ENHANCED DISSIPATION AND BLOW-UP SUPPRESSION IN A
CHEMOTAXIS-FLUID SYSTEM

SIMING HE

ABSTRACT. In this paper, we investigate a coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system.
We show that globally regular solutions with arbitrary large cell populations exist. The primary blowup
suppression mechanism is the shear flow mixing induced enhanced dissipation phenomena.
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1. INTRODUCTION

We consider the coupled Patlak-Keller-Segel-Navier-Stokes (PKS-NS) system modeling the chemotaxis
phenomenon in a moving fluid:

on +v-Vn + gV - (nVe) = kAn, (1-A)c = n,
(1.1) ov+ (v-V)v + Vp = vAv + knVe, V-v = 0,
n(t=0) =nip, v(t=0)=uvn, () €TxR.

Here n denotes the cell density, and c is the chemoattractant density. The divergence-free vector field v indi-
cates the ambient fluid velocity. The first equation (Patlak-Keller-Segel equation) describes the time evolu-
tion of the cell density subject to transportation by ambient fluid flow v, aggregation trigged by chemotaxis,
and diffusion in the media. The aggregation and diffusion take effects on a time scale O(k~1), k € (0, 00).
The cells move towards higher concentrations of the chemoattractants. In the meantime, they secrete the
chemoattractants to re-enhance this aggregation effect. By assuming that the secretion and redistribution of
chemoattractants happen at a fast timescale, we establish an elliptic-type partial differential relation between
the density distributions, n and ¢. The equation (Navier-Stokes equation) on the divergence-free vector field
v describes the fluid motion subject to force. The parameter v is the inverse Reynold number, and the scalar
function p denotes the pressure that ensures the divergence-free condition. The fluid exerts friction force on
the moving cells to guarantee that they move without acceleration. Hence, Newton’s law predicts that there
exists a reaction force from the cells to the fluid. The coupling nVc¢ in the Navier-Stokes equation models
this interaction. The same forcing appears in the Nernst-Planck-Navier-Stokes system, see, e.g., [23].

If no ambient fluid flows are present, i.e., v = 0, the coupled system (1.1) simplifies to a variant of the
classical parabolic-elliptic Patlak-Keller-Segel (PKS) equation

(1.2) on + KV - (nVe) = kAn, —Ac=n.
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The equation (1.2) is derived by C. Patlak [60], and E. Keller and L. Segel [42]. Simplified models are
proposed by V. Nanjundiah, [58]. The literature on the PKS model is extensive, and we refer the interested
readers to the representative works, [2, 9, 12-14, 16, 17, 29, 38, 41, 56, 57], and the references therein. We
summarize the main results on the plane R? as follows. Thanks to the divergence structure of the PKS
equations (1.2), the total cell population/mass is conserved over time, i.e., M := ||n(t)||zr = ||nin| L2 The
long-time behavior of the equation (1.2) hinges on the total mass M. Suppose the initial cell density has a
finite second moment and a total mass M strictly less than 8. In that case, the unique solutions to (1.2)
become smooth instantly and exist for all time, see, e.g., [9, 14, 17, 29, 39, 67]. A key observation in deriving
sharp regularity results is that the Patlak-Keller-Segel equations have natural dissipative free energy

E = /nlogn — %nch.

On the contrary, if the initial mass is strictly larger than 8w, the solutions with finite second moment
blow up in finite time, e.g., [14-16, 41]. The refined description of the singularities is provided in work
[21, 22, 37, 61, 64-66]. In the borderline case, M = 8m, the solutions with finite second moments form
Dirac-type singularities as the time approaches infinity, [13, 26, 31].

If there is ambient fluid flow, the long-time dynamics of the systems (1.1) are delicate. In the pioneering
work, [44], A. Kiselev and X. Xu show that if the fluid vector field v is relaxation enhancing in the sense
of [24], then by choosing a large enough amplitude (|||« ), the chemotactic blowups are suppressed. Their
analysis is later generalized in [40] to a broader class of fluid vector fields. Furthermore, in work, [7, 33], the
authors show that strong shear flows can suppress the blowups through a fast dimension reduction process.
Last but not least, the authors of [35, 36] exploit the fast-spreading scenario of the hyperbolic and quenching
shear flows to reach the same goal. In work mentioned above, the ambient fluid velocity fields v are passive
because the dynamics of the cell density do not alter the fluid itself. If there is active coupling between the
cell dynamics and the fluid motion, the only known result is [76]. In this work, the authors prove that if the
underlying fluid flow is close to the Couette flow, strong enough shear suppresses the blowup of a specific
type of PKS-NS system.

One can regard the system (1.1) as one among many attempts to model the chemotaxis phenomena in
a fluid. The literature on coupled chemotaxis-fluid equations is vast, and we refer the interested readers to
the papers [19, 28, 30, 45, 50-52, 62, 63, 70, 74] and the references therein. Many of these works investigate
coupled systems involving fully parabolic Patlak-Keller-Segel and Navier-Stokes equations. The parabolic
nature of the chemical equations complicates the analysis. For example, I. Tuval et al. proposed the following
model [63],

On+v-Vn+ V- (nVe) = An,
Oret+v - Ve = Ac—nf(c),
v+ -V)v+Vp=Av+nVep, V-v=0.

Here a parabolic equation governs the dynamics of the chemicals (oxygen), and the coupling nV¢ in the fluid
equation models the buoyancy effect. The regularity and long-time behaviors of the system are explored in
[71-73, 75]. On the other hand, A. Lorz [52], and H. Kozono et al. [45] proposed models whose chemical
densities are determined through elliptic-type relations.

A new feature of the coupled system (1.1) is that it retains dissipative free energy

1 1
F = /nlogn— Fne+ §|v|2dV.

The dissipative free energy, together with the logarithmic Hardy-Littlewood-Sobolev inequality, yields global
regularity of the solutions to a variant of (1.1) in the entire subcritical mass regime, i.e., M < 87 ([32]).
The critical mass case is analyzed in [46]. In the supercritical case M > 8, there exists a solution with
finite-time blow-up ([32]).

We consider the system perturbed around the Couette flow v(z,y) = (y,0), a stationary solution to the
Naver-Stokes equation. By decomposing the velocity field as v = y + uw and writing the fluid equation in
vorticity form, we end up with the system:

On+yoyn +u-Vn+kV - (nVe) = kAn, (1-A)c=n,
(1.3) Orwtyd,w +u - Vw = vAw + kV* - (nVe), u=V+A lw,
n(t =0) = nip, w(t=0)=wy, (z,y)eTxR.
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Here w = V+ u=—-9,uV) +9,u? and V*+ = (-9,,0,). In this formulation, we can view the coupled
system as a nonlinear perturbation of the Naver-Stokes solution (y,0). The problem of suppressing the
chemotactic blow-up is now equivalent to a nonlinear stability problem of the Couette flow. The fundamental
question in the study of hydrodynamic stability is to determine the functional space X and the parameter
a € [0,00) such that

lwmllx Sv* = Stability.

Here v® is the stability threshold of the flow associated with the spaces X. The nonlinear stability threshold
of the Couette flow has attracted much attention in the last decade, see, e.g., [4-6, 10, 11, 20, 54, 55]. A
complete survey of the literature is out of the scope of this paper. Therefore, we highlight some of the work
focusing on a 2-dimensional setting. In [10], J. Bedrossian, N. Masmoudi, and V. Vicol showed that the
stability threshold of the 2D-Couette flow is O(1) in the Gevrey spaces. The stability thresholds associated
with the Sobolev spaces are shown to be O(v'/2) on the cylinder T xR (J. Bedrossian, V. Vicol and F. Wang,
[11]) and in the channel (Q. Chen, T. Li, D. Wei, and Z. Zhang, [20]). Later, N. Masmoudi and W. Zhao
considered higher-order Sobolev norms (H*°) and improved the threshold to O(v'/3), [55]. The enhanced
dissipation phenomenon of the Couette flow plays an essential role in the above works. We also refer the
interested readers to the work [27, 49, 53, 78, 79] for the detailed stability analysis of Couette flow in MHD,
Boussinesq equations. For the enhanced dissipation phenomena associated with other shear flows, we refer
the interested readers to the work [1, 3, 25, 34, 47, 48, 68, 69], and the references therein.

Our main result is that global-in-time regular solutions with arbitrarily large mass M to the system (1.1)
exist.

Theorem 1.1. Consider the equation (1.3) subject to initial conditions ny, > 0, ny, € L'n H*(T x R),
ninly|> € LY(T x R), wi, € H*(T x R), 5 <s€N. Assume that the parameters k, v are in the regime
0 < k <v <1. There exists a threshold eo(||nin||L1nms) € (0,1) such that if the following relations hold

(1.4) lwinllms < ev'’?, k=ev, 0<e<e,

the regular solutions to (1.3) exist for all time. Moreover, there exists a universal constant § € (0,1) such
that the following enhanced dissipation estimate holds

(1.5)
6n1/3|am|2/3t< _L/ )
+ lle w wdx
IT| Jr

< Bllnmllinme), VE€ [0,00).
LZ

65“1/3‘8”‘2/3t n—i/ndaﬁ
IT| Jr

Here the bound B only depends on the initial data.

L2

Remark 1.1. We compare our result with that of [76]. In [76], the authors considered a similar system
with buoyancy force coupling between the fluid and cell-density equations and showed suppression of blowup
results. However, here our system (1.1) involves a nonlinear coupling in the fluid equation, which complicates
the analysis. Moreover, the methods we employ here are different from that of [76].

Remark 1.2. The stability threshold in Theorem 1.1 matches that of the paper [11]. However, we expect
that by using more complicated techniques developed in [55], one can improve the stability threshold to evt/3.
We will leave the analysis in later work.

Remark 1.3. This paper focuses on the parameter regime where k < v. The method does not seem applicable
in the parameter regime v > k. If the viscosity v is much greater than k, the biological phenomena take
place on time scale O(k~Y), which can be much shorter than the fluid dynamics time scale. As a result,
the dynamics of the cell evolution have a montrivial impact on the fluid motion. Thanks to this nontrivial
interaction, the fluid flow might no longer be stable. Hence it is a great problem to understand the long time
dynamics of the system in this regime.

The remaining part of the paper is organized as follows. In Section 2, we sketch the proof of Theorem
1.1. In Section 3, we provide estimates of the fluid equation. In Section 4, the estimates of the cell density
are derived. Finally, we collect technical lemmas in the appendix.
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2. SKETCH OF THE PROOF

In this section, we present the main idea of the proof of Theorem 1.1.
Similar to the works [8, 43, 59, 77], we first consider a new coordinate system

z=x—-ty, Yy=y.
we have the following:

(2.1) ON +U-VN+£kVyL-(NVLC)=kALN, C=(1-AL)"'N;
IQU+U-VQ=vALQ+kVE - (NVLO), U=-Vi(-Ap)'Q.

Here the following notations are adopted:

(9 _ 0. . -0 _ _ 2

Since the enhanced dissipation phenomenon is heterogeneous, we consider the z-average fy and the remainder
fx of functions on T x R:

fO(tay) = ﬁ/ﬁ‘f(tvzay)dzv f?f(tvzay) = f(t,z,y) - fO(t7y)'

We decompose the solutions IV, €2 into the z-average and remainder:

(2.2a) 0Nz + (U-ViN)x =kALNx — k(VL - (NVLC));
(2.2b) OtNo + (U - VLN)g =k8yy No — k(Y1 - (NVLC))o;
(2.2¢) Qs + (U -ViQ)y =vALQs + Kk(VE - (NVLC)) 4,
(2.2d) Q0 + (U - V1Q)o =00y, Q0 + £(VT - (NVLO))o.

~

To analyze the above equations, we apply the spacial Fourier transform f(¢,z,y) 7, f(t, k,n). Next we
introduce the following multipliers W,;, W,,, W, which are motivated by [11]:

(2.3) W (t, k,n) =m — arctan (m1/3|k|2/3 (t - g)) Lo k| <n—1/2;

(2.4) W, (t, k,n) =m — arctan (1/1/3|I<:|2/3 (t - g)) Locikj<p—1/2;

(2.5) W(t, k,n) =m — arctan (t - %) 1iz0.

We observe that these multiplier functions take values in [7, 37’7] Moreover, they are monotonically decreasing

in time. We further define the following multipliers associated with the cell density N and the vorticity :
(2.6) M, =WW, M,=WW.

Further define that

(2.7) A, (k) =M, (&, k) WU B2 4 )2, e {v, k), s> 0.

Here 0 < § < 1 is a universal constant. We note that the A,-multiplier and A,-multiplier share the same
exponential factor ORIk The multipliers {A,, M} will act on the cell density and chemical density
N, C and {A,, M, } will act on the vorticity and velocity of the fluid 2, U. The properties of these multipliers
are collected in the appendix.

Next, we present a local well-posedness result, which can be proven through standard argument.

Theorem 2.1. Consider solutions N, to the equation (2.1) subject to initial data 0 <Ny, € L'NH*(T xR),
Ninly|? € LYT x R), i, € H*(T x R), 3 < s € N. There exists a small constant T-(||Nin||p1nms, | Qinlzrs)
such that the unique solution exists on the time interval [0,T:]. Moreover, N >0 on [0,T¢].
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To prove Theorem 1.1, we use a bootstrap argument. Assume that [0, 7] is the largest time interval on
which the following Hypotheses hold:

2
t
—0, M,

(2.8a) [|AxNL4(t)]|2 +/ T o Rl Ap/=ALNg|72dm <2B3;

0 K L2
(2.8b) [ No(8)[|7r- <2B3,;

2 ! 73TMV ’ / 2 2 2

(286) ||AyQ;é(t)||L2 +/ M Auﬂ;ﬁ + I/HAV 7ALQ¢||L2dT SQBQ#E Vi

0 v L2

t

(2.84) 192 ()12 +1//0 10,12 dr < 283, v, Vi € [0,T.].

Without loss of generality, we set Bn_,, Bn,, Ba.., Ba, > 1. Moreover, they only depend on the initial data
| Nin || L1nms and the regularity level s.

Proposition 2.1. Consider the system (2.1) subject to initial condition 0 <Ny, € L'NH*(TxR), Niu|y|*> € L' (T x R),
Qi € HS(T xR), 5 < s€N. Assume that 0 < k <v < 1. Let [0,Ty] be the largest interval on which the hy-
potheses (2.8) hold. There exists a threshold €9 = €o(||Ninl|p1ngs) such that if the condition (1.4) is satisfied,

the following stronger estimates hold

2
Y [-o.M,
(2.92)  |JANL(t)|22 +/O - AxN#ll Kl AeV/ = ALNy|T2d7m <BY;
K L2
(2.9b) [No(t)[IFre <B;
2 ’ _a‘rMV i 2 2 2
(2.9C) ||AVQ7£(t)HL2 —‘r/ i AVQ;,g + V||A,,\/ —ALQ7§HL2dT SBQ¢€ v;
0 v 2
t
(2.94) 120 (1)I12. +y/ 10,13 dr <B3, v, Vit € [0,T.].
0

Here the bounds B, Bn,, Ba.. and Bq, depend only on the initial data || Nin|lz1qms-

Remark 2.1. The explicit choice of the constants By, Bn,, Ba, and Bq, are listed in (4.25). The choice
of the threshold €y can be found in (4.26).

Now we can conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. Combining Theorem 2.1 and Proposition 2.1, we see that [0,T,] is both open and
closed on [0,00). Hence Ty = oo and the solutions with estimates (2.9) exist for all time. The enhanced
dissipation estimate (1.5) is a consequence of the bounds (2.9a), (2.9¢),

1/3 2/3 1 1/3 2/3 1
P (n - — / ndw) R (w - — wdx)
T ") s 1] Jx

< Ol[AuNz ()22, + Cll A2 ()l

z,Y

"

2
L3,y

< CBY, (INullprnmr) + CB ([Nl 11nme), Vit € [0, 00).

This concludes the proof. O

2.1. Notations. Throughout the paper, the constant C, which can only depend on the regularity level s,
will change from line to line. Constants with subscript, i.e., By, will be fixed. For A, B > 0, we use the
notation A =~ B to highlight that there exists a strictly positive constant C such that B/C < A < CB. We
also use the notation A < B to represent that there exists a constant C' > 0 such that A < CB.
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Recall the classical LP norms and Sobolev H®, s € N4 norms:

1/q

1/p T
151 =11 = ([ 177a7) ||f||Lg<[o,T};Lp)=(/0 ||f(t)||%pdt> ;

1/2 1/2
fllee = D2 0205 f17= | 5 Wfllge = | D 10209 £117
i+j<s i+j=s
Here dV = dzdy = dxdy is the volume element. If p or ¢ is oo, then we use the classical L>°-norm.
We use f to denote Fourier transform of function f in the (z,y) variables. The frequency variables

corresponding z and y are denoted by {k, £} and {n, &}, respectively. The Fourier multipliers are defined as
follows:

~

(V) f) (K, n) = M(ik,in) f(k,n).
Given a set S € Z, we define the projection Pics
Presf = Lesf (k).
We apply the following notations
(k) = V14K, (k)= (L+E+0)"2 |kl = |k +|n].

We recall from classical literature that || f||g= ~ [|(0;, 0y)® f] L2

3. VORTICITY ESTIMATES

In this section, we derive the estimates associated with the fluid motion. We organize the proof into two
subsections. In Subsection 3.1, we prove the enhanced dissipation estimate of the vorticity remainder Q)
(2.9¢). In Subsection 3.2, we prove the z-average (€)g) estimate (2.9d).

3.1. Remainder Estimates. In this section, we consider the remainder of the vorticity, which solves the
equation (2.2c). We will prove the conclusion (2.9¢).
Application of the energy estimate yields that

d1 - —8, M, .
Gl A0 B =on s S P [ A k) o) Pin = Y [ S A, k) ko) P
k=0 k=0 v

03 [ 1At k) (VIR T = RPN, k) Py
k#£0
- /AV(U ViLQ)y A,Q¢dv+n/Ay(Vf (NVLC))z A,QdV.

The relation k < v, together with the property of the multiplier M, (A.4) yields that if § < 16%, then the
time evolution of the norm is bounded as follows:

_atMl/
M,

d1

— 1
dt 2

2

|AQ)Z2 <~ A0

2
1
— VIR0

L

- /AV(U-VLQ)¢ A,,Q;édV—km/A,,(Vf (NVLC))x A,Q,dV.

Integration in time yields that

2
- TMV ¢
,/GTAVQ;& d7'+1// A,/ —ALQ||22dr
v L2 0
t
SHAuQin;;é”%p + 2’-/0 /AV(U Vi) A, QxdVdr

(3]-) ::HAUQin;;é”%ﬂ +TQ¢;1 +TQ¢;2~

t
14,92, ()2 + /

t
+2 ,g/ /Ay(vf (NVL0))z AQdVdr
0
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The estimates of the terms TQ;é;l and TQ#Q are summarized in Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Assume all the conditions in Proposition 2.1. The Tq_,1-term in (3.1) is bounded as follows
(3.2) To,1 < C(Ba, + 390)332#63,/.

Here the constant C depends only on the reqularity level s.

Lemma 3.2. Assume all the conditions in Proposition 2.1. There exists a constant C = C(s) such that the
Jollowing estimate of the Tq_2-term holds

1/t 1
(33) TQ#;Q S ZV/O ||AV\/ 7ALQ¢||2deT+ Z/

t 2
-0, M, ~

0 M, 7

L2

Ay

dr + C(B?V# + B?VO)eQV.

With these two lemmas, we are ready to prove the improved bound (2.9¢).

Proof of the conclusion (2.9¢). First, we recall the initial condition (1.4), which ensures that || A, Qin (22 <
Cl|Qin;l s, < Cev'/2. Combining it with the relation (3.1) and the estimates (3.2), (3.3), we obtain that

—-0-M,

A Qx(7)

t 2 t
| A, QL ()]22 +/0 dT+v/O 1Ay v/ =ALQL(7)||72dr
L2

< C||QUunis| % + C (6(397& + Ba,)B3, + B, + B?‘vo) v < C (6(3Q¢ + Ba,)Ba, + 1+ B, + 3;1%) 2y
Here the constant C' depends only on the regularity level s. As a result the following choices of constants
yields (2.9¢)
1 1

3.4 —B3, > C(1+B;) B3), < e

( ) 2 Q# — ( + N¢ + N()) € — 2C(BQ# +BQO)

This concludes the proof. O

In the remaining part of this subsection, we prove Lemma 3.1 and Lemma 3.2.

Proof of Lemma 3.1. The estimate of the Tq_, 1-term is in the same vein as the one in [11]. We carry out

the details for the sake of completeness. We recall that the Biot-Savart law yields that Uéz) =0.A, 10 = 0.
Hence we can expand the Tq ;1 term as follows:

t t
(3.5) Toa gg‘/ /AI,(U¢.VLQ) A, QdVdr +2’/ /Ay(Uél)azQ) A, QdVdr
0 0

2
=: E TQ#;li.
i=1

For the Tq_.11-term, we first invoke the Biot-Savart law to rewrite the velocity as Uz = VJL-AFQ#, and
then apply the product estimate associated with the multiplier A, (A.10) to obtain the following bound

t t
To,m SC/ ||Au(ViA219¢'VLQ)||L2||AVQ¢||L2dTSC/ 1AL VL AL Q22 [ ALV Q| 2d7 [ A Qe e 12
0 0

Next we observe that the M, -properties (A.3b), (A.3c) imply that |4, VA 'Q||2 < C| A,/ %Q#Hl;.
Combining this with the bootstrap hypothesis (2.8¢), (2.8d) yields that

C —oyM,
Ta,m <—= || Ay ]\2 Qx M2 AN = AL 212 + 02110, Q0 12 1) | AV Qs || Lo 12
vV v L2L12
(3.6) <Ce¢(Ba. + BQO)BS%#EQV.

This is consistent with the estimate (3.2).
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For the Tq_ ;12 term in (3.5), we first observe there is a cancellation relation

A0\
/@A;% 0. A, A,QdV = /ayAglaoaz ( : 75) dv = 0.
Hence we can rewrite the term TQ# .12 using the Biot-Savart law U(l) = fayA?leO as follows:

Ta,12 =2

=0y Q0 0.Q4) + 9,A Qg 0.A,Q2) A,Q dVdr

> [ // k) = Mk 8.6%) =S - €

k0

(3.7) x <k65”1/3"“|2/376(7,k,§)> AQ(7, k,n) dndedr|.

Now we invoke the commutator estimate (A.11) and the Young’s convolution inequality to obtain that

Ta, 2

< C’/o Z/ ((k,&)® — &)%) |§0(77—€)\ e‘s"l/s‘k‘z/%ﬁ(r,k,g) |AV§(T,I<:,77)| dndédr

k0

<] [ T 18O (10 gl ()

0 k0

~ W1/31K12/3 S
2+ 10Oy ™ 7 g, ) Qu (Vg ) dr|

Combining the M, -properties (A.3b), (A.4), the definition of A4, (2.7) and the inequality ||j¢()||L}7 <
CI{Y FOllzz, s > 1 yields that

Toz <C / S 1A O3 drll 0 e
k0

t
SCU_1/3 /
0

Hence the bootstrap hypotheses (2.8¢), (2.8d) implies that

2
—0: M,
M,
L2

AV +V||AV V _ALQ7§||%2dT HQOHL,OOHS

(3.8) TQ}HlQ < CE3VB?2¢BQD.
Combining the decomposition (3.5) and the estimates (3.6), (3.8), we have obtained the result (3.2). O

Proof of Lemma 3.2. We further decompose the Tq_ 2 term in (3.1) as follows:

TQ¢2<2/<; + 2k

/ /A . (N40,Co)) A,QzdVdr / /A (Vi - (NVLCL) A,Q.dVdr

(3.9) =Ta 21 + Ta,2.

Before analyzing the terms, we make a comment about the multipliers. Thanks to the {M,, M, }-property
(A.3b) and the definitions of {A,, A} (2.7), we have that the A,, A, multipliers are comparable, i.e.,

1

1 —_—
(3.10) 1674

At k,m) < Ayt k,m) < 167 AL (L, k).

As a result, we have the freedom to adjust the multipliers {A,},c(x ) when considering different objects.
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With the multiplier properties explained, we start the estimate. To estimate the Tq_;21-term, we apply
the relation (1 — dy,)Co = Ny, the definition (2.7), and the 0;M-estmate (A.3c) to get the following

t
Ta,m SCHZ/ //’ k|? +1n — kT|2AVQ(T>k777)‘

k070
Au(rs ko) | ——FE (W(nml'”_g' |J\70(7777—§)|) dndedr
WET [~ kP T3 - &P

<cny [ [[|VREFT=BF A k)

k2070

X

X

M, (7, k,n)(k, n)* /=0, My (7, k., 1) (eéﬁl“lkl2/37|ﬁ(7,k,g)|MWO(Tn g)) ’dndgdr.

Now we invoke the M,; properties (A.3b), (A.3e) to obtain

Ta,2

<oy [ ] VIFF - EEAfG

k070

(Ml b )k, €)° 4 (= )5 W7 B M G e €|, k9] L5 f“" §|§>No(ﬂn—€)ldnd€d7-

Now we apply similar argument as in (3.8) to estimate the term. Application of Young’s convolution
inequality, the M-bound (A.3b), the A,-definition (2.7), and the fact that [|f(-)]|z; < C[(-)* ()12, s > 1
yields that

1/t 2 t -0, M, ?
To 2 SgV/ HAV\/ _ALQ;éHLz dT+062V/ Ay %N;& [ No||7s dr
K L2
(3.11) <= u/ HA \/fALgyéH dr + CEvBY B, .

Here in the last line, the hypotheses (2.8a) and (2.8b) are employed.
For the Tq .22 term in (3.9), we apply integration by parts, and then estimate it with the product estimate
(A.10), the elliptic estimate (A.8), and the bootstrap hypotheses (2.8a), (2.8b) as follows

t
To,0 <6 [ A EQ] 2 (INollr + |ANA|22) | AT £C 12
0

t
*V/O |4/ = ALQxlF2dr + CEV((INoll L e + | ArNgl|Foo 12) | A V(L = AL) T N Z2 2

—OM,
M

t
L, / JAN AL Badr + OV No 2 e + AN 20 2) [ A "N,

L2L2

<1 /HA VAL |2adr + CEv(BY,, + BB

Combining this with the decomposition (3.9) and the bound (3.11) yields the estimate (3.3).
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3.2. The z-average Estimates. In this subsection, we prove the estimate (2.9d). First of all, we recall the
equation (2.2d), and decompose the nonlinearity as follows

Q0 + (Uz - VQ2)0 + (Uo - V)0 = vAQy + £ (V- (NoVLCo))y + 5 (VT - (N2VLCR)), -

Here we observe two null-structures which lead to simplification. First, we observe that by the Biot-Savart
law, the vertical velocity field Ué2) = 8ZA;190 = 0. Hence,

(U - VQo)o = (Uél)azﬁo)o =0.
On the other hand, the following term vanishes,
K (VL - (NoVLCh)), = =k ((9y — t9:)(Nod2Co))y + K (9:(NodyCo)), = 0.
Hence the g-equation can be simplified to the following,
Qo — vAQy = —(Ux - V)0 + £ (VL - (N2VLCL)), -

Recalling that A, (¢,k = 0,1) = 72(n)*, we calculate the time evolution of the || A, ]|, as follows:

d1

ol Al = 148,00l — [ A2 Tufa)o) AdV 4 [ A, (V2 (N2T1C), ASdV.
Now integration in time yields
(3.12)

t
14,9022 +21// 14,0, 227
0

t t
<A, Qinol|22 +2‘/ /A,,((U¢ SViQs)0) AQodVdr| + 2k / /A,, (Vi (N2VLCy)), AvQodVdr
0 0

::||AVQin;O||2L2 + TQO;I + TQO;Q,

We rewrite the Tq,.1-term in (3.12) with the Biot-Savart law, and then estimate it with the product estimate
(A.10), the M,-bound (A.3b), the elliptic estimate (A.8), and the hypotheses (2.8¢), (2.8d) as follows

t t
Ty :/ /Ay(vaglmé “ViQs)0 AyQodV < c/ [ALVEAT QL 22 | ALV L | 22 || AL Qo || L2 d T
0 0

—0¢M,,

. <
(3.13) <C i

Ay

|l 14700 22l ey < v (CBa, B ) -

L2L2

Next we estimate Tq.o-term in (3.12). By observing (0,F)o = 0 and integration by parts, we rewrite the
term as follows,
T =2 =2

t t
H/ /AVQOA,,((ﬁy - taz)(N#azc;ﬁ))odVdT I{/ /AyayQO AV(N;éaZC;ﬁ)OdVdT .
0 0

Application of the product estimate (A.10) and the fact that A, =~ A, (3.10) yields that

1
Toyz <5v1 40000320 + CEVIANLI 12 400-Ctl3 1o

After invoking the relation 0,Cx = 9,(1—Ap) !N, the M,-estimate (A.3b) and the elliptic estimate (A.8),
we estimate the Tq,.o-term with the hypotheses (2.9a) as follows

1 _
Tag <5V 400, Q07212 + CEV[AeNL Lo 12 [ As02 (1 = AL) T N7z 2

—0¢M,,
M

2
Ny
L2L2

1
(3.14) giyuAuayQOHim + CEV|| AuNg]|] w2 || Ax < Sv[4,0,l172,2 + OBy év.

N =
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Combining the decomposition (3.12), the estimates (3.13), (3.14), and the initial constraint (1.4), we have
that

(3.15)
14, 90(8) 32 + V| 4s8,820]2 0 <ClQumollf + v C (B, B, + BY,) < EvC(1 + eBa, B, + BY,).
Here C' > 1 is a constant depending only on the regularity level s. Hence the following choice of constants
guarantees the conclusion (2.9d)
1
1+ Bg,”

(3.16) Bg, >4C(1+ B3, +By,), €<
Here the constant C' is the one in (3.15).

4. CELL DENSITY ESTIMATES

In this section, we derive the estimates associated with the cell dynamics. We organize the proof into two
subsections. In Subsection 4.1, we prove the enhanced dissipation estimate of the cell density’s remainder
N (2.9a). In Subsection 4.2, we prove the z-average (Ny) estimate (2.9b).

4.1. The Remainder of the Cell Density. In this section, we prove the estimate (2.9a). First we calculate
the time evolution of ||A,N,||2. using the equation (2.2a):

—0: My,

7R dr

2
AN

1 1 . t . t
SIAN A =51 AcNisl + 57 [ 100 4N — |
L2

t ¢
—/{/ ||A,{\/—ALN¢||%2dT—/ /AHN¢ A, (U -VN) dVdr
0 0
¢
ok / / AN2 An(V - (NV,C))2dVidr.
0
Recalling the relation (A.4) and the null condition UéQ) = asz_lﬂo =0, we have that if § < 1, then

—0; M,
M,

2
1 1 1/t K
5HAHN¢(t)II%z §§HAKNm;¢II%2 - */O AgNy||  dr— §||An\/—ALN¢||%gL2
L2

2

t t
+ ‘/ /A,{(Ug” 0.N4) AN dVdr| + ‘/ /A,{]\@é AV (N VEAT'QL)dVdr
0 0

t t
+ n/o /Aﬁa; (N£8,Co) AxNpdVdr| + Ii/o /AHVL (NVCyx) AN,dVdr

2
1 1 [t [-0-M, K
::*Hf41~cj\fir1;sﬁ||%2 -3 AKN;é dr — - || Ax _ALN;é”i?Iﬂ
2 2 /s M, L g 145V ;
(4.1) + TN, 11+ T2+ Tnor + Ty oo

The estimates of the terms in (4.1) are collected in the following lemmas.
Lemma 4.1. The Tn_.11, Tn_ ;12 terms in (4.1) are bounded as follows

(4.2) Tnyn + Tgnn < CeP(BS, + B, + B, + By, ) B,
Here C is a constant depending only on the reqularity level s.

Lemma 4.2. The TN,21 and Tn,.22 terms are bounded as follows

t
K

(4.3) TN#;21 + TN#;QQ < g/o ||A,€\/ —ALN75H%2CZT + CK2/3(B]2V¢ + BJQVO)BJQ\[#.

Here C is a constant depending only on the reqularity level s.

Now we complete the proof of (2.9a).
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Proof of (2.9a). Combining the decomposition (4.1), Lemma 4.1, Lemma 4.2 and the choice of parameters
0<m§e:§§1,weobtain

—0:M,
M,

2
AN Rl AV AN
L2L?

<C||Nintll3rs + Ce/2(BE, + Ba, + By, + B, ) By, + Ce'?(B,, + By, ) By

lARN2(6)]72 +

Here C' is universal constant depending only on s. The following choices of parameters yields (2.9a):

1
4.4 B3, > 4C||Nin.2||%., €< )
(4.4) Ny 2 40 Nz, €< 1602(Bg, + B, + By, + BY,)?

The remaining part of the subsection is devoted to the proof of Lemma 4.1 and Lemma 4.2.

Proof of Lemma 4.1. The estimate of TN, is similar to the estimate of Ta, 12 in (3.5). Hence we will only
sketch the estimate. First we note that by the velocity law and the null condition,

1
/%A;lQO(‘)ZARN# A N dV = 5/8yA;1§20 9. (AcNy)*dV =0,

the Ty _;11-term can be rewritten as follows

TN#,ll —'/ / 8 A 1(20 0, N;s)—l—@ A 190 9. A N#) A N;ﬁdVdT
i(n—2E&) 5
];/// w (7o Ry ) (R )® — (Tl<~£)</’f€>)(77 5)Q(ron €)
x (ke TR (7, 1, ) AN (b, n)dgdndr |

Now we observe that this is in the same form as (3.7). Hence combining the application of an identical
argument as in (3.8), the enhanced dissipation relation (A.7) and the bootstrap hypotheses (2.8a), (2.8d)
yields that

Tnonn < Ol A Q0 e 12| AN 2 2 < CBo B¢ /25/C.

We note that this is consistent with (4.2).  For the Tiv_;12 term in (4.1), we apply integration by parts, the
Biot-Savart law, and Holder inequality to obtain the following:

t
Tny2 ‘/ /VLAKN;é AR(VEAL'QN)AVdrdVdr| < Cl| A/ —ALNgl 1212 | Ax(VEAL Q2 N) || 212
0

Now we invoke the product estimate (A.10), and then the M,-estimate (A.3b) and the elliptic estimate (A.8)
to derive the following bound

T,z <[ Axv/ =ALN£| p212 | A0 AL Q] 12 2| A No| e 12

—0eM,
< AxvV =ALNzll 2L || A ]\2 Qx

[AxNol| Lo L2
22

Now the bootstrap hypotheses (2.8a), (2.8b) yields
T, 12 <Cr™ 2By, Ba ev'/?By, < CBy,Ba, By, Ve

Combining the above estimates of Tiv_;11 and T ;12 yields the result (4.2). O
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Proof of Lemma 4.2. First we estimate the Ty, 2;-term with integration by parts and the product estimate
(A.10) as follows:

t
m/ /AHVLN¢~AK(N¢8yCO)dVdT <
0

Ty,o1 = | A/ =BLN 4|22 2 + Okl AN £33 211 400, Col3 e -

16
2),

Now we invoke the chemical gradient estimate (A.2), the enhanced dissipation relation (A.7) and the hy-

potheses (2.8a), (2.8b) to get

t
K
T, o1 < E/ |Ap/=ALNL|3dT + Cr*/ By By, -
0

To estimate the T ;20-term, we use the integration by parts and the product estimate (A.10) to obtain that

t
KJ/ /ANVLN?g . AN<NVLC¢)dVdT
0

K
Tn,22 = < TG”AHV _ALN75H%$L2 + Cr[[ AN 2o 12 ||A~VLC¢||%§L2-
We use the M,;-estimate (A.3b), (A.3c) and the hypotheses (2.8a), (2.8b) to obtain the following

TN, 22 _16||A V=ALNL 22 + Crl[ AN Foe 2 AsV L (1 = Ap) " N4 Z 0

K —0: M
§1—6||AH\/—ALN¢||23L2 + C|| AxN|[7 e 12 || Ar A} N
/ . 1212
_16||A \/ ALN¢||L2L2+CK(BN¢+BNU)BN#
Combining the above estimates of Ty ;21 and T2 yields the result (4.3). a

4.2. The z-average of Cell Density. In this section, we prove (2.9b). The strategy we adopt is to derive
an estimate of the L?-norm of Ny, and inductively derive higher Sobolev norm bound.

First we write down the time evolution of the L? and H® energy. We consider multiplier M € {1, (8,), ..., (9,)*}.
Recalling the equation (2.2b), we have that

2dt||mN0H2 — _ulla, szong—n/zm (Vs - (NVLC))o MNodV — /sm (Ve - (NVEAS'Q)), MNodV
— K0, MNo[} ~ [ M, (N0, o)) MNoaV
fn/fm (V1 - (N 1Cs))o MNodV — /zm (Vi - (NVEATIQ)), MNodV.

Next we observe the following relations
(Vi (NgVLCx))o =(0, (N2, Cx))o = 9y (N2, Cz)o,
(V1 (NVEAT'Q)), =(0L(NOLAT ) = 9, (NL0.A7' )

With these, we can rewrite the time evolution of |9 Ny||3 as follows

5 1Ol = = K10, NG[ + 1 | 91, No M(Nod), Co)dV

+ m/zmayzvo M(N,0,C2)odV + /zmayzvo M (NL0AL'Q), dV
(4.5) =t — K]0y MNol|3 + Tivgso + Tivgi1 + Tvgs2

The remaining part of the proof is subdivided into several lemmas. The first lemma provides estimates for
the contributions from the non-zero modes.
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Lemma 4.3. There exists a constant C, which only depends on the regularity level s, such that the following
estimates hold

t
(4.6) | Nvage ol dr <cBi
t
(4.7) /()|\(N¢82A;19¢)0||%1;d7 <CBY B}, ev.

Proof. To prove (4.6), we use Lemma A.1, the M,-multiplier bound (A.3b), the definition of A, (2.7), the
product estimate (A.10), the elliptic estimate (A.8), and the bootstrap hypothesis (2.8a) as follows

t
/0 I(V28; C ol dr <CI(0:,0,)*(0,C£N£) 1212 < CllA(9,CxN£)| 1212
_ 2
<C HAna;ALlN#HLng HARN;é“%gom

—0: M,
M,

(4.8) <C||Ax Ny HAKN;é”%,?Om < CB?V?y

L2I2

This concludes the proof of (4.6). Next we prove the estimate (4.7). The idea is identical to the proof (4.8).
The adjustment is that we apply the fact A, = A, (3.10), the bootstrap hypotheses (2.8a) and (2.8¢) during
the estimate

t
/O I(N20:-AL Q)0 g dr <CI(02, 0y)* (N20-AL Q)| 7212 < ClAN20:AL' Q) 7212
SCI ANz 121 Ar0:AL Qs 12 < CllARNZ|I 0 12| AL 0= AT Qe[ 72 2

—0: M,
M,

<O AxN£|[7 oo 12 ||Av Q. < CBY_ B} e*v.

L212

This concludes the proof of (4.7).

Next, we prove the following L? estimate for Ny.

Lemma 4.4. If the hypotheses (2.8a), (2.8b) hold on [0,Ty], then the solution Ny is bounded uniformly in
L2

(4.9) INol| 2 @) < Cr2 = [ Ninolla + CM*? + C(BX,, + By, Ba,€"/?), vt e [0,T,].
Here M = ||n|| g1 = |T| [z Nino(y)dy is the conserved total mass of the cell density.

Proof. Before estimating the norm || No||2, we collect the L(R) bound of Ny. Since the solution N(t, z,y)
to the equation (2.1) is positive by Theorem 2.1, we have that the function No(y) = 5= [ N(t, z,y)dz is
positive. Moreover, the total integral of Ny is preserved due to the divergence form of the equation (2.2b),

/No(t)dy = /N0(07 y)dy,
which, together with the positivity of Ny, implies that

M
(4.10) [No@llrrw) = 5=, Vt€[0,Ti].

o’

Next we estimate each component in (4.5)yy,_,, which describes the time evolution of || Ny(¢)|3. Combining
the information (4.10), (A.1), the T, o-term in (4.5) can be estimated as follows

1 1
(4-11) Tny:0 Sﬁ/ 10y Nol [0, CoNoldy < 21|10y No|3 + [0y Col| % [INolI3 < 710y Noll3 + CrM?(|No|3.
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The Tn,;1, Tv,;2 terms can be estimated as follows
1 1 _
Ty (8) + Tva(t) <5110, Mol (1) + C (n||N¢a;0¢||%;y<t> T KHN;éaZALIQﬂ%;y(t))

1 d
By Lemma 4.3,
(4.12) Gr2(t) < CBy, + CBY_Bd e, Vtel0,T,].
Combining the above estimates (4.11), (4.12) and the relation (4.5), we have

(113) 535 . N3y <~ w10, Nol} + CRMPINIE + G Ga(0).

Now we try to get an estimate on the L? norm from (4.13). Applying the following Nash inequality
1172y < CIAZ2 ) 10y f Il 2wy

yields
/11
—[0,f13 < - :
R T
Combining this with the estimate (4.13), we have that
d 1 N Noll3
T (INoll3 — Gr2(t)) < — —n||3 Noll3 + kCM?||Noll3 < — CM42 + KCM?||Noll3
1
< CM4H|N0||2<||NO||2 o)
1
(1.14) <~ garerloll (13013 - Ga(0) - C0r*) (13 + €01%).

We can see that the || Nyl|2 is bounded uniformly in [0,7}] in the sense that
INo(t)ll2 < Cr2 = || Ninoll2 + CM?/? + C(BY, + By, Ba€'/?), Vte[0,T.],
which is (4.9). O
Next we try to use the information on ||Ngl|2 to get the bound on higher H*® norm.

Lemma 4.5. Assuming the hypotheses (2.8a), (2.8¢) hold on [0,T], then the H® norm of the solution Ny
0 (2.2b) is bounded:

[INo(t)ll s < Crs (

Here M = ||n|| ;1 = |T| [ Ninjo(y)dy is the conserved total mass of the cell density. Moreover, if

Nin”HSanBN;u\/EBQ#)v vt € [OvT*]

1
4.15 < —
(4.15) =B
then
(4.16) [Nollzs < Crs (|| Ninllzrs, M, Bn..).

Proof. We estimate the H'morms (i € {1,2,...,s}) in the inductive fashion. Assume that we have the
following estimate for some 1 <17 <'s,

HNOHH'i*l SCHlfl(”N ; 7M7BN;U\/EBQ¢)-

We would like to prove that
(4.17) [ Nollri < Cri

|Nin;0||H57M7 BN;U \/EBQ¢)

Similar to the L? case, we estimate each term in (4'5)m:(ay>i'
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The Tny;1, Tny;2 terms can be estimated as follows

1 ; 1 _
Trvgst (8) + T () <5010y(0,)" Nol[7: (8) + € (HIIN;é@LC;eII?n (8) + — [ Nx0-AL Qx|

20)

1 - d
(4.18) ::§/<;||8y<8y>1N0||%2 () + %Gm (t), Gui(0)=0.
By Lemma 4.3,
(4.19) Gpi(t) < CBy, + CBY Bg e, Vte[0,T.].

The Tn,,0 term can be estimated using Hoélder’s inequality, product estimate of Sobolev functions f,g €
HY(R), i > 1, Gagliardo-Nirenberg inequality, and the chemical gradient estimates (A.1), (A.2), as follows,

Tngo <C18y(Dy) Nol|L2[1(0y)* (NodyCo)llL> < KC|10,(8y) Noll2[1(8y) 8, Coll L211(0y)" No|| L2
1 i i— i 1 i i
(4.20) Szfﬂ\lay(@y)ZNoH% + Cr[[(0y)" " Nol|Z:211(8y) No|| 7= < 176119,(3y) Nol|72 + CrChriza||(9y) NolZ2-

Applying the following Gagliardo-Nirenberg inequality

. 1 ) i
10, fll2 < ClLAlT 10,7 £1l57
yields that
9 Nolly ™ FN I
(4.21) —||8;+1No||§ < _” y 0“22 <_ 195 Noll2 .
C||Noll3 CCp2(M,Bn,,v/eBa,)*
Combining (4.18), (4.20) and (4.21) yields
i 2+2
AP 19} Mo 12" o
“22) SO Nollg <~k 4 kOO 1(04) Nollf + G (0).
4CCY,

Here C2 and Cyi—1 only depend on || Ny ||grs, M, By, and /eBq_ . Now we apply an ODE argument similar
to the one in (4.14) to derive that the quantity || No|| g+ is uniformly bounded on the time interval [0, T}], i.e.,
(4.17). We first recall the relation C’Z._1(||6;NO||2L2 + [ Noll3i-1) < [1{8y) Noll32 < Ci(19;Noll7 2 + INol|F7i-1)
with C; > 1, and the G yi-estimate (4.19). Then we distinguish between two scenarios:

(423) Q) ONDIBs < ACH(Cai () + Chir)s B O No(D]3 = ACH (G (8) + O,

In the first scenario, the estimate (4.17) is direct. Assume that on some open time intervals, the estimate b)
in (4.23) holds. Then the time evolution (4.22) implies that there exists a constant C such that

i+1

(42y) No@®)II3 — G: ()
ccy

%(II(%V%@)H% —Gyi(t)) < -k + KCCHa ([(0y) No(B)[I3 — Grs (1))

Hence by (4.19), we have that
1{8y) No(t)[|72 < C(|Ninll s, M, Cr2, Crri-1, By, VeBg.,).

This is consistent with (4.17).  Hence, the induction estimate (4.17) is established. Since 7 ranges in
{1,...,s}, we end up with the following

[No(t)[| s < Chs(

Ninllre, M, By, /éBa,), vt e [0,T,].

This concludes the proof. O
Proof of (2.9b). To prove (2.9b), we choose (4.15), and

(4.24) By, > ACH: (|| Nin g+, M, Bn.,).

Here Cy- is defined in (4.16). O
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Proof of Proposition 2.1. Tt is enough to show that the choice of parameters (3.4), (3.16), (4.4), (4.15), and
(4.24) are consistent. We choose the parameters

BY, :=Ci||Ninllzrs B, = CoCle (| NinllLinms, Bw,),
(4.25) B?Q 2203(8;1v¢ +By,), B, = 04(15’?2;& + le\,#).
Here C1, Cs, C3, Cy are constants depending only on the universal constants appeared in (3.4), (3.16), (4.4),
(4.15), and (4.24). Now we summarize the choice of € = x/v:

1

4.26 <epi= :
(4.26) ©= 0 Cy(Bh, +BY, + By + BY,)

Here Cs is a constant depending only on the universal constants appeared in (3.4), (3.16), (4.4), (4.15). This
concludes the proof of Proposition 2.1. |

APPENDIX A.

A.1. Miscellaneous.

Lemma A.1. Let F € LP(T xR), G € H*(T x R), and Fy(y) := ITlTI Jp F(z,9)dz, Go(y) == ﬁ Jr G(z,y)dz=.
The following estimates hold:

| Follr ) <[ F|lzr(rxr)y, 1<p <00,
1(0y)*GollL2r) <CI{0z,9y) G| L2 (TxR)-

Proof. Applying the Holder’s inequality yields that for p € (1, 00),

1 P 1/p 1/p ) 1/p'\ P
| Foll e ®) = (/ */Fdz dy) < / (/ |F|pdz) (/(277)"’ dz) dy
R |27 JT R T T
1/p
< ([ firrazay) = 1Pl
RJT

The proof in the p = 1,00 cases are variants of the argument above. Applying the Fourier transform and
the Plancherel equality yields

1(8y)* Foll2) = C / > Fl2mdn < 'Y / (B )2 [ F 2y ) = C{0-, 0,)° 2 rmy-
k

1/p

This finishes the proof of the lemma. (]

Lemma A.2 (Chemical gradient estimates). Consider solution Cy to the equation (1 — 0y,)Co = Ny. The
following estimates hold

(A.1) 10,Colle <INollzy:
(A.2) 10,Collzr; <INoll 51, s € Ny

Proof. To prove the (A.1), we use the explicit solution formula to get

— / ’
L e INy(y' )y

< C||NollL: -
R |y — 9] g

18,Collz = c\
Ly

To prove the (A.2), we use the Fourier transform and the Plancherel equality

_ms,

2
o dn <€ [ VIRl < CINlFy

lo,Cally- = ¢ [t

Next we provide a sketch of the proof of Theorem 2.1.
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Proof of Theorem 2.1. Standard energy argument yields the local-in-time [[N|m: . [[Q[ n:  -estimates. We
omit further details for the sake of brevity.

The justification of the positivity of the cell density, i.e., N > 0, is as follows. We use the technique
from [18]. The explicit argument is as follows. We consider the family of convex positive functions j.
which approximates j(s) = max{—s,0}. We can choose the j.’s to be monotonically increasing to j. These

functions j. = j” in [—¢,0]° and 0 < j/ < 27! in [—¢,0]. So Jc(s) := [ j/(0)odo satisfies |Jc(s)| < 2|s| for
e € (0,1), and lim,_,o+ Je(s) = 0 for all s. Now we have that
d
L Nz y)dV = | F(N)KALN —U - VN — &V, - (NVLO))dV
dt Jrxr TxR
——x [ G(ONE NPV - [ UYLy
TxR TxR

b [N NONDLC+ NONDLC)AV
TxR

N N
Sn/ 0. (/ jé’(s)sds) 0,CdV + K (/ sds) a,Cdv
TXR 0 TxR 0
N N
:n/ (/ jé’(s)sds) (—ALC)AV = (/ g sds) (N —C)dV.
TxR \Jo TxR \Jo

t N(T)
/TXR]E(N(t))dV — ’]I‘XRJC(N(O))dV :/0 /TXR (/0 Je (s)sds) (N = C)dvdr.

Since |J.(s)| < 2|s|, we can use 4(N?+C?) as the dominator and invoke the Dominated convergence theorem
and Monotone convergence theorem to get for all [0,¢] on which L? is bounded,

Therefore,

N(7)
IN- ()12, :/ GIN@)AV = lim [ j(N(t))dV = lim / /T R(/ ’(s)sds> (N — C)dvdr

e—=0t JR2 e—0t

N(1,X)
/ / lim </ jé’(s)sds) (N —C)dVdr = 0.
TxR e—0t

As a result, N > 0. O

A.2. Fourier Multipliers. In this section, we summarize the properties of the Fourier multipliers that we
employ. First, we collect some basic properties of the multipliers M,;, M,, defined in (2.6).

Lemma A.3. For . € {k,v}, the following properties for M, hold

(A.3) M,(t, k) =7 [k ¢ (0,07/2;
2

(A.3Db) %H >M,(t k,n) > —;
(A.3¢) —0y M, (t, k,n) > S L k # 0;

¢ t V=S + [y — Kt ’

4
(A.30) AACLRIES - S0
-0 t, k 1

(A30) VOMRD o 41y - eP)E, e (0,012,

*615 L( ) 75)

Moreover, the multipliers M., M, have the enhanced dissipation properties

(A4)

L y/s,02/8 XM, 2 2
— < v _ .
gt R < S ) (K = kD). e (o)



ENHANCED DISSIPATION AND BLOW-UP SUPPRESSION 19

Proof. First of all, the first two inequalities (A.3a), (A.3b) are consequences of the definitions (2.3), (2.4),
(2.5) and the boundedness of the arctan-function. The time derivative of the multiplier W reads as follows
L

A5 OW(t k) =— —— 1

k # 0.

Hence combining this expression, and the bounds W, > ©/2, 0;W, < 0, we have that
™ |k[?

-OM, = -WOW, —WoW>-—————  k#0.
= W 7
This completes the proof of (A.3c).
To prove (A.3d), we observe that
10, M, (1, k, n)| <[ WO, W,| + [W,0,W| < 27 1 L OB ) [FI*
P LS T = T o< R R T RS — R T R TR Ty — kel
4
<—1kxo-
i

This concludes the proof of (A.3d).
Next, we prove (A.3e). Direct computation yields that
L1/3|k‘|2/3
1+ 12/3|K|4/3]t — 1|2 Lpjeu-12), v €{R v}

(A6) 8tWL(t7 k7 7]) =

For the wave number ranging in |k| € (0,:~/?], we invoke the expressions (A.5), (A.6) to obtain the following
estimates of the quotient

—OWM,(t k) L[t = 5P 14— R

O, €) 14— 1P 11 2BRB— 1E

L2t — 22+ 2152 1+ 223 |k|43)t — 2|2 + 2,2/3|k|4/3) 152
R EaT—TE 1+ 2Bk — 1P
[ — €I
|k[?

<4+4

This yields (A.3e).
Finally, we prove (A.4). We recall the expressions (A.5), (A.6) and the bound W, € [r/2,37/2]. Combining
these ingredients yields that
2)

—0eM,
M,

There are two regimes for the wave number k: |k| € (0,:7'/2] or |k| ¢ (0,.=/2]. If |k| ¢ (0,.='/?], then it can

be checked that ¢|k|? > 11/3|k|?/3. Hence the result (A.4) is ensured. On the other hand, if |k| € (0,.71/?],

we estimate the above expression as follows

-Wo.Ww,
M,

(kP + I — kt?) > (k2 + I — kt]?)
L1/3|k|2/3 )

>Loc|k|<i-1/2 14 2/3|k|4/3t — #? 3w + efk <1 - ‘t k

_atMl,

L

+ o(|k]* + |n — Kt[?)

L1/3|k|2/3 )
1+ 2/3|k|4/3]t — 1|2 37

Zl\t*%|§L71/3|k|72/3 + 1|t7%|>l471/3‘k‘—2/3 L|k“2 <1 + ‘t — %

2 1
) > —L1/3|k|2/3.
3

This concludes the proof of the lemma. O

The following lemma is a natural consequence of Lemma A.3.
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Lemma A.4. For any function fx € H® with vanishing mean ﬁ fT fxdz =0, the following estimates hold

for v € {k,v},
t t _aTML 2
(A7) /0 | A, f2l|2dr gcﬂ/i”/o A/ i fell +lAn/=ALfi||3edr;
L L2
_ _ 1 [=8,M,
(A.8) [AVLAL el + A VLA = AL) " el <C ALW 1\2 [+
z L L2

Here the constant C is universal.

Proof. The inequality (A.7) follows from the property (A.4) and the Plancherel equality. The inequality
(A.8) follows from the properties (A.3b), (A.3c) and the Plancherel equality. O

The product rule for the multiplier M, is contained in the next lemma:

Lemma A.5. Consider the multipliers M,, v € {k,v}. For two functions f,g € H*(T x R), s > 1, we have
the following product rule

(A.9) 1M (fo)llme <CIM, fllm-M.gllm--
Similarly, we have the following product rule for A,, v € {k,v}, s > 1,
(A.10) [A(f)llr2 < CllAS 2| Agll L2

Proof. First recall the product rule for the usual Sobolev functions on T x R:
Ifgllme < C|fll

On the other hand, we recall that the bound (A.3b) yields that
[fllas = Mo fllas,  lgllas =~ [|M.gllas, v € {x, v}

Combining these estimates yields the result (A.9).
To prove the product estimate (A.10), we observe the following relation for z,y > 0,

|+ y[>3 < |23 + |y|3.

g”HSa s> 1.

As a result, we have that
1/311.12/3 1/31._ p12/3 1/3)512/3
etsm |k|“/°¢ < eém |k—2| te5n 1€ 757 Vk,g c7.

Next we combine the above relation and the bounds of M, (A.3b) to derive the following,
14, (fo)lZ2

<3 / eZMI/S“/Bth(k,n)](l AU REDY / (k= 0.0 — &) [g(£,)|de

kEZ LEZ

SCZ/

kEZ

2
dn

Z/(e““"’f—“”"’tML(k—f,n—£)<1+|k—f|2+\n—fﬁ)%\f(k—&n—sﬂ)
LET
2

x (5 g, €)1) de|

2
dn.

+CZ/

kEZ

Z/ (€6N1/3|£|2/3tML(€7£)(1 + |€|2 + |£‘2)§|§(€7 £)|> (65,4/3\1@7(\2/375‘]?(]{: —l,n— §)|> dé

LEZ

1A, (fg)ll2 <C (Abfm 5 e g

Now we apply the Young’s convolution inequality, Hélder’s inequality and the inequality ), ., IEL()l L <
C(Xrez 1V Fr()]122)/2, 5 > 1 to derive that
n
hez L*)
<C[lA.fl[L2 | Agl L2

This concludes the proof of the estimate (A.10) and completes the proof of the lemma. O

1/3(1.12/34 =
Mgl D et R )|
L keZ
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In the proof, the following commutator estimate is needed:

Lemma A.6 (Commutator estimates). The following commutator estimate concerning M, is satisfied

=S+ (w6, o

Proof. Here the difference |M,(t, k,n){k,n)* — M, (¢, k, &) {k,&)*| can be decomposed as follows:
(A12) M, (t, k,m){k,m)® — M.(t, k, §)(k, §)°
=M, (t,k,n) ((1 + k2?2 — (14 k% + 52)3/2) + (M, (t, k) — M(t, k, €)(1 4 k% + €2)*/* 154
=T+ Ta.

For the first term in (A.12), one applies the mean value theorem to obtain that there exists 6 € [0, 1], such
that the following estimate holds

(A]-]-) |Mb(t7k777)<kvn>s - ML(t7k7§)<k7§>s‘ < C

T3] =Mk 1+ 2+ (1 00+ 0675201 )y + )~

|77_£‘ s s

To estimate the T term in (A.12), we apply the property (A.3d) and the mean value theorem to obtain that

s—1
2

s0<(1 FR 4T (LR 772)) n—¢l<C

Cln — s
2] < 7|7k|§|<1 + k% + %) 2 Ly z0.
Combining the two estimates and (A.12), we obtain (A.11). The proof of the lemma is finished. O
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