∈ (α − 2(d − 1),σ ).

It follows from compact embedding and coercivity that {zn} admits a subsequence {zn′} con-
verging in Hσ ′ × PTd . For this sequence, we have

lim
n′→∞

P̂t
(
zn′

,K
) = 0

by the strong Feller property on Hσ ′ × PTd (Proposition 4.1). This contradicts Lemma 4.3
at σ ′. #

Putting everything together with Theorem 2.4 implies the geometric ergodicity of the pro-
jective process. Boundedness in CV follows from Lemma 3.7. Recall ν is the stationary mea-
sure for the (ut , xt , vt ) process.

PROPOSITION 4.5. For any V satisfying the conditions of Lemma 2.9, there exists a
γ > 0 (depending on V ) such that for any ψ bounded measurable on H × PTd , there holds

∣∣∣∣P̂tψ(z) −
∫

H×PTd
ψ dν

∣∣∣∣ ! V (u)e−γ t .

4.2. Spectral gap in C1
V from a Lasota–Yorke estimate. Recall in the outline that our

approach to obtaining a spectral gap on P̂t in C̊1
V is the following Lasota–Yorke gradient esti-

mate. The version stated below was introduced by Hairer and Mattingly in [42] as a sufficient
condition for the asymptotic strong Feller property as well as in [43] to prove spectral gaps
in C1

V .

PROPOSITION 4.6 (Lasota–Yorke estimate). ∀β ′ ≥ 2 sufficiently large and ∀η′ ∈ (0,η∗),
∃C1,κ > 0 such that the following holds ∀t > 0, and ẑ = (u, x, v) ∈ H × PTd :

∥∥DP̂tψ(ẑ)
∥∥

H∗ ≤ C1Vβ ′,η′(u)
(√

P̂t |ψ |2(ẑ) + e−κt
√

P̂t∥Dψ∥2
H∗(ẑ)

)
.

Proposition 4.6 when combined with Proposition 4.5 is sufficient to deduce a spectral gap
for P̂

p
T 0 on C̊1

V for T0 sufficiently large.

PROPOSITION 4.7. For all V = Vβ,η with β sufficiently large and η ∈ (0,η∗), we have
that P̂

p
T0

has a spectral gap on C1
V for all T0 sufficiently large.
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PROOF. For some δ > 0 to be chosen below, define the equivalent norm on C1
V ,

∥ψ∥C1
V,δ

:= sup
w∈H×PTd

( |ψ(ẑ)|
V (u)

+ δ∥Dψ(ẑ)∥H∗

V (u)

)
.

Choose β ′ < β and η′ < η. Then the Lasota–Yorke bound (Proposition 4.6) together with the
super-Lyapunov property (3.12) implies

∥∥DP̂nψ(ẑ)
∥∥

H∗ ≤ C1Vβ ′,η′

√
P̂nV 2(u)

(
1 + e−κnδ−1)∥ψ∥C1

V,δ

≤ C

δ
Vβ ′,η′(u)V e−γn

(u)
(
δ + e−κn)∥ψ∥C1

V,δ
.

Since β > β ′ and η > η′, there exists a n0 sufficiently large so that

β ′ + e−γnβ < β and η′ + e−γnη < η,

which implies Vβ ′,η′(u)V e−γn0 (u) ≤ V (u). Choosing δ > 0 such that Cδ < 1/8 and n1 > n0
such that Ce−κn1 < 1/8, we have

∥∥DP̂n1ψ(ẑ)
∥∥

H∗ ≤ 1
4

V (u)

δ
∥ψ∥C1

V,δ
.

Combining this with the CV spectral gap (Proposition 4.5) implies that P̂
p
T0

is a contraction on
C1

V with respect to the ∥ · ∥C1
V,δ

norm for all T0 > 0 sufficiently large. This implies a spectral

gap of P̂
p
T0

in C1
V . #

4.3. Lasota–Yorke estimate: Proof of Proposition 4.6. Let us now turn to the proof of
Proposition 4.6. The proof follows closely the discussion in [44] with some adjustments, and
so we only provide a brief sketch. Aside from the fact that the necessary estimates on the
Js,t and Ks,t processes are more complex than in [44], the Malliavin matrix nondegeneracy
requires some adjustments to deal with the degrees of freedom associated with PTd . Addi-
tionally, we need to use Lemma 3.13 and choose β ′ sufficiently large to control H regularity.
Other than this, only minor modifications are needed.

4.3.1. Malliavin calculus and preliminaries. First, let us recall some basics of Malliavin
calculus required to set up the framework of [44]. We will mostly be dealing with random
variables X ∈ W ×PTd . The Malliavin derivative DhX of X in a Cameron–Martin direction
h = (ht ) ∈ L2(R+,L2) is defined by

DhX := d
dϵ

X(W + ϵH)|ϵ=0,H =
∫ ·

0
hs ds,

when the above derivative exists (in the Fréchet sense). If the derivative exists for each
Cameron–Martin direction h ∈ L2(R+,L2), we say that X is Malliavin differentiable.

In practice, DhX admits a representation of the form

DhX =
∫ ∞

0
DsXhs ds,

where for a.e. s ∈ R+, DsX is a random, bounded linear operator from L2 to W × TvPTd

(see [59] for more details). It is standard that if Xt is adapted to the filtration Ft generated
by Wt , then DsXt = 0 if s ≥ t . The Malliavian derivative Dhwt is given by (recall Js,t is the
Jacobian; see (3.13)),

Dhwt =
∫ t

0
Js,tQhs ds := Ath.
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The adjoint is given by A∗
t ξ(s) = Q∗Ks,tξ for s ≤ t and 0 for s > t (recall Ks,t = J ∗

s,t ). We
similarly denote As,th = ∫ t

s Jτ,tQhτ dτ . The Malliavin matrix Ms,t is a symmetric, positive
semidefinite as a linear operator W × Tvt PTd → W × Tvt PTd defined by

Ms,t := As,tA∗
s,t =

∫ t

s
Jr,tQQ∗Kr,t dr.

For real-valued random variables, the Malliavin derivative can be realized as a Fréchet
differential operator D : L2(,) → L2(,;L2(R+;L2)). The adjoint operator D∗ : L2(,;
L2(R+;L2)) → L2(,) is referred to as the Skorohod integral, whose action on h ∈
L2(,;L2(R+;L2)) we denote by

∫ ∞

0
⟨ht , δWt ⟩L2 := D∗h.

The Skorohod integral is an extension of the usual Itô integral; see [44, 59]. One moreover
has the following:

E
(∫ ∞

0
⟨ht , δWt ⟩L2

)2
≤ E

∫ ∞

0
∥ht∥2

L2 + E
∫ ∞

0

∫ ∞

0
∥Dsht∥2

L2→L2 ds dt.

A fundamental result in the theory of Malliavin calculus is the Malliavin integration by
parts formula, stated below for the process (ẑt ) which takes values in H × PTd (see, e.g.,
[24, 59]).

PROPOSITION 4.8. Let ψ be a bounded differentiable function on H × PTd with
bounded derivatives and ht be a process satisfying

E
∫ T

0
∥ht∥2

L2 dt + E
∫ T

0

∫ T

0
∥Dsht∥2

L2→L2 ds dt < ∞,

then the following relation holds:

EDhψ(ẑT ) = E
(
ψ(ẑT )

∫ T

0
⟨hs, δWs⟩L2

)
.

4.3.2. Defining the control. By Proposition 4.8, for any choice of g satisfying the hy-
potheses, there holds

DP̂tψ(ẑ)ξ = EDψ(ẑt )Jtξ = EDψ(ẑt )ρt + Eψ(ẑt )

∫ t

0
⟨hs, δWs⟩L2,(4.1)

where ρt ∈ H × Tvt PTd is the residual of the control,

ρt = Jtξ − Dhẑt .

From (4.1), Cauchy–Schwarz implies

∣∣DP̂tψ(ẑ)ξ
∣∣ ≤

√

E
∣∣∣∣

∫ t

0
⟨hs, δWs⟩L2

∣∣∣∣
2√

P̂t |ψ |2(z) +
√

E∥ρt∥2
H

√
P̂t∥Dψ∥2

H∗(z).(4.2)

The goal in [42, 44] is to choose h such that E∥ρt∥2
H decays exponentially fast while, at the

same time, having a suitably controlled Skorohod integral. The same abstract formula for the
control used in [44] will also work here (though obviously the control itself is different). For
a random parameter βk > 0 chosen below, we iteratively define the control as follows:

(4.3) hs = hξ
s =

{
Q∗Ks,2n+1(β2n + M2n,2n+1)

−1J2n,2n+1ρ2n s ∈ [2n,2n + 1),

0 s ∈ [2n + 1,2n + 2).
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With the control defined as above, one obtains the following recurrence relation for the ρ2n

at even times:

ρ2n+2 = J2n+1,2n+2β2n(β2n − M2n,2n+1)
−1J2n,2n+1ρ2n

By (4.2), Proposition 4.6 follows from the following two lemmas. First, a decay estimate is
shown in the following.

LEMMA 4.9. For all a ≥ 2 sufficiently large, ∀η ∈ (0,η∗), and ∀p ≥ 2 with pη < η∗,
∃κ > 0 such that the following holds,

E∥ρ2n∥p
H !p,η,a V p

a,η(u) exp(−pκn)∥ξ∥p
H.

Second, a uniform estimate on the Skorohod integral of the control is shown in the follow-
ing.

LEMMA 4.10. Let h be defined as in (4.3). For all a ≥ 1 sufficiently large, ∀η ∈ (0,η∗),
there holds

E
∣∣∣∣

∫ 2n

0
⟨hs, δWs⟩L2

∣∣∣∣
2
! Va,η(u)∥ξ∥2

H×TvPTd .

It remains to sketch the proofs of Lemmas 4.9 and 4.10. Let 5 : L2 → L2 be the projec-
tion to frequencies less than some high frequency N0 chosen later and fixed through out the
section. In what follows, it is convenient to define for k ∈ K:

gk := (qkek,0,0).

In this notation, the Malliavin matrix takes the form for each ξ ∈ W × Tvt PTd ,

⟨Ms,tξ, ξ⟩W =
∑

k∈K

∫ t

s
⟨gk,Kr,tξ⟩2

W dr.(4.4)

The precise statement of the Malliavin matrix nondegeneracy is as follows; we carry out the
proof in Section 4.3.4.

PROPOSITION 4.11 (Malliavin matrix nondegeneracy). For all a ≥ 1 sufficiently large,
and all η ∈ (0,η∗), p ≥ 2 with ηp ≤ η∗, ∀δ > 0 there exists a C∗ = C∗(p, δ, a,η) such that

P
(

inf
ξ∈Sδ

⟨ξ,M0,1ξ⟩W < ϵ
)

≤ C∗V p
a,η(u)ϵp,

where

Sδ = {
ξ ∈ W × Tv1PTd : ∥ξ∥W = 1,∥5ξ∥W > δ

}
.

Once Proposition 4.11 is obtained, we will set βk as in [44] for suitably chosen parameters

βk = δ3

Va,η(uk)(C∗)1/p
.

From [Corollary 5.15, [44]], Proposition 4.11 implies

E
∥∥5β2n(β2n + M2n,2n+1)

−1∥∥p
W→W ≤ 2δp.

Once one has suitable estimates on the Js,t and Ks,t (and by extension, A, A∗, M) as well
as the Malliavin derivatives of Js,t and Ks,t (in order to estimate the Skorohod integral in
Lemma 4.10 via (4.3.1)) then Lemmas 4.9 and 4.10 follow essentially as in [44] (taking full
advantage of Lemma 3.13 and Remark 3.14 to switch to and from the W and H spaces).
Most of the required estimates are immediate from Section 3; we provide a brief sketch of
the relevant Malliavin derivative estimates next.



272 J. BEDROSSIAN, A. BLUMENTHAL AND S. PUNSHON-SMITH

4.3.3. Malliavin derivatives of the Jacobian. Estimating the Malliavin derivatives of Js,t

and similar quantities requires estimates on the second variation, which we denote J
(2)
s,t . This

operator is given by (see [44] or [15]):

∂t J
(2)
s,t (ξ, ζ ) = D2F(ẑt )(Js,tξ, Js,tζ ) + DF(ẑt )J

(2)
s,t (ξ, ζ )s < t.

Observe that D2F is of the form:

D2F(ẑt )(ξ, ζ ) =

⎛

⎜⎝
B(ξ, ζ ) + B(ζ, ξ)

Dξu(xt )ζ
x + Dζ u(xt )ξ

x + ξx · D2u(xt )ζ
x

Vt (ξ,η)

⎞

⎟⎠ ,

where V is of the following general form: there exists a set of bounded operators Tj all
multilinear in all but the last components,

Vt = T1
(
ξv, ζ v,∇ut(xt ), vt

) + T2
(
ξv, ζ x,∇2ut (xt ), vt

)

+ T3
(
ξv,∇ζ u(xt ), vt

)
(4.5)

+ T4
(
ξx, ζ x,∇3ut (xt ), vt

) + T5
(
ξx,∇2ζ u(xt ), vt

)
.

The high numbers of derivatives appearing in V makes obtaining estimates on J
(2)
s,t nonob-

vious, indeed, it is bounded on high enough Sobolev spaces, but it is not clear that it de-
fines a bounded operator on (W × TvsPTd)⊗2 → W × Tvt PTd . Nevertheless, the proof of
Lemma 4.10 uses bounds on Malliavin derivatives of Js,t in such low regularities (see [44]).
This requires taking advantage of the specific form of the Malliavin derivatives of Js,t .

LEMMA 4.12 (Malliavin derivative bounds). ∀a ≥ 1 sufficiently large and all p ≥ 1,
η ∈ (0,η∗) such that pη ∈ (0,η∗), there exists a constant CM such that the following holds
(where CL and γ are as in (3.12) above),

E sup
s,r∈[n,n+1]

∥DsJr,n+1∥p
W→W ! e

pCL
1−e−γ +pCM V pe−γn

a,η (u),

E sup
s∈[n,n+1]

∥DsAn,n+1∥p
W→W ! e

pCL
1−e−γ +pCM V pe−γn

a,η (u).

(4.6)

REMARK 4.13. Estimates on DsA∗
n,n+1 follow by duality.

PROOF. Consider the Malliavin derivative with respect to the k-th Brownian motion (de-
noted by Dk

s ), which is given by (see, e.g., [Lemma 5.13, [44]]),

Dk
s Jr,n+1ξ =

{
J

(2)
s,n+1(Jr,sξ, gk) r ≤ s,

J
(2)
r,n+1(Js,rgk, ξ) s ≤ r.

Next, we observe that

J
(2)
s,t (ξ, ζ ) =

∫ t

s
Jr ′,t

(
D2F(ẑr ′)(Js,r ′ξ, Js,r ′ζ )

)
dr ′.

Therefore, for r ≤ s

J
(2)
s,n+1(Jr,sξ, gk) =

∫ n+1

s
Jr ′,n+1

(
D2F(ẑr ′)(Jr,r ′ξ, Js,r ′gk)

)
dr ′.

Denote for suitably large parameters C, q ,

6
(
r ′) = exp

(
C

∫ r ′

s
∥uτ∥Hr0 dτ

)
sup

s<τ<r ′

(
1 + ∥uτ∥q

H
)
.
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Due to the particular form of J (2) and in particular of V in (4.5), that gk is smooth and
supported only in the velocity variables implies a significant simplification. For example,
|(Js,r ′gk)

x,v| ! |k|−α+ d+3
2 |s − r ′|6(r ′). Hence, where this appears, we may use the gain in

time to balance loss of regularity through the smoothing estimate in Lemma 3.13. For r ≤
s ≤ r ′, (using Remark 3.15 as well),

∥∥Jr ′,n+1
(
D2F(ẑr ′)(Jr,r ′ξ, Js,r ′gk)

)∥∥
W

! 6
(
r ′)

( 1

((n + 1) − r ′)
1

2(d−1)

+ (s − r ′)

(r − r ′)
1

2(d−1)

)
∥ξ∥W

! 6
(
r ′)

( 1

((n + 1) − r ′)
1

2(d−1)

+ 1
)
∥ξ∥W.

Applying Lemma 3.7 followed by Lemma 3.12 gives the desired result.
The estimate for s ≤ r follows similarly, completing the required estimate (4.6). The esti-

mate on DsAn,n+1 then follows as in [44]. #

4.3.4. Nondegeneracy of the Malliavin matrix. In this section, we sketch the proof of
Proposition 4.11. The approach is similar to that of Hairer and Mattingly [44]. However, the
proof in [44] does not exactly apply in our setting due to the fact that the nonlinearity in the
(x, v) dynamics is not polynomial. However, our situation is much nicer due to nondegenerate
noise, and Lemma 4.15 tells us that we only need one Lie bracket to span the phase space (as
opposed to infinitely many brackets in [44]). As we saw in our previous paper [15], this is
enough to avoid any quantitative noncancellation results like Norris’ lemma or estimates on
Wiener polynomials. Since our proof is relatively simple and different enough from [44] we
include it below.

First, we record for the readers’ convenience the following estimates proved in Section 3.1.

LEMMA 4.14. For every a ≥ 2, ηp ∈ (0,η∗), p ≥ 1, we have

E sup
0≤t≤1

∥ut∥p
H ! V p

a,η(u),

E sup
0<s<1

∥Ks,1∥p
W→W ! V p

a,η(u).

Naturally, one of the main ingredients is a uniform spanning condition on Lie brackets to
verify hypoellipticity. The following is a straightforward consequence of the spanning lemma
in our previous work [Lemma 5.3, [15]].

LEMMA 4.15. For each initial ẑ = (u, x, v) ∈ H×PTd , ξ ∈ W×TvPTd with ∥ξ∥W = 1
and s such that (2α + d)/4 < s < σ − 2(d − 1) we have

sup
k∈K

{∣∣⟨gk, ξ⟩W
∣∣,

∣∣〈DF(ẑ)gk, ξ
〉
W

∣∣2} "s

∥ξ∥2
H−s

(1 + ∥u∥H)2 .

PROOF. Denote ξ = (ξu, ξx,v). First, for s > (2α + d)/4 it is not hard to deduce

(4.7) sup
k∈K

∣∣⟨gk, ξ⟩W
∣∣ "s

∥∥ξu
∥∥2

H−s .

Therefore, (4.7) follows since 4s − 2α > d and ∥ξu∥W = 1. Next, we note that
〈
DF(ẑ)gk, ξ

〉
W = qk

〈
B(ek, u) + B(u, ek), ξu

〉
W + ⟨Aek, ξu⟩W + 〈

DFx,v(ẑ)gk, ξx,v
〉
TvPTd ,
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and that since s < σ − 2 and supk∈K qk∥ek∥H < ∞,
∥∥ξu

∥∥2
H + sup

k∈K

∣∣〈DFx,v(ẑ)gk, ξ
x,v 〉

W
∣∣2

! sup
k∈K

∣∣〈DF(ẑ)gk, ξ
〉
W

∣∣2 + (
1 + ∥u∥H

)2∥∥ξu
∥∥2

H

! (
1 + ∥u∥H

)2 sup
k∈K

{∣∣⟨gk, ξ⟩W
∣∣,

∣∣〈DF(ẑ)gk, ξ
〉
W

∣∣2}
,

where the last line followed from (4.7). The proof is complete upon appealing to [Lemma 5.3,
[15]] and deducing

sup
k∈K

∣∣〈DFx,v(ẑ)gk, ξ
x,v 〉

TvPTd

∣∣ "
∥∥ξx,v

∥∥
TvPTd . #

Before continuing with the nondegeneracy calculation, we introduce the following useful
shorthand notation from [Definition 6.9, [44]].

DEFINITION 4.16. Given a set H = {H ϵ}ϵ≤1, of measurable subsets H ϵ ⊂ ,, we will
say “H is a family of negligible events” if ∀p ≥ 1, ∃Cp such that P(H ϵ) ≤ Cpϵp . Given
such a family and a statement @ϵ , we say “@ϵ holds modulo H ” if ∀ϵ ≤ 1, the statement
@ϵ holds on (H ϵ)c. Finally, we say the family H is “universal” if it does not depend on the
problem at hand. We say a set H is “A-controlled” for a function A if Cp !p Ap(ẑ) (the
initial condition of the projective process).

Recall the Hölder seminorm of a function f : [0,1] → R for α ∈ (0,1] is defined by

[f ]α = sup
t≠s

|f (t) − f (s)|
|s − t |α .

Recall the following standard interpolation lemma (see, e.g., [44]).

LEMMA 4.17. Let f be a C1,α function on [0,1], α ∈ (0,1], then the following inequal-
ity holds:

∥∂t f ∥L∞ ≤ 4∥f ∥L∞ max
{
1,∥f ∥− 1

1+α

L∞ [∂t f ]
1

1+α
α

}
.

Recall the following formula for the Malliavin matrix:

⟨ξ,M0,1ξ⟩W =
∑

k∈K

∫ 1

0
⟨gk,Ks,1ξ⟩2

W ds.

In light of this, we have the following implication.

LEMMA 4.18. For all a ≥ 2 sufficiently large and ∀η ∈ (0,η∗) the following implication
holds:

⟨ξ,M0,1ξ⟩W ≤ ϵ ⇒ sup
k

sup
0≤t≤1

∣∣⟨gk,Kt,1ξ⟩W
∣∣ ≤ ϵ1/8,

modulo a Va,η-controlled negligible set.

PROOF. Fix an arbitrary η′ ∈ (0,η∗) and a′ ≥ 2. Define fk(t) = ∫ t
0 ⟨gk,Ks,1ξ⟩W ds and

note that fk(t) is C2 and satisfies

∂t fk = ⟨gk,Kt,1ξ⟩W and ∂2
t fk = 〈

DF(ẑt )gk,Kt,1ξ
〉
W.
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Additionally, when ⟨ξ,M1ξ⟩W ≤ ϵ, ∥ξ∥W = 1, we have supk ∥fk∥L∞ ≤ ϵ1/2 by (4.4) and
Lemma 4.17.

Furthermore, by Lemma 4.14 there holds

E sup
k

∥∥∂2
t fk

∥∥p
L∞ !

(
E sup

0≤t≤1

(
1 + ∥ut∥H2(d−1)

)2p
)1/2(

E sup
0≤t≤1

∥Kt,1∥2p
W→W

)1/2
! V

p
β,η′(u)

and, therefore, Chebyshev’s inequality implies that modulo a V4a′,η′ -controlled negligible set
one has the bound supk ∥∂2

t fk∥L∞ ≤ (1/16)ϵ−1/4. Applying the interpolation Lemma 4.17 to
fk with α = 1 modulo this family of negligible sets gives the implication. #

LEMMA 4.19. For all a ≥ 2 sufficiently large and ∀η ∈ (0,η∗) sufficiently small, the
following implication holds:

sup
k

sup
0≤t≤1

∣∣⟨gk,Kt,1ξ⟩W
∣∣ ≤ ϵ ⇒ sup

k
sup

0≤t≤1

∣∣〈DF(ẑt )gk,Kt,1ξ
〉
W

∣∣ ≤ ϵ1/8

modulo a Va,η-controlled negligible set.

PROOF. Fix η′ ∈ (0,η∗) and a′ ≥ 2 and let fk = ∫ t
0 ⟨gk,Ks,1ξ⟩W ds. Our goal will be

to apply the interpolation Lemma 4.17 to ∂t fk . However, since DF(ẑt )gk is only Hölder
continuous, ∂2

t fk is not C1 and we will need to obtain moment estimate on the α = 1/3
Hölder seminorm of ∂2

t fk . Indeed, applying the interpolation Lemma 4.17 to ∂t fk with α =
1/3 gives

(4.8) sup
k

∥∥∂2
t fk

∥∥
L∞ ≤ 4ϵ1/4 max

{
ϵ3/4, sup

k

[
∂2
t fk

]3/4
1/3

}
.

The required Hölder estimate on ∂2
t fk then follows from the high regularity of u ∈ H, by

standard time regularity estimates on Wiener processes and Lemma 4.14,

E sup
k

[
∂2
t fk

]p
1/3 ! V

2p
a′,η′(u).

Therefore, modulo a V12a′,12η′ -controlled negligible set one has the bound supk[∂2
t fk]1/3 <

2−8/3ϵ−1/6. Substituting this into (4.8) gives the desired result. #

PROOF OF PROPOSITION 4.11. To prove this, we note that Lemmas 4.18 and 4.19 imply
that for each δ ∈ (0,1) and ξ ∈ Sδ the following implication holds modulo a Vβ,η-controlled
family of negligible events:

⟨ξ,M0,1ξ⟩W < ϵ ⇒

⎧
⎪⎨

⎪⎩

sup
k

sup
0≤t≤1

∣∣⟨gk,Kt,1ξ⟩W
∣∣ ≤ ϵ1/8,

sup
k

sup
0≤t≤1

∣∣〈DF(ẑt )gk,Kt,1ξ
〉
W

∣∣ ≤ ϵ1/64.

By taking t = 1, this implies

sup
k

{∣∣⟨gk, ξ⟩W
∣∣,

∣∣〈DF(ẑ)gk, ξ
〉
W

∣∣2} ≤ ϵ1/32.

However, appealing to Lemma 4.15 implies

δ2

(1 + ∥u∥H)2 ! ∥ξ∥2
H−s

(1 + ∥u∥H)2 ! ϵ1/32.

Therefore, choosing ϵ small enough like ϵ !δ (1 + ∥u∥H)−64, we deduce that

P
(⟨ξ,M0,1ξ⟩W < ϵ

) ! V p
a,η(u)ϵp.

We can extend this estimate to all ϵ > 0, by noting the other case is 1 ! (1 + ∥u∥H)64pϵp ,
and hence the proof is complete by choosing a > 64. #
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5. Spectral theory for the twisted Markov semigroup. As discussed in Section 2,
our approach to proving a drift condition for the two-point process involves using spec-
tral properties of the “twisted” Markov semigroup P̂

p
t defined for bounded measurable

ψ : H × PTd → R, by

P̂
p
t ψ(u, x, v) := E(u,x,v)

∣∣Dφt v
∣∣−p

ψ(ut , xt , vt ).

To simplify notation, we will denote ẑ = (u, x, v) ∈ H × PTd and ẑt = (ut , xt , vt ). It is
important to note that the semigroup P̂

p
t can be written as a Feynman–Kac semigroup

P̂
p
t ψ(ẑ) = Eẑ exp

(
−p

∫ t

0
H(ẑs)ds

)
ψ(ẑt ),(5.1)

where

H(u,x, v) := 〈
v,∇u(x)v

〉
.

As discussed in the outline, our analysis requires that we study P̂
p
t with respect to both the

CV norm (as defined in (2.1)) as well as the stronger C1
V norm

∥ψ∥C1
V

= sup
ẑ∈H×PTd

( |ψ(ẑ)|
V (u)

+ ∥Dψ(ẑ)∥H∗

V (u)

)
,

where V (u) = Vβ,η(u) for some choice of β > 1 and η < η∗.
The plan is as follows: We start in Section 5.1 in the C1

V framework by proving Proposi-
tion 2.16, establishing a spectral gap for P̂

p
T0

in C1
V for T0 sufficiently large. In Section 5.2,

we obtain C0 continuity for P̂
p
t on the space C̊V as in Proposition 2.17. Finally, in Sec-

tion 5.3 we pull this all together to prove the desired properties of the eigenfunction ψp in
Proposition 2.11.

5.1. Proof of Proposition 2.16. As discussed in the outline, Proposition 2.16 follows
from a spectral perturbation argument. Let us first record the following standard spectral
perturbation lemma, which is a consequence of analytic functional calculus (see, e.g., [31]).

LEMMA 5.1. Let L be a bounded linear operator on a Banach space B with norm ∥ · ∥.

(a) For any ϵ > 0, there exists δ > 0 such that for any bounded linear L′ on B with
∥L − L′∥ < δ, we have σ (L′) ⊂ Bϵ(σ (L)).

(b) Let S ⊂ σ (L) be a closed, isolated subset, that is, there exists an open set U ⊂ C
such that S ∩ U = σ (L) ∩ U . Let πS denote the spectral projector corresponding to S. Then,
for any ϵ > 0, there exists δ > 0 such that if ∥L − L′∥ < δ for some bounded linear L′,
then S′ := U ∩ σ (L′) is a closed, isolated subset of σ (L′) with the property that the spectral
projector πS′ for L′ corresponding to S′ satisfies ∥πS − πS′∥ < ϵ.

To apply Lemma 5.1, we show that P̂
p
t is a bounded perturbation of P̂t for large enough t

and small enough p.

LEMMA 5.2. There exist T0 > 0, p0 > 0 such that ∀β sufficiently large and all η ∈
(0,η∗) there holds the following:

(a) P̂
p
T0

: C1
V → C1

V is a bounded linear operator for all p ∈ [−p0,p0].
(b) We have P̂

p
T0

→ P̂T0 in norm on C1
V as p → 0.
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PROOF. We first consider the proof of (a). Note that |H(ẑ)| ≤ ∥∇u∥L∞ , and hence CV

boundedness follows from (5.1) and Lemma 3.7. Next, compute DP̂
p
t ψξ for some ξ ∈ H ×

TvPTd :

DP̂
p
t ψξ = E exp

(
−p

∫ t

0
H(zs) ds

)(
Dψ(zt )J0,tξ − pψ(zt )

∫ t

0
DH(zs)J0,sξ ds

)
.

By Lemma 3.11, there holds (for any r ∈ (d
2 + 1,3)),

∣∣DP̂
p
t ψξ

∣∣ ≤ ∥ψ∥C1
V

E exp
(
C

∫ t

0
∥us∥Hr ds

)
Vβ,η(ut )

(
1 + sup

0<s<t
∥us∥q ′+1

H

)
∥ξ∥H×TvPTd

≤ ∥ψ∥C1
V

E exp
(
C

∫ t

0
∥us∥Hr ds

)
sup

0<s<t
Vβ+q ′+1,η(us)∥ξ∥H×TvPTd .

Next, choosing T0 sufficiently large such that
(
β + q ′ + 1

)
e−γT0 < β,

Lemma 3.7 implies ∀t ≥ T0, ∃C = C(t,β,η),
∣∣DP̂

p
t ψξ

∣∣ ≤ C(t,β,η)∥ψ∥C1
V
V (u)∥ξ∥H×TvPTd .

This proves (a).
Next, consider (b). First, observe that for x ≥ 0, |epx − 1| ≤ |p|e(|p|+1)x , and hence

∣∣P̂ p
t ψ − P̂tψ

∣∣ ≤ ∥ψ∥CV E
∣∣∣∣exp

(
−p

∫ t

0
H(zs) ds

)
− 1

∣∣∣∣V (zt )

≤ |p|∥ψ∥CV E exp
((

1 + |p|)
∫ t

0
∥∇us∥L∞ ds

)
V (zt ),

and hence convergence in CV holds by Lemma 3.7. For ξ ∈ H × TvPTd ,

∣∣DP̂
p
t ψξ − DP̂tψξ

∣∣ ≤ E
∣∣∣∣exp

(
−p

∫ t

0
H(zs) ds

)
− 1

∣∣∣∣
∣∣Dψ(zt )J0,tξ

∣∣

+ |p|E
∣∣∣∣

∫ t

0
DH(zs)J0,sξ ds

∣∣∣∣ exp
(
−p

∫ t

0
H(zs) ds

)∣∣ψ(zt )
∣∣.

Convergence then holds by the same arguments used to prove boundedness for t ≥ T0 com-
bined with that used to prove convergence in CV . #

As discussed in Section 2, we need to work with the spaces C̊V and C̊1
V which are,

respectively, the CV -closure and C1
V -closure of the space of smooth ‘cylinder functions’

C̊∞
0 (H × PTd) (see (2.5)).

LEMMA 5.3. For all β sufficiently large and all η ∈ (0,η∗) there holds the following:

(a) For all t > 0 and p ∈ R, P̂
p
t : CV → CV is bounded and P̂

p
t (C̊V ) ⊂ C̊V .

(b) For T0, p0 as in Lemma 5.2, ∀p ∈ [−p0,p0], we have that P̂
p
T0

(C̊1
V ) ⊂ C̊1

V .

PROOF. Consider part (a) first. Boundedness in CV was proved at the beginning of
Lemma 5.2. To check P̂

p
t (C̊V ) ⊂ C̊V , note that since P̂

p
t is a continuous linear operator

on CV → CV and C̊V is a closed subspace of CV it suffices to prove that P̂
p
t maps a dense

set of C̊V into C̊V . To do so, we show that for all ψ ∈ C̊∞
0 (H × PTd),

lim
n→∞

∥∥P̂ p
t ψ − (

P̂
p
t ψ

) ◦ 5n

∥∥
CV

= 0,(5.2)
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where recall that 5n : H×PTd → Hn ×PTd is the projection onto Fourier modes satisfying
|k| ≤ n (note that for any ϕ ∈ CV , ϕ ◦ 5n ∈ C̊V ). With this in mind, denote ẑ = (u, x, v) ∈
H × PTd and ẑn = 5nẑ, and let @t denote the random flow for the projective process on
H × PTd with ẑt = @t (ẑ), ẑn

t = @t (ẑ
n). A direct calculation reveals, using that ψ ∈ C̊∞

0 ,
∣∣P̂ p

t ψ(ẑ) − P̂
p
t ψ

(
ẑn)∣∣

≤ E
∣∣∣∣exp

(
−p

∫ t

0
H(ẑs)ds

)
ψ(ẑt ) − exp

(
−p

∫ t

0
H

(
ẑn
s

)
ds

)
ψ

(
ẑn
t

)∣∣∣∣

!ψ E6(t) sup
s∈[0,t]

dW×PTd

(
ẑs , ẑ

n
s

)
,

where we have defined for r ∈ (d
2 + 1,3),

6(t) := exp
(∫ t

0
∥us∥Hr + ∥∥un

s

∥∥
Hr ds

)
sup

s∈[0,t]

(
1 + ∥us∥H + ∥∥un

s

∥∥
H

)

and dW×PTd (ẑ1, ẑ2) is the metric on W×PTd . In particular, the fact that ψ ∈ C̊∞
0 allowed to

exchange H × PTd for W × PTd . Following an analysis similar to the proof of the Jacobian
estimate in Lemma 3.11, we find that dHr×PTd (ẑt , ẑ

n
t ) satisfies the pathwise bound

dHr×PTd

(
ẑt , ẑ

n
t

) ! 6(t)c1dHr×PTd

(
ẑ, ẑn)

,(5.3)

for some constant c1 > 1.
A straightforward extension of Lemma 3.7 to the joint system (ẑt , ẑ

n
t ) gives for each t > 0,

E sup
s∈[0,t]

6(t)1+c1 ! Vβ ′,η(u),(5.4)

for β ′ sufficiently large and for al 0 < η < η∗. Therefore, for V = Vβ ′+1,η, we obtain

∥∥P̂ p
t ψ − P̂

p
t ψ ◦ 5n

∥∥
CV

! sup
ẑ∈H×PTd

dHr×PTd (ẑ, ẑn)

1 + ∥u∥2
H

! sup
u∈H

∥(Id−5n)u∥Hr

1 + ∥u∥2
H

Note that ∥(Id−5n)u∥Hr ! nr−σ∥u∥H, which completes the proof of (5.2).
Turning to part (b): by part (a), it suffices to prove the following for all ψ ∈ C̊∞

0 (H×PTd):

lim
n→∞

∥∥P̂ p
T0

ψ − (
P̂

p
T0

ψ
) ◦ 5n

∥∥
C1

V
= 0.

As above, let ẑn = 5nẑ and ẑn
t = @t (ẑ

n). It what follows we need to measure the difference
between Jacobians of these different trajectories, namely Dξ ẑ

n
t =: Jn

t ξ ∈ H × Tvn
t
PTd and

Dξ ẑt =: Jtξ ∈ H × Tvt PTd . These Jacobians map onto different tangent spaces, but on the
event En

t = {dP d−1(vt , v
n
t ) ≤ 1/50} we can place vt , vn

t in the same smooth chart and iden-
tify their tangent spaces with a copy of Rd−1. Thus, on En

t we can always make sense of
expressions like ∥Jtξ − Jn

t ξ∥Hs , ∥Jt − Jn
t ∥Hs .

To estimate the distance between Jt , Jn
t , we use the following estimate on the second

variation (itself a consequence of the estimates in Section 3.3): for some C,q ′′ > 0,

∥∥J (2)
0,t [ξ, ζ ]∥∥Hr ! exp

(
C

∫ t

0
∥u∥Hr

)(
1 + sup

0<s<t
∥u∥q ′′

Hr

)
∥ξ∥Hr ∥ζ∥Hr .

On the event En
t , this implies the estimate

∥∥Jt − Jn
t

∥∥
Hr ! 6(t)c2dHr×PTd

(
ẑ, ẑn)

,(5.5)



ALMOST-SURE EXPONENTIAL MIXING OF PASSIVE SCALARS 279

for some c2 > 1. Then, similar to part (a), for some r ∈ (d
2 + 1,3),

∣∣DP̂
p
t ψ(ẑ)ξ − DP̂

p
t ψ

(
ẑn)

ξ
∣∣

≤
∣∣∣∣E

(
exp

(
−p

∫ t

0
H(ẑs) ds

)
Dψ(ẑt )J0,tξ − exp

(
−p

∫ t

0
H

(
ẑn
s

)
ds

)
Dψ

(
ẑn
t

)
Jn

0,tξ

)∣∣∣∣

+
∣∣∣∣E

(
pψ(ẑt ) exp

(
−p

∫ t

0
H(ẑs) ds

)∫ t

0
DH(ẑs)J0,sξ ds

− pψ
(
ẑn
t

)
exp

(
−p

∫ t

0
H

(
ẑn
s

)
ds

)∫ t

0
DH

(
ẑn
s

)
Jn

0,sξ ds

)∣∣∣∣

We split the above into expectations on En
t , (En

t )c. The integrand on En
t can be bounded using

(5.3) and (5.5), resulting in a bound ! 6(t)c3dHr×PTd (ẑ, ẑn) for some c3 > 0. On (En
t )c, we

can bound the integrand as in Lemma 3.11, while the pathwise estimate (5.3) and the bound
(5.4) yields

∣∣DP̂
p
t ψ(ẑ)ξ − DP̂

p
t ψ

(
ẑn)

ξ
∣∣ ! Eẑ,ẑn6c4(t)dHr×PTd

(
ẑ, ẑn) + Vβ,η(u)dHr×PTd

(
ẑ, ẑn)

for some sufficiently large β > 0. From here, the proof proceeds as in part (a) (possibly after
increasing β further). #

We are now ready to prove Proposition 2.16.

PROOF OF PROPOSITION 2.16. By Lemma 5.2, the operator P̂T0 has a dominant, simple
eigenvalue at 1 (as an operator C1

V → C1
V ). Let r0 ∈ (0,1) such that σ (P̂T0) \ {1} ⊂ Br0(0),

where r0 ∈ (0,1). Fix ϵ ≪ 1 − r0. By Lemma 5.1 and the fact that P̂
p
T0

→ P̂T0 in the operator

norm on C̊1
V , it follows that for all |p| sufficiently small, we have that σ (P̂

p
T0

) ⊂ Br0+ϵ(0) ∪
Bϵ(1). Taking |p| sufficiently small, Lemma 5.1(b) implies that the spectral projector πp

for P̂
p
T0

corresponding to σ (P̂
p
T0

) ∩ Bϵ(1) is close in operator norm to the rank-one spectral

projector π0 for P̂T0 corresponding to {1}. Since rank-one projection operators are an open set
in the space of bounded linear operators on C̊1

V , it follows that πp is rank-one when |p| ≪ 1.
We conclude that for each such p, there is a unique, simple eigenvalue λp ∈ Bϵ(1). To

show that this eigenvalue is real, note that the complexification of the operator P̂
p
T0

sends real
parts of functions to real parts and imaginary parts to imaginary parts. Thus, if ℑ(λp) ≠ 0
then the complex conjugate λp would also be an eigenvalue. This contradicts the fact that the
spectral projector πp is rank-one. We conclude that λp is real, positive and coincides with the
spectral radius ρ(P̂

p
T0

). The value 8(p) is defined so that λp = e−T08(p).
Finally, convergence of the limit formula (2.10) follows from the standard Gelfand formula

and that πp1 ≠ 0 (by Lemma 5.1 and π01 = 1). #

5.2. Proof of Proposition 2.17. We next prove Proposition 2.17, namely that for all t > 0,
P̂

p
t has a spectral gap on C̊V and that ψp is an eigenfunction for the dominant eigenvalue for

all t ≥ 0. As in the proof of Proposition 2.16 we will make a spectral perturbation argument.
We will need the following lemma, which is a simple variation of Lemma 5.2 and is proved
in the same way.

LEMMA 5.4. There exists p0 > 0 such that the following holds for all p ∈ [p0,p0], all
β sufficiently large and all η ∈ (0,η∗):

(a) For all t > 0, we have that P̂
p
t is a bounded linear operator on CV .

(b) For each t > 0 fixed, we have limp→0 ∥P̂ p
t − P̂t∥CV = 0.
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Next, let us examine the problem of finding a suitable function-space framework for which
t (→ P̂

p
t is a C0 semigroup. As it turns out, to check C0 continuity in CV it does not suffice

to check boundedness in CV , since it does not admit the countable dense subset of smooth
functions we need to make a strong continuity argument. Instead, we will follow the approach
carried out in [43] and prove C0 continuity on C̊V , which provides a natural, separable, closed
subspace of CV .

PROPOSITION 5.5. For all p ∈ [−p0,p0] all β ≥ 1 sufficiently large and all 0 < η < η∗,
P̂

p
t extends to a C0-semigroup on C̊V for V = Vβ,η. That is, P̂

p
t (C̊V ) ⊂ C̊V for all t > 0, and

t (→ P̂
p
t is a C0 semigroup on C̊V .

PROOF. Following [43] Theorem 5.10, it is sufficient to show that P̂
p
t maps C̊V into

itself and that t (→ P̂
p
t is strongly continuous in C̊∞

0 (H × PTd) in the CV topology. The
first step, P̂

p
t (C̊V ) ⊂ C̊V for all t > 0, is proved in Lemma 5.3, hence it suffices to check the

strong continuity.
To do this, we fix ψ ∈ C̊∞

0 (H × PTd). Let K ⊂ K be the finite set such that we can
write ψ = ϕ ◦ 5K for some function ϕ ∈ C∞

0 . By Itô’s formula, it follows that for each
r ∈ (1 + d/2,3) there holds for t ∈ (0,1],

∣∣P̂ p
t ψ(ẑ) − ψ(ẑ)

∣∣ !ψ tE exp
(∫ t

0
∥us∥Hr ds

)
sup

s∈[0,t]

(
1 + ∥5Kus∥H + ∥∥F(5Kẑs)

∥∥
H×PTd

)

!ψ,n tV1,η(u),

where we used the fact that ∥F(5Kẑs)∥H×PTd !K ∥us∥2
H and used Lemma 3.7. Putting this

together, we conclude that for V = Vβ,η, β ≥ 3/2, we have
∥∥P̂ p

t ψ − ψ
∥∥
CV

!ψ,n t → 0 as t → 0.

By density of C̊∞
0 (H × PTd) in C̊V , we conclude strong continuity of P̂

p
t in C̊V . #

We are now ready to prove Proposition 2.17.

PROOF OF PROPOSITION 2.17. Let 8(p) be as in Proposition 2.16 and let s(p) <

e−T08(p) be such that σ (P
p
T0

) \ {e−T08(p)} ⊂ Bs(p)(0) as an operator on C1
V .

Lemmas 5.1 and 5.4, together with Proposition 4.5, imply that for all ϵ > 0, for all p

sufficiently small, there are 0 < s̃(p) < eT08̃(p) such that eT08̃(p) ∈ Bϵ(1) and σ (P
p
T0

) \
{e−T08̃(p)} ⊂ Bs̃(p)(0) as an operator on CV . Since ψp ∈ C̊1

V ⊂ C̊V is already an eigenfunc-
tion for P̂

p
T0

, we conclude that in fact 8̃(p) = 8(p) for all p sufficiently small.

To complete the proof of Proposition 2.17, we establish the spectral picture for P̂
p
t for all

t > 0 using semigroup theory. To start, the spectral mapping theorem for the point spectrum
([4] A-III Theorem 6.3) implies that −8(p) is an eigenvalue of the infinitesimal generator
Ap of P̂

p
t . Corollary 6.4 in Chapter A-III of [4] implies that for all η ∈ C,

ker
(
η Id−Ap) =

⋂

s≥0

ker
(
esη Id−P̂ p

s

)
.(5.6)

Applying (5.6) to η = −8(p), we have that ψp is (up to rescaling) the unique eigenvector
for Ap for −8(p); by another application of (5.6), we conclude that P̂

p
t ψp = e−8(p)tψp for

all t > 0. #
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REMARK 5.6. Recall that H is defined to be the space of divergence free, mean-zero
velocity fields in H σ , where σ is drawn from the interval (α − 2(d − 1),α − d

2 ) (see Sec-
tion 1.1 for notation; cf. Propositions 4.1, 4.2). In particular, the preceding arguments can be
repeated with σ replaced by any other σ ′ < σ in this interval: with P̂

p
T0

, |p| ≪ 1 regarded as
an operator on the corresponding C1

V -space, we obtain a corresponding dominant eigenfunc-
tion ψ ′

p , defined on H σ ′
velocity fields and continuous in the H σ ′

topology. By parabolic
regularization, ψ ′

p coincides with ψp when restricted to the domain H × PTd .

5.3. Properties of ψp: Proof of Proposition 2.11. It remains to establish the desired prop-
erties of ψp and 8(p), namely:

(A) Uniform positivity of ψp on bounded subsets of H × PTd ; and
(B) The asymptotic 8(p) = pλ1 + o(p), p → 0, where λ1 > 0 is the top Lyapunov ex-

ponent of the Lagrangian flow φt .

First, we prove strict positivity.

LEMMA 5.7. For any R > 0, we have that

inf
∥u∥H≤R,(x,v)∈PTd

ψp(u, x, v) > 0.(5.7)

PROOF. The nonnegative cone C1
V,+ = {ψ ∈ C1

V : ψ ≥ 0} is closed in C1
V ; since

P̂
p
nT0

C1
V,+ ⊂ C1

V,+ and enT08(p)P̂
p
nT0

1 → ψp as n → ∞ (Proposition 2.16), we conclude
ψp ≥ 0.

To verify that ψp > 0 pointwise, we use the fact that the Markov semigroup P̂t is topologi-
cally irreducible (Proposition 4.2). To wit, assume for the sake of contradiction that ψp(z) = 0
for some point ẑ = (u, x, v) ∈ H × PTd . Since ψp is continuous and not identically equal to
zero, it holds that Up := {ψp > 0} ⊂ H × PTd is nonempty and open. Therefore,

ψp(ẑ) ≥ Pẑ(ẑt ∈ Up)Eẑ

(∣∣Dxφ
t
uv

∣∣−p
ψp(ẑt )|ẑt ∈ Up

)
> 0.

Note that the same arguments apply to ψ ′
p corresponding to σ ′ < σ as in Remark 5.6, hence

ψ ′
p > 0 pointwise as well.
To conclude (5.7), assume for the sake of contradiction that there is a bounded sequence

{ẑn = (un, xn, vn)} ⊂ H × PTd for which ψp(ẑn) → 0. With σ ′ < σ fixed as in Remark 5.6,
let ẑn′

be a subsequence converging in H σ ′
to some ẑ∗ ∈ Hσ ′ × PTd . Since ψ ′

p is H σ ′
-

continuous and coincides with ψp on H σ , it follows that ψ ′
p(ẑ∗) = 0, contradicting the point-

wise positivity established earlier. #

Item (B) is a version of classical results in the ergodic theory of stochastic differential
equations in finite dimensions. In that literature (see, e.g., the survey [7]), the value −8(p) is
referred to as the moment Lyapunov exponent. This terminology is justified by the following:

LEMMA 5.8. For all (u, x, v) ∈ H × PTd , we have

8(p) = − lim
t→∞

1
t

log E
∣∣Dxφ

t
uv

∣∣−p
.

Moreover, the above limit is uniform on bounded subsets of H × PTd .
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PROOF. The argument of the logarithm on the right-hand side is equal to P̂
p
t 1 evaluated

at (u, x, v). Uniform convergence on bounded subsets of H ×PTd now follows from the CV

limit ψp = limt→∞ et8(p)P̂
p
t 1 (a consequence of the CV spectral gap) and (5.7). #

Next, we verify (B) by relating the value 8(p) with the Lyapunov exponent λ1 of the
Lagrangian flow φt . The first step is to show that 8(p) is in fact differentiable.

LEMMA 5.9. The function p (→ 8(p) is differentiable in a neighborhood of p = 0.

PROOF. Let us first show that p (→ P̂
p
1 is Fréchet differentiable as an operator-valued

function in CV . Formally, we expect the derivative d
dp P̂

p
1 to be given by

d

dp
P̂

p
1 ψ(u, x, v) = −E(u,x,v)

(
log

∣∣Dxφ
1
uv

∣∣ · ∣∣Dxφ
1
uv

∣∣−p
ψ(u1, x1, v1)

)
.

A direct application of Lemma 3.7 implies that the right-hand side defines a bounded linear
operator on CV . Fréchet differentiability of p (→ P̂

p
1 follows if

lim
h→0

∥∥∥∥E
∣∣∣∣

( 1
h

(∣∣Dxφ
1v

∣∣−p−h − ∣∣Dxφ
1v

∣∣−p) + log
∣∣Dxφ

1v
∣∣ · ∣∣Dxφ

1v
∣∣−p

)
V (u1)

∣∣∣∣

∥∥∥∥
CV

= 0.

By the mean value theorem, this is justified as long as
∥∥EV (ut )

∣∣Dxφ
1v

∣∣−p log2∣∣Dxφ
1v

∣∣∥∥
CV

< ∞,

which follows from Lemma 3.7.
Having established that p (→ P̂

p
1 is Fréchet differentiable, it now follows from the spectral

gap for P̂
p
1 in CV and the standard contour integral formula for spectral projectors that p (→

πp is likewise Fréchet differentiable, hence p (→ ψp = πp(1) is also Fréchet differentiable.
Fixing ẑ∗ ∈ H × PTd , we may now express

e−8(p) = 1
ψp(ẑ∗)

P̂
p
1 ψp

(
ẑ∗)

.

Since the right-hand side is a ratio of differentiable functions and the denominator is nonva-
nishing, we conclude p (→ 8(p) is differentiable. #

LEMMA 5.10. Let p0 > 0 be as in Proposition 2.17.

(a) The mapping p (→ 8(p) is convex on [−p0,p0].
(b) We have

8′(0) = λ1.

In particular, since λ1 > 0, we have that 8(p) > 0 for all p > 0 sufficiently small.

With our preparations in place, the proof of Lemma 5.10 follows from straightforward
versions of standard arguments; see, for example, [5, 7]. We sketch the proof below for the
sake of completeness.

PROOF. For convexity, let p,q ∈ (−p0,p0) and λ ∈ [0,1] and fix an arbitrary (u, x, v) ∈
H × PTd . By Hölder’s inequality,

E
∣∣Dxφ

t
uv

∣∣−λp−(1−λ)q ≤ (
E

∣∣Dxφ
t
uv

∣∣−p)λ · (
E

∣∣Dxφ
t
uv

∣∣−q)1−λ
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Convexity follows on taking the log of both sides, dividing by t , taking t → ∞ and applying
Lemma 5.8.

Next, for all p ∈ (−p0,p0), we have by Jensen’s inequality that

E
∣∣Dxφ

t
uv

∣∣−p = Ee−p log |Dxφt
uv| ≥ exp

(−pE log
∣∣Dxφ

t
u

∣∣).

Taking the log of both sides, dividing by t and taking t → ∞ results in the inequality

8(p) ≤ pλ1.

In particular, 8(p)/p ≥ λ1 for p ∈ (−p0,0) and 8(p)/p ≤ λ1 for p ∈ (0,p0). By convexity,
the left- and right-hand derivatives 8′(0+) and 8′(0−) exist; the inequalities above imply
that 8′(0−) ≥ λ1 and 8′(0+) ≤ λ1. By differentiability, these values coincide. This com-
pletes the proof. #

6. Geometric ergodicity for the two point motion. We now turn to our study of the two
point Lagrangian motion (ut , xt , yt ). Recall that that given two initial points (x, y) ∈ Dc =
{(x, y) ∈ Td × Td : x ≠ y}, (xt , yt ) are defined by

xt = φt (x), yt = φt (y).

This induces a Feller Markov semigroup P
(2)
t defined on bounded measurable ϕ : H ×Dc →

R by

P
(2)
t ϕ(u, x, y) := E(u,x,y)ϕ(ut , xt , yt ).

We eventually apply Theorem 2.4 to P
(2)
t to prove Theorem 2.2. As discussed in Section 2,

Conditions 1 and 2 follow from Propositions 2.6 and 2.7 (strong Feller and topological irre-
ducibility), which we prove below. This shows that µ × Leb × Leb is the unique stationary
measure for P

(2)
t (see [25]). Similarly, Propositions 2.6 and 2.7 imply equivalence of transi-

tion kernels.

LEMMA 6.1. The family of transition kernels {P (2)
t ((u, x, y), ·) : t > 0, (u, x, y) ∈ H ×

Dc} are equivalent measures.

As we saw in the proof of Lemma 4.4, equivalence of the transition kernels implies the
following.

LEMMA 6.2. Let K ⊂ H × Dc be any compact set with (µ × Leb×Leb)(K) > 0. Then
for arbitrary t > 0 and R1,R2 > 0, we have

inf
∥u∥≤R1,d(x,y)≥R2

P
(2)
t

(
(u, x, y),K

)
> 0.

Therefore, Conditions 3 and 4 follow from Proposition 2.14, which we prove below, and
the fact that the Lyapunov function V is coercive in the sense that for each r > 0, we can
always find R1,R2 > 0 such that

{
(u, x, v) ∈ H × Dc : V(u, x, y) ≤ r

}

⊂ {
(u, x, y) ∈ H × Dc : ∥u∥ ≤ R1, and d(x, y) ≥ R2

}
.

The remainder of this section will be focused on proving Propositions 2.6 and 2.7 and
Theorem 2.14.
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6.1. Strong Feller property: Proof of Proposition 2.6.

6.1.1. Uniform parabolic Hörmander conditions. Due to Assumption 1, we are only
concerned with spreading the noise to the degrees of freedom on Dc. Accordingly, denote
the vector field

Xm(x, y) =
(
em(x)
em(y)

)
∈ T(x,y)Dc ≃ R2d .

In order to prove Proposition 2.6, we use the following uniform spanning. It is helpful to
observe that vector fields in the set A2 in the statement below can be identified as incom-
pressible velocity fields; the uniform spanning condition is simply a quantitative statement
about the infinitesimal controllability, that is, that the particles can be nudged in any direction
by velocity fields accessible via the noise.

LEMMA 6.3. There holds the following uniform spanning condition: for all x, y ∈ Td

with x ≠ y, if we denote the set of unit vectors in the span of the available vector fields:

A2 =
{ ∑

m=(k,i)∈K
|k|≤2

cmXm : max
m

|cm| ≤ 1
}
,

then

inf
h∈R2d :|h|=1

max
6∈A2

∣∣〈6(x, y), h
〉
R2d

∣∣ " d(x, y).(6.1)

REMARK 6.4. The proof shows that Assumption 2 is not quite sharp, especially for
Galerkin–Navier–Stokes, where hypoellipticity in (ut ) will fill all available degrees of free-
dom. However, for simplicity of exposition it is easier simply to use the less complicated
condition.

PROOF. For definiteness, parameterize Td as (−π,π ]d . Note that by Assumption 2 and
trigonometric identities, A2 is translation invariant in the sense that if (6.1) holds at some
point (x, y) then (6.1) holds also at (x′, y′) = (x + β mod 2πZd, y + β mod 2πZd) for
any vector β ∈ Rd .

At any point (x, y) ∈ Dc, we divide the tangent space into Rd
x ⊕ Rd

y where the first Rd
x is

associated with infinitesimal motions of x and the second Rd
y associated with the infinitesimal

motions of y. We are able to restrict ourselves to vectors X ∈ A2, which vanish on either
Rd

x or Rd
y as uniform spanning follows by linear combinations (after slightly adjusting the

constant). By the above symmetry considerations, it suffices to consider the case x = 0, y ≠ 0
and show that we can uniformly span Rd

y with vector fields in A2 that also vanish at zero.
We first consider the case d = 2. In what follows, we denote y = (y(1), y(2)). Let δ ∈

(0, 1
10) be fixed and arbitrary. Define the set of points where shear flows which vanish at

x = 0 cannot span Rd
y .

D := {
y ∈ T2 : y = (0, a),or, y = (a,0), for some a ∈ (−π,π ]}.

There are essentially three cases.
Case 1 (2D): y is at least δd(x, y) away from D:
By trigonometric interpolation, ∃h(ζ ) a linear combination of cos 2ζ , sin 2ζ , cos ζ ,

sin ζ with coefficients having absolute value less than one such that satisfies h(0) = 0
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and h(y(2)) " δ|y|(2). Hence, the vector field, Y(x, y)|R2
x

= (h(x(2)),0), Y(x, y)|R2
y

=
(h(y(2)),0),

∣∣∣∣

〈
Y(x, y)|R2

y
,

(
1
0

)〉

R2
y

∣∣∣∣ "δ d(x, y).(6.2)

The analogous transverse shear flows span the vertical direction in R2
y .

Case 2 (2D): y is less than δd(x, y) from D but more than δπ away from the points (0,π),
(π,0)

Suppose without loss of generality that y is close to the horizontal line y(2) = 0. Shear
flows span the vertical direction of R2

y as in Case 1. To span the horizontal direction, we use
the flow

Y(x, y)|R2
y′

=
(
− siny(1) cosy(2)

cosy(1) siny(2)

)

,(6.3)

which gives (6.2).
Case 3 (2D): y is less than δπ away from one of (0,π), (π,0): This case is the most

difficult. Suppose that y is close to (π,0); the case (0,π) is treated analogously. As in Case 2,
shear flows span the vertical direction. However, there is a new degeneracy at (π,0) in the
horizontal direction, as the cellular flow in (6.3) vanishes. To rectify this, we choose the flow

Y(x, y)|Rd
y′

= 1
2

(
cos 2y(1) cos 2y(2)

sin 2y(1) sin 2y(2)

)

− 1
2

(
cosy(1) cosy(2)

siny(1) siny(2)

)

,

which satisfies (6.2).
Next, we discuss the extension to d = 3.
In this case, we redefine D in the analogous way:

D := {
y ∈ T2 : y = (a,0,0),or, y = (0, a,0),or, y = (0,0, a), for some a ∈ (−π,π ]}.

Case 1 (3D): y is at least δd(x, y) away from D
This case is analogous to the Case 1 above simply by using shear flows in each of the

coordinate directions separately.
Case 2 (3D): y is less than δd(x, y) away from D
Suppose without loss of generality that y is close to the horizontal plane. The vertical

direction (normal to the plane) is spanned by shear flows. To span the horizontal plane, we
use flows that are independent of the normal direction and the problem reduces to the 2D case
treated above.

This completes the uniform spanning. #

6.1.2. Sketch of proof of Proposition 2.6. We can essentially apply the same proof as we
did in [15] (which draws heavily from [33] combined with some simplifications in the Malli-
avin calculus and a more sophisticated choice of control to deal with the more complicated
nonlinearity).

The strategy here is to regularize the process for large values of ∥u∥H. This will be done
through the use of an auxiliary Wiener process Zt ∈ R2d , which will couple to the dynamics
through the vector field L on R2d defined for each Z ∈ R2d by

L(Z) :=
2d∑

j=1

êj
Zj

√
1 + |Zj |2

,
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where {êj }2d
j=1 are the canonical basis elements for R2d . The cut-off process z̄

ρ
t ∈ H × T2d ×

R2d is then defined by augmenting by Zt so that z̄
ρ
t = (u

ρ
t , x

ρ
t , y

ρ
t ,Zt ) satisfies the cut-off

equation

∂t z̄
ρ = F ρ(

z̄
ρ
t

) − Az̄
ρ
t + Q̄ ˙̄Wt, z̃

ρ
0 = z̃ ∈ H × Dc × R2d,

where Q̃W̃t = (QWt,0,0,WZ
t ) for WZ

t a Wiener process on R2d independent from Wt , and
(for F , A, and L suitably extended to vector fields on H × Dc × R2d ), for each z̄ = (z,Z) ∈
H × Dc × R2d ,

F ρ(z̄) := (
1 − χ2ρ

(∥u∥H
))

F(z) + χρ
(∥u∥H

)
L(Z),

where χρ(r) = χ(r/ρ) with χ ∈ C∞(R+) monotone increasing, nonnegative, with χ(r) = 0
for r ≤ 1 and χ(r) = 1 for r > 2.

Let P
(2),ρ
t denote the Markov semigroup associated with the cut-off process (z̄

ρ
t ). The

main step in [15] (and [33]) is to prove the following gradient bound. This is done via Malli-
avin calculus with a low frequency approximation and short-time perturbation argument
to obtain the control. The main ingredient specific to the two-point motion is the uniform
parabolic Hörmander condition proved above in Lemma 6.3.

PROPOSITION 6.5. There exists constants a, b > 0 such that for each ϕ ∈ C2(H×T2d ×
R2d) and each z̄ = (u, x, y,Z) ∈ H × Dc × R2d , the derivative DP

(2),ρ
t ϕ(z̄) exists and satis-

fies for each ξ ∈ H × R4d ,

∣∣DP
(2),ρ
t ϕ(z̄)ξ

∣∣ !ρ t−ad(x, y)−b(
1 + ∥u∥H + |Z|)b∥ϕ∥L∞∥ξ∥H×R4d .

Using Proposition 6.5, one can prove the strong Feller property for the noncut-off process
zt using the following metric on H × Dc:

db
(
z1, z2) := inf

γ :z1→z2

∫ 1

0
d(xs, ys)

−b(
1 + ∥us∥H

)b∥γ̇s∥H×R2d ds,

where the infimum is taken over all differentiable curves [0,1] ∋ t (→ γt = (ut , xt , yt ) in
H×Dc connecting z1 and z2. It is not hard to see that the metric db(·, ·) generates the H×Dc

topology since the extremal trajectories avoid the diagonal.

SKETCH OF PROOF OF PROPOSITION 2.6. Fix t > 0 and ϵ > 0 and let z1, z2 ∈ H × Dc

and take the initial Z = 0. From the moment estimates on (ut ) in Proposition 3.1, we can
choose the cut-off large enough (depending on ∥ϕ∥L∞ and ∥u1∥H and ∥u2∥H) such that (see
[15] for more detail),

∣∣P (2)
t ϕ

(
z1) − P

(2)
t ϕ

(
z2)∣∣ ≤ ∣∣P (2),ρ

t ϕ
(
z1,0

) − P
(2),ρ
t ϕ

(
z2,0

)∣∣ + 2ϵ.

By Proposition 6.5 and minimizing along all curves connecting (z1,0) and (z2,0), one de-
rives

∣∣P (2)
t ϕ(z1) − P

(2)
t ϕ(z2)

∣∣ !ρ t−adb(z1, z2) + 2ϵ.

The proof is completed by taking db(z1, z2) sufficiently small. #
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6.2. Irreducibility: Proof of Proposition 2.7. In this section, we prove Proposition 2.7,
that is, we show that the transition kernel P

(2)
t (z, ·) is locally positive on H × Dc for t > 0

and z ∈ H × Dc. Proposition 2.7 is an immediate consequence of the following lemma.

LEMMA 6.6. Let z, z′ ∈ H × Dc be arbitrary. Then ∀ϵ > 0 and ∀t > 0,

P
(2)
t

(
z,Bϵ

(
z′)) > 0,

where we denote Bϵ(z
′) the ϵ-ball in H × Dc.

As usual, Lemma 6.6 is proved via an approximate control argument. Consider the follow-
ing for gt a deterministic control:

∂tut + B(ut , ut ) + Aut = Qgt,

∂t xt = ut (xt ),

∂t yt = ut (yt ).

We prove that for any z, z′ as in the statement of Lemma 6.6, we construct a gt ∈ L2 such
that at time t ,

∥∥u′ − ut

∥∥
H σ + d

(
x′, xt

) + d
(
y′, yt

)
<

ϵ

2
.

Moreover, Qgt ∈ C∞ and the size of ∥Qg∥L∞
t H σ will depend only d(x, y), d(x′, y′), u, u′

(where we denote z = (u, x, y), z′ = (u′, x′, y′)) and can be chosen uniformly over compact
sets in H×Dc. Local positivity of the Wiener measure together with a stability argument then
implies Lemma 6.6; see, for example, [Lemma 7.3 [15]] for how to carry out such details.

Constructing gt is a three step procedure: use a “scaling” (see, e.g., the discussion in [38]
and the references therein) to force ut to (approximately) zero in an arbitrarily short time-
window. Then we use arguments involving well-chosen sequences of shear flows to exactly
control the two particles to the desired locations (here the proof is vaguely reminiscent of that
of Lemma 6.3). Then we again use a “scaling” to force the (ut ) to (approximately) u′ while
simultaneously not disturbing the particles by more than O(ϵ).

LEMMA 6.7. Let u ∈ H σ be arbitrary. Then ∀ϵ > 0, ∃δ < ϵ and a control g : [0, δ] → L2

such that ∥uδ∥H σ ≤ ϵ
4 and sup0≤t≤δ ∥ut∥H σ ≤ 3∥u∥H σ .

REMARK 6.8. This lemma is simplified by the use of fully nondegenerate noise; how-
ever, using the methods in [38] and the references therein, one can obtain essentially the same
lemma from any noise that satisfies the Hörmander bracket conditions for (ut ) discussed in
[32, 65].

PROOF. The lemma follows by choosing gt as the following for suitably chosen δ, N :

gt = −Q−1δ−15Nu;
see, for example, discussions in [38] for more information. #

The next lemma constructs a control to move x to x′ and y to y′, assuming that the velocity
is initially zero.

LEMMA 6.9. Let a ∈ (0, 1
2) and suppose ua = 0, (xa, ya) = (x, y). For all x, x, y, y′ ∈

Dc, ∃Cg , (depending only on d(x, y) and d(x′, y′)) and a control g =: gctr,a satisfying
supt∈(a,1−a) ∥gctr,a

t ∥ ≤ Cg such that u1−a = 0 and (x1−a, y1−a) = (x′, y′).
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PROOF. First, observe that, by first moving x and then moving y, (and the vice versa)
it suffices to fix one particle and move the other. Parameterize Td as (−π,π ]d and suppose
without loss of generality that x = 0, y ≠ 0. We will choose the velocity field to fix xt = 0
and satisfy y 1

2
= y′.

We carry out the proof in d = 2 for notational simplicity; the d = 3 case follows similarly.
Let δ > 0 be fixed arbitrary. There are essentially two cases.

Case 1: y, y ′ do not lie within δ of the same coordinate axis.
Case 1a: Neither y nor y′ lie within a δ of any coordinate axis.
Denote y = (y(1), y(2)) and y′ = (y′(1), y′(2)). By Assumption 2, trigonometric interpola-

tion and that all shears are stationary solutions of the 2D Euler equations, for any smooth ft

with fa = 0, ∃gt such that

ut(ζ ) = ft

(
h
(
ζ (2))

0

)

,

with h a linear combination of cosy, siny, cos 2y, sin 2y satisfying h(0) = 0 and h(y(2)) = 1.
It is clear that we can choose ft (and hence gt ) such that ya

2 + 1
4

= (y′(1), y(2)). Over the time

interval t ∈ (a
2 + 1

4 , 1
2) we then similarly move the second component of y using a shear flow

of the form (0, b(ζ (2))).
Case 1b: One or both y of y′ lie within a δ of a coordinate axis.
Unlike the previous case, the order in which we apply the shear flows (i.e., in the horizontal

or in the vertical direction) matters.
Suppose that y′ lies on the vertical axis. Then either y lies on the horizontal axis or lies

away from either axis. We apply the same procedure of two repeated shear flows as the
previous case; however, we first adjust y(2) to y′(2) and then adjust y(1) to y′(1). If y′ lies on
the horizontal axis, we proceed similarly, but this time first adjusting y(1) to y′(1) and then
adjusting y(2) to y′(2).

Case 2: y, y′ lie within a δ of the same coordinate axis.
By symmetry, without loss of generality we can assume that the coordinate axis is the

horizontal. Since y ≠ 0, by trigonometric interpolation, there exists a shear flow (0, h(y))
where h is a trigonometric polynomial supported only in the first two harmonics satisfying

h(0) = 0, h
(
y(1)) = 1.

Hence, in any time window we can move y back into Case 1b, at which point we proceed as
above. #

The next lemma is simply the reverse of Lemma 6.7.

LEMMA 6.10. Let u′ ∈ H be arbitrary. Then ∀ϵ > 0, ∃δ ≪ 1 and a control g : [1 −
δ,1] → L2 such that if ∥u1−δ∥H ≤ ϵ

4 , then there holds ∥u1 − u′∥H < ϵ
4 , sup1−δ≤t≤1 ∥ut∥H ≤

3∥u′∥H and d(x1−δ, x1) + d(y1−δ, y1)! δ∥u′∥H.

Finally, we briefly sketch how to assemble the control and prove the necessary stability for
the problem.

PROOF OF LEMMA 6.6. We use the control (where gctr,δ is chosen to send xδ , yδ exactly
to x′, y′ at time 1 − δ),

gt =

⎧
⎪⎪⎨

⎪⎪⎩

−δ−1Q−1u≤N t ∈ (0, δ),

gctr,δ
t t ∈ (δ,1 − δ),

δ−1Q−1u′
≤N t ∈ (1 − δ,1).
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For suitable choices of δ, N , the lemma now follows from Lemmas 6.7, 6.10 and 6.9 and
local positivity of the Wiener measure as in, for example, [Lemma 7.3, [15]]. #

6.3. Verification of the drift condition: Proof of Proposition 2.14. We now commence
the analysis of V defined in Section 2.4 using the eigenfunction ψp constructed in Section 5.
We will assume for the rest of this section that p ∈ (0,p0) is fixed, ensuring the existence ψp

by Proposition 2.11. Recall that ψp belongs to C̊1
V , where V = Vβ,η for all β large enough

and η ∈ (0,η∗). In what follows, we will increase this lower bound on β finitely many time
without explicitly keeping track of the value.

For (x, y) ∈ Dc, we define w(x, y) = y − x mod 2πZd ∈ Rd (i.e., (x, y) is the shortest
displacement vector from x to y). Then, for each (u, x,w) ∈ H × Td × Rd , V is of the form

V(u, x, y) = ĥp
(
u,x,w(x, y)

) + V (u),

where

ĥp(u, x,w) := |w|−pψp

(
u,x,

w

|w|
)
χ

(|w|),

and χ is a smooth, strictly positive cutoff supported in B(0, 1
50). The cut-off function ensures

continuity, since w(x, y) is continuous on D1/10. Consequently, this cut-off allows us to pull
hp back to a continuous function ĥp on H × Dc by

hp(u, x, y) := ĥp
(
u,x,w(x, y)

)
.

Our strategy for verifying the drift condition (Condition 4) is to show that ĥp is an approx-
imate eigenfunction for the two point Markov semigroup P

(2)
t . To do this, it is convenient to

work with the infinitesimal generator L(2) of P
(2)
t . Therefore, we will need to show that it is

a legitimate C0 semigroup on an appropriate Banach space. Moreover, we will need to deal
with observables that are unbounded both for large u and as (x, y) approach the diagonal D.
To do this, we introduce the following weight:

V̂ (u, x, y) := V̂p,β,η(u, x, y) = d(x, y)−pVβ,η(u),

where p ∈ (0,p0) and Vβ,η is defined by (2.2), with η ∈ (0,η∗), β ≥ 1 and d(x, y) denotes the
natural distance metric on Td . Treating p, η, β as fixed for now we then define the following
weighted supremum norm:

∥ϕ∥CV̂
:= sup

z∈H×Dc

|ϕ(z)|
V̂ (z)

,

and denote CV̂ to be space of continuous functions on H × Dc whose ∥ · ∥C
V̂

norm is finite.
Note that since V ! V̂ (for appropriate p, β , η), we have that V ∈ CV̂ .

First, we show that P
(2)
t is a bounded linear operator on CV̂ (although it lacks strong

continuity in this space).

LEMMA 6.11. For all p ∈ (0,p0), β ≥ 1 and η ∈ (0,η∗), P
(2)
t extends to a bounded

linear operator on CV̂ . Specifically, there exists a constant C such that for each ϕ ∈ CV̂ ,
∥∥P (2)

t ϕ
∥∥
CV̂

≤ eCt∥ϕ∥CV̂
.

PROOF. To prove this, first note that
∣∣P (2)

t ϕ
∣∣ ≤ ∥ϕ∥CV̂

E
(
d(xt , yt )

−pV (ut )
)
.
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Our first step will be to deduce a lower bound for d(xt , yt ). To this end, we note that when
d(xt , yt ) < 1/10 we find a local chart and represent xt and xt as vectors in Rd so that
d(xt , yt ) = |xt − yt | and, therefore, deduce the differential inequality

(6.4)
d
dt

log
(|xt − yt |

) ≥ −∥ut∥Hr0 .

In order to integrate the above inequality, we must be careful that we integrate over time
intervals where the local chart we used remains valid. With this in mind, suppose that t > 0
is such that d(xt , yt ) < d(x, y)/100 and define

τt = sup
{
s : 0 ≤ s < t, d(xs, ys) ≥ d(x, y)/10

}
,

to be the last time before t that d(xs, ys) was outside the chart. Note that τt is well defined,
since d(x0, y0) ≥ d(x, y)/10 and is strictly less than t by continuity of (xt , yt ). Consequently,
integrating (6.4) from τt to t yields

|xt − yt | ≥ |xτt − yτt | exp
(
−

∫ t

τt

∥us∥Hr0 ds

)
≥ d(x, y)

10
exp

(
−

∫ t

0
∥us∥Hr0

)
.

Of course, when d(xt , yt ) > d(x, y)/100, a lower bound is automatic and, therefore, we
obtain

d(xt , yt )" d(x, y) exp
(
−

∫ t

0
∥us∥Hr0

)
.

It then follows from Lemma 3.7 that we can bound

Ez
(
d(xt , yt )

−pV (ut )
) ! d(x, y)−pEu exp

(
p

∫ t

0
∥us∥Hr0

)
V (ut )

! eCtd(x, y)−pV (u). #

As we saw for the twisted Markov semigroup, boundedness in a Banach space is not
enough to ensure that P

(2)
t gives rise to a C0-semigroup on that space. Indeed, we must

define the space C̊V̂ obtained as the closure of the space of smooth cylinder functions

C̊∞
0

(
H × Dc) = {

ϕ|ϕ(u, x, y) = φ(5Ku,x, y), |K| < ∞,φ ∈ C∞
0

(
R|K|)}

with respect to the norm ∥ · ∥CV̂
. An analogous argument to the proof of Proposition 5.5 for

the twisted Markov semigroup P̂
p
t (in fact a strictly simpler one since it does not involve

derivatives) gives the C0 semigroup property of P
(2)
t . We omit the proof for brevity.

PROPOSITION 6.12. Let V̂ = V̂p,β,η, where η ∈ (0,η∗), p ∈ (0,p0), and β > 1 is taken
large enough. Then the Markov semigroup P

(2)
t extends to a C0 semigroup on C̊V̂ .

Consequently, Proposition 6.12 implies that there is a well-defined generator L(2) for P
(2)
t

on C̊V̂ with dense domain Dom(L(2)) ⊆ C̊V̂ . The key estimate of this section is the following
approximate drift condition for L(2).

LEMMA 6.13. For all p ∈ (0,p0), η ∈ (0,η∗) and β ≥ 1 taken large enough, hp belongs
to Dom(L(2)) on C̊V̂p,β,η

and there exists a constant C′ such that

L(2)hp ≤ −8(p)hp + C′Vβ+1,η,
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A priori, it is not clear that hp actually belongs to the domain of the generator L(2) since it
involves ψp , which belongs to the domain of the generator of P̂

p
t and, therefore, more readily

belongs to the domain of the generator of the semigroup associated to the linearized motion

T Pt ĥ(u, x,w) := E(u,x,w)ĥ
(
ut , xt ,Dφtw

)
.

Therefore, in order to prove Lemma 6.13, we will need to approximate P
(2)
t ĥp by

T ∗Pt ĥp(u, x, y) := T Pt ĥp
(
u,x,w(x, y)

)
.

To this end, we write

(6.5)
P

(2)
t hp − hp

t
= T ∗Pt ĥp − hp

t
+ P

(2)
t hp − T ∗Pt ĥp

t
,

and show that each limit on the right-hand side of (6.5) converges separately. It is important to
remark that this approximation is only effective t → 0, indeed T ∗Pt ĥp is not even continuous
on Dc due to the discontinuous nature of w(x, y).

For the first term in (6.5), we have the following.

LEMMA 6.14. For all p ∈ (0,p0), η ∈ (0,η∗) and β ≥ 1 large enough, the following
limit holds in CV̂p,β,η

:

lim
t→0

T ∗Pt ĥp − hp

t
= −8(p)hp + Ep,

where Ep(u, x, y) = Êp(u, x,w(x, y)) and (recall the definition of H in Remark 2.18)

Êp(u, x,w) = H
(
u,x,w/|w|)|w|1−pψp

(
u,x,w/|w|)χ ′(|w|).

PROOF. To begin, note that |w|−pψp is an eigenfunction of T Pt with eigenvalue
e−8(p)t . Denote the linearized process w∗

t = Dxφ
tw and note that w∗

t is a solution to
∂tw

∗
t = Dut(xt )w

∗
t . Using this, we find

T Pt ĥp = e−8(p)thp + E|wt |−pψp
(
ut , xt ,w

∗
t

)(
χ

(∣∣w∗
t

∣∣) − χ
(|w|)).

Noting that

χ
(∣∣w∗

t

∣∣) − χ
(|w|) =

∫ t

0

∣∣w∗
s

∣∣H(us, xs, vs)χ
′(∣∣w∗

s

∣∣) ds,

where vs = w∗
s /|w∗

s | is the projective process with initial data v = w/|w|, allows us to write

(6.6)
T Pt ĥp − ĥp

t
= e−8(p)t − 1

t
ĥp + Êp + R̂t ,

where

R̂t := E
(∣∣w∗

t

∣∣−p
ψp(ut , xt , vs)

1
t

∫ t

0

∣∣w∗
s

∣∣H(us, xs, vs)χ
′(∣∣w∗

s

∣∣) ds − Ep

)
.

The fact that ψp ∈ C̊V , where V = Vβ0,η, for some β0 ≥ 1 means that we can find ψ
(n)
p ∈ C̊∞

0

where ψ
(n)
p only depends on finitely many Fourier modes 5nu of u, such that ψ

(n)
p → ψp in

CV . Using the fact that

∣∣w∗
t

∣∣ = |w| exp
(∫ t

0
H(us, xs, vs)ds

)
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and that 5nut is finite dimensional, a direct calculation yields for each n

(6.7) |R̂t |! |w|1−p exp
(
Cp

∫ t

0
∥us∥Hr0

)
sup

s∈(0,t)
Vβ0+1,η(us)

(
Cnρt + ∥∥ψp − ψ (n)

p

∥∥
CV

)
,

where Cn is a constant depending (badly) on n and Dψ
(n)
p and

ρt := sup
s∈(0,t)

(∥us − u∥Hr0 + dTd (xs, x) + dP d−1(vs, v)
)
.

A straightforward consequence the evolution equation for the projective process (ut , xt , vt )
directly implies

ρt ≤ t sup
s∈(0,t)

(
1 + ∥us∥2

H
) + sup

s∈(0,t)
∥QWs∥Hr0 .

By the BDG inequality, we can bound Hr0 norm of the Wiener process using

E sup
s∈(0,t)

∥QWs∥2
Hr0 !Q t.

Therefore, taking expectation of (6.7) applying Cauchy–Schwarz and the exponential esti-
mates from Lemma (3.7), we conclude that for some β1 ≥ 1 large enough,

E|R̂t |!Q |w|1−pVβ1,η(u)
(
Cnt

1/2 + ∥∥ψp − ψ (n)
p

∥∥
CV

)
.

Denote Rt(u, x, y) = R̂t (u, x,w(x, y)) and note that while Rt is not necessarily continuous
in (x, y) due to the discontinuity in w(x, y) away from the diagonal, the quantity |w(x, y)| =
dTd (x, y) is continuous on Dc and therefore E|Rt | is bounded above by a continuous function.
The corresponding estimate on Rt implies after first sending t → 0 and then n → ∞ that

lim
t→0

∥∥E|Rt |
∥∥
C

V̂p,β1,η

= 0.

This, coupled with the fact that e−8(p)t−1
t → −8(p) as t → 0 and hp ∈ CV̂p,β1,η

, is sufficient
to conclude the proof in light of equation (6.6). #

The second term in (6.5) involves controlling the error involved in approximating P
(2)
t hp

by T ∗Pt ĥp . As discussed in Section 2.4, this is one of the main difficulties in proving a valid
drift condition and is the only reason we need C̊1

V estimates on ψp , that is, so that we can
differentiate ψp with respect to the projective coordinate and bound it by V (u).

LEMMA 6.15. For all p ∈ (0,p0), η ∈ (0,η∗), and β ≥ 1 large enough, the following
limit holds in CV̂p,β,η

:

lim
t→0

P
(2)
t hp − T ∗Pt ĥp

t
= (∇yhp − ∇x) · B,

where B(u, x, y) = u(y) − u(x) − Du(x)w(x, y).

PROOF. Define wt = w(xt , yt ) and w∗
t = Dφtw, where w = w(x, y), and note that

P
(2)
t hp − T ∗Pt ĥp

t
= 1

t
E

(
ĥp(ut , xt ,wt ) − ĥp

(
ut , xt ,w

∗
t

))

= E
∫ 1

0
∇wĥp

(
ut , xt ,w

θ
t

)
dθ · wt − w∗

t

t
,
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where wθ
t = θwt + (1 − θ)w∗

t . To continue, for each t ≥ 0, we define the events

At :=
{
t sup

s∈(0,t)
∥∇us∥∞ ≤ 1

100

}
,

Bt :=
{
t sup

s∈(0,t)

(∥∇us∥∞
(|ws | +

∣∣w∗
s

∣∣)) ≤ |w∗
t |

2

}
.

Note that both the events At , Bt implicitly depend on the initial data (u, x, y) and we have
that

lim
t→∞ P(At ∩ Bt) = 1.

The event At ⊂ , is chosen so that on it wt has not moved far from its starting point w,

|wt − w| ≤ t sup
s∈(0,t)

∥∇us∥L∞ ≤ 1
100

,

and, therefore, on At we can write

wt − w∗
t =

∫ t

0
us(ys) − us(xs) − Dus(xs)w

∗
s ds.

It follows that
wt − w∗

t

t
1At = B1At + Rt,

where

Rt := 1At

t

∫ t

0

(
us(ys) − u(y)

) − (
us(xs) − u(x)

) − (
Dus(xs)w

∗
s − Du(x)w

)
dτ.

Directly computing all the differences it is straightforward to see that |Rt | can be bounded by

(6.8) |Rt |! sup
s∈(0,t)

(∣∣u(ys) − u(xs) − u(y) + u(x)
∣∣ + ∥us − u∥Hr0 |w| + ∥us∥Hr0

∣∣w∗
s − w

∣∣)

Using the evolution equation for ut (xt ), and denoting Fu(u) = −B(u,u) − Au we find

ut(yt ) − ut (xt )

= u(y) − u(x) +
∫ t

0
Fu(us)(ys) − Fu(us)(xs)ds

+
∫ t

0
us(ys) · ∇us(ys) − us(xs) · ∇us(xs)ds +

∫ t

0

(
Q(ys) − Q(xs)

)
dWs.

Using this, similar to the proof of Lemma 6.14, an application of the BDG inequality gives

(6.9)
√

E(Rt )2 ! |w|t1/2E exp
(
C

∫ t

0
∥u∥Hr0

)
sup

s∈[0,t]

(
1 + ∥us∥2

H
)
.

The event Bt ⊂ , is chosen such that on Bt , w∗
t satisfies the following geometric con-

straint:
∣∣wt − w∗

t

∣∣ ≤ |wt − w| + ∣∣w∗
t − w

∣∣ ≤ t sup
s∈(0,t)

(∥∇us∥∞
(|ws | +

∣∣w∗
s

∣∣)) ≤ 1
2

∣∣w∗
t

∣∣

and, therefore, on Bt we have a lower bound for |wθ
t |:

∣∣wθ
t

∣∣ ≥ ∣∣w∗
t

∣∣ − ∣∣wt − w∗
t

∣∣ ≥ 1
2

∣∣w∗
t

∣∣.
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Using the fact that |∇wĥp| ≤ |w|−p−1∥ψp∥C1
V
Vβ0,η(u) for some β0 ≥ 1,

(6.10)

1Bt

∣∣∣∣

∫ 1

0
∇wĥp

(
ut , xt ,w

θ
t

)
dθ

∣∣∣∣

! ∥ψp∥C1
V
Vβ0,η(ut )1Bt

∫ 1

0

∣∣wθ
t

∣∣−p−1 dθ

! ∥ψp∥C1
V
Vβ0,η(ut )

∣∣w∗
t

∣∣−p−1

! ∥ψp∥C1
V

exp
(
Cp

∫ t

0
∥us∥Hr0 ds

)
|w|−p−1Vβ0,η(ut ).

Combining (6.8) with equation (6.10), using Cauchy–Schwarz, estimate (6.9) and Lemma 3.7
gives

(6.11) E1At∩Bt

∣∣∣∣

∫ 1

0
∇wĥp

(
ut , xt ,w

θ
t

)
dθ · Rt

∣∣∣∣ ! t1/2∥ψp∥C1
V
|w|−pVβ1,η(u)

for some β1 > β0 and all η ∈ (0,η∗). Again similar to the proof of Lemma 6.14, by density
of C̊∞

0 (H × Td × PTd) in C̊1
V we can take an approximating sequence of ψ

(n)
p converging to

ψp in C1
V such that ψ

(n)
p only depends on finitely many Fourier modes 5nu. Using the fact

that 5nut is finite dimensional, we conclude that

1At∩Bt

∣∣∣∣

∫ 1

0

(∇wĥp
(
ut , xt ,w

θ
t

)
dθ − (∇y − ∇x)hp

) · wt − w∗
t

t

∣∣∣∣

≤ |w|−p exp
(
C

∫ t

0
∥us∥Hr0

)
sup

s∈(0,t)
Vβ1,η(us)

(
Cnρ̃t + ∥∥Dvψp − Dvψ

(n)
p

∥∥
CV

)
,

where

ρ̃t = sup
s∈(0,t)

(∥us − u∥Hr0
+ dTd (xs, x) + 1As |ws − w| + 1As

∣∣w∗
s − w

∣∣).

Using the evolution equation for (ut , xt ,wt ) and the BDG inequality to deal with ρ̃t , an
analogous argument to the one in the proof of Lemma 6.14 implies that

lim
t→0

E1At∩Bt

∣∣∣∣

∫ 1

0

(∇wĥp
(
ut , xt ,w

θ
t

)
dθ − (∇y − ∇x)hp

) · wt − w∗
t

t

∣∣∣∣ = 0,

where the limit holds in CV̂p,β2,η
for some β2 large enough. Combining this with (6.11) and

the fact that Rt = 1At

wt−w∗
t

t − 1At B yields

lim
t→0

E1At∩Bt

∫ 1

0
∇wĥp

(
ut , xt ,w

θ
t

)
dθ · wt − w∗

t

t
= (∇y − ∇x)hp · B,

where the limit holds in CV̂p,β3,η
for β3 large enough.

On the complement Ac
t ∪ Bc

t , we use the fact that for each δ > 0,

1Ac
t ∪Bc

t
! t1+δ

(
sup

s∈(0,t)
∥∇us∥1+δ

L∞ + ∣∣w∗
t

∣∣−1−δ sup
s∈(0,t)

(∥∇us∥1+δ
L∞

(|ws | +
∣∣w∗

s

∣∣))1+δ
)

! t1+δ exp
(

2(1 + δ)

∫ t

0
∥us∥Hr0 ds

)
sup

s∈(0,t)
∥us∥1+δ

Hr0 ,
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and, therefore,

1
t
1Ac

t ∪Bc
t

(
ĥp(ut , xt ,wt ) − ĥp

(
ut , xt ,w

∗
t

))

≤ 1
t
1Ac

t ∪Bc
t

(|wt |−p + ∣∣w∗
t

∣∣−p)
Vβ0,η(ut )

! tδ|w|−p exp
(
Cp,δ

∫ t

0
∥us∥Hr0 ds

)
sup

s∈(0,t)
Vβ0+1,η(us)

which implies by the exponential estimates of Lemma 3.7 that the following limit holds in
CV̂p,β0+1,η

:

lim
t→0

1
t

E1Ac
t ∪Bc

t

(
ĥp(ut , xt ,wt ) − ĥp

(
ut , xt ,w

∗
t

)) = 0.

Putting all the limits together completes the proof. #

Lemma 6.13 is now a simple consequence of the previous two lemmas.

PROOF OF LEMMA 6.13. Applying Lemmas 6.14, and 6.15 to the splitting (6.5), we can
deduce

L(2)hp = −8(p)hp + Ep + (∇y − ∇x)hp · B.

Note that

Ep ≤ |w|1−p∥∇u∥L∞∥ψp∥CV Vβ,η(u)

Similarly, since |(∇y − ∇x)hp| ! |d(x, y)|−p−1∥ψp∥C1
V

and by Taylor’s theorem |B| ≤
|d(x, y)|2∥∇2u∥L∞ , we deduce that since p < 1,

∣∣Ep + (∇y − ∇x)hp · B∣∣ !
∣∣d(x, y)

∣∣1−p∥u∥W 2,∞∥ψp∥C1
V
Vβ,η(u) ! Vβ+1,η(u). #

We are now ready to complete the proof of Proposition 2.14.

PROOF OF PROPOSITION 2.14. Let L denote the formal generator of the Navier–Stokes
equations defined by equation (3.7) of Section 3. First, observe that for any β > 0, η ∈ (0,η∗)
we have for V = Vβ,η and all u ∈ Hσ+d−1 that

LV (u) =
(
L logV (u) +

∑

m∈K
|qm|2∣∣Du logV (u)em

∣∣2
)
V (u).

and, therefore, using the fact that
∑

|qk|2
∣∣Du logV (u)em

∣∣2 ≤ 8β2 + 8η2Q∥&u∥2
L2,

and applying inequality (3.8) of Lemma 3.6 we deduce that

LV (u) ≤
(
−η(ν − 8ηQ)∥&u∥2

L2 − νβ
∥∇u∥2

H σ

1 + ∥u∥2
H σ

+ C

)
V (u).

Note that η ≤ η∗ ensures that η
2 (ν − 16ηQ) is positive. Applying Lemma 3.3 implies that

∀δ > 0, ∃Cδ > 0 such that

LV ≤ −δ log
(
1 + ∥u∥2

H σ

)
V.
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We treat the right-hand side above by dividing into regions where ∥u∥H σ ≤ 1 and ∥u∥H σ > 1,
in the former case everything is bounded by a constant, in the latter case we can bound the
logarithmic factor below by log(2). This gives for all 0 < κ < log(2)δ, and some constant
C > 0,

−δ log
(
1 + ∥u∥2

H σ

)
V ≤ −κV + C.

As δ was arbitrary, it follows that for each κ > 0, we have the bound (for a suitable Cκ > 0),

(6.12) LV (u) ≤ −κV (u) + Cκ .

Note that inequality (6.12) is an infinitesimal version of a drift condition for Navier–
Stokes. However, V does not belong to the domain of L(2) in C̊V̂ , and so we must pro-
ceed with more care to deduce a corresponding drift condition on the semigroup Pt . Define
τn = inf{t > 0 : ∥ut∥H > n} (note τn → ∞ as n → ∞ with probability one). Applying Itô’s
formula (Theorem 7.7.5 [50]) to e8(p)tV (ut ) implies that

Eue
8(p)t∧τnV (ut∧τn) − V (u) = Eu

∫ t∧τn

0
e8(p)s(8(p)V (us) + LV (us)

)
ds,

≤ Eu

∫ t∧τn

0
e8(p)s((8(p) − κ

)
V (us) + C

)
ds.

As we know that E sups∈(0,t) V (us) < ∞ (e.g., from Lemma 3.7), we can use dominated
convergence to pass the n → ∞ limit on both sides of the above inequality to deduce

(6.13) e8(p)tPtV − V ≤
∫ t

0
e8(p)sPs

((
8(p) − κ

)
V (us) + C

)
ds,

where Pt denotes the Markov semigroup for the Navier–Stokes equations.
Recall that V takes the form

V = hp + Vβ+1,η,

where hp ∈ CV̂p,β,η
. Naturally, using the C0 semigroup property of P

(2)
t on functions in

C̊V̂p,β,η
and Lemma 6.13 we also find that

(6.14)
e8(p)tP

(2)
t hp − hp =

∫ t

0
e8(p)sP (2)

s

(
8(p)hp + L(2)hp

)
ds

≤
∫ t

0
e8(p)sC′PsVβ+1,η ds.

Using the fact that

P
(2)
t V = P

(2)
t hp + PtVβ+1,η,

we complete the proof by adding (6.14) and (6.13) and taking κ large enough so that κ −
8(p) ≥ C′ to conclude that there is a constant K such that

e8(p)tP
(2)
t V − V ≤ C

∫ t

0
e8(p)s ds ≤ Ke8(p)t . #

7. Correlation decay: Proof of Theorem 1.4.

PROOF OF THEOREM 2.2. Geometric ergodicity for the two-point process (ut , xt , yt ) as
in Theorem 2.2 follows from the general framework given in Theorem 2.4 and Conditions 1,
2, 3 and 4 listed there. A proof of the strong Feller property in Condition 1 was sketched in
Section 6.1, while topological irreducibility as in Condition 2 was obtained in Section 6.2.
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Our desired Lypaunov function V for the two-point process was identified in the previous
section the proof of Proposition 2.14, validating Condition 4, while Lemma 4.4 affirms Con-
dition 3 holds for this choice of V . #

It remains to complete the proof of Theorem 1.4, which occupies the remainder of the
paper.

Our goal is to prove the following. Let s > 0 and p ≥ 1 be fixed. Then there exists a
deterministic constant γ̂ = γ̂ (s,p) and a measurable function D : ,× H → [1,∞), with the
following property: for P ×µ-almost all (ω, u) ∈ ,× H and for all mean-zero f,g ∈ Hs , we
have

∣∣∣∣

∫
f (x)g

(
φt

ω,u(x)
)

dx

∣∣∣∣ ≤ D(ω, u)e−γ̂ t∥f ∥Hs∥g∥Hs .(7.1)

The proof proceeds in several steps: (1) establish correlation bounds in discrete time; and
(2) extending these correlation bounds to cover all real times t ≥ 0. At the end, we will
(3) estimate pth moments for the “random constant” D in terms of u.

NOTATION. Let V be the Lyapunov function appearing in Theorem 2.2 and note (see
Sections 2.4 and 6) that V(u, x, y) ≤ (V (u))2Ŵ (x, y), where V = Vβ,η for some β,η > 0
(see (2.2) in Section 2.4 for notation) and Ŵ ∈ L1(Leb).

Hereafter, s > 0, p ≥ 1 are fixed. Without loss of generality, we will assume s ∈ (0,1). Fix
as well γ̂ ∈ (0, α̂

2 ), where α̂ > 0 is the mixing rate as in Proposition 2.14 for the two-point
process; further constraints will be placed on γ̂ as we proceed. Throughout, γ̂ ′ ∈ (γ̂ , α̂

2 ) will
be a dummy parameter, also chosen appropriately. Given generic ω, u, we write φt = φt

ω,u for
short. Let f , g be fixed, smooth, mean-zero observables. Finally, for k = (k1, . . . , kd) ∈ Zd ,
we write |k| = |k|∞ = max{|ki |,1 ≤ i ≤ d}.

7.1. Correlation bounds in discrete time. Let {êk}k∈Zd
0

be the real Fourier basis of mean-

zero functions on Td (see, for instance, the notation in [42]).
Fix u ∈ H, regarded as a fixed initial condition for the velocity field process (ut ). By a

variant of the Borel–Cantelli argument given in Section 2.1, we have that for each (k, k′) ∈
Zd

0 × Zd
0 , the random variable

Nk,k′(u) = max
{
n ≥ 0 :

∣∣∣∣

∫
êk(x)êk′

(
φn(x)

)
dx

∣∣∣∣ > e−γ̂ ′nV (u)

}

is finite with probability 1, where the tail estimate

(7.2) P
{
Nk,k′(u) > n

} ! e−(α̂−2γ̂ ′)n

holds uniformly in u, k, k′. In particular, it holds that | ∫ ek(x)ek′(φn(x))dx| ≤
eγ̂ ′(Nk,k′ (u)−n)V (u) for all n ≥ 0. Hereafter, let us suppress the “u” (which remains fixed)
in Nk,k′ .

Expand

f =
∑

k∈Zd
0

fkek, g =
∑

k∈Zd
0

gkek,

so that
∣∣∣∣

∫
f (x)g

(
φn(x)

)
dx

∣∣∣∣ ≤ V (u)e−γ̂ ′n ∑

k,k′∈Zd
0

|fk||gk′ |eγ̂ ′Nk,k′(7.3)
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To form a comparison of the right-hand side of (7.3) with a Sobolev norm, observe that due
to the uniformity of the estimate (7.2) in k, k′, we have

P
{
eγ̂ ′Nk,k′ > |k|∣∣k′∣∣} ! (|k|∣∣k′∣∣)−

α̂−2γ̂ ′
γ̂ ′ ,(7.4)

again uniformly in k, k′. The right-hand side is summable over Zd
0 ×Zd

0 when γ̂ is sufficiently
small. Applying Borel–Cantelli to the countable collection of events Sk,k′ = {eγ̂ ′Nk,k′ >

|k||k′|}, we conclude that the measurable function3

K = max
{|k| ∨ ∣∣k′∣∣ : k, k′ ∈ Zd

0 and eγ̂ ′Nk,k′ > |k|∣∣k′∣∣}

satisfies the tail estimate P{K > ℓ} ! ℓ
2d− α̂−2γ̂ ′

γ̂ ′ uniformly in u. Observe that by definition,
we have eγ̂ ′Nk,k′ ≤ |k||k′| for all (k, k′) ∈ Zd

0 × Zd
0 with |k| ∨ |k′| > K .

Define

D̂ = max
|k̂|,|k̂′|≤K

e
γ̂ ′N

k̂,k̂′ .

Plugging the simple bound eγ̂ ′Nk,k′ ≤ D̂(1 +|k||k′|) into (7.3), we conclude that for all n ≥ 0,
∣∣∣∣

∫

Td
f (x)g

(
φn(x)

)
dx

∣∣∣∣ ≤ D̂V (u)

(∑

k

|k||fk|
)(∑

k

|k||gk|
)
e−γ̂ ′n

! D̂V (u)∥f ∥
H

d
2 +2∥g∥

H
d
2 +2e

−γ̂ ′n

To control the right-hand side in terms of Hs norms, we can compensate for reduced reg-
ularity of f , g by reducing the exponential decay rate. For this, we will use the following
standard approximation Lemma (cf. Lemma 4.2 in [22], where similar ideas are used to con-
trol correlation decay in terms of an H 1 norm).

LEMMA 7.1. Let 0 < s < s′ and let h ∈ Hs have zero mean. Then, for any ϵ > 0 there
exists a mean-zero hϵ ∈ Hs′

such that (i) ∥hϵ∥L2 ! ∥h∥L2 , (ii) ∥hϵ −h∥L2 ! ϵ∥h∥Hs and (iii)

∥hϵ∥Hs′ !s,s′ ϵ− s′−s
s ∥h∥Hs .

We apply the above with s′ = d
2 + 2 and for the value of s specified at the beginning of the

section. Fixing ϵ > 0, we estimate
∣∣∣∣

∫
f (x)g

(
φn(x)

)
dx

∣∣∣∣ ≤
∣∣∣∣

∫
fϵ(x)gϵ

(
φn(x)

)
dx

∣∣∣∣ + ∥g∥L2∥f − fϵ∥L2 + ∥fϵ∥L2∥g − gϵ∥L2

! D̂V
(
e−γ̂ ′nϵ− d+4−2s

2s + ϵ
)∥f ∥Hs∥g∥Hs .

Optimizing in ϵ on the right-hand side yields ϵ = e− 2sγ̂ ′
d+4 n, resulting in the estimate

∣∣∣∣

∫
f (x)g

(
φn(x)

)
dx

∣∣∣∣ ≤ D̂V e−γ̂ ′′n∥f ∥Hs∥g∥Hs ,(7.5)

where γ̂ ′′ := 2sγ̂ ′
d+4 (having absorbed an s-dependent constant into D̂).

3Given real numbers a, b > 0, we write a ∨ b = max{a, b}.
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7.2. Correlation bounds in continuous time. To estimate (7.1) at continuous times t ∈
R≥0, let t = n + t̂ , t̂ ∈ [0,1), n ∈ Z≥0. Applying (7.5), we have

∣∣∣∣

∫
f (x)g

(
φt

ω,u(x)
)

dx

∣∣∣∣ ≤ eγ̂ ′′
D̂(ω, u)V (u)∥f ∥Hs

∥∥g ◦ φ t̂
θnω,un

∥∥
Hse

−γ̂ ′′t .

We will estimate the factor ∥g ◦ φ t̂
θnω,un

∥Hs by

sup
t̂∈[0,1)

∥∥g ◦ φ t̂
ω′,u′

∥∥
Hs ≤ 6

(
ω′, u′)∥g∥Hs ,(7.6)

where 6 : , × H → [1,∞) is defined by (for some suitable constant C > 0),

6
(
ω′, u′) = exp

(
C

∫ 1

0

∥∥∇u′
t

∥∥
L∞ dt

)
.

To verify (7.6), we use the characterization ∥f ∥Hs ≈ ∥f ∥L2 + (
∫ ∫ |f (x)−f (y)|2

|x−y|2s+d dx dy)1/2 for
the Hs norm, s ∈ (0,1), to estimate

∥∥g ◦ φ t̂
ω′,u′

∥∥
Hs ! ∥g∥L2 +

(∫ ∫ |g(xt̂ ) − g(yt̂ )|2
|x − y|2s+d

dx dy

)1/2
! ∥g∥Hs

∥∥Dφ t̂
ω′,u′

∥∥s+d/2
L∞ .

The bound (7.6) now follows from Grönwall’s inequality.
Fix ϵ ≪ γ̂ ′′ and define

6(ω, u) = max
n≤M

6
(
θnω, un

)
,

where M := max{n ≥ 0 : 6(θnω, un) ≥ eϵn}, so that 6(θnω, un) ≤ eϵn6(ω, u) for all n (that
M is finite, hence 6 is defined and will be checked shortly). Overall, we have

∣∣∣∣

∫
f (x)g

(
φt

ω,u(x)
)

dx

∣∣∣∣ ≤ eγ̂ ′′
D̂V 6︸ ︷︷ ︸

=:D(ω,u)

∥f ∥Hs∥g∥Hse−(γ̂ ′′−ϵ)t .

Finally, we set ϵ = 1
100 γ̂ ′′ and γ̂ = γ̂ ′′ − ϵ. This completes the proof of the continuous-time

correlation estimate as in item (2) for any sufficiently small value of γ̂ .

7.3. Estimating moments of D(ω, u). With u fixed, let us now estimate moments
ED(ω, u)p by breaking up D ≈ D̂V 6 as above.

Let us first estimate the P-moments of 6. To start, by Lemma 3.10 applied at time t = 1,
∃D0 : , × H → R≥1 such that 6(ω′, u′) ! D0(ω

′, u′), where for any p ≥ 1, we can arrange
so that E(D0(·, u′))p ! V (u′). In particular,

P
(
6

(
θnω, un

)
> eϵn) ! V (u)e−ϵn

by Chebyshev’s inequality, hence by Borel–Cantelli the random time M = M(ω, u) is
almost-surely finite, with the tail estimate P(M > n) ! V (u)e−ϵn. Now,

E
(
6(·, u)

)p = E max
n≤M

(
6

(
θn·, un

))p

≤ E
∞∑

n=0

χn≤M
(
6

(
θn·, un

))p

≤
∞∑

0

(
P(M ≥ n)

)1/2(
E

(
6

(
θn·, un

))2p)1/2
.
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We already have the estimate P(M ≥ n) ! V (u)e−ϵn, while for the other term we have

E
(
6

(
θn·, un

))2p ! EV (un)! V (u)

using the tower property of conditional expectation and the drift condition for V . In total,
E(6(·, u))p !p V (u).

It remains to estimate pth moments of D̂. Note that although D̂ depends nontrivially on
the initial velocity u, all of our tails estimates for D̂ are uniform in u. In particular, all of the
following estimates are uniform in u:

ED̂p =
∞∑

K0=1

E1K=K0 max
|k|,|k′|≤K0

eγ̂ ′pNk,k′

≤
∞∑

K0=1

(
P{K = K0}

)1/2 ·
∥∥∥ max
|k|,|k′|≤K0

eγ̂ ′pNk,k′
∥∥∥
L2(,)

!
∞∑

K0=1

K
d
2 − α̂−2γ̂ ′

2γ̂ ′
0

∑

|k|,|k′|≤K0

∥∥eγ̂ ′pNk,k′ ∥∥
L2(,).

The ∥eγ̂ ′pNk,k′ ∥L2(,) terms on the right-hand side are all uniformly bounded (independent of
k, k′ and u) by (7.4) if γ̂ ′ is sufficiently small. Since there are ≈ K2d

0 such terms, we obtain

ED̂p !
∞∑

K0=1

K
5d
2 − α̂−2γ̂ ′

2γ̂ ′
0 ,

which provides a finite moment estimate when γ̂ ′ is sufficiently small.
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