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Dimer tree algebras are a class of non-commutative Gorenstein 
algebras of Gorenstein dimension 1. In previous work we 
showed that the stable category of Cohen-Macaulay modules 
of a dimer tree algebra A is a 2-cluster category of Dynkin 
type A. Here we show that, if A has an admissible action 
by the group G with two elements, then the stable Cohen-
Macaulay category of the skew group algebra AG is a 2-cluster 
category of Dynkin type D. This result is reminiscent of and 
inspired by a result by Reiten and Riedtmann, who showed 
that for an admissible G-action on the path algebra of type 
A the resulting skew group algebra is of type D. Moreover, 
we provide a geometric model of the syzygy category of AG
in terms of a punctured polygon P with a checkerboard 
pattern in its interior, such that the 2-arcs in P correspond 
to indecomposable syzygies in AG and 2-pivots correspond 
to morphisms. In particular, the dimer tree algebras and 
their skew group algebras are Gorenstein algebras of finite 
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Cohen-Macaulay type A and D respectively. We also provide 
examples of types E6, E7, and E8.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar 

technologies.
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1. Introduction

We introduced the class of dimer tree algebras in [32]. A dimer tree algebra A is the 
Jacobian algebra Jac(Q, W ) of a quiver Q without loops and 2-cycles together with a 
canonical potential W satisfying the following two conditions. Every arrow of Q lies 
in at least one oriented cycle, and the dual graph of Q is a tree. The latter condition 
explains half of the terminology “dimer tree”. The other half stems from the fact that 
every dimer tree algebra induces a dimer model on the disk, also known as Postnikov 
diagram. These dimer models appear in cluster structures on Grassmannians as well as in 
mathematical physics. For example, the Jacobian algebras arising from the coordinate 
rings of the Grassmannians Gr(3, n) are dimer tree algebras. Dimer models and their 
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algebras have been studied extensively, see [21,26,23,8,27] and the references therein; for 
their connection to homological mirror symmetry, see [12].

Dimer tree algebras are non-commutative Gorenstein algebras of Gorenstein dimen-
sion 1 [24]. Therefore the category of (maximal) Cohen-Macaulay modules CMPA of a 
dimer tree algebra A is equivalent to the category of syzygies over A. Furthermore, the 
stable category CMPA is a triangulated 3-Calabi-Yau category [24] that is equivalent to 
the singularity category of A [14].

In our previous work [32,33], we introduce a derived invariant, the total weight of a 
dimer tree algebra A. We show that the total weight is an even integer 2N . We then 
construct a regular (2N)-gon S equipped with a certain checkerboard pattern and show 
that there are equivalences of triangulated 3-Calabi-Yau categories

CMPA ∼= DiagS ∼= C2
AN−2 (1.1)

between the stable Cohen-Macaulay category CMPA of A, the combinatorial category 
of 2-diagonals DiagS in S and the 2-cluster category C2

AN−2
= Db(mod kQ)/τ−1[2] of 

Dynkin type AN−2. The latter equivalence was shown earlier in [9]. Let us point out that 
we use the notation of Thomas [34] for the higher cluster categories which is different 
from that of Iyama [3]. In our notation the original cluster category of [13] is the 1-cluster 
category.

In particular the number of indecomposable Cohen-Macaulay modules is finite, and 
equal to N(N − 2).

In the commutative case, the problem of classifying commutative Gorenstein rings R of 
finite Cohen-Macaulay type has been studied in the 80s by several authors [5,7,15,17,25]. 
In the case where R has Krull dimension 2, the classification is in terms of Dynkin 
diagrams of type A,D,E. In fact, the stable Cohen-Macaulay category is equivalent to 
the 0-cluster category Db(mod kQ)/τ−1[0], where Q is a Dynkin quiver of type A,D,E. 
Much more recently, in [3], it was shown that the stable Cohen-Macaulay category over 
a Gorenstein isolated singularity is equivalent to some higher cluster category, generally 
not of finite type. It is interesting to note that their result also applies to the centers 
of the Jacobian algebras arising from consistent dimer models on a torus; the Cohen-
Macauley category of the center is shown to be equivalent to the 1-cluster category of an 
algebra obtained by cutting arrows of a perfect matching from the quiver and removing 
a source vertex of the resulting quiver.

For non-commutative Gorenstein rings, the question of finite Cohen-Macaulay type is 
wide open. For the subclass of Jacobian algebras of a quiver with potential, we know from 
[24] that the stable Cohen-Macaulay category is a triangulated 3-Calabi-Yau category. 
On the other hand, it is shown in [1] that the finite triangulated 3-Calabi-Yau categories 
are exactly the 2-cluster categories of Dynkin types A,D,E. There is thus a strong 
analogy to the case of commutative Gorenstein rings of dimension 2.
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We say that a Jacobian algebra is of Cohen-Macaulay type An, Dn or En, if its stable 
Cohen-Macaulay category is a 2-cluster category of this type. Our result explained above 
shows that the class of dimer tree algebras is of finite Cohen-Macaulay type A.

In this paper, we construct a class of Jacobian algebras of Cohen-Macaulay type D
and give examples for types E6, E7, E8 as well. These results provide further evidence 
for the analogy to the commutative case.

Let us now explain the construction of our class of algebras that have Cohen-Macaulay 
type D. We obtain these algebras as skew group algebras AG of a dimer tree algebra 
A with respect to the action of a group G of order 2. This construction is inspired by 
the work of Reiten and Riedtmann in 1985 [28], which in particular provided a way to 
realize path algebras of certain Dynkin quivers of type D as skew group algebras of path 
algebras of Dynkin quivers of type A. In our situation, the skew group algebra is again 
a Jacobian algebra of a quiver with potential, thanks to a result of [4].

Our construction is very general. Indeed, every dimer tree algebra gives rise to several 
of these skew group algebras — one for each boundary arrow of the quiver of the dimer 
tree algebra, see Proposition 4.9. We show that the G-action on the dimer tree algebra A
induces a G-action on the Cohen-Macaulay category CMPA as well as on the associated 
checkerboard polygon S in Proposition 4.11. We then prove in Theorems 5.1 and 5.2 that 
our equivalences (1.1) carry over to equivalences of triangulated 3-Calabi-Yau categories

CMPAG ∼= ArcP ∼= C2
D(N+1)/2

(1.2)

between the stable Cohen-Macaulay category of the skew group algebra AG, the com-
binatorial category of 2-arcs on the punctured N -gon and the 2-cluster category of 
Dynkin type D(N+1)/2. In particular, the number of indecomposable non-projective 
Cohen-Macaulay modules is equal to N(N + 1)/2.

Furthermore, our checkerboard pattern on the 2N -gon S induces a checkerboard pat-
tern on the punctured N -gon P. As in the case of dimer tree algebras, the checkerboard 
pattern allows us to construct the complete Auslander-Reiten quiver of the Cohen-
Macaulay category of the skew group algebra, see Theorem 6.5. Indeed, for every 2-arc γ
in ArcP, the crossing points of γ with the checkerboard pattern determines a projective 
presentation of the corresponding Cohen-Macaulay module Mγ . The syzygy functor Ω, 
which is also the inverse shift in the triangulated category CMPAG, is given geometri-
cally as a rotation by 2π/N of P. Therefore the complete projective resolution of Mγ is 
determined by the rotation orbit of the 2-arc γ. In particular, the projective resolution is 
periodic of period N or 2N . In Definition 6.6, we give a simple method to compute the 
total weight N directly from the quiver of the (basic version of the) skew group algebra.

As applications, we obtain in Corollary 6.7 that the indecomposable Cohen-Macaulay 
modules are rigid and extensions between two indecomposables correspond to crossing 
points between the associated 2-arcs in the punctured disk. We further show in Propo-
sition 6.8, that the A-module M ⊕ σM is τ -rigid if and only if the induced AG-module 
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M ⊗A AG is τ -rigid, where σ is the nontrivial element of G of order 2. We conjecture 
that every indecomposable Cohen-Macaulay module over A and AG is τ -rigid.

Several examples of the construction are given in section 7. We point out that not 
every Jacobian algebra of Cohen-Macaulay type D can be realized as the skew group 
algebra of a dimer tree algebra; an example is given in section 7.3. This should not be 
surprising, because it is also the case that not every path algebra of type D can be 
realized as a skew group algebra of an algebra of type A. In section 7.4, we illustrate 
the relation to dimer models in an example. Finally, we provide examples of Jacobian 
algebras of Cohen-Macaulay types E in section 7.5.

2. Recollections

Let k be an algebraically closed field. If Λ is a finite-dimensional k-algebra, we denote 
by mod Λ the category of finitely generated right Λ-modules. Let D denote the standard 
duality D = Hom(−, k). If QΛ is the ordinary quiver of the algebra Λ, and i is a vertex of 
QΛ, we denote by P (i), I(i), S(i) the corresponding indecomposable projective, injective, 
simple Λ-module, respectively.

Let rad Λ denote the Jacobson radical of Λ. If M ∈ mod Λ, its radical is defined as 
rad M = M(rad Λ) and its top as topM = M/rad M . Thus in particular topP (i) =
S(i). Given a module M , we denote by addM the full subcategory of modΛ whose objects 
are direct sums of summands of M . For further information about representation theory 
and quivers we refer to [6,31].

2.1. Basic algebras

For every finite dimensional algebra Λ over k there exists a complete set of primitive 
orthogonal idempotents e1, e2, . . . en such that the Λ-module Λ decomposes into a sum 
on indecomposable projective modules Λ = ⊕n

i=1eiΛ. The algebra Λ is said to be basic
if the eiA are pairwise non-isomorphic. In that case, one can define the quiver of the 
algebra, whose vertex set is in bijection with the set of idempotents e1, . . . , en.

If Λ is not basic, we can choose a subset ej1 , . . . , ejm of idempotents such that the 
ejkΛ are pairwise non-isomorphic and such that every eiΛ is isomorphic to one of the 
ejkΛ. Let e =

∑m
k=1 ejk . Then the algebra Λb = eΛe is a basic algebra that is Morita 

equivalent to Λ, which means that there is an equivalence of categories

mod Λ ∼= mod Λb,

see for example [6, Corollary 6.10].

2.2. Cohen-Macaulay modules over 2-Calabi-Yau tilted algebras

Now let Λ be a 2-Calabi-Yau tilted algebra. Thus Λ is the endomorphism algebra of a 
cluster-tilting object in a 2-Calabi-Yau category. A Λ-module M is said to be projectively 
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Cohen-Macaulay if ExtiΛ(M, Λ) = 0 for all i > 0. In other words, M has no extensions 
with projective modules.

We denote by CMPΛ the full subcategory of modΛ whose objects are the projectively 
Cohen-Macaulay modules. This is a Frobenius category. The projective-injective objects 
in CMP Λ are precisely the projective Λ-modules. The corresponding stable category 
CMP Λ is triangulated, and its inverse shift is given by the syzygy operator Ω in mod Λ.

Moreover, by Buchweitz’s theorem [14, Theorem 4.4.1], there exists a triangle equiv-
alence between CMP Λ and the singularity category Db(Λ)/Db

perf (Λ) of Λ. Keller and 
Reiten showed in [24] that the category CMPΛ is 3-Calabi-Yau.

It was shown in [20] that if M ∈ mod Λ is indecomposable then the following are 
equivalent.

(a) M is a non-projective syzygy;
(b) M ∈ ind CMPΛ;
(c) Ω2

ΛτΛM
∼= M .

We may therefore use the terminology “syzygy” and “Cohen-Macaulay module” in-
terchangeably.

Two algebras are said to be derived equivalent if there exists a triangle equivalence 
between their bounded derived categories. Two algebras are said to be singular equivalent
if there exists a triangle equivalence between their singularity categories.

2.3. Quivers with potentials

A quiver Q = (Q0, Q1, s, t) consists of a finite set of vertices Q0, a finite set of arrows 
Q1 and two maps s, t : Q1 → Q0, where s is the source and t is the target of the arrow. 
Thus if α ∈ Q1 then α : s(α) → t(α).

A potential W on a quiver Q is a linear combination of non-constant cyclic paths. For 
every arrow α ∈ Q1, the cyclic derivative ∂α is defined on a cyclic path α1α2 . . .αt as

∂α(α1α2 . . .αt) =
∑

p : αp=α

αp+1 . . .αtα1 . . .αp−1

and extended linearly to the potential W .
The Jacobian algebra Jac(Q, W ) of the quiver with potential is the quotient of the 

(completed) path algebra kQ by (the closure of) the 2-sided ideal generated by all partial 
derivatives ∂αW , with α ∈ Q1. Two parallel paths in the quiver are called equivalent if 
they are equal in Jac(Q, W ).

If Q has no oriented 2-cycles then Jac(Q, W ) is 2-Calabi-Yau tilted by [2].
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2.4. Translation quivers and mesh categories

We review here the notions of translation quiver and mesh category from [29,22]. 
These notions are often used in order to define a category from combinatorial data.

A translation quiver (Γ, τ) is a quiver Γ = (Γ0, Γ1) without loops together with an 
injective map τ : Γ′

0 → Γ0 (the translation) from a subset Γ′
0 of Γ0 to Γ0 such that, for 

all vertices x ∈ Γ′
0, y ∈ Γ0, the number of arrows from y → x is equal to the number of 

arrows from τx → y. Given a translation quiver (Γ, τ), a polarization of Γ is an injective 
map σ : Γ′

1 → Γ1, where Γ′
1 is the set of all arrows α : y → x with x ∈ Γ′

0, such that 
σ(α) : τx → y for every arrow α : y → x ∈ Γ1. From now on we assume that Γ has no 
multiple arrows. In that case, there is a unique polarization of Γ.

The path category of a translation quiver (Γ, τ) is the category whose objects are the 
vertices Γ0 of Γ, and, given x, y ∈ Γ0, the k-vector space of morphisms from x to y is 
given by the k-vector space with basis the set of all paths from x to y. The composition 
of morphisms is induced from the usual composition of paths. The mesh ideal in the 
path category of Γ is the ideal generated by the mesh relations

mx =
∑

α:y→x

σ(α)α

for all x ∈ Γ′
0.

The mesh category of the translation quiver (Γ, τ) is the quotient of its path category 
by the mesh ideal.

2.5. 2-cluster categories

We recall the definition of 2-cluster categories and their geometric models in Dynkin 
types A and D given by Baur and Marsh [9,10].

We use the notation of Thomas [34]. Thus the 2-cluster category C2 is defined as

C2
H = Db(modH)/τ−1[2],

where H is a hereditary algebra, τ is the Auslander-Reiten translation in the bounded 
derived category Db(modH) and [2] denotes the second shift.

Remark 2.1. We point out that this terminology is different from Iyama’s, who would 
rather call this category a 3-cluster category in order to reflect the fact that it is 3-
Calabi-Yau. Here we follow Thomas and call it a 2-cluster category, because the definition 
involves the second shift.

Baur and Marsh gave geometric models for the C2
H in the case where the algebra H

is of Dynkin type A [9] or D [10]. In type A the 2-cluster category is equivalent to the 
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category Diag(S) of 2-diagonals in a regular polygon S, and in type D the 2-cluster 
category is equivalent to the category Arc(P) of 2-arcs in a punctured polygon P.

We point out that the results by Baur-Marsh are more general than what we present 
here. Indeed they obtain geometric models for m-cluster categories for all m ≥ 2. The 
case m = 1 had been done in [16,30]. In this paper, we shall only need the case m = 2, 
and we adapt the presentation and notation accordingly.

2.5.1. Dynkin type A
Let H be a path algebra of type AN−2 and C2

AN−2
the 2-cluster category. Let S = S2N

be a regular polygon with 2N vertices and label the vertices 1, 2, . . . , 2N in clockwise 
order around the boundary. For i, j ∈ {1, 2, . . . , 2N}, i ̸= j, we denote by (i, j) the 
straight line connecting i and j. We say (i, j) is a boundary segment of S if i and j are 
neighbors on the boundary of S, and otherwise, we call (i, j) a diagonal in S.

A diagonal (i, j) is called a 2-diagonal if cutting S along (i, j) will produce two poly-
gons that have an even number of vertices. In other words, (i, j) is a 2-diagonal if and 
only if |j − i| is odd.

The 2-diagonals are the indecomposable objects in the category Diag(S). The irre-
ducible morphisms are given by the 2-pivots defined below.

A 2-diagonal (i, j) admits the following 2-pivots,

(i, j + 2)

(i, j)

(i + 2, j)

unless the target of the pivot is not a 2-diagonal but a boundary segment. The addition 
in the coordinates is modulo 2N . Thus a 2-pivot fixes one endpoint of the diagonal 
and moves the other endpoint two positions further along the boundary in clockwise 
direction.

The Auslander-Reiten translation τ of a 2-diagonal (i, j) is given by τ(i, j) = (i −
2, j − 2). Hence τ is given geometrically as a rotation by 2π/N .

This data defines a translation quiver ΓDiag(S) with 2-diagonals as vertices, 2-pivots as 
arrows and translation τ , see the top picture in Fig. 1 for the case N = 7. The category 
Diag(S) is defined as the mesh category of Γ.

Theorem 2.2. [9] There is an equivalence of categories

ΘA : Diag(S2N ) → C2
AN−2 .

This equivalence induces an isomorphism from the quiver ΓDiag(S) to the Auslander-
Reiten quiver of the 2-cluster category.
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(11,8) (13,10) (1,12) (3,14) (5,2) (7,4) (9,6) (11,8)

(13,8) (1,10) (3,12) (5,14) (7,2) (9,4) (11,6)

(13,6) (1,8) (3,10) (5,12) (7,14) (9,2) (11,4) (13,6)

(1,6) (3,8) (5,10) (7,12) (9,14) (11,2) (13,4)

(1,4) (3,6) (5,8) (7,10) (9,12) (11,14) (13,2) (1,4)

(6,6)- (1,1)- (3,3)- (5,5)- (7,7)- (2,2)- (4,4)- (6,6)-

(6,6)+ (1,6) (1,1)+ (3,1) (3,3)+ (5,3) (5,5)+ (7,5) (7,7)+ (2,7) (2,2)+ (4,2) (4,4)+ (6,4) (6,6)+

(1,4) (3,6) (5,1) (7,3) (2,5) (4,7) (6,2) (1,4)

Fig. 1. Both pictures illustrate the geometric realizations of 2-cluster categories. The top picture shows the 
AR-quiver of the 2-cluster category of A5, where the labels are the 2-diagonals in the 14-gon in accordance 
with Theorem 2.2. The bottom picture shows the AR-quiver in type D4, where the vertices are labeled by 
the 2-arcs in the punctured 7-gon as in Theorem 2.3. Vertices with the same label have to be identified.

2.5.2. Dynkin type D
Now let N ≥ 7 be an odd integer and H be a path algebra of type D(N+1)/2. Let 

C2
D(N+1)/2

be the 2-cluster category. Let P = PN denote a regular polygon with N vertices 
and one puncture in the center. Label the vertices 1, 2, . . . , N in clockwise order around 
the boundary. For i, j ∈ {1, 2, . . . , N}, i ̸= j, we denote by (i, j) (the homotopy class of) 
a curve without selfcrossings from i to j that goes clockwise around the puncture. In 
other words, the puncture lies on the right of the curve when traveling along from i to 
j. Note that (i, j) ̸= (j, i). Furthermore, we denote by (i, i) (the homotopy class of) the 
curve that starts at i goes clockwise around the puncture once and ends at i. We call 
the curves (i, i) loops and in our figures we often draw them as a straight line from i to 
the puncture. See Fig. 2 for an illustration.

We say (i, j), with i ̸= j, is a boundary segment of P if i and j are neighbors on the 
boundary of S, and otherwise, we call (i, j) an arc in S. Furthermore, for each loop (i, i), 
we define two arcs which we denote by (i, i)+ and (i, i)−.

Every arc cuts the punctured polygon P into two pieces, one of which is a polygon 
and the other a punctured polygon. An arc (i, j) is called a 2-arc if the polygon piece 
obtained by cutting along (i, j) has an even number of vertices.3 Here we agree that the 
arcs (i, i)± are 2-arcs because the resulting polygon has N + 1 vertices since the vertex 
i splits into two vertices. Examples of 2-arcs are given in Fig. 2.

For i ̸= j, we can reformulate the condition by saying that an arc (i, j) is a 2-arc if 
and only if the residue class of j− i (mod N) is odd. For example the arc (6, 2) in Fig. 2
is a 2-arc since 2 − 6 = −4 ≡ 3 (mod 7) is odd. On the other hand, the curve (2, 6) is 
not a 2-arc.

3 Note that since N is odd, the punctured polygon piece will then have an odd number of vertices.
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Fig. 2. Examples of 2-arcs in a punctured polygon P.

The 2-arcs are the indecomposable objects in the category Arc(P). The irreducible 
morphisms are given by the 2-pivots defined below.

A 2-arc (i, j) admits the following 2-pivots.

(i, j + 2)

(i, j)

(i + 2, j)

(i, i + 5)

(i, i + 3)

(i, i)+

(i, i− 2) (i, i)−

(i + 2, i− 2)

(i, i)± (i + 2, i)

if j ̸= i− 2, i, i + 3 if j = i + 3 if j = i− 2 if j = i

The addition in the coordinates is modulo N . Thus a 2-pivot fixes one endpoint of the 2-
arc and moves the other endpoint two positions further along the boundary in clockwise 
direction.

The Auslander-Reiten translation τ of a 2-arc (i, j) is given by τ(i, j) = (i −2, j−2) if 
i ̸= j, and τ(i, i)+ = (i −2, i −2)+, τ(i, i)− = (i −2, i −2)−. Hence τ is given geometrically 
as a rotation by 4π/N . In particular, τ has period N , because N is odd.

Similarly to type A, this data defines a translation quiver ΓArc(P) and the category 
Arc(P) is defined as its mesh category, see the bottom picture in Fig. 1 for the case 
N = 7.

Theorem 2.3. [10] There is an equivalence of categories

ΘD : Arc(PN ) → C2
D(N+1)/2

.

This equivalence induces an isomorphism from the quiver ΓArc(P) to the Auslander-Reiten 
quiver of the 2-cluster category.
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2.6. Skew group algebras

In this section, we recall results on skew group algebras from [28]. Here we shall focus 
on the case where the group has order 2. For further results on the order 2 case see [4]. 
All modules will be finitely generated.

Let A be a finite dimensional basic algebra over an algebraically closed field k of 
characteristic different from 2. Let Q be the ordinary quiver of A and I an admissible 
ideal such that A ∼= kQ/I.

Let G = {1, σ} be the group of order 2 and assume that A admits a G-action such 
that σ acts as an automorphism of A.

Definition 2.4. We say the G-action on A is admissible if

(1) σ maps vertices to vertices and arrows to arrows, and
(2) σ fixes at least one vertex.

In this paper we will be only interested in admissible G-actions. For group actions 
that do not require this condition, we refer to [28].

Let AG be the skew group algebra, thus

AG = A⊗k kG

as k-vector spaces, and the multiplication is given on simple tensors by the formula

(a⊗ g)(a′ ⊗ g′) = ag(a′) ⊗ gg′

for all a, a′ ∈ A, g, g′ ∈ G, and extended to all of AG by distributivity. For example

(a⊗ (g1 + g2))(a′ ⊗ g′) = (a⊗ g1)(a′ ⊗ g′) + (a⊗ g2)(a′ ⊗ g′)
= ag1(a′) ⊗ g1g′ + ag2(a′) ⊗ g2g′

By definition, the dimension of AG is twice the dimension of A.

Remark 2.5. In general AG is not a basic algebra.

2.6.1. G-action as automorphisms of modA and of Ω(modA)
If M is an A-module, define the module σM to be the same vector space as M but 

with twisted σ-action given by m ·σ a = m · (σa), for m ∈ M, a ∈ A, where the right 
hand side is the action of σa on M . If f : M → N is a morphism in modA, define 
σf : σM → σN by (σf)(m) = f(m). The following computation shows that σf is a 
morphism in modA.

(σf)(m ·σ a) = (σf)(m · (σa)) = f(m · (σa)) = f(m) · (σa) = (σf)(m) ·σ a
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This defines a functor σ : modA → modA.
A syzygy is a submodule of a projective module. If M ∈ modA, its syzygy ΩM is 

defined to be the kernel of a projective cover of M . We thus have a short exact sequence

0 ΩM P
π

M 0 (2.1)

where π is a projective cover. Every non-projective syzygy is of the form ΩM for some 
M ∈ modA.

Lemma 2.6. (a) The functor σ is an automorphism of modA of order 2. In particular σ
is an exact functor.

(b) σP (i) = P (σi), σI(i) = I(σi), and σS(i) = S(σi).
(c) The restriction of σ to the syzygy category and to the stable syzygy category are 

automorphisms.
(d) σ rad P (i) = rad P (σi).

Proof. Clearly σ2 is the identity. So σ is an automorphism of order 2. Every equivalence 
between abelian categories is exact. This proves (a).

(b) For a path w in A, we have ei ·σ w = eiσ(w). The last expression is nonzero if 
and only if σ(w) starts at vertex i which holds if and only if w starts at σ(i). Thus 
σP (i) = P (σi). The equation for the injective modules is the dual statement. To show 
the equation for the simple modules let, m ∈ σS(i) and consider the action of a constant 
path ej on m. We have m ·σ ej = m · eσj which is nonzero if and only if σj = i which 
holds if and only if j = σi. Thus σS(i) = S(σi).

(c) From (b) we know that σ maps projective syzygies to projective syzygies. Now 
let M be a non-projective syzygy and let P be a projective module containing M as a 
submodule. By part (a), σM is a submodule of σP , and by part (b), σP is projective. 
Thus σM is a syzygy. Moreover σM is non-projective, because otherwise M = σσM

would be projective as well.
(d) Because of (a) and (b), the short exact sequence

0 rad P (i) P (i) S(i) 0

is mapped by σ to the short exact sequence

0 σ rad P (i) P (σi) S(σi) 0 .

Thus σ rad P (i) = rad P (σi). !

2.6.2. Induction and restriction functors
Let F : modA → modAG denote the induction functor, thus F = − ⊗A AG, and 

let H : modAG → modA denote the restriction functor. Thus if N is an AG-module 
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then H(N) = N as k-vector spaces, but we restrict the scalars from AG to A. If f is 
a morphism in modAG then H(f) = f . Both F and H are exact functors and map 
projective modules to projective modules.

The following is shown in [28, Proposition 1.8] in a more general setting.

Proposition 2.7. Let X, Y be indecomposable A-modules.
(a) HF (X) ∼= X ⊕ σX.
(b) F (X) ∼= F (Y ) if and only if X ∼= Y or X ∼= σY .
(c) If X ∼= σX then F (X) has exactly two indecomposable summands.
(d) If X ̸∼= σX then F (X) is indecomposable.

We also need the next result.

Proposition 2.8. [28, Theorem 3.8] (a) The functor F maps an almost split sequence in 
modA to a direct sum of almost split sequences in modAG.

(b) The functor H maps an almost split sequence in modAG to a direct sum of almost 
split sequences in modA.

The action of the functors F and H on syzygies is described in the following result.

Proposition 2.9. (a) The functors F, H map syzygies to syzygies.
(b) Let ΩA and ΩAG denote the syzygy functors over A and AG respectively. Then

ΩAGF = FΩA and ΩAH = HΩAG.

Proof. (a) Let M be a syzygy in modA. Then there exists a projective A-module P
that contains M as a submodule. Since the functor F is exact it follows that F (M) is 
a submodule of F (P ). Moreover, since F (P ) is projective, F (M) is a syzygy. The proof 
for H is analogous.

(b) Let P be a projective module, then we have the first identity ΩAGF (P ) = 0 =
FΩA(P ). Now, let M be an indecomposable, non-projective syzygy in modA. Applying 
the exact functor F to the short exact sequence (2.1) yields the short exact sequence

0 F (ΩAM) F (P )
F (π)

F (M) 0 .

If F (π) is not a projective cover then there exists a direct summand P ′ of F (P ) such 
that the short exact sequence 0 → P ′ → P ′ → 0 → 0 is a summand of the short exact 
sequence above. Then Proposition 2.7 implies that the sequence (2.1) also decomposes 
nontrivially, which is a contradiction to π being a projective cover. It follows that F (π)
is a projective cover and hence F (ΩAM) = ΩAGF (M). This proves the first identity. 
The identity that involves H is proved analogously. !
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2.7. The basic algebra

In [4], Amiot and Plamondon specify a complete set of primitive orthogonal idempo-
tents in AG and explicitly construct an idempotent e such that B = eAGe is a basic 
algebra. Furthermore, they provide a description of the quiver QG of B and an action of 
G on B.

If A = Jac(Q,W ) is the Jacobian algebra of a quiver Q with potential W , they define 
a potential WG on QG and prove the following.

Proposition 2.10. [4, Corollary 2.7] The algebra B is the Jacobian algebra of the quiver 
QG with potential WG.

3. G-action on 2-cluster categories of type A

Let G = {1, σ} be the group with two elements. In this subsection, we describe a 
G-action on the 2-cluster category C2 = Db(mod Λ)/τ−1[2], with Λ a path algebra of 
type Ar, with r odd. The G-action is inspired by an example in [28]. We will show later 
that this action is compatible with our G-action on dimer tree algebras.

In order to describe the G-action on C2, we choose Λ to the path algebra of the 
following quiver

2
α2 3

α3 · · ·
αn−1

n

1
α1

α′
1 2′

α′
2

3′
α′

3
· · ·

α′
n−1

n′

with G-action given by σ(1) = 1, σ(i) = i′, for i > 1 and σ(αi) = α′
i. This is Example 

2.1 in [28]. The corresponding skew group algebra ΛG is Morita equivalent to the path 
algebra of the following quiver.

1+
α+

1

2
α2 3

α3 · · ·
αn−1

n

1− α−
1

Note that Λ is of Dynkin type A2n−1 and ΛG is of Dynkin type Dn+1.
The Auslander-Reiten quivers of modΛ and modΛG are illustrated in Fig. 3 in the 

case n = 4.
The action of σ on modΛ is given by the reflection along the horizontal line through 

the τ -orbit of P (1). This action induces a G-action on the derived category and on the 
2-cluster category that are also given by the reflection at the horizontal line through 
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P (4) · · I(4′)

P (3) · · I(3′)

P (2) · · I(2′)

P (1) · · I(1)

P (2′) · · I(3)

P (3′) · · I(4)

P (4′) · · I(1)

P (4) · · I(4)

P (3) · · I(3)

P (1+) P (2) · · · · I(1−) I(2)

P (1−) · · I(1+)

Fig. 3. The Auslander-Reiten quivers of mod Λ and mod ΛG.

the central τ -orbit. Note that the Auslander-Reiten quiver of the 2-cluster category has 
the shape of a cylinder and therefore has 2n − 1 different τ -orbits, unlike the 1-cluster 
category, which has the shape of a Moebius strip and therefore has only n different 
τ -orbits.

The two 2-cluster categories S2
A2n−1

and S2
Dn+1

are illustrated in Fig. 1 in the case n =
3. In type A, the vertices of the AR quiver in that figure are labeled by the corresponding 
2-diagonals of the 14-gon as explained in section 2.5. Each 2-diagonal is denoted by the 
pair (i, j) of its endpoints on the boundary of the 14-gon. In this example, we see that 
the action of σ maps the 2-diagonal (i, j) to the 2-diagonal (i +7, j+7). For example the 
first element in the bottom τ -orbit is (1, 4) and it is mapped to the first element in the 
top τ -orbit, thus σ((1, 4)) = (1 + 7, 4 + 7) = (8, 11). The elements in the center τ -orbit 
are fixed by σ. For example σ((1, 8)) = (1 + 7, 8 + 7) = (8, 1).

For general n, and setting N = 2n + 1, the 2-cluster category C2
AN−2

corresponds to 
the category of 2-diagonals in a regular 2N -gon, and the action of σ sends a 2-diagonal 
(i, j) to the 2-diagonal (i +N, j+N). In other words σ acts on the polygon by a rotation 
by angle π.

Denote by F2 : C2
AN−2

→ C2
D(N+1)/2

the functor induced by the induction functor F
and denote by H2 : C2

D(N+1)/2
→ C2

AN−2
the one induced by the restriction functor H. 

The following results follow from Propositions 2.7 and 2.8.

Proposition 3.1. Let N ≥ 7 be an odd integer and X, Y ∈ C2
AN−2

be indecomposable 
objects. Then

(a) H2F2(X) ∼= X ⊕ σX.
(b) F2(X) ∼= F2(Y ) if and only if X ∼= Y or X ∼= σY .
(c) If X ∼= σX then F2(X) has exactly two indecomposable summands.
(d) If X ̸∼= σX then F2(X) is indecomposable.

Proposition 3.2. (a) The functor F2 maps an Auslander-Reiten triangle in C2
AN−2

to a 
direct sum of Auslander-Reiten triangles in C2

D(N+1)/2

(b) The functor H2 maps Auslander-Reiten triangle in C2
D(N+1)/2

to a direct sum of 
Auslander-Reiten triangles in C2

AN−2
.
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4. G-actions on dimer tree algebras

The class of dimer tree algebras was introduced in [32]. The terminology stems from 
the fact that the dual graph of the quiver of the algebra is a tree, and the algebra can 
be extended to a dimer model on a disk.

4.1. Dimer tree algebras

We recall the definition of dimer tree algebras following [32,33]. A chordless cycle in 
a quiver Q is a cyclic path C = x0 → x1 → · · · → xt → x0 such that xi ̸= xj if i ̸= j

and the full subquiver on vertices x0, x1, . . . , xt is equal to C. The arrows that lie in 
exactly one chordless cycle will be called boundary arrows and those that lie in two or 
more chordless cycles interior arrows of Q.

Definition 4.1. The dual graph G of Q is defined as follows. The set of vertices G0 is the 
union of the set of chordless cycles of Q and the set of boundary arrows of Q. The set of 
edges G1 is the union of two sets called the set of trunk edges and the set of leaf branches. 
A trunk edge C

α
C ′ is drawn between any pair of chordless cycles (C, C ′) that 

share an arrow α. A leaf branch C
α

α is drawn between any pair (C, α) where C
is a chordless cycle and α is a boundary arrow such that α is contained in C.

Definition 4.2. A finite connected quiver Q without loops and 2-cycles is called a dimer 
tree quiver if it satisfies the following conditions.

(Q1) Every arrow of Q lies in at least one chordless cycle.
(Q2) The dual graph of Q is a tree.

The following properties follow easily from the definition.

Proposition 4.3. [32, Proposition 3.4] Let Q be a dimer tree quiver. Then

(1) Q has no parallel arrows.
(2) Q is planar.
(3) For all arrows α of Q,

(a) either α lies in exactly one chordless cycle,
(b) or α lies in exactly two chordless cycles.

(4) Any two chordless cycles in Q share at most one arrow.

Since the dual graph G of Q is a tree, the quiver contains a chordless cycle C0 that 
contains exactly one interior arrow. If C is any chordless cycle in Q, we define the distance 
d(C) of C from C0 to be the length of the unique path from C0 to C in G. We define 
the potential W of the dimer tree quiver Q as
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W =
∑

C

(−1)d(C)C,

where the sum is taken over all chordless cycles of Q.

Remark 4.4. Since the dual graph is a tree we can embed the quiver Q into the plane. 
Then, up to sign, the potential is the sum of the clockwise chordless cycles minus the 
sum of the counterclockwise chordless cycles.

Definition 4.5. Let Q be a dimer tree quiver and W its potential. The Jacobian algebra

A = Jac(Q,W )

is called a dimer tree algebra.

4.2. A geometric model for the syzygy category of a dimer tree algebra

Let A = Jac(Q, W ) be a dimer tree algebra. By definition, every dimer tree algebra 
is 2-Calabi-Yau tilted and (hence) Gorenstein of Gorenstein dimension 1. As usual for 
these algebras, we denote by CMPA the syzygy category of A and by CMPA its stable 
category.

Definition 4.6. (a) For every boundary arrow α in Q, we define its unique cycle path (or 
zigzag path) to be c(α) = α1α2 · · ·αℓ(α), where

(i) α1 = α and αℓ(α) are boundary arrows, and α2, . . . , αℓ(α)−1 are interior arrows,
(ii) every subpath of length two αiαi+1, is a subpath of a chordless cycle Ci, and Ci ̸= Cj

if i ̸= j.

(b) The weight w(α) of the boundary arrow α is defined as

w(α) =
{

1 if the length of c(α) is odd;
2 if the length of c(α) is even.

(c) The total weight of A is defined as 
∑

α w(α), where the sum is over all boundary 
arrows of Q.

We showed in [32] that the total weight of a dimer tree algebra is always an even 
number. We then associate to every dimer tree algebra of weight 2N a polygon S with 
2N vertices. Moreover S carries the additional structure of a checkerboard pattern which 
is defined by a set of radical lines ρ(i) associated to the vertices i of Q. In particular, 
each radical line is a 2-diagonal. The checkerboard pattern is constructed as the medial 
graph of the twisted completed dual graph of Q. We refer to [32] for the details of this 
constructions and to section 7 for examples.
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By definition, a 2-diagonal (i, j) connects two boundary points of S of opposite parity. 
We orient each 2-diagonal from its odd endpoint towards its even endpoint. This allows 
us to talk about the direction of a crossing between 2-diagonals. Then, for each 2-diagonal 
γ in S, we define projective modules P0(γ) = ⊕iP (i) and P1(γ) = ⊕jP (j), where the 
first sum is over all i such that ρ(i) crosses γ from right to left and the second sum is 
over all j such that ρ(j) crosses γ from left to right.

Let Diag(S) be the category of 2-diagonals of S introduced in section 2.5.1 and CMPA

the stable syzygy category of A. The main result of [33] is the following.

Theorem 4.7. [33, Theorem 1.1] Let A be a dimer tree algebra and S the associated 
checkerboard polygon. For each 2-diagonal γ in S there exists a morphism fγ : P1(γ) →
P0(γ) such that the mapping γ *→ cokerfγ induces an equivalence of categories

Φ : Diag(S) → CMPA.

Under this equivalence, the radical line ρ(i) corresponds to the radical of the indecompos-
able projective P (i) for all i ∈ Q0. The clockwise rotation R of S corresponds to the shift 
Ω in CMPA and R2 corresponds to the inverse Auslander-Reiten translation τ−1 = Ω2. 
Thus

Φ(ρ(i)) = radP (i)
Φ ◦R = Ω ◦ Φ
Φ ◦R2 = τ−1 ◦ Φ

Furthermore, Φ maps the 2-pivots in Diag(S) to the irreducible morphisms in CMPA, 
and the meshes in Diag(S) to the Auslander-Reiten triangles in CMPA.

This result has the following consequences.

Corollary 4.8. [32, section 1] (a) The category CMPA is equivalent to the 2-cluster 
category of type AN−2. In particular, the number of indecomposable syzygies is N(N−2).

(b) The total weight of A is a derived invariant.
(c) The projective resolution of any syzygy is periodic of period N or 2N . An inde-

composable syzygy Mγ has period N if and only if the corresponding 2-diagonal γ is a 
diameter in S.

(d) The indecomposable syzygies over A are rigid A-modules.
(e) Let L, M be indecomposable syzygies over A. Then the dimension of Ext1A(L, M) ⊕

Ext1A(M, L) is equal to the number of crossing points between the corresponding 2-
diagonals. In particular, the dimension is either 1 or 0.

(f) Let τ denote the Auslander-Reiten translation in modA and ν the Nakayama 
functor. We denote the stable cosyzygy category by CMIA. Then the following diagram 
commutes.
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Fig. 4. Gluing two copies of a dimer tree algebra along a boundary arrow. The left picture shows the quiver 
and the right picture shows the dual graph.

CMPA
τ CMIA

Diag(S)

cok fγ

1 Diag(S)

ker νfγ

4.3. Dimer tree algebras with G-action

Let A0 = Jac(Q0, W 0) be a dimer tree algebra and α : i → j a boundary arrow in 
Q0. Define a new quiver Q by taking two copies of Q0 and gluing them together by 
identifying the two copies of the arrow α, see the left picture in Fig. 4. Thus every vertex 
x of Q0, except for i and j, produces two vertices x, σx in Q and every arrow β of Q0, 
except for the arrow α, produces two arrows β, σβ in Q. By setting σi = i, σj = j, and 
σα = α, we obtain an admissible G = {1, σ}-action on Q.

We define a potential W on Q by W = W 0 − σW 0, and let A = Jac(Q, W ) be the 
associated Jacobian algebra. We call A the fibered product of A0 with itself along α.

To show that A is again a dimer tree algebra, we need to check the two conditions in 
Definition 4.2. The condition (Q1) that every arrow lies in at least one chordless cycle 
follows directly from the construction and the fact that it holds for Q0. Condition (Q2) 
is that the dual graph G of Q is a tree. By construction, G is given by taking two copies 
of the dual graph G0 of Q0 and gluing them together by identifying the two copies of the 
leaf edge corresponding to α, see the right picture Fig. 4. We have shown the following.

Proposition 4.9. For every dimer tree algebra A0 and every boundary arrow α : i → j

in A0, the fibered product of A0 with itself along α is a dimer tree algebra A with an 
admissible G-action. The element σ acts on the quiver Q of A by reflection at the line 
along the arrow α and σ acts on the dual graph G by reflection at the line through the 
midpoint of the edge α and perpendicular to the edge α. Moreover, the fixed vertex set of 
σ is {i, j} and the fixed arrow set is {α}. !
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Conversely, suppose that A is a dimer tree algebra with a nontrivial admissible G-
action. Suppose first that there is chordless cycle C that is fixed by σ, meaning that σ
fixes every arrow and every vertex of C. Let C ′ be another chordless cycle that shares 
an arrow β with C. Then σC ′ must be a chordless cycle that contains σβ = β. But β
lies in at most two chordless cycles, and since σC ′ ̸= σC = C, we must have σC ′ = C ′. 
So σ fixes every chordless cycle adjacent to C. Now using the fact that the dual graph is 
connected, we see that σ fixes every chordless cycle and thus the action of G is trivial, 
a contradiction. Thus σ cannot fix a chordless cycle.

Next suppose σ fixes an arrow α. Then α must lie in two chordless cycles Cα, C ′
α; 

otherwise σ would fix the unique chordless cycle containing α. Thus we have σCα = C ′
α. 

Assume now there exists another arrow β that is fixed by σ, and denote the two chord-
less cycles at β by Cβ , C ′

β . Since the dual graph G is connected, there exists a path 

Cα = C1 C2 · · · Ct = Cβ in G. Applying σ, we obtain the following cycle in G

Cα

α

C2 · · · Cβ

β

C ′
α σC2 · · · C ′

β

which is impossible, because G is a tree. We have shown that σ fixes at most one arrow.
Finally assume σ fixes no arrows at all. Since our G-action is admissible, there exists 

a vertex i that is fixed by σ. Since every arrow lies in a chordless cycle, there must 
be at least one incoming arrow α and one outgoing arrow β at i that both lie in the 
same chordless cycle C. Applying σ, we obtain a second chordless cycle σC at i that 
contains the arrows σα and σβ. Since G is connected, there exists a path in G from C

to σC which we denote by w : C
α0

C1
α1 · · · Ct

αt
σC . Applying σ, we obtain a 

path σw : σC
σα0

σC1
σα1 · · · σCt

σαt
C . Since G is a tree, the path σw must be the 

reverse of the path w. Furthermore, since σ does not fix any arrows, the number of edges 
in w must be even, otherwise the central edge would be fixed. However, since σ does not 
fix any chordless cycles, the number of edges in w must be odd, otherwise the central 
chordless cycle would be fixed. This clearly is a contradiction.

We have shown that σ fixes exactly one arrow α, that α is contained in two chordless 
cycles Cα, C ′

α and that σCα = C ′
α. Removing the edge α from the dual graph G produces 

two connected components

G \ {α} = G0 ⊔ G0′

one containing the point Cα and the other containing C ′
α. Since σG0 is a connected 

subgraph of G that contains σCα and does not contain α, we get σG0 = G0′.
Considering this information on the level of the quiver Q, we obtain two subquivers 

Q0, σQ0 of Q that share the arrow α but no other arrows, and whose dual graphs are 
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G0 ∪ {α} and σG0 ∪ {α}. The quivers Q0 and σQ0 are isomorphic and the arrow α
is a boundary arrow in both. Also both quivers satisfy the conditions (Q1) and (Q2) 
of Definition 4.2. The restriction W 0 of the potential W to Q0 is a potential and the 
Jacobian algebra A0 = Jac(Q0, W 0) is a dimer tree algebra. We have shown the following.

Proposition 4.10. Let G = {1, σ} be the group with two elements. If A = Jac(Q, W ) is a 
dimer tree algebra with a nontrivial admissible G-action then the following holds.

(a) σ fixes exactly one arrow α : i → j.
(b) There exists a subquiver Q0 that is a dimer tree quiver such that Q = Q0 ∪ σQ0

and Q0 ∩ σQ0 = {α}.
(c) Let e0 =

∑
i ei, where the sum is over all vertices in Q0, and let A0 = A/A(1 −

e0)A. Then A is the fibered product A0 with itself along α.
(d) There is a planar embedding of Q and G such that σ acts on Q by reflection at 

the line through the arrow α, and on G by reflection at the line through the midpoint of 
the edge α and perpendicular to α. !

4.4. G-action on the checkerboard polygon

Let A = Jac(Q, W ) be a dimer tree algebra of total weight 2N with an admissible 
G-action. Let G be the dual graph of Q.

The checkerboard polygon S is constructed by taking the medial graph of the twisted 
(completed) dual graph G̃, see [32] for details. Recall that the twisted dual graph is 
obtained from the dual graph G by twisting along every edge of G. Since the edges in 
G \ {α} come in pairs (e, σe) ∈ G0 × σG0, we see that after performing the twist at all 
edges except α, we still have a graph whose σ-action is given by the reflection at the line 
through the midpoint of the edge α and perpendicular to α. This situation is illustrated 
in the left picture in Fig. 5. The twisted dual graph is now obtained by twisting along 
the edge α; the result is illustrated in the right picture in Fig. 5. Therefore the induced 
action of σ on the twisted dual graph is given by a rotation by angle π with center the 
midpoint of the edge α.

On the medial graph S, the action of σ is also given by the rotation by π with center 
the crossing point of the two radical lines ρ(i) and ρ(j), where α : i → j.

Thus when we draw S as a regular 2N -gon with checkerboard pattern determined by 
the radical lines ρ(x) of the medial graph, the action of σ on Q induces an action on S
given by the rotation by π at the center point of the polygon S. This is made precise in 
the following result.

Proposition 4.11. With the above notation, label the vertices of the polygon S by 
1, 2, . . . , 2N in clockwise order around the boundary. The G-action on the dimer tree 
algebra A induces a G-action on the category of 2-diagonals Diag(S) of the checkerboard 
2N -gon S, where the action of σ is given by the rotation by angle π. If γ ∈ Diag(S) is a 
2-diagonal with endpoints k, l, and 1 ≤ k < l ≤ 2N then
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Fig. 5. The left picture illustrates the dual graph after twisting at every edge except at α, and the right 
picture illustrates the resulting graph after twisting at α (this is the twisted dual graph). The action of σ
on the left is by reflection, while the action on the right is by rotation.

(a) σγ has endpoints k + N, l + N (mod 2N).
(b) σγ = γ if and only if γ is a diameter, that is l = k + N .
(c) For the radical line ρ(x), we have σρ(x) = ρ(σx).
(d) Let α : i → j be the unique arrow in the quiver of A that is fixed by σ. Then the 

radical lines ρ(i) and ρ(j) are fixed by σ.
(e) N is odd.
(f) Let Φ : Diag(S) → CMPA be the equivalence of Theorem 4.7. Then

Φ(σγ) = σΦ(γ),

where the σ action on the right hand side is the one defined in section 2.6.1.

Proof. (a) and (b) follow directly from the discussion above. (c) follows from Lemma 
2.6(b) and the fact that the G-action on S is induced by the G-action on A. (d) is a 
direct consequence of (c).

(b) and (d) together imply that ρ(i) and ρ(j) are diameters in the 2N -gon S. So their 
endpoints are of the form h, h +N for some h. But these diameters are also 2-diagonals, 
so the two endpoints must have opposite parity. Thus their difference N must be odd. 
This shows (e).

It remains to prove (f). The functor Φ sends a 2-diagonal γ to a syzygy Mγ that is 
uniquely determined by the crossing pattern of γ with the radical lines in S. Indeed, let 
P0(γ) = ⊕iP (i) and P1(γ) = ⊕jP (j), where the first sum is over all i such that ρ(i)
crosses γ from right to left and the second sum is over all j such that ρ(j) crosses γ from 
left to right. Then Mγ is the cokernel of a morphism fγ : P1(γ) → P0(γ).

Since γ acts on S by rotation, the radical line ρ(x) crossed γ if and only if σρ(x)
crosses σγ, and both crossings are in the same direction. Hence

P0(σγ) = ⊕iP (σi) = σP0(γ) P1(σγ) = ⊕jP (σj) = σP1(γ),

and therefore Φ(σγ) = Mσγ = σMγ = σΦ(γ). !
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5. A geometric model for the syzygy category of the skew group algebra

Throughout this section, we use the following setting. Let G = {1, σ} denote the 
group of order 2, and let A be a dimer tree algebra of total weight 2N with an admissible 
G-action. The corresponding checkerboard polygon S has 2N vertices. Under the Baur-
Marsh equivalence the category of 2-diagonals Diag(S) is equivalent to the 2-cluster 
category C2

AN−2
. In this section, we give a geometric model for the syzygy category of 

the skew group algebra AG.

5.1. An equivalence of categories

We have shown in section 3 that the σ-action on the 2-cluster category corresponds 
under the Baur-Marsh equivalence ΘA to the rotation of the polygon by angle π. On the 
other hand, Proposition 4.11 states that this σ-action on the polygon also corresponds 
to the σ-action on the syzygy category of the dimer tree algebra under the equivalence 
Φ. Thus there is a commutative diagram as follows.

C2
AN−2

ΘA

∼=

σ

Diag(S)

σ

Φ
∼=

CMPA

σ

C2
AN−2 ΘA

∼= Diag(S)
Φ

∼= CMPA

On each level of this diagram, we can consider the induction functor F to the skew group 
category following Reiten and Riedtmann [28]. Starting from the 2-cluster category of 
type AN−2, we obtain the 2-cluster category of type D(N+1)/2 as seen in Proposition 3.2. 
On the level of Diag(S), we obtain the category Arc(P) of 2-arcs in a punctured N -gon 
described in section 2.5.2. And by Proposition 2.9, from the syzygy category of the dimer 
tree algebra A, we obtain the syzygy category of the skew group algebra AG. All these 
categories are equivalent, because of the commutativity of the diagram above. We thus 
have the following result.

Theorem 5.1. Let A be a dimer tree algebra with admissible G-action, and let 2N denote 
the total weight of A. Then there are equivalences of categories

C2
D(N+1)/2

Arc(PN )
ΘD

∼=
Ψ
∼=

CMPAG .

The first equivalence is described in Theorem 2.3. We shall now give a description of 
the second equivalence.

We define a functor Ψ : Arc(P) → CMPAG as follows. If γ̃ = (i, j) is a 2-
arc in the punctured N -gon P, then define γ ∈ Diag(S) to be the diameter γ =
(i, i + N) if the 2-arc γ̃ = (i, i)± is a loop, and otherwise define γ to be the 2-diagonal
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γ =
{

(i, j) if i < j;
(i, j + N) if i > j.

Consider the image Φ(γ) ∈ CMPA. According to Proposition 4.11 (f), we have 
σΦ(γ) = Φ(σγ). Thus if γ = (i, i + N) is a diameter then Φ(γ) is fixed by σ, and if 
γ = (i, j) is not a diameter then Φ(γ) is not fixed by σ. Applying the induction functor 
F = − ⊗A AG and using Proposition 2.7, we have

(1) If γ̃ = (i, i)±, then FΦ(γ) is the direct sum of two indecomposable syzygies which 
we denote by M̃+

γ̃ and M̃−
γ̃ .

(2) If γ̃ = (i, j) with i ̸= j, then FΦ(γ) is the direct sum of two copies of the same 
indecomposable syzygy which we denote by M̃γ̃ .

In case (2) above, we define Ψ(γ̃) = M̃γ̃ . In case (1), we need to make a choice that is 
consistent with the Auslander-Reiten translations. To achieve this, we label all modules 
in the τ -orbit of M̃+

γ̃ in CMPAG by a + sign. Thus τ t(M̃+
γ̃ ) = (τ tM̃γ̃)+, for all t. 

Similarly, we label the modules in the τ -orbit of M̃−
γ̃ such that τ t(M̃−

γ̃ ) = (τ tM̃γ̃)−, for 
all t. Since the AR translation in Arc(P) also preserves the sign, we obtain

Ψ ◦ τArc(P) = τCMPAG ◦ Ψ.

Next we define Ψ on irreducible morphisms. Let g̃ : γ̃ → δ̃ be a 2-pivot in Arc(P). We 
distinguish three cases depending on whether or not γ̃, ̃δ are loops.

(1) Suppose first that none of the two 2-arcs is a loop. Let γ̃ = (i, j), then δ̃ = (i, j + 2)
or δ̃ = (i + 2, j). In this situation g̃ corresponds to two 2-pivots g : γ → δ and 
σγ : σγ → σδ in Diag(S). Thus FΦ(g) = FΦ(σg) is an irreducible morphism in 
CMPAG and we let Ψ(g̃) = FΦ(g).

(2) Let γ̃ = (i, i)±. Then δ̃ = (i + 2, i). Thus γ̃ corresponds to the diameter (i, i +N) in 
Diag(S) and g̃ corresponds to two 2-pivots, one is g : γ → δ with δ = (i, i + N + 2)
and the other is σg : γ → σδ with σδ = (i + 2, i + N).
Since γ is fixed by σ in S, we obtain that FΦ(g) is a sum of two morphisms

FΦ(g) : Ψ
(
(i, i)+

)
⊕ Ψ

(
(i, i)−

)
→ Ψ((i + 2, i)).

We define Ψ(g̃) to be the first component if γ̃ = (i, i)+ and the second component if 
γ̃ = (i, i)−.

(3) Let δ̃ = (i, i)±. Then γ̃ = (i, i − 2). This case is dual to the previous one. Again 
g̃ : γ̃ → δ̃ corresponds to two 2-pivots g : γ → δ and σg : σγ → δ in Diag(S). Since δ
is fixed by σ, we have that FΦ(g) is a sum of two morphisms

FΦ(g) : Ψ(i, i− 2) → Ψ
(
(i, i)+

)
⊕ Ψ

(
(i, i)−

)
.
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We define Ψ(g̃) to be the first component if δ̃ = (i, i)+ and the second component if 
δ̃ = (i, i)−.

Theorem 5.2. The functor Ψ is an equivalence of categories which makes the following 
diagram commute.

Diag(S)

Φ ∼=

F Arc(P)

Ψ∼=

CMPA
F CMPAG

Proof. The commutativity of the diagram follows from our construction of Ψ.
Let ζ̃ : 0 τ γ̃

ũ
Ẽ

ṽ
γ̃ 0 be a mesh in the Auslander-Reiten quiver of Arc(P). 

From the definition of Ψ together with Propositions 2.8 and 3.2, we see that Ψ(ζ̃) is an 
Auslander-Reiten triangle in CMPAG. Thus Ψ is well-defined.

Conversely, the same propositions show that every Auslander-Reiten triangle of 
CMPAG is the image under Ψ of a mesh in Arc(P). Since the morphisms in Arc(P)
are generated by the 2-pivots modulo the mesh relations, this implies that Ψ is faithful. 
To show that Ψ is full and dense, let f̃ : M̃ → Ñ be a morphisms in CMPAG. The 
restriction functor maps f̃ to a sum of morphism in CMPA which we can lift along Φ
to Diag(S). Applying F , we obtain a sum of morphisms in Arc(P) and, by definition, Ψ
maps one of these morphisms to f̃ . Thus Ψ is full and dense. !

6. Checkerboard pattern for the punctured polygon P

In section 5, we have constructed an equivalence of categories Ψ : Arc(P) → CMPAG. 
In this section, we give a combinatorial construction of Ψ by introducing a checkerboard 
pattern on the punctured polygon P. The input data for our construction is the quiver 
of the skew group algebra AG. Here we will work in the basic algebra and we start by 
recalling its definition from [4].

6.1. The basic algebra B = eAGe

The skew group algebra AG in Theorem 5.1 is not basic. Indeed, for every vertex i
in the quiver Q of A that is not fixed by σ, we have (ei ⊗ 1)AG ∼= (eσi ⊗ 1)AG. In [4], 
Amiot and Plamondon construct in great detail a complete set of primitive orthogonal 
idempotents {e±i | i ∈ Q0} for AG. They then specify an idempotent e such that B =
eAGe is basic.

In order to define e, they decompose the set of vertices of Q as Q0 = QG
0 ⊔I⊔σI, where 

QG
0 is the set of vertices that are fixed by σ and I is a complete set of representatives of 

the nontrivial σ-orbits. Then e =
∑

i∈QG
0
e+
i + e−i +

∑
i∈I e

+
i .
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Fig. 6. The picture on the left illustrates the quiver Q0 and the picture on the right the quiver QB .

Consequently the quiver QB of B can be described as follows. The vertices of QB are

(i) two vertices i+ and i− for each i ∈ QG
0 ;

(ii) one vertex i for each i ∈ I.

The arrows of QB are

(i) two arrows α+ : i+ → j+ and α− : i− → j− for every arrow α : i → j such that 
σα = α;

(ii) two arrows α+ : i+ → j, and α− : i− → j for every arrow α : i → j with i ∈ QG
0 , 

j /∈ QG
0 ;

(iii) two arrows α+ : i → j+, and α− : i → j− for every arrow α : i → j with i /∈ QG
0 , 

j ∈ QG
0 ;

(iv) one arrow α : i → j for each arrow α : i → j with i, j /∈ QG
0 .

Now let A = Jac(Q, W ) be a dimer tree algebra with admissible G-action. Let A0 =
Jac(Q0, W 0) be the dimer tree algebra with boundary arrow α : i → j such that A is the 
fibered product of A0 with itself along α as in Proposition 4.10. Then QB is the quiver 
obtained form Q0 by replacing the vertices i and j by the vertices i+, i− and j+, j−, the 
arrow α : i → j by two arrows α+ : i+ → j+ and α− : i− → j−, and each other arrow 
β starting or ending at i or j by two arrows β+ and β− starting or ending at i+, i− or 
j+, j−, see Fig. 6.

6.2. Orientation and crossing of 2-arcs

Recall that in the 2N -gon S the 2-diagonals (i, j) are oriented from the odd endpoint 
towards the even endpoint. According to Corollary 4.8(e), the 2-diagonals γ, δ cross in 
S if and only if Ext1CMPA(Φ(γ), Φ(δ)) ⊕ Ext1CMPA(Φ(δ), Φ(γ)) ̸= 0. More precisely

• γ crosses δ from left to right if and only if Ext1CMPA(Φ(γ), Φ(δ)) ̸= 0 and
• γ crosses δ from right to left if and only if Ext1CMPA(Φ(δ), Φ(γ)) ̸= 0.
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Fig. 7. Construction of the fundamental domain.

Given 2-diagonals γ, δ that cross in S, we define the directed crossing number 
e(γ, δ) to be 1 if γ crosses δ from left to right and 0 otherwise. Similarly, we de-
fine e(δ, γ) to be 1 if γ crosses δ from right to left and 0 otherwise. Note that 
e(γ, δ) = dim Ext1CMPA(Φ(γ), Φ(δ)).

The corresponding notions of orientation and crossing is somewhat more complicated 
in the punctured polygon P. Also the crossing notion in P is different form the one used 
in the theory of cluster algebras in [18], because we are working here in the 2-cluster 
category and not in the ordinary cluster category.

6.2.1. Orientation
The 2N -gon S is a 2-fold branched cover of the punctured N -gon P, which is given 

by the rotation action of σ by angle π.4 The fixed point of σ is the center of S and it 
corresponds to the puncture in P. We will now carefully choose a fundamental domain 
for the action of σ in S.

As seen in Proposition 4.9, in the checkerboard pattern, the center of the polygon S is 
given by the crossing point of the radical lines ρ(i) and ρ(j), that is to say, by the arrow 
α : i → j that is fixed by σ. There are exactly two shaded regions C and σC incident to 
this point which correspond to the two chordless cycles that contain α. Consequently, 
there are also exactly two white regions W, σW incident to the point, see Fig. 7 and 
the examples in section 7. Like any white region in a checkerboard polygon, W contains 
either exactly one boundary point of S or a boundary segment together with its two 
endpoints. In the former case, we label the sole boundary point in W by 1 and in the 
latter case, we label the two boundary points in W by 2N, 1 in clockwise order. Then 
label the remaining boundary points in clockwise order.

Then there exists 1 < r, s < N +1 such that the two radical lines are ρ(i) = (r, r+N)
and ρ(j) = (s, s + N). Without loss of generality, we may assume that r < s and the 

4 Strictly speaking we would need to replace the puncture by an orbifold point of order 2. But in our 
combinatorial approach this will make no difference.
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checkerboard regions at the center point α are W, C, σW, σC in clockwise order. The 
diameter (1, N + 1) is not a radical line because it runs through the white region W . 
This diameter cuts the polygon into two pieces. We use the piece with boundary points 
1, 2, . . . , N + 1 as our fundamental domain for the σ-action.

This choice induces a labeling of the boundary vertices of the punctured N -gon by 
1 ∼= N +1, 2, . . . , N in clockwise order. The radical lines ρ̃(i) = (r, r)+ and ρ̃(j) = (s, s)+
are both loops in P and as usual we draw them as straight lines from their boundary 
point to the puncture. If the boundary point has an odd label, we orient the line towards 
the puncture, and otherwise, we orient the line towards the boundary point.

There is exactly one shaded region C̃ and one white region W̃ incident to the puncture. 
Every other radical line ρ̃(h) in P, lifts to a unique radical line ρ(h) in our fundamental 
domain in S, because no radical line can cross the white region W . We orient these 
radical lines in the same way as in the fundamental domain, that is, from the odd 
labeled endpoint towards the even labeled endpoint. Note that one vertex in P carries 
two labels 1 = N +1. If ρ(h) ends at the vertex N +1 in S then ρ(h) is oriented towards 
N + 1 in S, because N + 1 is even. Consequently its image ρ̃(h) ∈ P is oriented towards 
the vertex 1 = N + 1 as well. This defines an orientation on all radical arcs in P.

Now let γ̃ = (i, j) be an arbitrary 2-arc in P. Suppose first that γ̃ is not a loop. Let 
ℓ denote the straight line segment from the boundary point 1 to the puncture. If γ̃ does 
not cross ℓ, then i < j and we orient γ̃ from its odd labeled endpoint towards its even 
labeled endpoint. If γ̃ crosses the line ℓ, we label the crossing point by x, and we orient 
the two subcurves (i, x) and (x, j) of γ̃ as follows. Note that in this case we have i > j

and both i, j have the same parity since N is odd. We orient the ends (i, x), (x, j) towards 
the point x if i and j are odd, and towards i and j if i and j are even, see Example 7.1.

Now suppose that γ̃ = (i, i)± is a loop. Then we orient γ̃ towards the puncture if i is 
odd and towards the boundary if i is even. The case where γ̃ = (1, 1)± is slightly different. 
If we choose a representative of γ̃ that lies to the left of the line segment ℓ then we orient 
it towards the puncture. This is consistent with the boundary point being labeled by 
the odd integer 1. If on the other hand, we choose a representative of γ̃ that lies to the 
right of ℓ then we orient it towards the boundary. Here we think of the endpoint being 
labeled by the even integer N + 1.

6.2.2. Crossing
Now that we have orientated 2-arcs, we can define their directed crossings. Throughout 

this section we use the notation γ̃ ∈ γ̃ to express that the curve γ̃ is a representative of 
the 2-arc γ̃. Thus γ̃ is the homotopy class of γ̃.

Let γ̃, ̃δ be two 2-arcs in P and suppose first that at least one of them is not a loop. 
Define the directed crossing number e(γ̃, ̃δ) to be the minimum of the number of crossing 
points between γ̃ ∈ γ̃ and δ̃ ∈ δ̃ such that γ̃ crosses δ̃ from left to right. Similarly, define 
e(δ̃, ̃γ) to be the minimum of the number of crossing points between γ̃ ∈ γ̃ and δ̃ ∈ δ̃

such that γ̃ crosses δ̃ from right to left.
We give several examples in Fig. 8.



R. Schiffler, K. Serhiyenko / Journal of Algebra 660 (2024) 91–133 119

Fig. 8. Examples of crossing numbers between 2-arcs in the punctured polygon.

Now suppose that both γ̃ = (x, x)± and δ̃ = (y, y)± are loops in S. Then we define 
the crossing numbers as follows.

e
(
(x, x)+, δ̃

)

=

⎧
⎪⎨

⎪⎩

1 if δ̃ ∈ {(x− 2, x− 2)+, (x− 4, x− 4)−, (x− 6, x− 6)+, (x− 8, x− 8)−,
. . . , (x + 1, x + 1)±};

0 if δ̃ is any other loop.

e
(
(x, x)−, δ̃

)

=

⎧
⎪⎨

⎪⎩

1 if δ̃ ∈ {(x− 2, x− 2)−, (x− 4, x− 4)+, (x− 6, x− 6)−, (x− 8, x− 8)+,
. . . , (x + 1, x + 1)∓};

0 if δ̃ is any other loop.

e
(
δ̃, (x, x)+

)

=

⎧
⎪⎨

⎪⎩

1 if δ̃ ∈ {(x + 2, x + 2)+, (x + 4, x + 4)−, (x + 6, x + 6)+, (x + 8, x + 8)−,
. . . , (x− 1, x− 1)±};

0 if δ̃ is any other loop.

e
(
δ̃, (x, x)−

)

=

⎧
⎪⎨

⎪⎩

1 if δ̃ ∈ {(x + 2, x + 2)−, (x + 4, x + 4)+, (x + 6, x + 6)−, (x + 8, x + 8)+,
. . . , (x− 1, x− 1)∓};

0 if δ̃ is any other loop.

Example 6.1. In Example 7.1, the radical line ρ̃(1+) is given by the loop (3, 3)+. If γ is 
a loop, then we have

e((3, 3)+, γ) = 1 if and only if γ = (4, 4)+, (6, 6)−, (1, 1)+;

e(γ, (3, 3)+) = 1 if and only if γ = (5, 5)+, (7, 7)−, (2, 2)+.
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Proposition 6.2. Let γ̃, ̃δ be two 2-arcs Arc(P) and ΘD : Arc(P) → C2
D the equivalence of 

Theorem 2.3. Then

dim Ext1C2
D
(ΘD(γ̃),ΘD(δ̃)) = e(γ̃, δ̃).

Proof. This follows by direct inspection of the support of Ext1 in the AR-quiver of the 
2-cluster category using the labels by the 2-arcs as in Fig. 1. !

The group G acts on the set of 2-arcs in P by the formula σγ̃ = γ̃ if γ̃ is not a loop, 
and σ(i, i)± = (i, i)∓ if γ̃ = (i, i)± is a loop. If α is a 2-arc in P or a 2-diagonal in S
we let Gα = {α, σα} denote the G-orbit of α. The following result describes the relation 
between the intersection numbers in P and S.

Proposition 6.3. Let γ̃, ̃δ be two 2-arcs in P with lifts γ, δ in S. Then
∑

γ̃′∈Gγ̃

e(γ̃′, δ̃) =
∑

δ′∈Gδ

e(γ, δ′). (6.1)

That is
(a) e(γ̃, ̃δ) = e(γ, δ) + e(γ, σδ) if γ̃ is not a loop and δ̃ is not a loop.
(b) e(γ̃, ̃δ) = e(γ, δ) if γ̃ is not a loop and δ̃ is a loop.
(c) e(γ̃, ̃δ) + e(σγ̃, ̃δ) = e(γ, δ) + e(γ, σδ) if γ̃ is a loop and δ̃ is not a loop.
(d) e(γ̃, ̃δ) + e(σγ̃, ̃δ) = e(γ, δ) if γ̃ is a loop and δ̃ is a loop.

Proof. First note that if δ̃ is a loop in P then its lift δ is a diameter in S and hence 
Gδ = {δ}. Therefore, equation (6.1) is equivalent to the four statements (a)-(d). Parts 
(a) and (b) follow directly from the fact that the 2N -gon S is a 2-fold branched cover of 
the punctured N -gon P under the action of the rotation σ by angle π.

To show (c), suppose that γ̃ is a loop in P. Thus γ is a diameter in S. If δ̃ is not a 
loop, then γ̃ crosses δ̃ if and only if γ crosses δ. Moreover, in that case, γ also crosses σδ. 
Thus e(γ̃, ̃δ) = e(γ, δ) = e(γ, σδ). Since σγ̃ is the same loop as γ̃ but with the opposite 
sign, the same equation holds when replacing γ̃ with σγ̃. The two equations together 
prove part (c).

Finally, assume both γ̃, ̃δ are loops. Then the lifts γ, δ are both diameters. Thus γ and 
δ cross unless they are equal. The crossing number of γ̃ and δ̃ depends on the signs of 
the loops. As we see from Example 6.1, γ̃ will cross exactly one of δ̃, σδ̃, unless γ = δ, 
and σγ̃ will cross exactly the other. This shows part (d). !

We also obtain a dual statement of Proposition 6.3.

Proposition 6.4. Let γ̃, ̃δ be two 2-arcs in P with lifts γ, δ in S. Then
∑

δ̃′∈Gδ̃

e(γ̃, δ̃′) =
∑

γ′∈Gγ

e(γ′, δ). (6.2)
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Proof. Consider the following sequence of equations.

e(γ̃, δ̃) = dim Ext1C2
D
(ΘD(γ̃),ΘD(δ̃))

= dim Ext2C2
D
(ΘD(δ̃),ΘD(γ̃))

= dim Ext1C2
D
(ΘD(Rδ̃),ΘD(γ̃))

= e(Rδ̃, γ̃)

The first and the last equality follow from Lemma 6.2, while the second equality follows 
from the 3-Calabi-Yau property of C2

D. Finally, the third equality holds since ΘD is an 
equivalence of categories where the rotation R in P corresponds to an inverse shift in C2

D. 
Now the result follows from equation (6.1) by replacing Rδ̃, ̃γ with γ̃, ̃δ respectively. !

6.3. Combinatorial interpretation of the equivalence Ψ

We are now ready for our main result.
First, we define the rotation operation R on the category Arc(P) where the punctured 

polygon P has size N , which is the analog of the clockwise rotation R on Diag(S). Let 
γ̃ be a 2-arc in P. If γ̃ = (i, j) is not a loop then define Rγ̃ = (i + 1, j + 1). If γ̃ = (i, i)±
is a loop then define Rγ = (i + 1, i + 1)± whenever (N + 1)/2 is even and otherwise let 
Rγ = (i + 1, i + 1)∓. Moreover, we can extend the definition of R to 2-pivots γ̃ → δ̃ by 
setting R(γ̃ → δ̃) = Rγ̃ → Rδ̃.

Let ρ̃(i) ∈ Arc(P) denote the radical line of vertex i. For every 2-arc γ̃ in P we define 
projective modules

P̃1(γ̃) =
⊕

j

e(ρ̃(j), γ̃) P̃ (j) and P̃0(γ̃) =
⊕

i

e(γ̃, ρ̃(i)) P̃ (i).

Theorem 6.5. Let B = eAGe be the basic algebra of the skew group algebra of a dimer 
tree algebra A with respect to the action of a group G of order 2. Let P be the associated 
punctured polygon with checkerboard pattern. For each 2-arc γ̃ in P there exists a mor-
phism f̃γ̃ : P̃1(γ̃) → P̃0(γ̃) such that the mapping γ̃ *→ cokerf̃γ̃ induces an equivalence of 
categories

Ψ : Arc(P) → CMPB.

Under this equivalence, the radical line ρ̃(i) corresponds to the radical of the indecompos-
able projective P̃ (i) for all vertices i ∈ QB. The clockwise rotation R of P corresponds 
to the shift Ω in CMPB and R2 corresponds to the inverse Auslander-Reiten translation 
τ−1 = Ω2. Thus

Ψ(ρ̃(i)) = rad P̃ (i)
Ψ ◦R = Ω ◦ Ψ

Ψ ◦R2 = τ−1 ◦ Ψ
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Furthermore, Ψ maps the 2-pivots in Arc(P) to the irreducible morphisms in CMPB, 
and the meshes in Arc(P) to the Auslander-Reiten triangles in CMPB.

Proof. This result follows from Theorem 4.7 and properties of the induction functor 
F . The main part of the proof below is to check that our definition of the intersection 
numbers is correct.

Let γ̃ be a 2-arc in P and let γ be a lift in S. Theorem 4.7 shows the existence of 
a morphism fγ : P1(γ) → P0(γ) that defines a functor Φ : Diag(S) → CMPA, Φ(γ) =
cokerMγ . The projective modules above are defined as

P0(γ) =
⊕

i

e(γ, ρ(i))P (i) and P1(γ) =
⊕

j

e(ρ(j), γ)P (j),

where both sums run over all vertices of the quiver of A. We can rewrite P0(γ) by 
grouping its summands according to the G-orbits on the vertex set of QA as follows. Let 
I be a set of representatives of the G-orbits in the vertex set of QA, and let us write 
I = I1⊔I2, where I1 contains the vertices that are fixed by σ and I2 contains the vertices 
that are not fixed by σ. In the polygon S, the set I1 corresponds to the diameters and 
I2 to the non-diameters. Then

P0(γ) = ⊕i∈I1e(γ, ρ(i))P (i) ⊕ ⊕i∈I2

(
e(γ, ρ(i))P (i) ⊕ e(γ, ρ(σi))P (σi)

)
.

We now apply the induction functor F . Proposition 2.7 yields F (P (i)) = P̃ (̃i+) ⊕P̃ (̃i−)
if i ∈ I1 and F (P (i)) = F (P (σi)) = P̃ (̃i) if i ∈ I2, where ĩ± are the two vertices of QB

that correspond to the two copies ρ̃(i±) of a loop in Arc(P). Thus we obtain

F (P0(γ)) = ⊕i∈I1 e(γ, ρ(i))
(
P̃ (̃i+) ⊕ P̃ (̃i−)

)
⊕ ⊕i∈I2

(
e(γ, ρ(i)) + e(γ, ρ(σi))

)
P̃ (̃i).

Note that the coefficient e(γ, ρ(i)) in the first direct sum is equal to 
∑

i′∈Gi e(γ, ρ(i′)), 
since σi = i in this case, and the coefficient e(γ, ρ(i)) + e(γ, ρ(σi)) in the second direct 
sum is equal to 

∑
i′∈Gi e(γ, ρ(i′)). Therefore equation (6.1) implies

F (P0(γ)) = ⊕ĩ∈Ĩ1

∑

γ̃′∈Gγ̃

e(γ̃′, ρ̃(̃i))
(
P̃ (̃i+)⊕P̃ (̃i−)

)
⊕ ⊕ĩ∈Ĩ2

∑

γ̃′∈Gγ̃

e(γ̃′, ρ̃(̃i)) P̃ (̃i), (6.3)

where Ĩ1 ⊔ Ĩ2 is a complete set of representatives of the G orbits in the vertex set of QB

such that Ĩ1 contains the vertices that are not fixed by σ and Ĩ2 contains the vertices 
that are fixed by σ.

Suppose first that γ̃ is not a loop. Then its orbit Gγ̃ only contains γ̃ and thus equa-
tion (6.3) becomes

F (P0(γ)) = ⊕ĩ∈Ĩ1
e(γ̃, ρ̃(̃i))

(
P̃ (̃i+) ⊕ P̃ (̃i−)

)
⊕ ⊕ĩ∈Ĩ2

e(γ̃, ρ̃(̃i)) P̃ (̃i),
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which can be written as

F (P0(γ)) = ⊕i e(γ̃, ρ̃(̃i)) P̃ (̃i) = P̃0(γ̃), (6.4)

where the sum is over all vertices of the quiver of B.
On the other hand, if γ̃ = (h, h) is a loop, then Gγ̃ contains two arcs (h, h)+ and 

(h, h)−. Then equation (6.3) becomes

F (P0(γ)) = ⊕ĩ∈Ĩ1

(
e((h, h)+, ρ̃(̃i)) + e((h, h)−, ρ̃(̃i))

)(
P̃ (̃i+) ⊕ P̃ (̃i−)

)

⊕ ⊕ĩ∈Ĩ2
2e((h, h), ρ̃(̃i)) P̃ (̃i),

which yields

F (P0(γ)) = P̃0((h, h)+) ⊕ P̃0((h, h)−). (6.5)

The analogous computation for P1(γ) together with equation (6.2) yields

F (P1(γ)) =
{

P̃1(γ̃) if γ̃ is not a loop;
P̃1((h, h)+) ⊕ P̃1((h, h)−) if γ̃ = (h, h) is a loop. (6.6)

To complete the proof of the theorem, we define f̃γ̃ = F (fγ). Then cokerf̃γ̃ =
F (cokerfγ), since F is an exact functor. In particular, cokerf̃γ̃ is a non-projective syzygy, 
by Proposition 2.9 (a), and the projective presentation in Theorem 4.7 is mapped under 
F to a projective presentation of cokerf̃γ̃ . Therefore the functor Ψ is well-defined. The 
statement that Ψ is an equivalence of categories follows from Theorem 5.2, using the 
fact that the algebras AG and B are Morita equivalent.

It remains to prove the three equations in the statement of the theorem. The first 
equation follows from the corresponding equation in Theorem 4.7, because the exact 
functor F maps the radical of the projective P (i) to the radical of the projective F (P (i)). 
The last two equations follow from the corresponding equations in Theorem 4.7 together 
with Proposition 2.9, which says that the induction functor F commutes with the syzygy 
operator Ω. !

6.4. Applications

We immediately obtain the following consequences of our results. The statements 
appearing below are analogous to the ones shown for dimer tree algebras in Corollary 4.8.

We begin by defining the weight of the algebra B. Recall that the quiver QB of B
is obtained from a quiver Q0 of a dimer tree algebra by replacing a boundary arrow 
α : i → j in Q0 with two arrows α− : i− → j− and α+ : i+ → j+ and each arrow β in 
Q0 starting or ending at i or j by two arrows β+ and β− starting or ending at i+, i− or 
j+, j−.
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Definition 6.6. Let B be a skew group algebra of a dimer tree algebra.
(a) For every boundary arrow β ̸= α in Q0, we define its unique skew cycle path to 

be c̃(β) = β1β2 · · ·βℓ(β) in Q0, where

(i) β1 = β and βℓ(β) are boundary arrows in Q0 different from α, and each of 
β2, . . . , βℓ(β)−1 is an interior arrow or the arrow α,

(ii) every subpath of length two βiβi+1, is a subpath of a chordless cycle Ci in Q0, and 
Ci = Cj if and only if j = i + 1 and βi+1 = α.

(b) The weight w̃(β) of the boundary arrow β is defined as

w̃(β) =
{

1 if the length of c̃(β) is odd;
2 if the length of c̃(β) is even.

(c) The total weight of B is defined as 
∑

β w̃(β), where the sum is over all boundary 
arrows of Q0 different from α.

Note that the skew cycle path ̃c(β) coincides with the cycle path c(β) unless ̃c(β) ends 
in the arrow α in which case c̃(β) = c(β)c(α). Recall that cycle paths for dimer tree 
algebras correspond to moving clockwise around the unshaded regions of the checker-
board polygon. Similarly, the skew cycle paths correspond to moving clockwise around 
the unshaded regions in the punctured polygon. Moreover, the weight w̃(β) equals the 
weight of the corresponding arrow in the quiver QA. This implies that the total weight 
of the algebra B is half the total weight of A.

Corollary 6.7. (a) The category CMPB is equivalent to the 2-cluster category of type 
D(N+1)/2. In particular, the number of indecomposable syzygies is N(N + 1)/2.

(b) The total weight of B is a derived invariant.
(c) The projective resolution of any syzygy is periodic of period N or 2N . An inde-

composable syzygy Mγ̃ has period 2N if and only if the corresponding 2-diagonal γ̃ is a 
loop in P and (N + 1)/2 is odd.

(d) The indecomposable syzygies over B are rigid B-modules.
(e) Let L, M be indecomposable syzygies over B. Then the dimension of Ext1B(L, M) ⊕

Ext1B(M, L) is equal to the sum of the two crossing numbers between the corresponding 
2-arcs. In particular, the dimension is either 0, 1, or 2.

(f) Let τ denote the Auslander-Reiten translation in modB and ν the Nakayama func-
tor. We denote the stable cosyzygy category by CMIB. The following diagram commutes.

CMPB
τ CMIB

Arc(P)

cok f̃γ̃

1 Arc(P)

ker νf̃γ̃
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Proof. (a) Since B is the basic algebra of AG then the two categories are equivalent by 
Theorem 5.1. The Auslander-Reiten quiver of C2

D(N+1)/2
has (N + 1)/2 τ -orbits each of 

cardinality N . Thus there are N(N + 1)/2 indecomposable objects.
(b) The weight of B equals N , the size of the punctured polygon. By part (a), the 

integer N determines the syzygy category of B up to equivalence. Now the statement 
follows because derived equivalent algebras have equivalent singularity categories.

(c) By definition of R if a 2-arc γ̃ is not a loop then RN γ̃ = γ̃. Moreover, if γ̃ = (i, i)±
is a loop then RN γ̃ = γ̃ whenever (N +1)/2 even, and since N is odd then RN γ̃ = (i, i)∓
whenever (N +1)/2 is odd. Hence, only in the latter case the period of γ̃ is 2N under R, 
while in all other cases it is N . By Theorem 6.5 the rotation R on the 2-arcs corresponds 
to the syzygy functor Ω on CMPB, which shows (c).

(d) Let M be an indecomposable syzygy over B. Under the equivalence of categories 
in Theorem 5.1, M corresponds to a 2-arc in Arc(P) which, because of Proposition 6.2, 
is a rigid object in CMPB. Thus M is rigid in modB, as CMPB is an extension closed 
subcategory of modB by [32, Proposition 2.3].

(e) This follows from the equivalences in Theorem 5.1 and Proposition 6.2, together 
with the fact that CMPB is an extension closed subcategory of modB as above.

(f) The proof here is analogous to the one for Corollary 4.8(f) given in [32]. !

A module M ∈ modA is said to be τ -rigid if HomA(M, τM) = 0. Note that a τ -rigid 
module is rigid, and we know that indecomposable syzygies over algebras of finite Cohen-
Macaulay type are rigid. Moreover, in [32] we conjecture that indecomposable syzygies 
over dimer tree algebras are τ -rigid and reachable. In particular, this would imply that 
they correspond to cluster variables in the cluster algebra of Q. It is natural to ask how 
this property behaves by passing to the skew group algebra of a dimer tree algebra, thus 
we make the following observation.

Proposition 6.8. The module M ⊕ σM is τ -rigid in modA if and only if the induced 
module FM is τ -rigid in modAG.

Proof. Consider the following

HomAG(FM, τFM) ∼= HomAG(FM,F (τM)) ∼= HomA(M,HF (τM))
∼= HomA(M, τM ⊕ στM)

where the first isomorphism follows from Proposition 2.8, the second isomorphism from 
the adjointness of H and F , and the third from Proposition 2.7. Since σ is an au-
tomorphism of A of order 2, we also get that the right hand side is isomorphic to 
HomA(σM, στM ⊕ τM). This shows the proposition. !

Note that for an indecomposable syzygy M , we know from the geometric model that 
M ⊕ σM is rigid, so again it is natural to make the following conjecture.
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Conjecture 6.9. If M is an indecomposable syzygy then M ⊕ σM is τ -rigid.

7. Examples

7.1. Example with detailed computations

The left picture below shows the checkerboard polygon S as well as the quiver of the 
corresponding dimer tree algebra A. The right picture shows the checkerboard punctured 
polygon P and the quiver of the skew group algebra B = eAG e. The orientations of the 
radical lines are indicated by arrows in both pictures.

In the left picture there are two red5 2-diagonals labeled γ and σγ. The 2-diagonal 
γ crosses the radical lines ρ(4) and ρ(5′) from right to left and γ crosses ρ(3′) from 
left to right. Thus the corresponding syzygy Φ(γ) ∈ CMPA is the cokernel of a map 
P (4) ⊕ P (5′) → P (3′). Hence Φ(γ) = 3′

1 .
On the right hand side, the 2-arc γ̃ crosses the radical lines ρ̃(4) and ρ̃(5) from right to 

left and γ̃ crosses ρ̃(3) from left to right. Thus the corresponding syzygy Ψ(γ̃) ∈ CMPB

is the cokernel of a map P̃ (4) ⊕ P̃ (5) → P̃ (3). Hence Ψ(γ̃) = 3
1+ 1− .

4 3 5

1 α 2

4′ 3′ 5′

4 3 5

1+ α+

2+

1− α−

2−

5 For interpretation of the colors, the reader is referred to the web version of this article.
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To illustrate the correspondence between the projective resolutions over A and B we 
specify them below. Each morphism in these resolutions is of the form fγ or f̃γ̃ for some 
2-diagonal γ in S or a 2-arc γ̃ in P. The label on top of the arrows below indicate these 
γ and γ̃. The projective resolutions are periodic and we illustrate one period.

7.1.1. Projective resolution of the radical of P (5)
Over the algebra A, the radical of P (5) corresponds to the 2-diagonal (5, 8) in the 

14-gon S. Over the algebra B, the radical of P (5) corresponds to the 2-arc (5, 1) in 
the punctured 7-gon P. The projective resolutions are given by the rotation orbit of 
(5, 8) in S and of (5, 1) in P. In particular the period of the resolution is 14 over A
and 7 over B. Thus over A we have Ω14

A (radP (5)) = radP (5), and over B we have 
Ω7

B(radP (5)) = radP (5). We point out that Ω7
A(radP (5)) = radP (σ5). The top two 

rows below together form the resolution over A. The second row is the image of the first 
row under σ. The third row is the corresponding resolution over B. It is obtained from 
the first row by replacing P (i′) by P (i), for i = 3, 4, 5, replacing P (i) by P (i+) ⊕ P (i−)
for i = 1, 2, and reducing the arrow labels modulo 7. In order to keep it short we use the 
notation P (i±) = P (i+) ⊕ P (i−), for i = 1, 2.

P (5′)
(10,13)

P (4′)
(9,12)

P (1)
(8,11)

P (3′)
(7,10)

P (4′) ⊕ P (5)
(6,9)

P (3)
(5,8)

P (2)
(4,7)

radP (5) 0

P (5)
(3,6)

P (4)
(2,5)

P (1)
(1,4)

P (3)
(14,3)

P (4) ⊕ P (5′)
(13,2)

P (3′)
(12,1)

P (2)
(11,14)

P (5′)

P (5)
(3,6)

P (4)
(2,5)

P (1±)
(1,4)

P (3)
(7,3)

P (4) ⊕ P (5)
(6,2)

P (3)
(5,1)

P (2±)
(4,7)

radP (5) 0

7.1.2. Projective resolution of the radical of P (3)
The radical of P (3) corresponds to the 2-diagonal (2, 7) in the 14-gon S over the 

algebra A and to the 2-arc (2, 7) in the punctured 7-gon P over the algebra B. The 
projective resolutions are given by the rotation orbits of these curves in S and P. Again, 
the period of the resolution is 14 over A and 7 over B. The top two rows below is the 
resolution over A and the bottom row is the corresponding resolution over B. Note that 
the correspondence between the resolutions is exactly as in 7.1.1.

P (3′)
(7,12)

P (1) ⊕ P (5)
(6,11)

P (3) ⊕ P (3′)
(5,10)

P (4′) ⊕ P (2)
(4,9)

P (3)
(3,8)

P (4) ⊕ P (2)
(2,7)

P (1) ⊕ P (5)
(1,6)

radP (3) 0

P (3)
(14,5)

P (1) ⊕ P (5′)
(13,4)

P (3′) ⊕ P (3)
(12,3)

P (4) ⊕ P (2)
(11,2)

P (3′)
(10,1)

P (4′) ⊕ P (2)
(9,14)

P (1) ⊕ P (5′)
(8,13)

P (3′)

P (3)
(7,5)

P (1±) ⊕ P (5)
(6,4)

P (3) ⊕ P (3)
(5,3)

P (4) ⊕ P (2±)
(4,2)

P (3)
(3,1)

P (4) ⊕ P (2±)
(2,7)

P (1±) ⊕ P (5)
(1,6)

radP (3) 0
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7.1.3. Projective resolution of the radicals of P (1) and P (1+)
The radical of P (1) over the algebra A corresponds to the 2-diagonal (3, 10) in the 

14-gon S. This is different from the previous cases because (3, 10) is a diameter in S
and therefore it is fixed under σ = Ω7. Therefore the projective resolution of radP (1)
has period 7. Over the algebra B, there are two corresponding vertices 1+, 1− and the 
projective resolutions of the radicals of P (1+) and P (1−) are symmetric. The radical of 
P (1+) corresponds to the loop (3, 3)+ in the punctured 7-gon P. The syzygy functor 
Ω acts on loops by moving the boundary endpoint to its clockwise neighbor (note that 
it doesn’t change the sign since (N + 1)/2 = 4 is even). Therefore the period of the 
projective resolution is 7 over B. The top row below is the resolution over A and the 
bottom two rows are the corresponding resolution over B. The bottom row is obtained 
from the top row by removing P (i′) for i = 3, 4, 5 and replacing P (i) by P (i+) or P (i−), 
for i = 1, 2.

P (1)
(8,1)

P (2)
(7,14) P (1)⊕

P (5)⊕P (5′)
(6,13)

P (3) ⊕ P (3′)
(5,12)

P (1) ⊕ P (2)
(4,11)

P (3) ⊕ P (3′)
(3,10) P (2)⊕

P (4)⊕P (4′)
(2,9)

radP (1) 0

P (1+)
(1,1)+

P (2-)
(7,7)+ P (1-)⊕

P (5)
(6,6)+

P (3)
(5,5)+

P (1+) ⊕ P (2-)
(4,4)+

P (3)
(3,3)+ P (2+)⊕

P (4)
(2,2)+

radP (1+) 0

7.1.4. Auslander-Reiten quiver of CMPB

To complete our study of Example 7.1, we give the Auslander-Reiten quiver of the 
syzygy category CMPB.

2+

3
1-

1-
4 2-
3

2-
3
1+

1+

4 2+

3

3
1- 2+

3
2-4
3

1-
42-2+

3

1+5
42-2+

3
1- 3

1+5
3
1-

3
1+ 3 2-

3
2+2-4

33
2+4
3

2+2-4
3

1+

42+2-
3

1+1-5
442+2+2-2-

33

1-5
42+2-

3

1+1-5
42+2-

3
1+ 3

1+1-5
3

1-5
33

1+1-5
3
1+

3
5

4
3

2+2-
3

5
42+2-

3

1+1-
42+2-

3
5 3

1+1-
3
5

4
3
5

5
2+2-

3

3
1+1-5
42+2-

3

7.2. Example

This example is less symmetric than the previous one. The left picture below shows 
the checkerboard polygon S as well as the quiver of a dimer tree algebra A. The right 
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picture shows the checkerboard punctured polygon P and the quiver of the skew group 
algebra B = eAG e.

7 4 3 5 6

1 α 2

7′ 4′ 3′ 5′ 6′

7 4 3 5 6

1+ α+

2+

1− α−

2−

7.3. Algebra of syzygy type D that is not a skew group algebra

Let B be the Jacobian algebra of the following quiver where the potential is given by 
the sum of all chordless cycles. Note that B is not a skew group algebra of a dimer tree 
algebra. Nevertheless, by directly computing the syzygy category of B we obtain that it 
is a 2-cluster category of type D6, so it can be modeled by punctured polygon of size 11. 
In the polygon we can place arcs corresponding to radicals of projective modules and 
obtain a checkerboard pattern shown below, where shaded regions together with the arcs 
attached to the puncture with the same sign give chordless cycles in the quiver. Moreover, 
as in the previous examples, the projective presentation of an indecomposable syzygy 
Mγ̃ is given by intersection patterns of the 2-arc γ̃ with the arcs of the checkerboard 
polygon.
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5

6 2

1 4

7 3

8 9

7.4. Application to dimer models

In [33, Figure 2], we explained in an example how to associate a consistent dimer 
model to every dimer tree algebra. This is done by embedding the checkerboard polygon 
into a unique alternating strand diagram on a slightly larger disk. The mutable part of 
the quiver of the alternating strand diagram is equal to the twist of the quiver of the 
dimer tree algebra in the sense of Bocklandt [12]. It is natural to ask what happens 
to the dimer model under the action of G. A similar situation was studied recently by 
Baur, Pasquali and Velasco in [11], who construct orbifold diagrams using a rotation 
action on an alternating strand diagram on a polygon. The situation here is similar but 
not the same. The reason is that our rotation σ does not preserve the orientation of the 
diameters.

In the example in Fig. 9, we show how this correspondence behaves under the G-
action. Let A denote the dimer tree algebra from the example in section 7.2. Then 
the top right picture in Fig. 9 shows the alternating strand diagram that contains the 
checkerboard polygon of A. The top left picture shows the quiver Q̃ of the corresponding 
dimer model; its vertices correspond to the white regions in the polygon, two vertices 
are connected by an arrow if the corresponding regions share a vertex, and the direction 
of the arrow is determined by the orientation of the strands in the polygon. The vertices 
corresponding to the boundary regions are called frozen vertices and the remaining ver-
tices 1,2,3,4,5,6,7,3’,4’,5’,6’,7’ are called mutable vertices. The full subquiver of Q̃ on the 
mutable vertices is called the twist of the quiver Q of the dimer tree algebra A.

Note that in this polygon the action of σ is given by a rotation by angle π as indicated 
by the labels of the white regions and the vertices. This symmetry induces a symmetry 
on the twisted quiver as well, but it reverses the direction of the arrows.

The bottom right picture in Fig. 9 shows the resulting strand diagram on the punc-
tured polygon obtained by the rotational symmetry. In order to reconcile the problem 
that σ does not preserve the orientations, we add the so-called rift in the punctured 
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Fig. 9. The dimer models of the example in section 7.2.

polygon that goes from the puncture to the boundary segment between vertices 8 and 9. 
Thus, the white regions with labels 1,2,8, 8’ in the polygon give white regions with labels 
1±, 2±, 8±, 8′± in the punctured polygon with rift. The rift allows us to orient strands 
such that each strand that passes through the rift changes orientation, which ensures 
that the boundary of white regions is alternating and the boundary of shaded regions is 
oriented.

One may want to associate a quiver to this dimer model which is shown on the bottom 
left, where the rift behaves in a similar way as the boundary. Note that this quiver is 
almost the one corresponding to the G-action on the quiver Q̃, except that we also have 
arrows 8± → 8′±.
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Remark 7.1. There are strong connections between dimer models on a disk and Cohen-
Macaulay categories, see [8,27]. In particular, a consistent dimer model on a disk yields 
a quiver Q and the associated Jacobian algebra AQ, with frozen vertices coming from 
the boundary regions of the dimer model. Let e be the sum of the primitive idempotents 
associated to the frozen vertices, then eAQe is called the boundary algebra of AQ. It 
is known that the Cohen-Macaulay category of the boundary algebra is 2-Calabi-Yau. 
Moreover, it is a 1-cluster category that provides an additive categorification of cluster 
algebras coming from coordinate rings of (open) positroid varieties. On the other hand 
we are studying something different here, because for certain dimer models we are con-
sidering the Cohen-Macaulay category of the dimer tree algebra AQ/⟨e⟩ obtained by 
removing the frozen vertices, and show that it is a 2-cluster category of type Ar. The 
rank r of the category is related to 2(r + 2) marked points on the boundary of the disk 
of the dimer model.

7.5. Algebras of syzygy type E

It is natural to ask if there are 2-Calabi-Yau tilted algebras that are of syzygy type 
En, with n = 6, 7, 8. We give here three examples. The Jacobian algebras of the following 
quivers with the potential given by the sum of the chordless cycles have syzygy categories 
of types E6, E7, E8 respectively. Observe that moving from left to right we increase the 
length of the chordless cycle at the top right by adding a vertex. Moreover, if this 
chordless where to have length three, that is the quiver would be a collection of six 3-
cycles joined together at an interior vertex, then it would be the same quiver as shown 
in Example 7.1 on the right whose corresponding syzygy category is of type D4. These 
examples were checked by computer using the QPA package in [19].

6 7 8

4 3 5

1 2

6 7 8 9

4 3 5

1 2

6 7 8 9 10

4 3 5
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