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Cohen-Macaulay type A and D respectively. We also provide

examples of types Eg, E7, and Es.
© 2024 Elsevier Inc. All rights are reserved, including those
for text and data mining, Al training, and similar

technologies.
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1. Introduction

We introduced the class of dimer tree algebras in [32]. A dimer tree algebra A is the
Jacobian algebra Jac(Q, W) of a quiver @ without loops and 2-cycles together with a
canonical potential W satisfying the following two conditions. Every arrow of @ lies
in at least one oriented cycle, and the dual graph of @ is a tree. The latter condition
explains half of the terminology “dimer tree”. The other half stems from the fact that
every dimer tree algebra induces a dimer model on the disk, also known as Postnikov
diagram. These dimer models appear in cluster structures on Grassmannians as well as in
mathematical physics. For example, the Jacobian algebras arising from the coordinate
rings of the Grassmannians Gr(3,n) are dimer tree algebras. Dimer models and their



R. Schiffler, K. Serhiyenko / Journal of Algebra 660 (2024) 91-133 93

algebras have been studied extensively, see [21,26,23,8,27] and the references therein; for
their connection to homological mirror symmetry, see [12].

Dimer tree algebras are non-commutative Gorenstein algebras of Gorenstein dimen-
sion 1 [24]. Therefore the category of (maximal) Cohen-Macaulay modules CMPA of a
dimer tree algebra A is equivalent to the category of syzygies over A. Furthermore, the
stable category CMPA is a triangulated 3-Calabi-Yau category [24] that is equivalent to
the singularity category of A [14].

In our previous work [32,33], we introduce a derived invariant, the total weight of a
dimer tree algebra A. We show that the total weight is an even integer 2/N. We then
construct a regular (2N)-gon S equipped with a certain checkerboard pattern and show
that there are equivalences of triangulated 3-Calabi-Yau categories

CMPA = DiagS =C3 (1.1)

between the stable Cohen-Macaulay category CMPA of A, the combinatorial category
of 2-diagonals DiagS in S and the 2-cluster category CXN_Q = D’(mod kQ)/771[2] of
Dynkin type Ay _2. The latter equivalence was shown earlier in [9]. Let us point out that
we use the notation of Thomas [34] for the higher cluster categories which is different
from that of Iyama [3]. In our notation the original cluster category of [13] is the 1-cluster
category.

In particular the number of indecomposable Cohen-Macaulay modules is finite, and
equal to N(N —2).

In the commutative case, the problem of classifying commutative Gorenstein rings R of
finite Cohen-Macaulay type has been studied in the 80s by several authors [5,7,15,17,25].
In the case where R has Krull dimension 2, the classification is in terms of Dynkin
diagrams of type A, D, E. In fact, the stable Cohen-Macaulay category is equivalent to
the O-cluster category D°(mod kQ)/771[0], where @ is a Dynkin quiver of type A, D, E.
Much more recently, in [3], it was shown that the stable Cohen-Macaulay category over
a Gorenstein isolated singularity is equivalent to some higher cluster category, generally
not of finite type. It is interesting to note that their result also applies to the centers
of the Jacobian algebras arising from consistent dimer models on a torus; the Cohen-
Macauley category of the center is shown to be equivalent to the 1-cluster category of an
algebra obtained by cutting arrows of a perfect matching from the quiver and removing
a source vertex of the resulting quiver.

For non-commutative Gorenstein rings, the question of finite Cohen-Macaulay type is
wide open. For the subclass of Jacobian algebras of a quiver with potential, we know from
[24] that the stable Cohen-Macaulay category is a triangulated 3-Calabi-Yau category.
On the other hand, it is shown in [1] that the finite triangulated 3-Calabi-Yau categories
are exactly the 2-cluster categories of Dynkin types A,ID,[E. There is thus a strong
analogy to the case of commutative Gorenstein rings of dimension 2.
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We say that a Jacobian algebra is of Cohen-Macaulay type A,,,D,, or E,,, if its stable
Cohen-Macaulay category is a 2-cluster category of this type. Our result explained above
shows that the class of dimer tree algebras is of finite Cohen-Macaulay type A.

In this paper, we construct a class of Jacobian algebras of Cohen-Macaulay type D
and give examples for types Eg,E7, Eg as well. These results provide further evidence
for the analogy to the commutative case.

Let us now explain the construction of our class of algebras that have Cohen-Macaulay
type D. We obtain these algebras as skew group algebras AG of a dimer tree algebra
A with respect to the action of a group G of order 2. This construction is inspired by
the work of Reiten and Riedtmann in 1985 [28], which in particular provided a way to
realize path algebras of certain Dynkin quivers of type DD as skew group algebras of path
algebras of Dynkin quivers of type A. In our situation, the skew group algebra is again
a Jacobian algebra of a quiver with potential, thanks to a result of [4].

Our construction is very general. Indeed, every dimer tree algebra gives rise to several
of these skew group algebras — one for each boundary arrow of the quiver of the dimer
tree algebra, see Proposition 4.9. We show that the G-action on the dimer tree algebra A
induces a G-action on the Cohen-Macaulay category CMPA as well as on the associated
checkerboard polygon S in Proposition 4.11. We then prove in Theorems 5.1 and 5.2 that
our equivalences (1.1) carry over to equivalences of triangulated 3-Calabi-Yau categories

CMPAG = ArcP =Cp . (1.2)

between the stable Cohen-Macaulay category of the skew group algebra AG, the com-
binatorial category of 2-arcs on the punctured N-gon and the 2-cluster category of
Dynkin type D(y41)/2- In particular, the number of indecomposable non-projective
Cohen-Macaulay modules is equal to N(N + 1)/2.

Furthermore, our checkerboard pattern on the 2IN-gon S induces a checkerboard pat-
tern on the punctured N-gon P. As in the case of dimer tree algebras, the checkerboard
pattern allows us to construct the complete Auslander-Reiten quiver of the Cohen-
Macaulay category of the skew group algebra, see Theorem 6.5. Indeed, for every 2-arc -y
in ArcP, the crossing points of v with the checkerboard pattern determines a projective
presentation of the corresponding Cohen-Macaulay module M,. The syzygy functor €2,
which is also the inverse shift in the triangulated category CMP AG, is given geometri-
cally as a rotation by 2m/N of P. Therefore the complete projective resolution of M, is
determined by the rotation orbit of the 2-arc . In particular, the projective resolution is
periodic of period N or 2N. In Definition 6.6, we give a simple method to compute the
total weight N directly from the quiver of the (basic version of the) skew group algebra.

As applications, we obtain in Corollary 6.7 that the indecomposable Cohen-Macaulay
modules are rigid and extensions between two indecomposables correspond to crossing
points between the associated 2-arcs in the punctured disk. We further show in Propo-
sition 6.8, that the A-module M ® oM is 7-rigid if and only if the induced AG-module
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M ®4 AG is 7-rigid, where o is the nontrivial element of G of order 2. We conjecture
that every indecomposable Cohen-Macaulay module over A and AG is 7-rigid.

Several examples of the construction are given in section 7. We point out that not
every Jacobian algebra of Cohen-Macaulay type D can be realized as the skew group
algebra of a dimer tree algebra; an example is given in section 7.3. This should not be
surprising, because it is also the case that not every path algebra of type D can be
realized as a skew group algebra of an algebra of type A. In section 7.4, we illustrate
the relation to dimer models in an example. Finally, we provide examples of Jacobian
algebras of Cohen-Macaulay types E in section 7.5.

2. Recollections

Let k be an algebraically closed field. If A is a finite-dimensional k-algebra, we denote
by mod A the category of finitely generated right A-modules. Let D denote the standard
duality D = Hom(—, k). If @ is the ordinary quiver of the algebra A, and i is a vertex of
Qx, we denote by P(i),1(7),S(i) the corresponding indecomposable projective, injective,
simple A-module, respectively.

Let rad A denote the Jacobson radical of A. If M € mod A, its radical is defined as
rad M = M(rad A) and its top as top M = M/rad M. Thus in particular top P(i) =
S(%). Given a module M, we denote by add M the full subcategory of mod A whose objects
are direct sums of summands of M. For further information about representation theory
and quivers we refer to [6,31].

2.1. Basic algebras

For every finite dimensional algebra A over k there exists a complete set of primitive
orthogonal idempotents eq, es,...¢e, such that the A-module A decomposes into a sum
on indecomposable projective modules A = @} ;e;A. The algebra A is said to be basic
if the e; A are pairwise non-isomorphic. In that case, one can define the quiver of the
algebra, whose vertex set is in bijection with the set of idempotents eq, ..., e,.

If A is not basic, we can choose a subset e;,,...,e;, of idempotents such that the
ej, A are pairwise non-isomorphic and such that every e;A is isomorphic to one of the
ej A Let e = 1" ej,. Then the algebra A® = eAe is a basic algebra that is Morita
equivalent to A, which means that there is an equivalence of categories

mod A = mod A®,

see for example [6, Corollary 6.10].
2.2. Cohen-Macaulay modules over 2-Calabi- Yau tilted algebras

Now let A be a 2-Calabi- Yau tilted algebra. Thus A is the endomorphism algebra of a
cluster-tilting object in a 2-Calabi-Yau category. A A-module M is said to be projectively
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Cohen-Macaulay if Exty (M, A) = 0 for all i > 0. In other words, M has no extensions
with projective modules.

We denote by CMP A the full subcategory of mod A whose objects are the projectively
Cohen-Macaulay modules. This is a Frobenius category. The projective-injective objects
in CMP A are precisely the projective A-modules. The corresponding stable category
CMP A is triangulated, and its inverse shift is given by the syzygy operator 2 in mod A.

Moreover, by Buchweitz’s theorem [14, Theorem 4.4.1], there exists a triangle equiv-
alence between CMP A and the singularity category D°(A)/Db,, ((A) of A. Keller and
Reiten showed in [24] that the category CMP A is 3-Calabi-Yau.

It was shown in [20] that if M € modA is indecomposable then the following are
equivalent.

(a) M is a non-projective syzygy;
(b) M € ind CMP A;
(C) Q%TAM =M.

We may therefore use the terminology “syzygy” and “Cohen-Macaulay module” in-
terchangeably.

Two algebras are said to be derived equivalent if there exists a triangle equivalence
between their bounded derived categories. Two algebras are said to be singular equivalent
if there exists a triangle equivalence between their singularity categories.

2.3. Quivers with potentials

A quiver @ = (Qo, Q1, s,t) consists of a finite set of vertices Qo, a finite set of arrows
Q1 and two maps s,t: Q1 — Qg, where s is the source and t is the target of the arrow.
Thus if @ € Q1 then a: s(a) — t(a).

A potential W on a quiver @ is a linear combination of non-constant cyclic paths. For
every arrow « € (1, the cyclic derivative 0, is defined on a cyclic path ajas...ay as

aa(alag...at) = E Qp41-.-0¢00 ... Op_1
P ap=a

and extended linearly to the potential W.

The Jacobian algebra Jac(Q, W) of the quiver with potential is the quotient of the
(completed) path algebra kQ by (the closure of) the 2-sided ideal generated by all partial
derivatives 0, W, with a € Q1. Two parallel paths in the quiver are called equivalent if
they are equal in Jac(Q,W).

If @ has no oriented 2-cycles then Jac(Q, W) is 2-Calabi-Yau tilted by [2].
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2.4. Translation quivers and mesh categories

We review here the notions of translation quiver and mesh category from [29,22].
These notions are often used in order to define a category from combinatorial data.

A translation quiver (I',7) is a quiver I' = (I'g,I'1) without loops together with an
injective map 7: I'y — I'g (the translation) from a subset I’y of T'g to Iy such that, for
all vertices z € T'(), y € T'g, the number of arrows from y — z is equal to the number of
arrows from 7z — y. Given a translation quiver (T, 7), a polarization of T is an injective
map o : Iy = I'y, where I'} is the set of all arrows a: y — z with x € T'}, such that
o(a): e — y for every arrow a: y — x € I'y. From now on we assume that T has no
multiple arrows. In that case, there is a unique polarization of T'.

The path category of a translation quiver (T, 7) is the category whose objects are the
vertices I'g of T', and, given x,y € T'g, the k-vector space of morphisms from x to y is
given by the k-vector space with basis the set of all paths from z to y. The composition
of morphisms is induced from the usual composition of paths. The mesh ideal in the
path category of I is the ideal generated by the mesh relations

for all z € T7,.
The mesh category of the translation quiver (I, 7) is the quotient of its path category
by the mesh ideal.

2.5. 2-cluster categories

We recall the definition of 2-cluster categories and their geometric models in Dynkin
types A and D given by Baur and Marsh [9,10].
We use the notation of Thomas [34]. Thus the 2-cluster category C? is defined as

C% = D’(mod H)/77[2],

where H is a hereditary algebra, 7 is the Auslander-Reiten translation in the bounded
derived category D°(mod H) and [2] denotes the second shift.

Remark 2.1. We point out that this terminology is different from Iyama’s, who would
rather call this category a 3-cluster category in order to reflect the fact that it is 3-
Calabi-Yau. Here we follow Thomas and call it a 2-cluster category, because the definition
involves the second shift.

Baur and Marsh gave geometric models for the C% in the case where the algebra H
is of Dynkin type A [9] or D [10]. In type A the 2-cluster category is equivalent to the
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category Diag(S) of 2-diagonals in a regular polygon S, and in type D the 2-cluster
category is equivalent to the category Arc(P) of 2-arcs in a punctured polygon P.

We point out that the results by Baur-Marsh are more general than what we present
here. Indeed they obtain geometric models for m-cluster categories for all m > 2. The
case m = 1 had been done in [16,30]. In this paper, we shall only need the case m = 2,
and we adapt the presentation and notation accordingly.

2.5.1. Dynkin type A

Let H be a path algebra of type A y_o and CXNJ“ the 2-cluster category. Let S = Sopn
be a regular polygon with 2N vertices and label the vertices 1,2,...,2N in clockwise
order around the boundary. For i,j € {1,2,...,2N}, i # j, we denote by (4,5) the
straight line connecting ¢ and j. We say (4, 7) is a boundary segment of S if i and j are
neighbors on the boundary of S, and otherwise, we call (i, j) a diagonal in S.

A diagonal (i, 7) is called a 2-diagonal if cutting S along (7, j) will produce two poly-
gons that have an even number of vertices. In other words, (i,7) is a 2-diagonal if and
only if |j — | is odd.

The 2-diagonals are the indecomposable objects in the category Diag(S). The irre-
ducible morphisms are given by the 2-pivots defined below.

A 2-diagonal (i, j) admits the following 2-pivots,

(1,5 +2)
. . /
(i,7)

(i +2,5)

unless the target of the pivot is not a 2-diagonal but a boundary segment. The addition
in the coordinates is modulo 2N. Thus a 2-pivot fixes one endpoint of the diagonal
and moves the other endpoint two positions further along the boundary in clockwise
direction.

The Auslander-Reiten translation 7 of a 2-diagonal (i,j) is given by 7(i,75) = (i —
2,j — 2). Hence 7 is given geometrically as a rotation by 27 /N.

This data defines a translation quiver I'pjag(s) with 2-diagonals as vertices, 2-pivots as
arrows and translation 7, see the top picture in Fig. 1 for the case N = 7. The category
Diag(S) is defined as the mesh category of T'.

Theorem 2.2. [9] There is an equivalence of categories
@AZ Diag(SgN) — 612%1\/,2'

This equivalence induces an isomorphism from the quiver T'piags) to the Auslander-
Reiten quiver of the 2-cluster category.
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(6,6) (1,17 (3,3)7 (5,5)7 (7,7) (2,2) (4,4) (6,6)7

NN N N N N T N T

66T > 1,6 > ant > 61> @yt > 63> 6ot > 75> @nt > en> et > w2 > @t > 64 > @GetT

A N A N A N A N A N N

(1,4) (3,6) (5,1) (7.3) (2,5) (4,7) (6,2) (1,4)

Fig. 1. Both pictures illustrate the geometric realizations of 2-cluster categories. The top picture shows the
AR-quiver of the 2-cluster category of As, where the labels are the 2-diagonals in the 14-gon in accordance
with Theorem 2.2. The bottom picture shows the AR-quiver in type D4, where the vertices are labeled by
the 2-arcs in the punctured 7-gon as in Theorem 2.3. Vertices with the same label have to be identified.

2.5.2. Dynkin type D
Now let N > 7 be an odd integer and H be a path algebra of type D(y1)/2. Let
1123>(N+1>/z be the 2-cluster category. Let P = Py denote a regular polygon with N vertices
and one puncture in the center. Label the vertices 1,2,..., N in clockwise order around
the boundary. For i,j € {1,2,..., N}, i # j, we denote by (i,7) (the homotopy class of)
a curve without selfcrossings from ¢ to j that goes clockwise around the puncture. In
other words, the puncture lies on the right of the curve when traveling along from 7 to
j. Note that (i,7) # (J,4). Furthermore, we denote by (7,7) (the homotopy class of) the
curve that starts at ¢ goes clockwise around the puncture once and ends at i. We call
the curves (i,1) loops and in our figures we often draw them as a straight line from 4 to
the puncture. See Fig. 2 for an illustration.

We say (i,7), with ¢ # j, is a boundary segment of P if i and j are neighbors on the
boundary of S, and otherwise, we call (7, j) an arc in S. Furthermore, for each loop (i, %),
we define two arcs which we denote by (i,7)* and (i,7)~

Every arc cuts the punctured polygon P into two pieces, one of which is a polygon
and the other a punctured polygon. An arc (4, 7) is called a 2-arc if the polygon piece
obtained by cutting along (4, j) has an even number of vertices.” Here we agree that the
arcs (i,i)T are 2-arcs because the resulting polygon has N + 1 vertices since the vertex
1 splits into two vertices. Examples of 2-arcs are given in Fig. 2.

For i # j, we can reformulate the condition by saying that an arc (i,j) is a 2-arc if
and only if the residue class of j —i (mod N) is odd. For example the arc (6,2) in Fig. 2
is a 2-arc since 2 —6 = —4 = 3 (mod 7) is odd. On the other hand, the curve (2,6) is
not a 2-arc.

3 Note that since N is odd, the punctured polygon piece will then have an odd number of vertices.
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4

Fig. 2. Examples of 2-arcs in a punctured polygon P.

The 2-arcs are the indecomposable objects in the category Arc(P). The irreducible
morphisms are given by the 2-pivots defined below.
A 2-arc (i,7) admits the following 2-pivots.

(1,5 +2) (1,44 5) (i,4)F (i,8) > (i + 2,19)
7 7 _—
(i, 5) (i,i+3) (i — 2) —(i,i)~
S ~a
(i +2,7) i42,i—2)
if j #£4—2,4,i4+3 if j=i+4+3 if j=i—2 if j =4

The addition in the coordinates is modulo N. Thus a 2-pivot fixes one endpoint of the 2-
arc and moves the other endpoint two positions further along the boundary in clockwise
direction.

The Auslander-Reiten translation 7 of a 2-arc (i, §) is given by 7(¢,j) = (i —2,j —2) if
i# j,and 7(i,7)" = (1—2,i—2)", 7(4,i)” = (i—2,i—2)". Hence 7 is given geometrically
as a rotation by 47 /N. In particular, 7 has period N, because N is odd.

Similarly to type A, this data defines a translation quiver I's,.(py and the category
Arc(P) is defined as its mesh category, see the bottom picture in Fig. 1 for the case
N=T.

Theorem 2.3. [10] There is an equivalence of categories
Op: Arc(Pn) — CHQ)(NJrl)/z'

This equivalence induces an isomorphism from the quiver I s,o(py to the Auslander-Reiten
quiver of the 2-cluster category.
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2.6. Skew group algebras

In this section, we recall results on skew group algebras from [28]. Here we shall focus
on the case where the group has order 2. For further results on the order 2 case see [4].
All modules will be finitely generated.

Let A be a finite dimensional basic algebra over an algebraically closed field k of
characteristic different from 2. Let ) be the ordinary quiver of A and I an admissible
ideal such that A 2 kQ/I.

Let G = {1,0} be the group of order 2 and assume that A admits a G-action such
that o acts as an automorphism of A.

Definition 2.4. We say the G-action on A is admissible if

(1) o maps vertices to vertices and arrows to arrows, and
(2) o fixes at least one vertex.

In this paper we will be only interested in admissible G-actions. For group actions
that do not require this condition, we refer to [28].
Let AG be the skew group algebra, thus

AG = Ak kG
as k-vector spaces, and the multiplication is given on simple tensors by the formula
(a®g)(a' ®g') =ag(a') ® g’
for all a,a’ € A, g,¢' € G, and extended to all of AG by distributivity. For example

(a®(g1+g2))(d®g) = (a®gi)(d®g)+(a®g2)(a’ @)
agi(a’) ® g1g’' + aga(a’) @ gag’

By definition, the dimension of AG is twice the dimension of A.

Remark 2.5. In general AG is not a basic algebra.

2.6.1. G-action as automorphisms of mod A and of Q(mod A)

If M is an A-module, define the module oM to be the same vector space as M but
with twisted o-action given by m -, a = m - (ca), for m € M,a € A, where the right
hand side is the action of ca on M. If f: M — N is a morphism in mod A4, define
of: oM — oN by (of)(m) = f(m). The following computation shows that of is a
morphism in mod A.

(@f)(m o a)=(af)(m-(0a)) = f(m-(0a)) = f(m) - (sa) = (0 f)(m) -5 a
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This defines a functor : mod A — mod A.
A syzygy is a submodule of a projective module. If M € mod A, its syzygy QM is
defined to be the kernel of a projective cover of M. We thus have a short exact sequence

T

0 QM P M 0 (2.1)

where 7 is a projective cover. Every non-projective syzygy is of the form QM for some
M € mod A.

Lemma 2.6. (a) The functor o is an automorphism of mod A of order 2. In particular o
is an exact functor.

(b) oP(i) = P(oi), ol(i) = I(01), and 05(i) = S(oi).

(c¢) The restriction of o to the syzygy category and to the stable syzygy category are
automorphisms.

(d) orad P(i) = rad P(oi).

Proof. Clearly o2 is the identity. So o is an automorphism of order 2. Every equivalence
between abelian categories is exact. This proves (a).

(b) For a path w in A, we have ¢; -, w = e;o(w). The last expression is nonzero if
and only if o(w) starts at vertex ¢ which holds if and only if w starts at o(z). Thus
oP(i) = P(oi). The equation for the injective modules is the dual statement. To show
the equation for the simple modules let, m € ¢5(7) and consider the action of a constant
path e; on m. We have m -, e¢; = m - e5; which is nonzero if and only if oj = ¢ which
holds if and only if j = oi. Thus 05(i) = S(o).

(¢) From (b) we know that o maps projective syzygies to projective syzygies. Now
let M be a non-projective syzygy and let P be a projective module containing M as a
submodule. By part (a), oM is a submodule of ¢ P, and by part (b), o P is projective.
Thus oM is a syzygy. Moreover oM is non-projective, because otherwise M = coM
would be projective as well.

(d) Because of (a) and (b), the short exact sequence

0 —— rad P(7) P(i) S(1) 0
is mapped by ¢ to the short exact sequence
0 —— orad P(i) —— P(0i) —— S(0i) ——= 0.
Thus orad P(i) = rad P(oi). O
2.6.2. Induction and restriction functors

Let F: mod A — mod AG denote the induction functor, thus F = — ® 4 AG, and
let H: mod AG — mod A denote the restriction functor. Thus if N is an AG-module
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then H(N) = N as k-vector spaces, but we restrict the scalars from AG to A. If f is
a morphism in mod AG then H(f) = f. Both F and H are exact functors and map
projective modules to projective modules.

The following is shown in [28, Proposition 1.8] in a more general setting,.

Proposition 2.7. Let X,Y be indecomposable A-modules.
(o) HF(X) =2 X ®oX.
(b)) FIX)ZFY) ifand only if X 2Y or X Z Y.
(c) If X 20X then F(X) has exactly two indecomposable summands.
(d) If X 22 0 X then F(X) is indecomposable.

We also need the next result.

Proposition 2.8. [28, Theorem 3.8/ (a) The functor F maps an almost split sequence in
mod A to a direct sum of almost split sequences in mod AG.

(b) The functor H maps an almost split sequence in mod AG to a direct sum of almost
split sequences in mod A.

The action of the functors F' and H on syzygies is described in the following result.

Proposition 2.9. (a) The functors F, H map syzygies to syzygies.
(b) Let Q4 and Qaq denote the syzygy functors over A and AG respectively. Then

QAgFZFQA and QAH:HQAg.

Proof. (a) Let M be a syzygy in mod A. Then there exists a projective A-module P
that contains M as a submodule. Since the functor F' is exact it follows that F'(M) is
a submodule of F'(P). Moreover, since F(P) is projective, F'(M) is a syzygy. The proof
for H is analogous.

(b) Let P be a projective module, then we have the first identity QaqF(P) = 0 =
FQ(P). Now, let M be an indecomposable, non-projective syzygy in mod A. Applying
the exact functor F' to the short exact sequence (2.1) yields the short exact sequence

F(m)
OHF(QAM) F(P) F(M)H—O

If F(m) is not a projective cover then there exists a direct summand P’ of F(P) such
that the short exact sequence 0 — P’ — P’ — 0 — 0 is a summand of the short exact
sequence above. Then Proposition 2.7 implies that the sequence (2.1) also decomposes
nontrivially, which is a contradiction to 7 being a projective cover. It follows that F'(m)
is a projective cover and hence F(QaM) = QagF(M). This proves the first identity.
The identity that involves H is proved analogously. O
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2.7. The basic algebra

In [4], Amiot and Plamondon specify a complete set of primitive orthogonal idempo-
tents in AG and explicitly construct an idempotent € such that B = €AGe is a basic
algebra. Furthermore, they provide a description of the quiver Q¢ of B and an action of
G on B.

If A= Jac(Q, W) is the Jacobian algebra of a quiver ) with potential W, they define
a potential Wg on Q)¢ and prove the following.

Proposition 2.10. [, Corollary 2.7] The algebra B is the Jacobian algebra of the quiver
Q¢ with potential Wg.

3. G-action on 2-cluster categories of type A

Let G = {1,0} be the group with two elements. In this subsection, we describe a
G-action on the 2-cluster category C? = D(mod A)/7~1[2], with A a path algebra of
type A,, with r odd. The G-action is inspired by an example in [28]. We will show later
that this action is compatible with our G-action on dimer tree algebras.

In order to describe the G-action on C?, we choose A to the path algebra of the
following quiver

y 2 3 n
1 \
o 9! 3/ . n'
o o o1

with G-action given by o(1) = 1, o(i) = ¢/, for i > 1 and o(«;) = «}. This is Example
2.1 in [28]. The corresponding skew group algebra AG is Morita equivalent to the path
algebra of the following quiver.

Note that A is of Dynkin type As,_1 and AG is of Dynkin type D,,11.

The Auslander-Reiten quivers of mod A and mod AG are illustrated in Fig. 3 in the
case n = 4.

The action of ¢ on mod A is given by the reflection along the horizontal line through
the 7-orbit of P(1). This action induces a G-action on the derived category and on the
2-cluster category that are also given by the reflection at the horizontal line through
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Fig. 3. The Auslander-Reiten quivers of mod A and mod AG.

the central 7-orbit. Note that the Auslander-Reiten quiver of the 2-cluster category has
the shape of a cylinder and therefore has 2n — 1 different 7-orbits, unlike the 1-cluster
category, which has the shape of a Moebius strip and therefore has only n different
T-orbits.

The two 2-cluster categories thnil and ‘5'112%+1 are illustrated in Fig. 1 in the case n =
3. In type A, the vertices of the AR quiver in that figure are labeled by the corresponding
2-diagonals of the 14-gon as explained in section 2.5. Each 2-diagonal is denoted by the
pair (i,7) of its endpoints on the boundary of the 14-gon. In this example, we see that
the action of ¢ maps the 2-diagonal (7, j) to the 2-diagonal (i +7,j+ 7). For example the
first element in the bottom 7-orbit is (1,4) and it is mapped to the first element in the
top T-orbit, thus o((1,4)) = (1+ 7,4+ 7) = (8,11). The elements in the center T-orbit
are fixed by o. For example ¢((1,8)) = (1+7,84+7) = (8,1).

For general n, and setting N = 2n + 1, the 2-cluster category CXNJ corresponds to
the category of 2-diagonals in a regular 2N-gon, and the action of ¢ sends a 2-diagonal
(4,4) to the 2-diagonal (i+ N, j+ N). In other words ¢ acts on the polygon by a rotation
by angle 7.

Denote by Fy: Ci
and denote by Ha: CD(N+1)/2 C?&N,2 the one induced by the restriction functor H.
The following results follow from Propositions 2.7 and 2.8.

— C]]Q) the functor induced by the induction functor F
—2 (N+1)/2

Proposition 3.1. Let N > 7 be an odd integer and X,Y € CXN,Q be indecomposable
objects. Then

(a) HQFQ(X) =X @O’X

(b)) Fo(X)Z Fa(Y) if and only if X =Y or X 2 oY.

(c) If X 20X then F5(X) has exactly two indecomposable summands.

(d) If X 2 0 X then F5(X) is indecomposable.

Proposition 3.2. (a) The functor Fy maps an Auslander-Reiten triangle in Cf\Niz to a
direct sum of Auslander-Reiten triangles in C]]%)(N+l)/2

(b) The functor Hy maps Auslander-Reiten triangle in C3 Y to a direct sum of

(N+1)/2
Auslander-Reiten triangles in CXNJ
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4. G-actions on dimer tree algebras

The class of dimer tree algebras was introduced in [32]. The terminology stems from
the fact that the dual graph of the quiver of the algebra is a tree, and the algebra can
be extended to a dimer model on a disk.

4.1. Dimer tree algebras

We recall the definition of dimer tree algebras following [32,33]. A chordless cycle in
a quiver @ is a cyclic path C = 29 — 1 — -+ = oy = %o such that x; # z; if i # j
and the full subquiver on vertices zg,1,...,x; is equal to C. The arrows that lie in
exactly one chordless cycle will be called boundary arrows and those that lie in two or
more chordless cycles interior arrows of Q).

Definition 4.1. The dual graph G of @ is defined as follows. The set of vertices Gy is the
union of the set of chordless cycles of @ and the set of boundary arrows of (). The set of
edges (G1 is the union of two sets called the set of trunk edges and the set of leaf branches.

A trunk edge ¢ —2— ¢’ is drawn between any pair of chordless cycles (C,C") that

share an arrow a. A leaf branch C —2

a is drawn between any pair (C, o) where C'
is a chordless cycle and « is a boundary arrow such that « is contained in C.

Definition 4.2. A finite connected quiver ) without loops and 2-cycles is called a dimer
tree quiver if it satisfies the following conditions.

(Q1) Every arrow of @ lies in at least one chordless cycle.
(Q2) The dual graph of Q is a tree.

The following properties follow easily from the definition.

Proposition 4.3. /32, Proposition 3.4] Let Q be a dimer tree quiver. Then

(1) @ has no parallel arrows.
(2) Q is planar.
(3) For all arrows o of Q,
(a) either « lies in exactly one chordless cycle,
(b) or « lies in exactly two chordless cycles.
(4) Any two chordless cycles in Q share at most one arrow.

Since the dual graph G of @ is a tree, the quiver contains a chordless cycle Cy that
contains exactly one interior arrow. If C is any chordless cycle in @), we define the distance
d(C) of C from Cy to be the length of the unique path from Cy to C' in G. We define
the potential W of the dimer tree quiver () as
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w=> (-1)"9¢,
C

where the sum is taken over all chordless cycles of Q.

Remark 4.4. Since the dual graph is a tree we can embed the quiver @) into the plane.
Then, up to sign, the potential is the sum of the clockwise chordless cycles minus the
sum of the counterclockwise chordless cycles.

Definition 4.5. Let (Q be a dimer tree quiver and W its potential. The Jacobian algebra
A = Jac(Q, W)

is called a dimer tree algebra.

4.2. A geometric model for the syzygy category of a dimer tree algebra

Let A = Jac(Q,W) be a dimer tree algebra. By definition, every dimer tree algebra
is 2-Calabi-Yau tilted and (hence) Gorenstein of Gorenstein dimension 1. As usual for
these algebras, we denote by CMP A the syzygy category of A and by CMP A its stable
category.

Definition 4.6. (a) For every boundary arrow « in @, we define its unique cycle path (or
zigzag path) to be ¢(a) = ayaz - - - ay(ay, where

(i) a1 = a and oy, are boundary arrows, and ao, ..., yq)—1 are interior arrows,
(ii) every subpath of length two a;cv41, is a subpath of a chordless cycle C;, and C; # C;

if i .
(b) The weight w(a) of the boundary arrow « is defined as

w(a) = 1 if the length of ¢(«) is odd;
] 2 if the length of ¢(«) is even.

(c) The total weight of A is defined as ) w(a), where the sum is over all boundary
arrows of Q.

We showed in [32] that the total weight of a dimer tree algebra is always an even
number. We then associate to every dimer tree algebra of weight 2N a polygon S with
2N vertices. Moreover S carries the additional structure of a checkerboard pattern which
is defined by a set of radical lines p(i) associated to the vertices ¢ of @. In particular,
each radical line is a 2-diagonal. The checkerboard pattern is constructed as the medial
graph of the twisted completed dual graph of Q. We refer to [32] for the details of this
constructions and to section 7 for examples.
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By definition, a 2-diagonal (i, j) connects two boundary points of S of opposite parity.
We orient each 2-diagonal from its odd endpoint towards its even endpoint. This allows
us to talk about the direction of a crossing between 2-diagonals. Then, for each 2-diagonal
v in S, we define projective modules Py(y) = @, P(i) and Pi(y) = ®;P(j), where the
first sum is over all ¢ such that p(¢) crosses v from right to left and the second sum is
over all j such that p(j) crosses v from left to right.

Let Diag(S) be the category of 2-diagonals of S introduced in section 2.5.1 and CMP A
the stable syzygy category of A. The main result of [33] is the following.

Theorem 4.7. [33, Theorem 1.1] Let A be a dimer tree algebra and S the associated
checkerboard polygon. For each 2-diagonal v in S there exists a morphism fy: Pi(y) —
Po(7y) such that the mapping v — cokerf, induces an equivalence of categories

®: Diag(S) — CMP A.

Under this equivalence, the radical line p(i) corresponds to the radical of the indecompos-
able projective P(i) for alli € Qq. The clockwise rotation R of S corresponds to the shift
Q in CMP A and R? corresponds to the inverse Auslander-Reiten translation 7—! = Q2.
Thus

O(p(i)) = rad P(i)
doR = Qod
doR? = 77l0d®

Furthermore, ® maps the 2-pivots in Diag(S) to the irreducible morphisms in CMP A,
and the meshes in Diag(S) to the Auslander-Reiten triangles in CMP A.

This result has the following consequences.

Corollary 4.8. [32, section 1] (a) The category CMP A is equivalent to the 2-cluster
category of type AN —_o. In particular, the number of indecomposable syzygies is N(N —2).

(b) The total weight of A is a derived invariant.

(¢) The projective resolution of any syzygy is periodic of period N or 2N. An inde-
composable syzygy M., has period N if and only if the corresponding 2-diagonal v is a
diameter in S.

(d) The indecomposable syzygies over A are rigid A-modules.

(e) Let L, M be indecomposable syzygies over A. Then the dimension of Ext'y(L, M)®
Exti(M, L) is equal to the number of crossing points between the corresponding 2-
diagonals. In particular, the dimension is either 1 or 0.

(f) Let T denote the Auslander-Reiten translation in mod A and v the Nakayama
functor. We denote the stable cosyzygy category by CMI A. Then the following diagram
commutes.
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Fig. 4. Gluing two copies of a dimer tree algebra along a boundary arrow. The left picture shows the quiver
and the right picture shows the dual graph.

T

CMP A CMI A

cok f,, T T ker vf,,

Diag(S) — = Diag(S)

4.8. Dimer tree algebras with G-action

Let A% = Jac(Q% WP) be a dimer tree algebra and a: i — j a boundary arrow in
Q°. Define a new quiver Q by taking two copies of Q° and gluing them together by
identifying the two copies of the arrow «, see the left picture in Fig. 4. Thus every vertex
z of Q°, except for ¢ and j, produces two vertices z, oz in Q and every arrow 3 of Q°,
except for the arrow «, produces two arrows 3,00 in Q. By setting oi = i,0j = j, and
oa = a, we obtain an admissible G = {1, o }-action on Q.

We define a potential W on Q by W = W° — gW?, and let A = Jac(Q, W) be the
associated Jacobian algebra. We call A the fibered product of A with itself along a.

To show that A is again a dimer tree algebra, we need to check the two conditions in
Definition 4.2. The condition (Q1) that every arrow lies in at least one chordless cycle
follows directly from the construction and the fact that it holds for Q°. Condition (Q2)
is that the dual graph G of @ is a tree. By construction, G is given by taking two copies
of the dual graph G° of Q° and gluing them together by identifying the two copies of the
leaf edge corresponding to «, see the right picture Fig. 4. We have shown the following.

Proposition 4.9. For every dimer tree algebra A° and every boundary arrow o: i — j
in A, the fibered product of A® with itself along o is a dimer tree algebra A with an
admissible G-action. The element o acts on the quiver Q@ of A by reflection at the line
along the arrow a and o acts on the dual graph G by reflection at the line through the
midpoint of the edge o and perpendicular to the edge cv. Moreover, the fized vertexr set of
o is {i,7} and the fixed arrow set is {a}. O
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Conversely, suppose that A is a dimer tree algebra with a nontrivial admissible G-
action. Suppose first that there is chordless cycle C that is fixed by o, meaning that o
fixes every arrow and every vertex of C. Let C’ be another chordless cycle that shares
an arrow 3 with C. Then ¢C’ must be a chordless cycle that contains o8 = . But 3
lies in at most two chordless cycles, and since 0C’ # oC = C, we must have cC’' = (.
So ¢ fixes every chordless cycle adjacent to C'. Now using the fact that the dual graph is
connected, we see that o fixes every chordless cycle and thus the action of G is trivial,
a contradiction. Thus ¢ cannot fix a chordless cycle.

Next suppose o fixes an arrow «. Then a must lie in two chordless cycles Cy, C%;
otherwise o would fix the unique chordless cycle containing «. Thus we have oC,, = C”,.
Assume now there exists another arrow [ that is fixed by o, and denote the two chord-
less cycles at 8 by Cg,Cé. Since the dual graph G is connected, there exists a path

Co=Cy —Cy — -+ — Cy =C3 inG. Applying o, we obtain the following cycle in G
Co —Cy — - —Cp
a B
C, —o0Cy — - — Cj

which is impossible, because G is a tree. We have shown that o fixes at most one arrow.

Finally assume o fixes no arrows at all. Since our G-action is admissible, there exists
a vertex ¢ that is fixed by o. Since every arrow lies in a chordless cycle, there must
be at least one incoming arrow « and one outgoing arrow [ at ¢ that both lie in the
same chordless cycle C. Applying o, we obtain a second chordless cycle oC' at i that

contains the arrows o« and of. Since G is connected, there exists a path in G from C'
oy

to oC which we denote by w: C 2 cy — - —C Rl Applying o, we obtain a

ooy ot

path cw: oC 7o ocCi — -+ — 0Cy — C . Since G is a tree, the path cw must be the
reverse of the path w. Furthermore, since o does not fix any arrows, the number of edges
in w must be even, otherwise the central edge would be fixed. However, since ¢ does not
fix any chordless cycles, the number of edges in w must be odd, otherwise the central
chordless cycle would be fixed. This clearly is a contradiction.

We have shown that o fixes exactly one arrow «, that « is contained in two chordless
cycles C,, C/, and that oC,, = C/,. Removing the edge « from the dual graph G produces
two connected components

G\ {a}=6"ug"

one containing the point C, and the other containing C’,. Since oG is a connected

subgraph of G that contains 0C,, and does not contain o, we get cG° = G
Considering this information on the level of the quiver @, we obtain two subquivers

Q% 0Q° of Q that share the arrow a but no other arrows, and whose dual graphs are
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G U {a} and 0G° U {a}. The quivers Q" and ¢Q" are isomorphic and the arrow «
is a boundary arrow in both. Also both quivers satisfy the conditions (Q1) and (Q2)
of Definition 4.2. The restriction W9 of the potential W to Q° is a potential and the
Jacobian algebra A° = Jac(Q°, W9) is a dimer tree algebra. We have shown the following.

Proposition 4.10. Let G = {1,0} be the group with two elements. If A = Jac(Q,W) is a
dimer tree algebra with a nontrivial admissible G-action then the following holds.

(a) o fizes exactly one arrow a: i — j.

(b) There exists a subquiver Q° that is a dimer tree quiver such that Q = Q° U oQ°
and Q° NaQ® = {a}.

(c) Let € = 3", e;, where the sum is over all vertices in Q°, and let A° = AJA(1 —
e®)A. Then A is the fibered product A° with itself along c.

(d) There is a planar embedding of Q and G such that o acts on Q by reflection at
the line through the arrow «, and on G by reflection at the line through the midpoint of
the edge o and perpendicular to a. O

4.4. G-action on the checkerboard polygon

Let A = Jac(Q,W) be a dimer tree algebra of total weight 2N with an admissible
G-action. Let G be the dual graph of Q.

The checkerboard polygon § is constructed by taking the medial graph of the twisted
(completed) dual graph G, see [32] for details. Recall that the twisted dual graph is
obtained from the dual graph G by twisting along every edge of G. Since the edges in
G\ {a} come in pairs (e,0¢) € G x 0G°, we see that after performing the twist at all
edges except a, we still have a graph whose o-action is given by the reflection at the line
through the midpoint of the edge o and perpendicular to «. This situation is illustrated
in the left picture in Fig. 5. The twisted dual graph is now obtained by twisting along
the edge «; the result is illustrated in the right picture in Fig. 5. Therefore the induced
action of ¢ on the twisted dual graph is given by a rotation by angle m with center the
midpoint of the edge a.

On the medial graph S, the action of o is also given by the rotation by 7 with center
the crossing point of the two radical lines p(i) and p(j), where a: i — j.

Thus when we draw S as a regular 2N-gon with checkerboard pattern determined by
the radical lines p(z) of the medial graph, the action of o on @ induces an action on S
given by the rotation by 7 at the center point of the polygon S. This is made precise in
the following result.

Proposition 4.11. With the above notation, label the wertices of the polygon S by
1,2,...,2N in clockwise order around the boundary. The G-action on the dimer tree
algebra A induces a G-action on the category of 2-diagonals Diag(S) of the checkerboard
2N-gon S, where the action of o is given by the rotation by angle 7. If v € Diag(S) is a
2-diagonal with endpoints k,l, and 1 < k <1 < 2N then
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g

oG aéﬂ

Fig. 5. The left picture illustrates the dual graph after twisting at every edge except at «, and the right
picture illustrates the resulting graph after twisting at « (this is the twisted dual graph). The action of o
on the left is by reflection, while the action on the right is by rotation.

(a) o7 has endpoints k+ N,l + N (mod 2N).

(b) oy =~ if and only if v is a diameter, that isl =k + N.

(¢) For the radical line p(z), we have op(x) = p(ox).

(d) Let a: i — j be the unique arrow in the quiver of A that is fized by o. Then the
radical lines p(i) and p(j) are fized by o.

(e) N is odd.

(f) Let @: Diag(S) — CMP A be the equivalence of Theorem 4.7. Then

P(07) = a®(7),
where the o action on the right hand side is the one defined in section 2.6.1.

Proof. (a) and (b) follow directly from the discussion above. (c) follows from Lemma
2.6(b) and the fact that the G-action on S is induced by the G-action on A. (d) is a
direct consequence of (c).

(b) and (d) together imply that p(i) and p(j) are diameters in the 2N-gon S. So their
endpoints are of the form h, h + N for some h. But these diameters are also 2-diagonals,
so the two endpoints must have opposite parity. Thus their difference N must be odd.
This shows (e).

It remains to prove (f). The functor ® sends a 2-diagonal v to a syzygy M, that is
uniquely determined by the crossing pattern of v with the radical lines in S. Indeed, let
Py(v) = @,P(i) and Pi(vy) = &;P(j), where the first sum is over all ¢ such that p(¢)
crosses v from right to left and the second sum is over all j such that p(j) crosses 7 from
left to right. Then M, is the cokernel of a morphism f,: Py(y) = Po(7).

Since v acts on S by rotation, the radical line p(x) crossed v if and only if op(x)
crosses 07, and both crossings are in the same direction. Hence

Py(oy) = @i P(0i) = o P(v)  Pi(oy) = @;P(0j) = o Pi(7),

and therefore ®(0y) = My, = oM, =0®(y). O
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5. A geometric model for the syzygy category of the skew group algebra

Throughout this section, we use the following setting. Let G = {1,0} denote the
group of order 2, and let A be a dimer tree algebra of total weight 2N with an admissible
G-action. The corresponding checkerboard polygon S has 2N vertices. Under the Baur-
Marsh equivalence the category of 2-diagonals Diag(S) is equivalent to the 2-cluster
category CKN_Q. In this section, we give a geometric model for the syzygy category of
the skew group algebra AG.

5.1. An equivalence of categories

We have shown in section 3 that the o-action on the 2-cluster category corresponds
under the Baur-Marsh equivalence © 4 to the rotation of the polygon by angle 7. On the
other hand, Proposition 4.11 states that this o-action on the polygon also corresponds
to the o-action on the syzygy category of the dimer tree algebra under the equivalence
®. Thus there is a commutative diagram as follows.

SIN

o

Cx. ., — Diag(S) — CMP A
C3,., = — Diag(§) — — CMP A

On each level of this diagram, we can consider the induction functor F' to the skew group
category following Reiten and Riedtmann [28]. Starting from the 2-cluster category of
type An_2, we obtain the 2-cluster category of type D(y1)/2 as seen in Proposition 3.2.
On the level of Diag(S), we obtain the category Arc(P) of 2-arcs in a punctured N-gon
described in section 2.5.2. And by Proposition 2.9, from the syzygy category of the dimer
tree algebra A, we obtain the syzygy category of the skew group algebra AG. All these
categories are equivalent, because of the commutativity of the diagram above. We thus
have the following result.

Theorem 5.1. Let A be a dimer tree algebra with admissible G-action, and let 2N denote
the total weight of A. Then there are equivalences of categories

2 ©p
D(nt1y/2 o~

IS

CMP AG .

Arc(Pn)

IR

The first equivalence is described in Theorem 2.3. We shall now give a description of
the second equivalence.

We define a functor ¥: Arc(P) — CMP AG as follows. If 4 = (i,5) is a 2-
arc in the punctured N-gon P, then define v € Diag(S) to be the diameter v =
(i,i+ N) if the 2-arc 4 = (4,i) is a loop, and otherwise define 7 to be the 2-diagonal
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_ ) (i.9) if 7 < j;
TTY G+ N) i

Consider the image ®(y) € CMP A. According to Proposition 4.11 (f), we have
oc®(y) = ®(oy). Thus if v = (4,4 + N) is a diameter then ®(v) is fixed by o, and if
~v = (i,7) is not a diameter then ®(v) is not fixed by o. Applying the induction functor
F = —®4 AG and using Proposition 2.7, we have

(1) If % = (i,i)T, then F®(v) is the direct sum of two indecomposable syzygies which
we denote by ]\;[;;r and M’v_ .

(2) If % = (¢,7) with ¢ # j, then F®(y) is the direct sum of two copies of the same
indecomposable syzygy which we denote by Mi~

In case (2) above, we define W(§) = Ms. In case (1), we need to make a choice that is
consistent with the Auslander-Reiten translations. To achieve this, we label all modules
in the 7-orbit of M; in CMP AG by a + sign. Thus Tt(M,;_) = (r'Mx)*, for all t.
Similarly, we label the modules in the 7-orbit of M such that 7¢(M; ") = (7*M5)~, for
all ¢. Since the AR translation in Arc(P) also preserves the sign, we obtain

Uo TArc(P) = TeMPp AG © .

Next we define ¥ on irreducible morphisms. Let §: 5 — & be a 2-pivot in Arc(P). We
distinguish three cases depending on whether or not ’y,g are loops.

(1) Suppose first that none of the two 2-arcs is a loop. Let 5 = (4, ), then & = (i, j + 2)
or & = (i + 2,7). In this situation § corresponds to two 2-pivots g: v — ¢ and
ov: 0y — od in Diag(S). Thus F®(g) = F®(og) is an irreducible morphism in
CMP AG and we let U(g) = F®(g).

(2) Let 7 = (4,4)*. Then § = (i + 2,7). Thus 7 corresponds to the diameter (i,i + N) in
Diag(S) and g corresponds to two 2-pivots, one is g: v — § with § = (4,1 + N + 2)
and the other is 0g: v — 06 with 00 = (i + 2,7+ N).

Since 7 is fixed by o in S, we obtain that F®(g) is a sum of two morphisms

Fo(g): W ((i,0)%) ® W ((3,1)7) = ¥((i +2,7)).

We define ¥(g) to be the first component if ¥ = (4,7)" and the second component if
g = gi, i)~

(3) Let 6 = (i,i)*. Then 4 = (i,i — 2). This case is dual to the previous one. Again
G: 7 — & corresponds to two 2-pivots g: v — § and og: oy — & in Diag(S). Since &
is fixed by o, we have that F®(g) is a sum of two morphisms

Fo(g): U(i,i—2) = U ((i,0)T) d W ((i,9)7).
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We define ¥(§) to be the first component if § = (i,4)" and the second component if
6= (i,0)".

Theorem 5.2. The functor W is an equivalence of categories which makes the following
diagram commute.

Diag(S) Arc(P)

P | = v

CMPA—" . CMP AG

Proof. The commutativity of the diagram follows from our construction of W.

Let(: 0 —= 77 LEL 4 — 0 be a mesh in the Auslander-Reiten quiver of Arc(P).

From the definition of ¥ together with Propositions 2.8 and 3.2, we see that ¥(() is an
Auslander-Reiten triangle in CMP AG. Thus ¥ is well-defined.

Conversely, the same propositions show that every Auslander-Reiten triangle of
CMP AG is the image under ¥ of a mesh in Arc(P). Since the morphisms in Arc(P)
are generated by the 2-pivots modulo the mesh relations, this implies that ¥ is faithful.
To show that W is full and dense, let f: M — N be a morphisms in CMP AG. The
restriction functor maps f to a sum of morphism in CMP A which we can lift along ®
to Diag(S). Applying F, we obtain a sum of morphisms in Arc(P) and, by definition, ¥
maps one of these morphisms to f. Thus ¥ is full and dense. O

6. Checkerboard pattern for the punctured polygon P

In section 5, we have constructed an equivalence of categories ¥: Arc(P) — CMP AG.
In this section, we give a combinatorial construction of ¥ by introducing a checkerboard
pattern on the punctured polygon P. The input data for our construction is the quiver
of the skew group algebra AG. Here we will work in the basic algebra and we start by
recalling its definition from [4].

6.1. The basic algebra B = eAGe

The skew group algebra AG in Theorem 5.1 is not basic. Indeed, for every vertex i
in the quiver @ of A that is not fixed by o, we have (e; ® 1)AG = (ey; ® 1)AG. In [4],
Amiot and Plamondon construct in great detail a complete set of primitive orthogonal
idempotents {e?E | i € Qo} for AG. They then specify an idempotent € such that B =
eAGe is basic.

In order to define €, they decompose the set of vertices of Q as Qo = Q§ LI oI, where
QS is the set of vertices that are fixed by ¢ and I is a complete set of representatives of
the nontrivial g-orbits. Then € =}, n¢ e ter + sl
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Fig. 6. The picture on the left illustrates the quiver Q¥ and the picture on the right the quiver Qp.

Consequently the quiver @ p of B can be described as follows. The vertices of Qp are

(i) two vertices it and i~ for each i € QF;
(ii) one vertex 4 for each ¢ € I.

The arrows of Qp are

(i) two arrows at: it — j* and a~: i~ — j~ for every arrow a: i — j such that
oca = q;

(i) two arrows at: it — j, and a=:i~ — j for every arrow a: i — j with i € Qf,
jé Qo ;

(iii) two arrows a®:i — j+, and a=: 4 — j~ for every arrow a: i — j with i ¢ QF,
j€Qf;

(iv) one arrow a: i — j for each arrow a: i — j with i,j ¢ QS.

Now let A = Jac(Q, W) be a dimer tree algebra with admissible G-action. Let A° =
Jac(Q%, W?) be the dimer tree algebra with boundary arrow a: i — j such that A is the
fibered product of A° with itself along « as in Proposition 4.10. Then Qg is the quiver
obtained form Q° by replacing the vertices ¢ and j by the vertices i*, i~ and j1, i, the
arrow o: i — j by two arrows a™:iT — jT and o~ : i~ — j, and each other arrow
3 starting or ending at i or j by two arrows 81T and 3~ starting or ending at i*,i~ or
j*, 57, see Fig. 6.

6.2. Orientation and crossing of 2-arcs

Recall that in the 2N-gon S the 2-diagonals (7, j) are oriented from the odd endpoint
towards the even endpoint. According to Corollary 4.8(e), the 2-diagonals v,d cross in
S if and only if Exteyp 4(®(7), @(6)) @ Exteyp 4(®(8), ® (7)) # 0. More precisely

o 7 crosses 0 from left to right if and only if Ext&yp 4(®(7), ®(6)) # 0 and
o 7 crosses 0 from right to left if and only if Extéyp 4(®(8), @(7)) # 0.
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ANt

r+ N

Fig. 7. Construction of the fundamental domain.

Given 2-diagonals v, that cross in S, we define the directed crossing number
e(y,0) to be 1 if v crosses ¢ from left to right and 0 otherwise. Similarly, we de-
fine e(d,7) to be 1 if v crosses 0 from right to left and 0 otherwise. Note that
e(v,6) = dim Extiyp 4(2(7), B(6)).

The corresponding notions of orientation and crossing is somewhat more complicated
in the punctured polygon P. Also the crossing notion in P is different form the one used
in the theory of cluster algebras in [18], because we are working here in the 2-cluster
category and not in the ordinary cluster category.

6.2.1. Orientation

The 2N-gon § is a 2-fold branched cover of the punctured N-gon P, which is given
by the rotation action of o by angle 7.* The fixed point of ¢ is the center of S and it
corresponds to the puncture in P. We will now carefully choose a fundamental domain
for the action of ¢ in S.

As seen in Proposition 4.9, in the checkerboard pattern, the center of the polygon S is
given by the crossing point of the radical lines p(i) and p(j), that is to say, by the arrow
«: i — j that is fixed by o. There are exactly two shaded regions C' and oC' incident to
this point which correspond to the two chordless cycles that contain «. Consequently,
there are also exactly two white regions W, oW incident to the point, see Fig. 7 and
the examples in section 7. Like any white region in a checkerboard polygon, W contains
either exactly one boundary point of S or a boundary segment together with its two
endpoints. In the former case, we label the sole boundary point in W by 1 and in the
latter case, we label the two boundary points in W by 2N, 1 in clockwise order. Then
label the remaining boundary points in clockwise order.

Then there exists 1 < r, s < N +1 such that the two radical lines are p(i) = (r,7+N)
and p(j) = (s,s + N). Without loss of generality, we may assume that r < s and the

4 Strictly speaking we would need to replace the puncture by an orbifold point of order 2. But in our
combinatorial approach this will make no difference.
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checkerboard regions at the center point « are W, C,ocW,cC in clockwise order. The
diameter (1, N + 1) is not a radical line because it runs through the white region W.
This diameter cuts the polygon into two pieces. We use the piece with boundary points
1,2,..., N + 1 as our fundamental domain for the o-action.

This choice induces a labeling of the boundary vertices of the punctured N-gon by
1= N+1,2,...,N in clockwise order. The radical lines p(i) = (r,r)* and p(j) = (s,5)™
are both loops in P and as usual we draw them as straight lines from their boundary
point to the puncture. If the boundary point has an odd label, we orient the line towards
the puncture, and otherwise, we orient the line towards the boundary point.

There is exactly one shaded region C' and one white region W incident to the puncture.
Every other radical line p(h) in P, lifts to a unique radical line p(h) in our fundamental
domain in &, because no radical line can cross the white region W. We orient these
radical lines in the same way as in the fundamental domain, that is, from the odd
labeled endpoint towards the even labeled endpoint. Note that one vertex in P carries
two labels 1 = N 4 1. If p(h) ends at the vertex N+ 1 in S then p(h) is oriented towards
N +1in S, because N + 1 is even. Consequently its image p(h) € P is oriented towards
the vertex 1 = N + 1 as well. This defines an orientation on all radical arcs in P.

Now let 4 = (¢,7) be an arbitrary 2-arc in P. Suppose first that % is not a loop. Let
£ denote the straight line segment from the boundary point 1 to the puncture. If 4 does
not cross ¢, then i < j and we orient 4 from its odd labeled endpoint towards its even
labeled endpoint. If 4 crosses the line ¢, we label the crossing point by z, and we orient
the two subcurves (i,z) and (z,j) of 4 as follows. Note that in this case we have i > j
and both 4, j have the same parity since N is odd. We orient the ends (4, z), (z, j) towards
the point x if 7 and j are odd, and towards i and j if 7 and j are even, see Example 7.1.

Now suppose that 4 = (i,7)T is a loop. Then we orient 4 towards the puncture if 4 is
odd and towards the boundary if 7 is even. The case where ¥ = (1, 1)¥ is slightly different.
If we choose a representative of 4 that lies to the left of the line segment ¢ then we orient
it towards the puncture. This is consistent with the boundary point being labeled by
the odd integer 1. If on the other hand, we choose a representative of 4 that lies to the
right of ¢ then we orient it towards the boundary. Here we think of the endpoint being
labeled by the even integer N + 1.

6.2.2. Crossing

Now that we have orientated 2-arcs, we can define their directed crossings. Throughout
this section we use the notation 7 € 4 to express that the curve 7 is a representative of
the 2-arc 4. Thus ¥ is the homotopy class of 7.

Let :y,g be two 2-arcs in P and suppose first that at least one of them is not a loop.
Define the directed crossing number e(7,9) to be the minimum of the number of crossing
points between ¥ € ¥ and J € 6 such that 7 crosses d from left to right. Similarly, define
6(5, %) to be the minimum of the number of crossing points between ¥ € 4 and ded
such that ¥ crosses 0 from right to left.

We give several examples in Fig. 8.
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Fig. 8. Examples of crossing numbers between 2-arcs in the punctured polygon.

Now suppose that both 5 = (z,z)* and 6 = (y,y)* are loops in S. Then we define
the crossing numbers as follows.
e((z,2)",9)

1 ifde{(z—2z-2)t, (x—4,2—-4)",(x—6,2—6)T,(z—8z—8),
— (L) Y

0 if ¢ is any other loop.

e ((x,x)f,g)

1 ifde{(z—2,2-2)",(x—4,2 -4t (—6,2—6)",(z—8z—8)T,
= v+ e+ 1D)T]

0 if 0 is any other loop.

1 ifdec{(z+2,2+2)t (z+4,2+4) ", (z+6,2+6)T, (x+8x+8)",
- oz =1, - 1%}

0 if 0 is any other loop.

e (5, (m,x)_)

1 ifde{(z+2,2+2) ,(z+4x+4)" (x+6,24+6)",(z+82+8)7,
- oz =1z —1)F};

0 if ¢ is any other loop.

Example 6.1. In Example 7.1, the radical line p(17) is given by the loop (3,3)". If v is
a loop, then we have

e((3,3)*,79) =1 ifandonly if = (4,4)%,(6,6)",(1,1)";

e(7,(3,3)") =1 ifand only if ~=(55",(7,7)7,(2,2)".
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Proposition 6.2. Let 7,0 be two 2-arcs Arc(P) and Op: Arc(P) — C3 the equivalence of
Theorem 2.5. Then

dim Ext}, (9p (7), Op (8)) = e(7, ).

Proof. This follows by direct inspection of the support of Ext! in the AR-quiver of the
2-cluster category using the labels by the 2-arcs as in Fig. 1. O

The group G acts on the set of 2-arcs in P by the formula ¢4 = 4 if 4 is not a loop,
and o(i,i)* = (i,i)T if ¥ = (i,4)T is a loop. If a is a 2-arc in P or a 2-diagonal in S
we let Ga = {«, ca} denote the G-orbit of a.. The following result describes the relation
between the intersection numbers in P and S.

Proposition 6.3. Let 7,0 be two 2-arcs in P with lifts v,8 in S. Then

Z e(5,0) = Z e(v,4"). (6.1)

¥ eGHy 0'€GS
That is
(a) e(7,0) = e(v,6) + e(v,08) if 7 is not a loop and 0 is not a loop.
(b) e(7,0) = e(,0) if 7 is not a loop and & is a loop.
(c) e(7,0) + e(c7,0) = e(y,68) + e(vy,00) if 7 is a loop and & is not a loop.
(d) e(7,0) + e(07,0) = e(v,8) if 7 is a loop and § is a loop.

Proof. First note that if 4 is a loop in P then its lift § is a diameter in S and hence
Gd = {0}. Therefore, equation (6.1) is equivalent to the four statements (a)-(d). Parts
(a) and (b) follow directly from the fact that the 2N-gon S is a 2-fold branched cover of
the punctured N-gon P under the action of the rotation o by angle .

To show (c), suppose that 4 is a loop in P. Thus + is a diameter in S. If 4 is not a
loop, then 4 crosses 4 if and only if 4 crosses . Moreover, in that case, 7 also crosses od.
Thus e(7,0) = e(v,8) = e(y,00). Since 07 is the same loop as 4 but with the opposite
sign, the same equation holds when replacing 4 with o%. The two equations together
prove part (c).

Finally, assume both 7, é are loops. Then the lifts v, § are both diameters. Thus ~ and
& cross unless they are equal. The crossing number of 5 and 6 depends on the signs of
the loops. As we see from Example 6.1, 4 will cross exactly one of 5,00, unless v =9,
and 0% will cross exactly the other. This shows part (d). O

We also obtain a dual statement of Proposition 6.3.

Proposition 6.4. Let 7,8 be two 2-arcs in P with lifts 7,6 in S. Then

Z e(5,0') = Z e(y/,9). (6.2)

e v EGy
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Proof. Consider the following sequence of equations.

¢(%,8) = dim Extg, (0p(7), ©p(3))
= dim ExtZs (Op (8), Op (7))
— dim Extgz (O (R)), O (7))
— (RS, %)

The first and the last equality follow from Lemma 6.2, while the second equality follows
from the 3-Calabi-Yau property of C]%. Finally, the third equality holds since Op is an
equivalence of categories where the rotation R in P corresponds to an inverse shift in C3.
Now the result follows from equation (6.1) by replacing R, with 7, respectively. O

6.3. Combinatorial interpretation of the equivalence W

We are now ready for our main result.

First, we define the rotation operation R on the category Arc(P) where the punctured
polygon P has size N, which is the analog of the clockwise rotation R on Diag(S). Let
4 be a 2-arc in P. If 4 = (i, §) is not a loop then define Ry = (i + 1,5 +1). If § = (i,4)*
is a loop then define Ry = (i + 1,7 + 1)* whenever (N + 1)/2 is even and otherwise let
Ry = (i+1,i+ 1)F. Moreover, we can extend the definition of R to 2-pivots ¥ — $ by
setting R(5 — &) = Ry — RJ.

Let (i) € Arc(P) denote the radical line of vertex i. For every 2-arc 4 in P we define
projective modules

P(7)=Eelp(i),7) P(j) and  Py(¥) = e, 4(0) P(i).
j i
Theorem 6.5. Let B = eAGe be the basic algebra of the skew group algebra of a dimer
tree algebra A with respect to the action of a group G of order 2. Let P be the associated
punctured polygon with checkerboard pattern. For each 2-arc 4 in P there exists a mor-
phism fxy: Py(5) — Py(7) such that the mapping 7 cokerfﬁ induces an equivalence of
categories

U: Arc(P) - CMP B.

Under this equivalence, the radical line p(i) corresponds to the radical of the indecompos-

able projective P(i) for all vertices i € Qp. The clockwise rotation R of P corresponds

to the shift Q in CMP B and R? corresponds to the inverse Auslander-Reiten translation
1 =02 Thus

U(p(i)) = rad P(i)
YoR Qo T
VoR? = 77lovW
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Furthermore, ¥ maps the 2-pivots in Arc(P) to the irreducible morphisms in CMP B,
and the meshes in Arc(P) to the Auslander-Reiten triangles in CMP B.

Proof. This result follows from Theorem 4.7 and properties of the induction functor
F'. The main part of the proof below is to check that our definition of the intersection
numbers is correct.

Let # be a 2-arc in P and let v be a lift in S. Theorem 4.7 shows the existence of
a morphism f,: Pi(y) — Py(v) that defines a functor ®: Diag(S) — CMP A, ®(y) =
coker M. The projective modules above are defined as

Po(v) = @ e(r ) Pi) - and  Pi(7) = D elp().7) PG,

K2

where both sums run over all vertices of the quiver of A. We can rewrite Py(y) by
grouping its summands according to the G-orbits on the vertex set of Q4 as follows. Let
I be a set of representatives of the G-orbits in the vertex set of ()4, and let us write
I = I U5, where I; contains the vertices that are fixed by ¢ and I> contains the vertices
that are not fixed by o. In the polygon S, the set I3 corresponds to the diameters and
I to the non-diameters. Then

Py(7) = Dier,e(v, p(9)) P(i) & @ier, (e(%p(i))P(i) @e(%p(ai))P(Ui))~

We now apply the induction functor F. Proposition 2.7 yields F(P(i)) = P(i*)®P(i ")
if i € I and F(P(i)) = F(P(0i)) = P(i) if i € I, where i* are the two vertices of Qp
that correspond to the two copies 5(i*) of a loop in Arc(P). Thus we obtain

F(Py()) = @ier, e(,p()) (PGH) @ PG7)) @ @ier, (v, 00)) + e, ploi)) ) P(Q).

Note that the coefficient e(y, p(i)) in the first direct sum is equal to ), ., e(7, p(i')),
since 0@ = 7 in this case, and the coefficient e(v, p(i)) + e(v, p(0i)) in the second direct
sum is equal to ) ./, e(7, p(i)). Therefore equation (6.1) implies

F(Ro() = Bier, Y. e(¥,5(0) (PEHOPE)) @ @iep, Y. e(7,5(0) PD), (63)

5 €G3 €65

where I U I, is a complete set of representatives of the G orbits in the vertex set of Qp
such that fl contains the vertices that are not fixed by o and fg contains the vertices
that are fixed by o.

Suppose first that 4 is not a loop. Then its orbit G4 only contains 4 and thus equa-
tion (6.3) becomes

F(Py(3)) = @ieq, (3 5(D) (P @ PE7)) @ e, 5, 5(0) PG),
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which can be written as

F(Py(7)) = @ie(7, (7)) P(i) = Po(%), (6.4)

where the sum is over all vertices of the quiver of B.
On the other hand, if ¥ = (h,h) is a loop, then G5 contains two arcs (h,h)™ and
(h,h)~. Then equation (6.3) becomes

F(Py()) = @ieq, (e((hh)*,50) + e((h, )7, 5(0)) (PGH) @ PGE))
@ Biey, 2¢((h, h), p(7)) P(7),
which yields
F(Po(7)) = Pol(hs b)) @ Po((h, 1)), (6.5)

The analogous computation for P () together with equation (6.2) yields

Pi(7) if 4 is not a loop;
F(Pi()) = { Pu((h,h)*) ® Po((h,h)-) it 5 = (h, h) is a loop. (6.6)

To complete the proof of the theorem, we define fy = F(f,). Then cokerf; =
F(cokerf,), since F' is an exact functor. In particular, coker f:, is a non-projective syzygy,
by Proposition 2.9 (a), and the projective presentation in Theorem 4.7 is mapped under
F' to a projective presentation of coker fxy. Therefore the functor ¥ is well-defined. The
statement that U is an equivalence of categories follows from Theorem 5.2, using the
fact that the algebras AG and B are Morita equivalent.

It remains to prove the three equations in the statement of the theorem. The first
equation follows from the corresponding equation in Theorem 4.7, because the exact
functor F' maps the radical of the projective P(i) to the radical of the projective F/(P()).
The last two equations follow from the corresponding equations in Theorem 4.7 together
with Proposition 2.9, which says that the induction functor F' commutes with the syzygy
operator ). O

6.4. Applications

We immediately obtain the following consequences of our results. The statements
appearing below are analogous to the ones shown for dimer tree algebras in Corollary 4.8.

We begin by defining the weight of the algebra B. Recall that the quiver Qp of B
is obtained from a quiver Q° of a dimer tree algebra by replacing a boundary arrow
a:i— jin QY with two arrows a~: i~ — j~ and at: it — j1 and each arrow 3 in
Q" starting or ending at i or j by two arrows 51 and 8~ starting or ending at it,i~ or
§ti
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Definition 6.6. Let B be a skew group algebra of a dimer tree algebra.
(a) For every boundary arrow 3 # « in QV, we define its unique skew cycle path to
be ¢(B8) = B1B2 - -+ Byp) in Q°, where

(i) A

B2, ..., Bep)—1 is an interior arrow or the arrow «,

B and [y are boundary arrows in Q° different from «, and each of

(ii) every subpath of length two 3;3;11, is a subpath of a chordless cycle C; in Q°, and
C;=Cjifandonly if j =i+ 1 and Si41 = o

(b) The weight w(f) of the boundary arrow § is defined as

~ 1 if the length of ¢(53) is odd;
w(B) = : e
2 if the length of €(8) is even.

(c) The total weight of B is defined as 35 W(f3), where the sum is over all boundary
arrows of QO different from a.

Note that the skew cycle path ¢(3) coincides with the cycle path ¢(/3) unless ¢(5) ends
in the arrow « in which case ¢(8) = ¢(8)c(w). Recall that cycle paths for dimer tree
algebras correspond to moving clockwise around the unshaded regions of the checker-
board polygon. Similarly, the skew cycle paths correspond to moving clockwise around
the unshaded regions in the punctured polygon. Moreover, the weight Ww(8) equals the
weight of the corresponding arrow in the quiver @ 4. This implies that the total weight
of the algebra B is half the total weight of A.

Corollary 6.7. (a) The category CMP B is equivalent to the 2-cluster category of type
D(n41)/2- In particular, the number of indecomposable syzygies is N(N + 1) /2.

(b) The total weight of B is a derived invariant.

(c) The projective resolution of any syzygy is periodic of period N or 2N. An inde-
composable syzygy Ms has period 2N if and only if the corresponding 2-diagonal ¥ is a
loop in P and (N 4+ 1)/2 is odd.

(d) The indecomposable syzygies over B are rigid B-modules.

(e) Let L, M be indecomposable syzygies over B. Then the dimension of Exty (L, M)®
Ext}g(M, L) is equal to the sum of the two crossing numbers between the corresponding
2-arcs. In particular, the dimension is either 0, 1, or 2.

(f) Let T denote the Auslander-Reiten translation in mod B and v the Nakayama func-
tor. We denote the stable cosyzygy category by CMI B. The following diagram commutes.

T

CMP B CMI B
cok f:Y T T ker uf:Y
Are(P) ——— Arc(P)
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Proof. (a) Since B is the basic algebra of AG then the two categories are equivalent by
Theorem 5.1. The Auslander-Reiten quiver of 0“2)(1\1+1>/2 has (N + 1)/2 7-orbits each of
cardinality N. Thus there are N(N + 1)/2 indecomposable objects.

(b) The weight of B equals N, the size of the punctured polygon. By part (a), the
integer N determines the syzygy category of B up to equivalence. Now the statement
follows because derived equivalent algebras have equivalent singularity categories.

(c) By definition of R if a 2-arc 7 is not a loop then R4 = 4. Moreover, if ¥ = (i,7)*
is a loop then RN4 = 4 whenever (N +1)/2 even, and since N is odd then RN5 = (4,4)F
whenever (N +1)/2 is odd. Hence, only in the latter case the period of 4 is 2N under R,
while in all other cases it is V. By Theorem 6.5 the rotation R on the 2-arcs corresponds
to the syzygy functor Q on CMP B, which shows (c).

(d) Let M be an indecomposable syzygy over B. Under the equivalence of categories
in Theorem 5.1, M corresponds to a 2-arc in Arc(P) which, because of Proposition 6.2,
is a rigid object in CMP B. Thus M is rigid in mod B, as CMP B is an extension closed
subcategory of mod B by [32, Proposition 2.3].

(e) This follows from the equivalences in Theorem 5.1 and Proposition 6.2, together
with the fact that CMP B is an extension closed subcategory of mod B as above.

(f) The proof here is analogous to the one for Corollary 4.8(f) given in [32]. O

A module M € mod A is said to be 7-rigid if Hom 4 (M, 7M) = 0. Note that a 7-rigid
module is rigid, and we know that indecomposable syzygies over algebras of finite Cohen-
Macaulay type are rigid. Moreover, in [32] we conjecture that indecomposable syzygies
over dimer tree algebras are 7-rigid and reachable. In particular, this would imply that
they correspond to cluster variables in the cluster algebra of @. It is natural to ask how
this property behaves by passing to the skew group algebra of a dimer tree algebra, thus
we make the following observation.

Proposition 6.8. The module M & oM is T-rigid in mod A if and only if the induced
module FM is T-rigid in mod AG.

Proof. Consider the following

Homag(FM,7FM) = Homag(FM, F(tM)) 2 Hom (M, HF (T M))
>~ Homa (M, ™M @ o7M)

where the first isomorphism follows from Proposition 2.8, the second isomorphism from
the adjointness of H and F, and the third from Proposition 2.7. Since o is an au-
tomorphism of A of order 2, we also get that the right hand side is isomorphic to
Hom (o M,om7M @ 7M). This shows the proposition. O

Note that for an indecomposable syzygy M, we know from the geometric model that
M @& oM is rigid, so again it is natural to make the following conjecture.
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Conjecture 6.9. If M is an indecomposable syzygy then M & oM is T-rigid.
7. Examples
7.1. Example with detailed computations

The left picture below shows the checkerboard polygon S as well as the quiver of the
corresponding dimer tree algebra A. The right picture shows the checkerboard punctured
polygon P and the quiver of the skew group algebra B = € AG €. The orientations of the
radical lines are indicated by arrows in both pictures.

In the left picture there are two red’® 2-diagonals labeled v and o+y. The 2-diagonal
~ crosses the radical lines p(4) and p(5’) from right to left and + crosses p(3') from
left to right. Thus the corresponding syzygy ®(y) € CMP A is the cokernel of a map
P(4) @ P(5') — P(3). Hence ®(y) = %

On the right hand side, the 2-arc 4 crosses the radical lines 5(4) and p(5) from right to
left and 4 crosses p(3) from left to right. Thus the corresponding syzygy ¥(5) € CMP B

is the cokernel of a map P(4) @ P(5) — P(3). Hence ¥(3) = 1+31, .

5 For interpretation of the colors, the reader is referred to the web version of this article.
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To illustrate the correspondence between the projective resolutions over A and B we
specify them below. Each morphism in these resolutions is of the form f, or f:y for some
2-diagonal v in S or a 2-arc 4 in P. The label on top of the arrows below indicate these
~ and 7. The projective resolutions are periodic and we illustrate one period.

7.1.1. Projective resolution of the radical of P(5)

Over the algebra A, the radical of P(5) corresponds to the 2-diagonal (5,8) in the
14-gon S. Over the algebra B, the radical of P(5) corresponds to the 2-arc (5,1) in
the punctured 7-gon P. The projective resolutions are given by the rotation orbit of
(5,8) in S and of (5,1) in P. In particular the period of the resolution is 14 over A
and 7 over B. Thus over A we have Q4 (rad P(5)) = rad P(5), and over B we have
Q% (rad P(5)) = rad P(5). We point out that Q% (rad P(5)) = rad P(c5). The top two
rows below together form the resolution over A. The second row is the image of the first
row under o. The third row is the corresponding resolution over B. It is obtained from
the first row by replacing P(i’) by P(i), for i = 3,4, 5, replacing P(i) by P(it) @ P(i™)
for ¢ = 1,2, and reducing the arrow labels modulo 7. In order to keep it short we use the
notation P(i*) = P(it) @ P(i™), for i = 1,2.

(10,13) (9,12) (s (6,9) (5,8) (4,7)
P(5)—P4) — P(1) —= P(3) P(4’) @ P(5) —= P(3) —> P(2) —=rad P(5) — 0

(3,6) (2,5) a, 4) (13,2) (12,1) (11,14)
P5) 2%y 22 Py M P9 ™Y Py e P 2 Py B2 pe) P )

Pi) YL pay 22 pas) ML psy UL pay e i) L pe) T pet) L rad P3) —- 0

7.1.2. Projective resolution of the radical of P(3)

The radical of P(3) corresponds to the 2-diagonal (2,7) in the 14-gon S over the
algebra A and to the 2-arc (2,7) in the punctured 7-gon P over the algebra B. The
projective resolutions are given by the rotation orbits of these curves in S and P. Again,
the period of the resolution is 14 over A and 7 over B. The top two rows below is the
resolution over A and the bottom row is the corresponding resolution over B. Note that
the correspondence between the resolutions is exactly as in 7.1.1.

(7,12) (6,11) (5,10) (4,9) (3,8) (2,7) (1,6)
P P(l)® P 3)& P(3') == P(4) & P(2) —= P(3) == P(4) & P(2) —= P(1) & P(5) — rad P(3) = 0

|
=
=
|
X
=

(14,5) (13,4) (12,3) (11,2) (10,1) (9,14) (8,13)
PB3)—=PlyeP()—=P3)®PB)—PA4)a® P2 — P@B3)—=P4)oP2) — Plye P() — PJ)

) rat) e re) M P o P3) "L Py o Pet) Y2 p3)YY Py ) XY POty 6 P(5) Y rad P(3) — 0
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7.1.3. Projective resolution of the radicals of P(1) and P(1T)

The radical of P(1) over the algebra A corresponds to the 2-diagonal (3,10) in the
14-gon S. This is different from the previous cases because (3,10) is a diameter in S
and therefore it is fixed under o = Q7. Therefore the projective resolution of rad P(1)
has period 7. Over the algebra B, there are two corresponding vertices 17,1~ and the
projective resolutions of the radicals of P(17) and P(17) are symmetric. The radical of
P(17) corresponds to the loop (3,3)" in the punctured 7-gon P. The syzygy functor
Q) acts on loops by moving the boundary endpoint to its clockwise neighbor (note that
it doesn’t change the sign since (N 4 1)/2 = 4 is even). Therefore the period of the
projective resolution is 7 over B. The top row below is the resolution over A and the
bottom two rows are the corresponding resolution over B. The bottom row is obtained
from the top row by removing P(i’) for i = 3,4, 5 and replacing P(i) by P(i") or P(i™),
fori=1,2.

(8,1) (7,14) (6,13) (5,12) (4,11) 3,10) (2,9)
1) 2 P B0, e e pe) T P e P@) PG 8 PEI L 520, 5 rad P1) — 0

(7.7)" PO (6.,6)" (5,5)" (4,4)" (3,3)" P@)e (2,2)"

P Y P o) P(3) ——= P(1) ® P(2) —— P(3) AT S rad P(1) - 0

7.1.4. Auslander-Reiten quiver of CMP B
To complete our study of Example 7.1, we give the Auslander-Reiten quiver of the
syzygy category CMP B.

>\/<>\\ /\/\/\/

— 3 — 2 224 27274

‘/\/\/\/ \/&7\/\
\/ \/

— a2 2*}“2222 ﬂuz ﬂlzz e

7.2. Example

This example is less symmetric than the previous one. The left picture below shows
the checkerboard polygon S as well as the quiver of a dimer tree algebra A. The right
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picture shows the checkerboard punctured polygon P and the quiver of the skew group
algebra B =€ AGe.

S W\
PR S R

7.8. Algebra of syzygy type D that is not a skew group algebra

Let B be the Jacobian algebra of the following quiver where the potential is given by
the sum of all chordless cycles. Note that B is not a skew group algebra of a dimer tree
algebra. Nevertheless, by directly computing the syzygy category of B we obtain that it
is a 2-cluster category of type Dg, so it can be modeled by punctured polygon of size 11.
In the polygon we can place arcs corresponding to radicals of projective modules and
obtain a checkerboard pattern shown below, where shaded regions together with the arcs
attached to the puncture with the same sign give chordless cycles in the quiver. Moreover,
as in the previous examples, the projective presentation of an indecomposable syzygy
M5 is given by intersection patterns of the 2-arc 4 with the arcs of the checkerboard

polygon.
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7.4. Application to dimer models

In [33, Figure 2], we explained in an example how to associate a consistent dimer
model to every dimer tree algebra. This is done by embedding the checkerboard polygon
into a unique alternating strand diagram on a slightly larger disk. The mutable part of
the quiver of the alternating strand diagram is equal to the twist of the quiver of the
dimer tree algebra in the sense of Bocklandt [12]. Tt is natural to ask what happens
to the dimer model under the action of G. A similar situation was studied recently by
Baur, Pasquali and Velasco in [11], who construct orbifold diagrams using a rotation
action on an alternating strand diagram on a polygon. The situation here is similar but
not the same. The reason is that our rotation o does not preserve the orientation of the
diameters.

In the example in Fig. 9, we show how this correspondence behaves under the G-
action. Let A denote the dimer tree algebra from the example in section 7.2. Then
the top right picture in Fig. 9 shows the alternating strand diagram that contains the
checkerboard polygon of A. The top left picture shows the quiver é of the corresponding
dimer model; its vertices correspond to the white regions in the polygon, two vertices
are connected by an arrow if the corresponding regions share a vertex, and the direction
of the arrow is determined by the orientation of the strands in the polygon. The vertices
corresponding to the boundary regions are called frozen vertices and the remaining ver-
tices 1,2,3,4,5,6,7,3’,4’,5°,6’,7" are called mutable vertices. The full subquiver of @ on the
mutable vertices is called the twist of the quiver @ of the dimer tree algebra A.

Note that in this polygon the action of ¢ is given by a rotation by angle 7 as indicated
by the labels of the white regions and the vertices. This symmetry induces a symmetry
on the twisted quiver as well, but it reverses the direction of the arrows.

The bottom right picture in Fig. 9 shows the resulting strand diagram on the punc-
tured polygon obtained by the rotational symmetry. In order to reconcile the problem
that o does not preserve the orientations, we add the so-called rift in the punctured
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Fig. 9. The dimer models of the example in section 7.2.

polygon that goes from the puncture to the boundary segment between vertices 8 and 9.
Thus, the white regions with labels 1,2,8, 8” in the polygon give white regions with labels
1%+,2% 8% 8% in the punctured polygon with rift. The rift allows us to orient strands
such that each strand that passes through the rift changes orientation, which ensures
that the boundary of white regions is alternating and the boundary of shaded regions is
oriented.

One may want to associate a quiver to this dimer model which is shown on the bottom
left, where the rift behaves in a similar way as the boundary. Note that this quiver is
almost the one corresponding to the G-action on the quiver @, except that we also have
arrows 8% — &'+,
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Remark 7.1. There are strong connections between dimer models on a disk and Cohen-
Macaulay categories, see [8,27]. In particular, a consistent dimer model on a disk yields
a quiver @ and the associated Jacobian algebra Ag, with frozen vertices coming from
the boundary regions of the dimer model. Let e be the sum of the primitive idempotents
associated to the frozen vertices, then eAge is called the boundary algebra of Ag. It
is known that the Cohen-Macaulay category of the boundary algebra is 2-Calabi-Yau.
Moreover, it is a 1-cluster category that provides an additive categorification of cluster
algebras coming from coordinate rings of (open) positroid varieties. On the other hand
we are studying something different here, because for certain dimer models we are con-
sidering the Cohen-Macaulay category of the dimer tree algebra Ag/(e) obtained by
removing the frozen vertices, and show that it is a 2-cluster category of type A,. The
rank 7 of the category is related to 2(r + 2) marked points on the boundary of the disk
of the dimer model.

7.5. Algebras of syzygy type E

It is natural to ask if there are 2-Calabi-Yau tilted algebras that are of syzygy type
E,,, with n = 6,7, 8. We give here three examples. The Jacobian algebras of the following
quivers with the potential given by the sum of the chordless cycles have syzygy categories
of types Eg,E7, Eg respectively. Observe that moving from left to right we increase the
length of the chordless cycle at the top right by adding a vertex. Moreover, if this
chordless where to have length three, that is the quiver would be a collection of six 3-
cycles joined together at an interior vertex, then it would be the same quiver as shown
in Example 7.1 on the right whose corresponding syzygy category is of type D4. These
examples were checked by computer using the QPA package in [19].

6 ——7<28 6 ——=T7<8<09 6 ——=T7<8<9<10
4/ \3/ 24/ \3/ 5/ 4/ \3/ 5///
N SN N

ANV4 \1/ \2/
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