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A B S T R A C T   

Today, businesses rely on numerous information systems to achieve their production goals and improve their 
global competitiveness. Semantically integrating those systems is essential for businesses to achieve both. To do 
so, businesses must rely on standards, the most important of which are data exchange standards (DES). DES focus 
on technical and business semantics that are needed to deliver quality and timely products and services. 
Consequently, the ability for businesses to quickly use and adapt DES to their innovations and processes is 
crucial. 

Traditionally, information standards are managed and used 1) in a platform-specific form and 2) usually with 
standalone and file-based applications. These traditional approaches no longer meet today’s business and in
formation agility needs. For example, businesses now must deal with companies and suppliers that use hetero
geneous syntaxes for their information. Syntaxes that are optimized for individual but have different objectives. 
Moreover, file-based standards and the usage specifications derived from the standards cause inconsistencies 
since there is neither a single standard format for each usage specification nor a single source of truth for all of 
them. 

As the number and types of information systems grow, developing, maintaining, reviewing, and approving 
standards and their derived usage specifications are becoming more difficult and time consuming. Each file-based 
usage specification is typically based on a different syntax than the standard syntax. As a result, each usage 
specification must be manually updated as the standard evolves; this can cause significant delays and costs in 
adopting the new and better standard versions. National Institute of Standards and Technology (NIST) in 
collaboration with the Open Application Groups Inc. (OAGi) has developed a web-based standard lifecycle 
management tool called SCORE to address these problems. The objective of this paper is to introduce the SCORE 
tool and discuss its particular functionality where a word-embedding technique has been employed along with 
other schema-matching approaches. Together they can assist standard users in updating the usage specification 
due to the release of new version of a standard leading to faster adaptations of DES to new processes.   

1. Introduction 

Mass customization is becoming commonplace in many, modern, 
manufacturing industries [1]. To be competitive, those industries must 
develop, in a timely and cost-effective fashion, new products, processes, 
and services. All of which must be based on a variety of emerging, digital 
technologies. Furthermore, these technologies have become the foun
dation for two important, manufacturing strategies: Industrie 4.0 and 
Smart Manufacturing [1–4]. Implementing these strategies, however, 
involves the integration of both the physical and the digital components. 

Examples of those components include automated robots, machining 
processes, cloud computing, data analysis (DA), and artificial intelli
gence (AI). The digital components, which can be viewed as information 
models and systems, interoperability has been recognized as an essential 
feature for integration. Moreover, the predominant approach to facili
tating interoperability is adopting well-designed, canonical, data models 
written in interchangeable formats, called data exchange standards (DES) 
[5]. Standards-based, data exchange, as opposed to the usual, 
point-to-point exchange, allows scalable integration among 
supply-chain-trading partners, software systems, process controllers, 
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machines, and devices [5–8]. DES are typically developed and main
tained through standards development organizations (SDOs) with con
tributions from supply-chain partners, manufacturers, and software 
vendors. In this way, DES provides a shared, interoperable, data model 
that can enable scalable and cost-effective integration. 

Traditionally, DES are managed and used in a platform-specific form 
and, usually, with standalone or file-based applications. Unfortunately, 
this traditional approach does not meet today’s agility needs. Those 
needs exist because businesses now must deal with fast changing busi
ness requirements and heterogeneous syntaxes. Each of which is opti
mized for individual and, possibly, different, production objectives. 
Moreover, file-based standards, and their usage specifications, were 
derived from the earlier standards that often cause inconsistencies. 
Those inconsistencies arose because there was neither a standard format 
for each usage specification nor a single source of truth for all of them. In 
addition, each file-based usage specification is typically based on a 
different syntax than the standard syntax. As a result, each usage spec
ification must be manually updated as the standard evolves, causing 
significant delays and costs in adopting the new and better versions of 
the standard. Finally, as the number and types of information systems 
continue to grow developing, reviewing, and approving new standards 
and creating and maintaining new usage specifications are becoming 
more difficult. 

To address these problems, NIST has been collaborating with the 
OAGi, a DES development organization, to create a web-based, standard, 
lifecycle-management tool called SCORE. This paper introduces the tool 
and discusses a particular function called Business Information Entity 
(BIE) [9] Uplifting in the tool. The BIE Uplifting function is a function 
that assists a user in updating the usage specification – whenever such an 
update is required. It is a utility built-on top of digitalization and com
munalization of DES and its usage specification. Although together they 
address many of the issues outlined earlier, migrating a usage specifi
cation from one standard release to another can still be a difficult task. 
That is because the migration requires schema matching. In this 
research, we explore and outline how a relatively powerful natural 
language process technique, namely word-embedding, may be engi
neered to assist users in a user-interactive, web-based application where 
response time and limited computing resource is of essence. 

The rest of the paper is structured as follows. Section 2 provides a 
brief overview of the SCORE tool with the main objective of introducing 
the BIE Uplifting function. Section 3 provides a literature review on 
schema matching. Section 4 describes the engineering and analysis of 
schema matchers employed in this research. Section 5 illustrates the 
implementation in SCORE. Finally, Section 6 provides a conclusion and 
remark. 

2. Overview of the score tool 

The SCORE tool employs the international standard for platform- 
independent representations called Core Component Specification 
(CCS). CCS is both an ISO standard [10] and a UN/CEFACT standard [9]. 
Although there are slight variations between the two standards, SCORE 
is compatible with both. SCORE realized the data model, associated with 
these standards, in a relational database to allow for improved data 
management. 

SCORE consists of two categories of functions 1) one to develop and 
maintain a DES and 2) one to develop and maintain usage specifications. 
The Open Applications Group Integration Specification (OAGIS), also 
known as ConnectSpec [11], a standard for enterprise and supply chain 
integrations, has been used extensively to validate those two functions. 
Today, SCORE is a mature tool. It is used officially for developing and 
maintaining the OAGIS standards; and it is deployed in large enterprises 
to manage their integration problems using OAGIS. In addition to the 
OAGIS standard, SCORE is being piloted for the ADAPT (and Agriculture 
DES) [12,13]. 

Usage specification, the focus of the second category of functions, is 

an information profile derived from different parts of the existing DES. 
As an information-based model, each specification provides a specific 
integration context. That model usually contains a subset of entire set of 
data elements; and each data element, in that subset, may have a defi
nition and a value domain. Both of which are more refined than those in 
the existing DES. When combined, they provide more specific in
structions to each code developer, who must implement the standard in 
their specific, and sometimes different, integration environment. In this 
case, different environment includes different types of middleware, 
business applications, and business and engineering processing tools. 

Fig. 1 illustrates two usage specifications of a DES object called In
spection Order. The left one is associated with the raw-material, testing 
context and the right one is associated with the finished-goods, testing 
context in a large food manufacturing enterprise. Fig. 2 illustrates a 
contextual definition of the Identifier field (selected in Fig. 1) instructing 
developers that it should be populated with a specific type of identifi
cation content from the Labs Information Management System (LIMS) 
[14]. LIMS is a sample tracking system typically used in a food and a 
drug manufacturing. 

SCORE can represent usage specifications as Business Information 
Entity (BIE) according to CCS. In the next section, BIE is described since 
its data will be used in examples when discussing ‘schema matchers’. 
Then, in the subsequent section, the BIE Uplifting function is introduced. 

2.1. BIE (Usage specification) representation 

In CCS, each DES is represented in a model called a Core Component 
(CC). BIEs are then derived from these existing CCs; but they are asso
ciated with a specific Business Context (BC). A BC that indicates the 
situation(s) in which CCs are applicable. There are a few ways to 
represent a BC [15–17]. The simplest way is based on a combination of 
context values from various context schemes as illustrated in Fig. 3. The 
same figure illustrates the eight, context dimensions that drive the 
different BIEs from the same CC as stipulated by the CC specification. 

Fig. 4 shows 1) various types of BIEs and CCs and 2) BIEs are derived 
from CCs (corresponding entities have a basis relation between them). 
Different types of CCs can be represented as a simple or complex, hier
archical, data structures where the complex ones can be composed of a 
collection of simple data structures. Specifically, ACC is a complex data 
structure, which comprises of ASCCs (a complex child structure) or BCCs 
(a simple child structure). ASCC structure reuses the ASCC Property, 
which is constructed from an optional qualification of the ACC with a 
property term. 

For example, the ‘Address’ and ‘Home Address’ ASCC properties can 
be constructed from the ACC ‘Address’. Similarly, a BCC reuses the BCC 
Property, which is constructed from a reusable Core Data Type (CDT) 
with an optional property called ‘term qualification’. For example, the 
property term ‘Tax’ can be added to the CDT ‘Amount. Type’ to 
construct the ‘Tax Amount’ BCC Property. In addition to structural re
lationships between these CCs, CC entities have dictionary information 
such as Dictionary Entry Name (DEN) and Definition that can be used as 
semantic sources for schema matching. BIEs inherit such dictionary in
formation from CCs and may add specifics as shown earlier in Fig. 2. 

CDTs on the other hand have dictionary information (e.g., Data Type 
Term, Property Term in its Supplementary Components) plus value 
domains that contribute to the semantics of the BCC Property. Fig. 5 
shows that the CDT consists of the CDT content component and the CDT 
supplementary component, each of which has a value domain repre
sented by the Primitive Type. For example, the CDT ‘Amount. Type’ has 
the CDT content component ‘Amount. Content’ and the supplementary 
component ‘Amount. Currency. Code’. The value domain of the content 
component is decimal, and that of the supplementary component is an 
international standard currency code list. The BDT inherits the CDT 
information. BDTs can restrict the value domains and specify the 
contextual definition. 

Finally, we show an example instantiation of the CC model using the 
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well-known purchase order document in Fig. 6. Dictionary Entry Names 
(DEN) are shown for each CC entity. BIEs derived from these CCs inherit 
these DENs and so as other information such as cardinalities and value 
domains, some of which may be restricted. Now, we turn to describing 
the BIE Uplifting functionality. 

2.2. BIE uplifting 

In the previous section, we described BIEs as profiles and restrictions 
of CCs. Both of which are present in any particular release of the DES. 
BIE Uplifting is a function that helps users transition their BIEs from 
being based on an older DES release to a newer one. It helps automate 
the migration process, which includes 1) determining where there are 
clear matches between data elements in the two releases, 2) providing 
suggestions when that is not the case, and 3) map and copy data from the 
old to the new entities. 

However, implementing the BIE Uplifting process is complicated by 
two factors: BIE extensions and DES changes. BIE extensions are needed 
when additional data elements must be added in the current BIE. Such 
data elements arise for two reasons. First, when new requirements that 
are not supported by existing CCs are uncovered during BIE creation. 
Second, there are proprietary and specific data elements that companies 
do not want included in the standard. 

Fig. 1. Parts of two BIEs that are refined from the inspection order CC in different BCs of food manufacturing.  

Fig. 2. Context definition of the field, identifier.  
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Fig. 3. Business context model according to CCS version 3.0 [9].  

Fig. 4. Relationship between BIE (usage specification) and core component (DES) [9].  
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In the case of the former, there are two types of changes: major and 
minor. A major change occurs when the new DES is based on backward- 
incompatible changes. For that reason, DES typically does not introduce 
major changes until there are significant, architectural adaptations. 
Examples include changes in normative syntax, underlying design con
ventions (e.g., meta-model), or data typing. Currently, BIE Uplifting 
does not consider these types of major changes. 

In the case of the latter, most minor changes are backward- 
compatible. Minor changes include 1) requirements introduced by 
new integration scenarios driven by BIE extensions, and changes in 
context dimensions such as those illustrated in Fig. 3; 2) bug fixes; 3) 
changes in an external source used by the DES. These changes could 
result in modifications in the data-element name, definition, structure, 
value domain, or deprecation. That final modification could lead to the 
eventual elimination of the data element. 

Migrating a BIE from an old to a new DES release will be impacted by 
these changes. These impacts occur because they require standard users 
to map and adapt the affected, existing, data elements to the data ele
ments in the new DES release. Since mapping and data restructuring is 
known to be a combinatorial problem, BIE Uplifting is intended to save 

users the time necessary for dealing with these complexities. It is also 
intended to enhance consistency and interoperability across BIEs 
sharing similar data elements. In this vein, schema matching can be 
beneficial to the BIE Uplifting function [18] and hence we turn to 
literature review on the topic. 

3. Literature review 

Most data exchange standards are based on information schemas. 
Analyzing standard DES for its development, adoption, and imple
mentation requires matching those schemas. Numerous techniques have 
been developed for automatic (or semi-automatic) schema matching. 
Starting in the late 90s’ and extending to the early 2000s’, common 
approaches relied on various schema information such as element 
names, data types, structural properties [19–23] and the different 
characteristics of instance data [24–27]. However, in most cases 
instance data are not available. Combining individual techniques 
(hybrid approach) that produce one or more similarity measures were 
the most common approach to achieve higher schema-matching accu
racy [28–35]. 

Fig. 5. Part of the core data type model from the CCS specification [9].  

Fig. 6. Example instantiation of the CC model using the purchase order business document.  
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Techniques for using schema information to produce similarity 
measures can generally be classified into two categories - lexical-based 
or linguistic-based. Lexical-based similarity measures compare two 
pieces of schema information as if they themselves are the meanings [29, 
31]. Linguistic-based approaches on the other hands extract the mean
ings from schema information using NLP techniques first and then 
compare them [36,37]. However, traditional NLP techniques, such as a 
bag-of-words model, have difficulty capturing semantic information in 
DESes, especially for large and complex schemas with heterogeneous 
data structures. Additionally, as the sizes of schemas increase, more 
computational resources and time are typically required such that it 
becomes user-unfriendly and cost prohibitive to use. 

Many NLP techniques use a vector-space model. The core advantage 
of representing words in a vector space is that vector operations can be 
used to solve language-processing tasks such as classification [38–40] 
and similarity matching [41,42]. However, earlier approaches in vector 
space models have limitations in dealing with semantic capturing. For 
instance, a bag-of-words model transforms given text documents into a 
set of words, including the number of occurrences. But it disregards 
other linguistic characteristics such as grammar or word order. There
fore, researchers increased the dimension of the vector space, (calling it 
“bag size”) to try to increase accuracy. Unfortunately, while such 
high-dimensional spaces require expensive, computational resources, it 
can still show poor results [43]. 

To improve those results, NLP researchers have developed efficient 
methods to represent inputs inside a “dense vector space” that retains 
linguistic characteristics. Linear transformation techniques such as LDA 
(Linear Discriminant Analysis) and PCA (Principal Component Analysis) 
have been adopted for reducing the dimensionality of that “dense vector 
space” [43]. Furthermore, recent studies have shown new methods for 
analyzing a distributed representation of words, namely word embed
dings, can provide significantly better performance than both LDA and 
PCA. These new methods rely on the application of a neural network 
[44–47]. 

Most word-embedding techniques share the same underlying idea, 
which is based on the concept popularized by Firth [48]. Instead of 
mapping words individually, his idea is to continuously take a sequence 
of words as an input and formalizing them into a vector space. More
over, other studies show that different input types such as paragraphs, 
documents, and even structured, data types could be a source of em
beddings [49–51]. The same idea can be applied to the schema- 
matching problem by identifying a candidate, data component using a 
set of nearby, data elements. 

Recently, word-embedding approaches such as word2vec, GloVe, 
and BERT, and ELO [44–47,52] in NLP have gained attention. Moreover, 
the application of word-embedding for graph analysis, called graph 
embedding, has also been widely researched for distributed represen
tations of graphs to encode the graph structure [53–55]. Because 
word-embedding techniques learn to represent words in a way that they 
have similar representations when their meanings are similar. In this 
way, word-embeddings with the semantic relationships can help schema 
matching algorithms to identify correspondences between data ele
ments. Recent schema matching research have shown promising results 
using word embedding techniques. Several research reviewed in [56] 
used embedding techniques on external knowledge to support schema 
matching with varying results. The paper itself studies the effects of 
varying knowledge sources and usage strategies and concluded that the 
choice of strategy has a greater impact on the matching result. Koutras 
et al. [57] proposed to use graph embedding on column data to represent 
the column semantics. However, in many cases including the BIE 
Uplifting situation, data are not available to use in schema matching. In 
addition, the work did not consider the semantics inhered in rela
tions/structure between tables. Hättasch et al. [58] commented that 
embedding based only on data could misguide the schema matching 
because data might be disjoint, but columns could still be semantically 
matched. They proposed a two-step embedding scheme that used, first, 

table and column information and then column data for matching. They 
demonstrated that the research showed promising results. Albeit it relies 
on data, which do not exist in our case. The approach also does not 
consider embedding based on relationship between table. Nevertheless, 
the table and column information embedding technique motivated us to 
further investigate word embedding for our problem context. That is, we 
would extend it to take into account relations. It should be noted that 
word-embedding techniques are attractive to our problem context from 
the computational perspective as well. Word embedding represents 
meaning of words in a lower dimensional space than other linear 
transformation methods, and similarities between all pairs of words in a 
given corpus can be precomputed. These computational characteristics 
make word-embedding techniques a promising linguistic-based simi
larity to be used in our user-interactive web-based application envi
ronment. Section 4.3 provides detail of our engineering and analysis to 
use word-embedding in a web server running on a small cloud compute 
without using instance data. It is used along with other lexical matchers 
in the overall hybrid scheme therefore we turn to that in the next 
section. 

4. Hybrid-schema matching using word-embedding 

Schema matching provides mapping suggestions by calculating 
similarities between components in two schemas. To simplify this 
calculation, we developed a ‘hybrid-schema matcher’ that aggregates 
individual matchers into a ‘pipes-and-filters’ architectural pattern. Each 
matcher has a scoring function with a range of [0, 1] that measures the 
similarity of the given, two input components passes the results to the 
next matcher through defined steps. All results obtained by the hybrid 
matcher are collected into a result set, which is then reported to the user. 
There are three matches in our hybrid matcher.  

• Identifier Matcher: evaluates the similarity of two components using 
its unique identifier on the record.  

• Field Matcher: evaluates the similarity between simple components 
(for example, a BCC Property) using a string-based, edit distance 
measure [59] based on their labels and value domain compatibilities.  

• Structural Matcher: evaluates the similarity between aggregate 
components (for example, an ASCC Property) using word-embedding 
techniques. 

Each matcher has a specific role. An identifier matcher reduces the 
size of inputs and computational complexity for other matchers. A field 
matcher and structural matcher are used when an identifier match is not 
applicable, for example when a component does not exist in a new 
standard release or vice versa. Field matcher is used for matching simple 
components, namely the BCCP. A structural matcher is for matching 
complex components, namely the ASCCP. In the following subsections, 
each match is described in more detail. 

4.1. Identifier matching 

Every component in SCORE is managed by a unique identifier, which 
is created using a pseudo-random, 128-bit number. Also, once it is 
assigned to the component, it will never change regardless of the 
number of future releases. It is conventional practice that standard de
velopers do not change the semantics of any component such that the 
semantics is totally disjoint from its previous version once it was 
released. Thus, if two input components have the same identifier, they 
are semantically the same component - even if some of their properties 
are different. The identifier matcher compares identifiers between a 
source and a target component and returns 1 if they are the same 
otherwise returns 0. 

Typically, due to interoperability concerns between various versions, 
components in a previous release are carried over to the next release 
through the lifecycle management process. Unless components are 
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marked deprecated in a new release, components with the same iden
tifier can be matched with little computational expense by the identifier 
matcher. Thus, the matcher acts as an important filter to reduce the size 
of inputs and hence computational complexity in subsequent matchers. 

4.2. Field matching 

The BCCP functions, as a basic property of an ACC, represent a 
simple, business datum that has only one relationship with the primitive, 
core, data types - such as String Type, Integer Type, Boolean Type, etc. 
All objects, properties, data-type terms, and representation terms of 
components in CCS follow the very same, specific, naming rules [60]. 
These rules are used to represent the semantics of each component and 
to measure the string similarity between two different components. In 
other words, we could say that if two BCCP components have the same 
property term and point to the same data type they are semantically the 
same. 

The string-similarity function attempts to quantify differences be
tween two strings. Although numerous methods have been developed in 
this area, the most widely adopted methods for measuring string simi
larity are based on the ‘edit distances’, popularized by the Levenshtein 
distance [59]. It counts the number of operations (insertion, deletion, 
and/or substitution) required to transform one string into another. In 
our implementation, the Levenshtein result is normalized by the 
maximum length of given terms, max(|ti|, |tj|), where |t| is a length of the 
term t. However, since the edit distance considers only character dif
ferences between two strings, it cannot capture other similarity char
acteristics in the term’s value domain. 

Consider the similarity between the BCCP, whose property term is 
‘Sequence Ordinal’, and the set of BCCPs whose property terms are 
[‘Sequence Code’, ‘Sequence Number’] as an example. If the similarity is 
based on the edit distance of the property terms only, the ‘Sequence 
Code’ shows a lower edit distance (i.e., higher similarity) than ‘Sequence 
Number’. However, ‘Sequence Number’ should have higher similarity to 
‘Sequence Ordinal’ because their value domains, respectively ‘Ordinal’ 
and ‘Number’, are more compatible than the domain between ‘Ordinal’ 
and ‘Code’. Value domains of BCCPs are represented by their data-type 
terms according to CCS. For this reason, the result from the Levenshtein 
edit distance is enhanced with a data-type-term, similarity function, 
DTT score. 

DTT score uses a hybrid approach combining measuring functions 
associated with 1) the data-type features such as allowed primitives, a 

default value domain and 2) the term similarity provided by WordNet 
[61]. First, BCCP records are categorized with 11 primitive types and 23 
data type terms defined in core component data type catalog v3 defi
nitions [62] as shown in Tables 1 and 2, respectively. Then DTT score is 
computed as follows. Let ti and tj be data type terms for a given pair of 
two BCCPs. Then, the similarity function between the pair’s data type 
terms is defined as 

DTT score
(
ti, tj

)
=

⎧
⎪⎨

⎪⎩

1.0 , ti = tj

tanh

(
∑

k∈{p, d, s}

θk⋅fk

)

, ti ∕= tj
(1)  

where fk is an evaluation function for each factor including the allow
able primitives (p), the default primitive (d), the term similarity based on 
WordNet (s), and θ is a coefficient for each function in the range (0, 1]. 
Precisely, fp is a normalized, scoring function based on counting 
matched, allowed, primitive types between ti and tj. In a sense, fd is a 
default-type indicator, which measures whether the default, primitive 
type is same or not, and fs is a synonym indicator which measures 
whether each term is contained in the other’s synonym list or not. 

It is clear from the DTT score definition that data-type terms will 
have a high similarity accuracy if they share allowable primitive types, a 
default value domain, and synonyms. For example, based on DTT score 
function the data-type term ‘Identifier’ is like the data-type terms 
‘Name’, ‘Code’, ‘Text’, ‘Value’, and ‘Ratio’ - but in descending order. It is 
important to note that all coefficients are adjustable in the application. 
Moreover, changing the value of the coefficients in DTT score only af
fects the distribution of similarity values, but not the order of the listed 
results. As we can see in Fig. 7, extreme values of coefficients make 
skewed distribution. That is, a more balanced set of coefficients spread 
out the similarity values and could help the user discern the similarities 
better. 

From our empirical assessment, the coefficients θp = 0.6, θd = 0.4, 
and θs = 0.3 produce a good spread of similarity values for the OAGIS 
dataset in SCORE. Fig. 8 shows similarity values of the DTT score for all 
data type terms with these coefficients. These coefficients are just 
default settings that can be adjusted by the user in the SCORE applica
tion. It should also be noted that Fig. 8 clusters data types that are known 

Table 1 
Primitive type definitions in CCS.  

Primitive type Description 

Binary Binary is a finite sequence of binary digits (bits). 
Boolean Boolean denotes a logical condition through a predefined 

enumeration of the literals true (The Boolean condition is 
satisfied) and false (The Boolean condition is not satisfied). 

Decimal Decimal is a subset of the real numbers, which can be represented 
by decimal numerals. 

Double Double is the IEEE double precision 64 bits floating point type. 
Float Float is the IEEE simple precision 32 bits floating point type. 
Integer Integer is a value in the infinite set (…−2, −1, 0, 1, 2…), a 

denumerably infinite list. 
String String is a sequence of characters in some suitable character set. 
Normalized 

String 
Normalized String is a string that does not contain the carriage 
return (#xD), line feed (#xA) nor tab (#x9) characters. 

Token A token is a string that does not contain the line feed (#xA) nor 
tab (#x9) characters, that have no leading or trailing spaces 
(#x20) and that have no internal sequences of two or more 
spaces. 

Time Duration Time Duration identifies a length of time in various time units as 
used in the Gregorian calendar: year, month, week, day, hour, 
minute, second, and fractions thereof. 

Time Point Time Point is a point in time to various common resolutions: year, 
month, week, day, hour, minute, second, and fractions thereof.  

Table 2 
Data type term mapping to value domain primitives in CCS data type catalog.  

Data type term Allowed primitives (Bold for default 
primitive) 

Synonym terms 

Amount Decimal, Double, Float, Integer Measure, 
Quantity 

Binary Object Binary  
Code Normalized String, String, Token  
Date Time Point  
Date Time Time Point  
Time Time Point  
Duration Time Duration  
Graphic Binary Picture 
Identifier Normalized String, String, Token  
Indicator Boolean  
Measure Decimal, Double, Float, Integer Amount, 

Quantity 
Name Normalized String, String, Token Identifier 
Number Decimal, Double, Float, Integer Amount 
Ordinal Integer Number 
Percent Decimal, Double, Float, Integer  
Picture Binary Video 
Quantity Decimal, Double, Float, Integer Measure, Amount 
Rate Decimal, Double, Float, Integer Value 
Ratio Decimal, Double, Float, Integer, String  
Sound Binary  
Text Normalized String, String, Token  
Value Decimal, Double, Float, Integer, 

Normalized String, String, Token 
Measure, Rate 

Video Binary Picture, Graphic  
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Fig. 7. Distribution frequencies of DTT_score values for different coefficients.  

Fig. 8. Similarity values of the DTT_score for all data type terms with θp = 0.6, θd = 0.4, and θs = 0.3.
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to be semantically. The cluster shows relatively darker blues in the 
center of each cluster indicating that the similarity function does it work 
quite well. 

Now, we can write the similarity measure for BCCPs (simBCCP) as 
follows, 

simBCCP
(
bi, bj

)
= wd⋅fd

(
bi[PT], bj[PT]

)

+(1 − wd)⋅DTT score
(
bi[DT], bj[DT]

) (2)  

where wd ∈ [0, 1] is a weight for the edit distance measure fd, b[PT] is the 
property term of BCCP, and b[DT] is the data type term of BCCP. 

To understand how much wd affect the similarity for a string 
matching and a type matching, we analyze the quantitative relationship 
between the data type classification of BCCPs and simBCCP using F1 score 
and C(ed) over wd as follows. F1 score (Eq. (3)) is the harmonic mean of 
precision and recall using simBCCP matcher over the whole OAGIS BCCP 
corpus. The BCCP with the highest simBCCP is considered the recall for a 
particular BCCP. 

F1 =
2⋅precision⋅recall
precision + recall

(3) 

C(ed) (Eq. (4)) is the average distance between simBCCP and edit 
distance matching results using a normalized distance between two el
ements in results d(x, y), 

C(ed) =

∑
x,yd(x, y)

N
, d(x, y) = 1 −

⃒
⃒ix − iy

⃒
⃒

N
(4)  

where x and y are respectively the elements in the edit distance results 
and simBCCP results, i is an index number of the result array, and N is a 
total number of results (i.e., BCCPs). 

Fig. 9 plots the F1 score and the closeness C(ed) over wd. It shows that 
there are no significant changes in F1 when wd is less than 0.5. And in the 
same range, the C(ed) indicates that simBCCP and edit distance provide 
some differing results. However, when wd is getting larger than 0.6, 
simBCCP results quickly approach the edit distance results, and the F1 
score also reduces quickly, i.e., the matching quality quickly degrades. 
The objective is to have a simBCCP that can offer some alternative 
matches beyond just using the edit distance, because in some cases, 
considering data type term is a better match. This graph shows that a wd 
between 0.1 and 0.5 can provide such simBCCP while the matching per
formance (F1) does not significantly degrade. 

4.3. Structural matching 

In this section, we describe how word-embedding techniques are 
deployed in the SCORE environment to fit its requirements and con
straints. First, SCORE is a web application. Most computing resources 
running web applications are not designed for machine learning. In 
particular, the SCORE tool is deployed with standard data (or in this 
case, a standard dataset). Although pre-trained models can be delivered 
to each system, each instance of deployment contains unique data that 
varies over time; and, hence, those models need to be retrained. In the 
case of SCORE, the locally unique dataset are the user-defined core 
components. Fortunately, the data size of these components is typically 
not big; and some content is typically harmonized into new releases of 
the standard. This characteristic should allow the model to be retrained 
in less than an hour. 

Table 3 depicts an example relationship between the structure of 
’Address’ types in OAGIS 10.7 and the UBL 2.3 standards [63]. Even if 
the two ’Address’ components are defined in different standards, they 
will share 1) properties with same names (e.g., both have ’Address Line’ 
(1) and ’Street Name’ (5)), and 2) semantically identical names (e.g., 
‘Postal Code’–‘Postal Zone’ (13) and ‘Geographical Coor
dinate’–‘Location Coordinate’ (14)). Cascading down the ‘Geographical 
Coordinate’ and ‘Location Coordinate’ may be structurally similar as 
well and hence their similarity should also contribute to similarity of the 
‘Address’ component. This suggests that when enough properties in two 
different components are shared, they can be thought of as semantically 
identical. Hence, word embedding techniques can measure the simi
larity between components via data-structure information. But only if 
we can characterize the relationship between data elements in the 
structure in the form of a sentence. 

Moreover, the vector-space model should be able to deal with un
known words or phrases in the datasets. This should be possible without 
retraining because it is not necessary that the trained model be updated 
every time an end-user creates a new component with a new term. 
Lastly, the model should be able to deal with the semantically same 
components in multiple releases without using their unique identifiers. 
This can occur, for example, when an end user extends the current 
release by adding a ‘Product’ component, which later gets incorporated 
into the next release as a standardized component. In this case, two 
‘Product’ components will have different component identifiers in 
different releases; but they should have very good similarity. In sum
mary, the chosen embedding technique for BIE Uplifting must be able to 

Fig. 9. A comparison of between F1 score and the closeness C(ed).

H. Oh et al.                                                                                                                                                                                                                                      



Journal of Industrial Information Integration 38 (2024) 100547

10

deal with limited computational resources and routinely changing data 
sets (sometimes every week). 

A baseline technique of word embeddings in this study is word2vec 
that produces distributed representations in a vector space with one of 
the two neural network architectures: Continuous bag-of-words (CBOW) 
and Continuous skip-gram (shortly, Skip-gram) [52]. Fig. 10 illustrates 
CBOW and Skip-gram model architectures. 

Both models are based on feedforward neural networks, but they 
have slightly different layer designs. CBOW takes surrounding words in 
an input layer to predict the current word. Skip-gram, on the other hand, 
predicts the context of the given current word to the output layer (See 
Fig. 10). Formally, the objective of CBOW and Skip-gram models for a 
given sequence of words in the corpus w1, w2, ⋯, wT is to maximize the 

following log-likelihoods: 

∑T

t
log p

(

wt

⃒
⃒
⃒
⃒
⃒

wt−s, ⋯, wt−1, wt+1, ⋯, wt+s) [CBOW] (5)  

∑T

t
log p

(

wt−s, ⋯, wt−1, wt+1, ⋯, wt+s

⃒
⃒
⃒
⃒
⃒

wt) [Skip − gram] (6)  

where s is a size of the window (i.e., a length of the context words) 
surrounding the word wt. 

Word2vec has been shown to outperform other embedding tech
niques such as Latent Semantic Analysis (LSA) [39]. However, it still has 
the same problem: each word has a distinct, vector representation, but 
that representation ignores the semantics of that word. 

FastText [64] is a recently developed method that extends word2vec 
model by using semantic information about the words. That information 
is based on the n-grams technique. In fastText, each word wt is repre
sented as a set of character n-grams and the word representation is 
substituted with a sum of other n-gram representations (i.e., wt =

∑

g∈Gw

vg 

where Gw is a set of n-grams appearing in the word w and vg is a vector 
representation of the n-gram g). Specifically, each word is bracketed 
with special symbols ‘<’ and ‘>’ at the beginning and at the end. Then 
the word is decomposed into a set of n-grams. For example, the word 
‘Location’ with the size of n-grams n = 3 would be a set of n-grams 
‘<Lo’, ‘Loc’, ‘oca’, ‘cat’, ‘ati’, ‘tio’, ‘ion’, ‘on>’, and ‘<Location>’. The 
original authors said that taking a range 3–6 for the size of n-grams 
provides a reasonable amount of sub-word information for both English 
and German datasets [64]. They also use an index of n-grams to bound 
the memory requirements. To generate the index, the variant 
Fowler-Noll-Vo hashing function is used to transform a set of n-grams to 
an integer value between 1 and K = 2 × 106. 

FastText model has two main advantages. First, it is interchangeable 
with other types of word2vec model, and the data format is compatible 
across all the subtypes. Thus, it brings flexibility when switching be
tween different models. Second, fastText model handles out-of- 
vocabulary words better than word2vec model. Because it uses n-gram 
decomposition therefore there are possibilities that the same tokens are 
already presented in the trained model when it encounters the out-of- 
vocabulary words. One drawback is that more computational re
sources are needed during the training process since it uses granular 
tokens. However, this can be offset by a linear transformation to shrink 

Table 3 
The structure of ’Address’ component in OAGIS 10.7 and UBL 2.3 standards 
[63].  

[OAGIS] [UBL] 
Address Address 

Name Address Type Code 
Attention Of Name Address Format Code 
Care Of Name Postbox (7) 
Address Line (1) Floor (6) 
Building Number (2) Room 
Building Name (3) Street Name (5) 
Block Name (4) Additional Street Name 
Street Name (5) Block Name (4) 
Street Type Coordinate Building Name (3) 
Floor (6) Building Number (2) 
Unit Description 
Stair Case Inhouse Mail 
Door Department 
Post Office Box (7) Mark Attention 
Delivery Point ID Mark Care 
Plot ID (8) Plot Identification (8) 
City Name (9) City Subdivision Name (10) 
City Sub Division Name (10) City Name (9) 
Country Sub Division Code (11) Postal Zone (13) 
Country Code (12) Country Subentity 
Postal Code (13) Country Subentity Code (11) 
Status Region 
Preference District 
Geographical Coordinate (14) Timezone Offset 
Usage Address Line (1)  

Country (12)  
Location Coordinate (14)  

Fig. 10. CBOW and skip-gram models in word2vec [52].  
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the training corpus. Below we describe this approach. 
Our approach to shrinking the training corpus is based on trans

forming the hierarchical structure of the complex component into a 
linear one and to eliminate duplicate series of terms in the sentence due 
to a circular reference (see the ASCC Property (ASCCP) example in 
Table 4). The transformation requires collecting all possible paths by 
traversing the ASCCP’s descendant nodes using a depth-first search 
(DFS) approach. If the DFS encounters a circular reference, the DFS 
backtracks along its previous path until the last node before the circular 
reference is found. Moreover, the size of the corpus is influenced by the 
depth of paths, a.k.a., the sentence length. The discussion of the 
appropriate sentence length is provided below. Without a limit on the 
sentence length, a corpus size would incur significant computational 
cost with little gain on the matching performance. 

Specifically, the potential, multiple transformations of an OAGIS 
dataset can result in approximately 3.6 billion sentences and 42.3 billion 
tokens. Table 4 illustrates an example of a dataset transformation into a 
training corpus for fastText using a ‘Item’ ASCCP with the maximum 
depth of the tree (i.e., a number of nodes from a root node to farthest leaf 
node) d = 3. Note that each term transformed from a dataset is 
concatenated with ‘_’ (underscore) character for multi-words to make all 
terms unique in the corpus. Also, each term in each specific release is 
made unique by the release number suffix in a bracket pair. For example, 
‘Address[10.6]’ and ‘Address[10.7]’ are treated as different terms in the 
corpus even if ‘Address’ component is the same through releases 10.6 
and 10.7. 

To evaluate which model shows better performance for the ASCCP 
matching task, we did a comparison between word2vec and fastText 
models. The comparison uses a precision measurement that counts the 
best-matched components in the target releases for all ASCCPs in the 
current release. In other words, it expects that the input ‘Address[10.6]’ 
will retrieve the best matched result ‘Address[10.7]’ in uplifting be
tween 10.6 and 10.7 releases. Each testing was performed on six OAGIS 
releases from 10.6 to 10.7.4 using various values of parameters with a 
maximum depth d and a dimensionality of the word vectors v. The word- 
embedding process is also run ten times per test and the average pre
cision value is then obtained. We take a range of 3 to 6 for the size of n- 
grams for fastText mode. Table 5 shows the comparison results. 

The fastText approach significantly outperformed word2vec for all 
cases. The comparison stopped at d = 5 because (1) it took more than an 
hour to generate a dataset corpus and train the model in 8-core CPU 
environments, (2) the performance was already quite good at d = 5, and 
(3) the cost benefit of d > 5 both from the computation time (over one 
hour) and monetary cost perspectives was not worth it. The evaluation 
also showed that changing the vector size v did not meaningfully in
crease the performance. 

5. Implementation 

As described above, the schema-matching process needed for BIE 
Uplifting takes two BIEs from two different releases. The source BIE is 
from an older release while the target BIE is in a newer release. The user 
seeks to migrate the source BIE nodes and their associated data to their 
counterparts in the new release. For this to happen, the source (s) and 
target (t) BIEs must comply with the following rules: 

Rule 1. The target release rt must be published later than the source 
release rs (i.e., rs < rt).  

– If rs = rt, the process would be able to substitute with the copying. 
Otherwise, if rs > rt , some BIEs could break backward compatibility. 

Rule 2. If BIEs is based on CCs in rs, there must be a CCt in rt where 
CCs ≅ CCt, such that GUID(CCs) = GUID(CCt), where GUID(x) is the 
globally unique identifier of the entity x.  

– If Rule 1 holds that is rs < rt , then Rule 2 holds in the same SCORE 
instance as SCORE does not allow a CC to be discarded between re
leases due to the backward compatibility business rule. 

Because of the compliance to Rule 2, CCs and CCt must be similar, 
typically CCt tree is a superset of CCs tree. This significantly reduces the 
Identifier Match processing time. The Field and the Structural Matchers 
address the components in the tree where the Identifier Matcher cannot 
match. To execute the Word Embedding Matcher in an instance of the 
SCORE tool, the instance needs to generate its own trained models for 
the source and the target releases (See Fig. 11). 

All the parameters in Fig. 11 will affect model’s training time and 
measurement performance. The default values for all parameters pro
vided relatively good, matching performance (over 90 % correct 
matches in the experiments) with model generation time of less than an 
hour using a general-purpose Amazon EC2 computer that is affordable 
for small companies such as OAGi. 

The BIE Uplifting user interface (UI) also has configurable prefer
ences including 1) the suggestion threshold and 2) the switch to include 
or exclude ASCCP or BCCP in the result set. These configurations allow 
for more focused display of the matched results and more efficient 
uplifting. In particular, the suggestion threshold limits the results with a 
similarity value greater than or equal to the threshold value. The ASCCP 
and BCCP switch allows the user to include or exclude the ASCCP or 
BCCP from the result set based on the user’s interest. 

Fig. 12 shows the BIE Uplifting UI of the source and target BIE. 
Components that are successfully matched by the Identifier Match do 
not have a selection box and they do not need any user action. When the 
user clicks a component that has a selection box in the Source BIE Tree 
pane on the left, suggestions for mapping based on the schema-matching 
algorithm show up in the Suggests box on the right most side in Fig. 12. 

Table 4 
An example of a dataset transformation using a ‘Item’ sample data with d =
3. A circular reference case is marked in bold.  

Item “Item” 

Bar Code ID “Item Bar_Code_ID” 
ID “Item Bar_Code_ID ID” 

Text  
Brand Name “Item Brand_Name” 

Text “Item Brand_Name Text” 
Disposition “Item Disposition” 

Location “Item Disposition Location” 
Coordinate  
Name  

Text  
Item “Item Disposition Item” 
Organization “Item Disposition Organization” 

Name  
Text  

Model Name “Item Model_Name” 
Text “Item Model_Name Text”  

Table 5 
Comparison word2vec (WV) and fastText (fT) with CBOW (CB) and skip-gram 
(SG) models by evaluating ASCCP matching tasks with a maximum depth 
d and a vector size v. The best results are marked in bold for each setting.   

v = 100 v = 200 v = 300 v = 400 Avg. 

d = 3 WV.SG 13.17 % 12.38 % 12.02 % 12.67 % 12.56 % 
WV.CB 12.20 % 12.07 % 11.46 % 10.89 % 11.66 % 
fT.SG 68.35 % 68.03 % 67.22 % 67.01 % 67.65 % 
fT.CB 50.48 % 49.39 % 48.45 % 49.58 % 49.48 % 

d = 4 WV.SG 28.16 % 28.25 % 27.59 % 27.71 % 27.93 % 
WV.CB 19.04 % 19.50 % 18.83 % 18.97 % 19.09 % 
fT.SG 94.90 % 94.94 % 94.83 % 94.84 % 94.88 % 
fT.CB 98.01 % 98.17 % 98.02 % 97.91 % 98.03 % 

d = 5 WV.SG 22.08 % 21.51 % 20.77 % 20.53 % 20.72 % 
WV.CB 14.57 % 14.89 % 14.64 % 14.61 % 14.68 % 
fT.SG 96.92 % 97.75 % 97.84 % 97.81 % 97.58 % 
fT.CB 98.18 % 98.34 % 98.37 % 98.41 % 98.33 %  
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Furthermore, if the user clicks on one of the suggestions, the corre
sponding component will be displayed in the Target BIE Tree pane. For 
example, in Fig. 12, the Code List component is selected in the Source BIE 
Tree; Code List Value and Codes components are displayed in the Sug
gestions box; and the user selects the Code List Value suggestion, so the 
Code List Value node is highlighted in the Target BIE Tree pane. The user 
can investigate details of the source and target nodes by expanding the 
tree and opening the detail page of each node. 

Once all the nodes in the source BIE tree are mapped to the nodes in 
the target BIE tree using the matching suggestions, the user specific 
implementation details in the source nodes are automatically trans
ferred to corresponding target nodes. In other words, the user does not 
have to create usage specifications manually for the new version of the 
standard. Currently, generating the data migration code is outside the 
scope of SCORE. 

6. Summary 

The SCORE tool provides advanced methodologies and software 
applications for data exchange standards (DES) management, which 
includes the functionalities needed for standard developers and users. 
Without such advancements, standard development, use, and mainte
nance would require significantly more effort, cost, and time. Moreover, 
it could instead take years for business and manufacturing organizations 

to achieve the cost savings and business agilities they expected from 
deploying both Industrie 4.0 and Smart Manufacturing. 

Over the past seven years, the Systems Integration division at NIST 
has led a collaboration with industry members in the OAGi Message 
Standard Semantic Refinement Methods and Tools working group 
(recently renamed the SCORE working group). The group’s goal was to 
develop a new framework, which includes new practices and tools for 
efficient DES development and use. That framework had led to a new 
practice for more efficient DES management, namely the SCORE tool 
[5]. 

SCORE has been used by the OAGi standard consortium to signifi
cantly reduce the time needed to develop and update its OAGIS DES - 
from between 6 and 12 months to every month. While this is good news, 
standard users also must deal with transitioning their usage specifica
tions, which are based on an older release of the standard, to be based on 
a new release more often. As part of the SCORE tool, the BIE Uplifting 
function was developed to help standard users make that transition. 
Without BIE Uplifting, companies would usually shy away from keeping 
their integration ecosystem up to date with new standard releases. This 
would cause interoperability issues over time because 1) different 
companies in the supply chain use different releases and 2) different 
departments within the same company keep extending the standard in 
varying ways. Because BIE Uplifting has combinatorial complexity due 
to the mapping task, this paper investigated a modern, AI- and machine 

Fig. 11. UI for generating word embedding models for the BIE uplifting.  

Fig. 12. BIE uplifting UI showing the source and target BIE tree and the suggested uplift target (top right).  

H. Oh et al.                                                                                                                                                                                                                                      



Journal of Industrial Information Integration 38 (2024) 100547

13

learning-based, schema matching to further assist the user. 
Apart from introducing a new framework for managing DES and its 

uses, the contribution of this paper includes an explanation of the 
various types of changes in the DES. Changes that users had to deal 
without our BIE Uplifting and without our hybrid-schema matcher that 
considers several semantic elements. Examples include identifier, data- 
element name, value domains, and structure. Additionally, we presented 
a field-matching similarity, which was further decomposed into lexical 
matching and value domain matching. Approaches to coming up with 
weights and coefficients across these similarity functions were pre
sented. In particular, the value domain (data type term) similarity was 
based on an activation function commonly used in natural language 
processing. It uses the data type name, WordNet, and primitives to 
calculate the similarity between different simple contents of data ele
ments. An analysis showed an interesting characteristic of the value 
domain similarity. That is, while a more evenly distributed coefficients 
for each of the field-matching component can make the overall simi
larity more discernable, they are insensitive to the similarity ranking. 
Selecting coefficients is a typical issue in a composite similarity measure. 
The analysis showed that using such a function in a composite similarity 
function can alleviate such issue. The field matcher and the identifier 
matcher are connected in a sequential pipeline to reduce the problem 
size for a more complex situation that needs structural consideration. 
For that, a structural similarity using two word-embedding techniques, 
namely word2vec and fastText, on a tree data structure were investi
gated due to their potential computational benefits when compared to 
other traditional linear transformation NLP techniques. The paper shows 
the engineering of word2vec and fastText to fit the hierarchical data and 
the computational constraint of web-based applications. It includes a 
depth-first tree traversal transformation logic to convert the hierarchical 
data into sentences, an algorithm to shrink the corpus, and an analysis to 
figure the appropriate depth and vector size. For our dataset, the 
research showed that fastText outperformed word2vec, while increasing 
the vector size over 100 does not give significant gain and the maximum 
depth of 4 or 5 gives reasonably good matching performance at over 98 
%. Although recently proposed word-embedding techniques, such as 
BERT, may perform better for mappings, our study showed that using 
fastText with these parameter values still provides acceptable perfor
mance while using affordable computational time and resources. Since 
we took into account the feasibility in terms of workloads in business 
systems, the affordability is based on the budget available to the typi
cally small, SDOs and the desired, user-response time from their users. 

7. Future work 

The machine-learning-based BIE Uplifting showed promising results 
based on industry feedback. Two comments were provided that include 
1) the capability would also be useful for standard mapping tasks, and 2) 
context definitions and deprecation information should be considered in 
the matchers in addition to data element labels and data types. Part of 
our research is to address the latter comment. It will involve under
standing the trade-off between matching performance and the addi
tional computational resources needed to incorporate the required, 
additional data. 

While SCORE has been used successfully to manage the OAGIS 
standard development and use, additional work is needed to incorporate 
schema matching to be used by industry practitioners particularly from 
the cost vs. value proposition perspective. One of the future works will 
focus on the ability to host and handle other standards that use different 
naming rules and usages. Industry users would like to maintain map
pings between their data definitions and these evolving, data standards. 
There are also other growing industry needs for 1) a computer-aided, 
semantic, gap analysis between an (for example) an enterprise-level, 
application interface definition and the target DES and 2) the semantic 
matching between enterprise-level-application vocabulary (business 
term) or another DES and the target DES. We believe schema matchers 

will offer a great value proposition to them if ease of maintenance and 
system responsiveness are maintained. However, it will be much more 
computationally intensive to match between two different standards or 
between an application interface definition and a standard. This will 
happen because the identifier matcher cannot be used to filter the tree 
for the field and structural matchers. Furthermore, while exploring other 
embedding technique such as graph embedding could be another 
interesting dimension to explore, developing a strategy where compu
tational cost and time are acceptable to the user and organization will be 
a challenge as additional steps are needed. 
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