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Abstract
Across the Tree of Life, innate immunity and cell death mech-
anisms protect hosts from potential pathogens. In prokaryotes,
animals, and flowering plants, these functions are often medi-
ated by Toll/interleukin-1 receptor (TIR) domain proteins. Here,
we discuss recent analyses of TIR biology in flowering plants,
revealing (i) TIR functions beyond pathogen recognition, e.g. in
the spatial control of immunity, and (ii) the existence of at least
two pathways for TIR signaling in plants. Also, we discuss TIR-
based strategies for crop improvement and argue for a need to
better understand TIR functions outside of commonly studied
dicot pathways for future translational work. Opinions of experts
on emerging topics in basic and translational plant TIR research
are presented in supplementary video interviews.
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Flowering plants deploy Toll/interleukin-1
receptor (TIR) domains to detect and
respond to pathogens
Plants use cell surface and intracellular immune
receptors to detect microbes. The surface immune
www.sciencedirect.com
receptors are membrane-spanning modular proteins
with extracellular sensor domains such as leucine-rich
repeats (LRRs). These pattern recognition receptors
(PRRs) recognize conserved pathogen-associated mo-
lecular patterns (PAMPs), for instance, fragments of
bacterial flagella [1]. Extracellular perception of micro-
bial signals by PRRs initiates a robust immune response
that must be overcome by successful pathogens. To
achieve this, pathogens often deliver virulence proteins,

or effectors, into the host cytoplasm. Once inside the
cytoplasm, pathogen effectors can suppress host im-
munity and rewire metabolism to benefit the pathogen
[2,3]. In response to this challenge, plants have evolved
intracellular receptors to directly or indirectly detect
pathogen effectors [1].

Canonical intracellular immune receptors are named
nucleotide-binding site and LRR domain receptors
(NLRs) for their domain structure, which includes a

central nucleotide-binding site domain (NBS) and a C-
terminal LRR domain [4]. Non-canonical or “truncated”
NLRs lacking one or more domains also exist as func-
tional immune receptors [5,6]. NLR receptors are
divided into two classes based on their N-terminal
signaling domains: (1) a coiled-coil (CC) domain NLRs
(CNLs) and (2) Toll/interleukin-1 receptor (TIR)
domain NLRs, or TNLs [7]. Effector activation of
CNLs results in the formation of a pentameric CNL
“resistosome” that acts as a calcium channel to promote
immunity [8,9]. Effector-activated TNLs oligomerize

into a tetrameric resistosome, which allows them to
function as nicotinamide adenine dinucleotide
(NADþ)-consuming enzymes [10e15].

A few “helper” NLRs function downstream of other
immune receptors. This particular class of NLRs has a
phylogenetically distinct N-terminal CCR domain
initially described in the CC-only Arabidopsis thaliana
protein Resistance to Powdery Mildew 8 (RPW8)

[4,7,16]. Following the convention of CNL and TNL,
these helper NLRs are referred to as RNLs based on the
presence of the CCR domain. So far, RNLs are not
implicated in direct effector recognition, but they are
critical to converting TIR enzymatic activities into cell
Current Opinion in Plant Biology 2023, 76:102481
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2 Biotic interactions (2024)
death and resistance responses, likely via their CNL-
like resistosome enabling Ca2þ influx [10,16e20].

PRR plasma membrane receptors and NLR intracellular
receptors are required for each other’s efficient func-
tioning during an immune response [21,22]. Research in
Arabidopsis suggests that plant TIRs or TNLs function
closely with plasma membrane receptors to transmit

downstream signals or monitor their modification by ef-
fectors [23e25]. The function of some PRR receptors,
such as receptor-like protein 23 (RLP23), depends on
the Enhanced Disease Susceptibility 1 (EDS1) pathway,
which is the downstreammediator of TIR/TNL signaling
[23,24,26]. The converse is also true, as TNL pathways
can depend on the PRR function for full output
[21,22,27]. In short, evidence from Arabidopsis and a few
other species shows that TIR-containing proteins help
flowering plants detect and respond to pathogens.
Plant TIRs exhibit intrinsic enzymatic
activities
TIRs can function via at least three mechanisms. The
first described mechanism was an inducible scaffold
function in animal Toll-like receptors and their cyto-

plasmic TIR adapters [28]. Physical interactions be-
tween these TIRs can result in high-order structures
that concentrate signaling proteins such as kinases in a
cell [28e30]. This model might also apply to plants, as
proximity labeling of a TNL N suggests physical in-
teractions between its TIR domain and CNLs in Nico-
tiana benthamiana, which may contribute to the TNL-
dependent resistance [31].

The second mechanism of TIR function is a recently
discovered intrinsic TIR NADþ-degrading activity
(Figure 1) [32]. Such activity was initially found in the

animal TIR protein Sterile Alpha and TIR motif
containing 1 (SARM1), which induces neuronal cell
death via NADþ depletion in response to injury [33].
Subsequently, TIR NADase activity was detected in
plant and prokaryotic TIRs activating immunity
[34e36]. In the case of prokaryotes, this TIR-produced
signal can stimulate non-TIR NADases to substantially
deplete NADþ [37]. By contrast, in plants, TIR NADþ-
derivatives activate EDS1-dependent immunity
without a significant depletion of NADþ [35,36,38,39]
(Figure 1a, red box).

In the third mechanism, plant TIRs function as dsDNA/
RNA hydrolases to generate 2’,3’ cyclic adenosine/gua-
nosine monophosphates (2’,3’-cAMP/cGMP, Figure 1b,
blue box). This mechanism is associated with oligomeric
TIR filaments of indeterminant length rather than
head-to-tail tetrameric complexes that hydrolyze NADþ
[15,40]. This synthetase activity might not be directly
relevant to TNL cell death activity [41]. Instead, 2’,3’-
cAMP/cGMP probably act as secondary messengers in
Current Opinion in Plant Biology 2023, 76:102481
plants to activate stress-related transcriptional reprog-
ramming [42]. The role of these metabolites in immu-
nity is supported by the observation that expression of
Arabidopsis nudix hydroxylase homolog 7 (NUDT7) and
other phosphodiesterases that degrade 2’3’-cAMP/
cGMP suppresses TIR cell death in N. benthamiana [40].
Similarly, a nudt7 loss-of-function Arabidopsis mutant
displays autoimmunity [43], and at least one pathogen

effector can degrade 2’,3’-cAMP/cGMP [40]. Although
the 2’,3’-cAMP/cGMP synthetase function has been
demonstrated for TIRs of flowering plants including
monocots, NUDT7 is Brassicaceae-specific (phylogenes.
org; PTHR13994). Thus, containment mechanisms of
the TIR 2’,3’-cAMP/cGMP synthetase activity likely
vary across phylogeny.

Plants use EDS1 family complexes to link
TIR enzymatic activity with cell death and
resistance
Signaling by TIRs in flowering plants depends on a small
family of EDS1 and EDS1-related proteins. (Figure 1a).
These proteins have an N-terminal lipase-like domain
connected to a plant-specific C-terminal a-helical “EP”
(‘EDS1-PAD4’) domain [26]. EDS1 forms exclusive
heterodimers with one of its paralogs, phytoalexin-
deficient 4 (PAD4) or senescence-associated gene 101

(SAG101) [44e46]. The heterodimerized EP domains
create a binding site for a subset of TIR-produced
NADþ-derived small molecules (pRib-AMP, pRib-ADP,
ADPr-ATP, and diADPR) (Figure 1) [38,39]. Once
activated by pRib-AMP or pRib-ADP, the heterodimer
EDS1-PAD4 interacts specifically with RNL activated
disease resistance 1 (ADR1). Similarly, ADPr-ATP or
diADPR interact with EDS1-SAG101 and facilitate their
interaction with RNL N requirement gene 1 (NRG1)
[18,38,39,47]. In addition to RNLs, EDS1 complexes
may include proteins such as TIR-containing proteins or

transcription factors [18,47].

Why do plant TIRs and pathogen TIR
effectors produce an overlapping spectrum
of NADase products?
As seen above, TIRs of flowering plants generate a
diverse set of enzymatic products. Four of them (pRib-

AMP, pRib-ADP, ADPr-ATP, and diADPR) are immu-
nogenic, bind EDS1 heterodimers both in vitro and in
planta, and activate Ca2þ influx via RNLs (Figure 1)
[17,38,39]. Plant TIRs can also produce stable isomers
of cyclic ADPR (2’-cADPR and 3’-cADPR) that are,
surprisingly, identical to those produced by the
bacterial TIR and TIR-like effectors HopAM1 and
HopBY1 (Figure 1b, green box) [48e51]. Plant TIRs
(and likely HopAM1) also produce 3’-O-b-D-ribofur-
anosyladenosine (RFA), a molecule equivalent to a de-
phosphorylated version of the EDS1-activating TIR

product pRib-AMP [52,53]. Why would a plant produce
the same TIR products as the pathogen? Assuming that
www.sciencedirect.com
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Plant TIRs within and beyond the EDS1 paradigm Ogden et al. 3
effector products are negative regulators of immunity,
plant-produced cADPR isomers could be negative reg-
ulators of immunity [49e51,54]. Perhaps plant TIRs are
making both positive regulators of defense (i.e. EDS1-
activating pRib, et al.) and negative regulators
(cADPR isomers) to limit inappropriate immune acti-
vation or the cost of defense. Alternatively, cADPR
isomers and RFA produced by plant and pathogen TIRs

may be enzymatic side-products or metabolites of EDS1
signals [48,52,53]. Finally, it seems possible that
NADase effectors function by depleting NADþ to
disrupt host metabolism rather than by generating
signaling molecules [48,49]. Differentiating between
these hypotheses will require new bioassays to deliver
small molecules into the plant cell or new TIR mutants
Figure 1

Plant and plant-pathogen TIR proteins generate diverse NADase products
oligomerize into tetrameric resistosomes in response to pathogen effectors. O
activity to produce small molecules (red circle). TIR products signal downstre
merization of an RNL resistosome. RNL resistosomes function as calcium cha
pathogen TIRs produce a spectrum of nucleotide-related small molecules. Se
activating the EDS1 complex. Plant TIRs can also degrade dsDNA/RNA to pr
and plant pathogen TIRs also produce isomers of cyclic ADPR and pRib-like R
regulators of immunity, but any functions remain to be demonstrated. Small-mo
differences.
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that decouple the production of the various TIR enzy-
matic products from each other.
TIRs of flowering plants functioning as
immunity boosters beyond effector
recognition
Recent work using pharmacological inhibitors of TIR
signaling in Arabidopsis has demonstrated that TIR
enzymatic activity can be required for effector-triggered
immunity even when CNLs initiate the effector-
triggered immune responses (Figure 2) [53]. Many
TIR loci are among the earliest transcriptionally acti-
vated defense genes in flowering plants [23,55e57].

Together, these data implicate TIRs in plant immunity
beyond TIR or TNL-mediated effector recognition.
to regulate immunity. (a) Intracellular TNL (TIR-NLR) immune receptors
ligomerization of the TIR domains (green circles) activates their enzymatic
am by activating the EDS1 heterodimer, which then promotes the oligo-
nnels to activate immunity via an unknown mechanism. (b) Plant and plant
veral TIR products (e.g. pRib-AMP, red) have been shown to function by
oduce 2’,3’-cAMP/cGMP previously linked to stress tolerance (blue). Plant
FA molecules (green). These molecules have been proposed to function as
lecule structures are graphically simplified to highlight their similarities and
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4 Biotic interactions (2024)
One hypothesis that may explain these results is that
certain TIR proteins act as “immune boosters” to
enhance plant immune responses at a transcriptional
level (Figure 2, infected cell) [40]. This model would
also explain the importance of EDS1 and PAD4, re-
ceptors of some TIR enzymatic products, for signaling
by the defense hormone salicylic acid [58].
Emerging roles of TIRs in local acquired
immunity in flowering plants
TIRs/TNLs have primarily been studied as initiators of a
cell-autonomous EDS1-dependent response. However,
recent studies of the TNL suppressor of ADR1-L2 1,

(SADR1) also named SAA1, suppressor of AITF1-
induced autoimmunity 1, suggest that TIRs can have
EDS1-independent functions essential for immune re-
sponses in areas next to the pathogen recognition site
referred to as ‘local acquired resistance’ (LAR;
[14,53,59]). SADR1 was identified as a suppressor of an
autoactive D484V variant of the helper RNL ADR1-L2.
Surprisingly, sadr1’s suppression of ADR1-L2D484V

autoactivity was not fully phenocopied by an eds1mutant,
indicating that at least some SADR1 function is EDS1-
independent. Intriguingly, TIR functions supplied by

two other autoactive TNLs were able to partially restore
autoimmunity of the suppressed ADR1-L2D484V sadr1
double mutant, indicating that other TNLs share this
SADR1 function [53]. SADR1 was also required to
Figure 2

TIR proteins function in immune responses beyond effector recognition
transcriptionally activated to further potentiate early immune responses. SAD
immune responses in neighboring uninfected cells, enhancing RNL-mediated
trafficked directly from pathogen-infected cells to neighboring cells, or small-mo
apoplast or plasmodesmata to propagate a non-autonomous immune respon
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express the defense marker gene pathogenesis-related gene 1
(PR-1) in a zone around the infected tissue. This non-cell
autonomous expression was lost in an RNL polymutant
that lacked ADR1 and NRG1 functions [53]. One could
speculate that TIR-catalyzed signaling products or the
downstream signals move from infected cells to induce
immunity in surrounding uninfected cells. A biomarker
for TIR signaling activity identified in this study, 20/3’-O-

b-D-ribofuranosyladenosine, could be a candidate for a
mobile TIR-produced non-autonomous immune signal.
These signals could plausibly travel intracellularly
through plasmodesmata or function through an apoplastic
route as phytocytokines perceived by PRRs (Figure 2).
TIRs in flowering plants differ in distribution
across species and signaling requirements
Plant TIR differentiation in function and signaling was
also elaborated using phylogenomics methods. They
revealed two primary plant TIR classes (Figure 3)
[56,60,61]. The first class was introduced above as asso-
ciated with NBS and LRR domains (Figure 3a). This
class also includes “truncated” TIRs without LRR or
NBS-LRR (i.e. TIR-NBS or TIR-only, respectively). We
refer to this first class as “TNL” class TIRs [56,61]. This

class is found in receptor TNLs and TIR-only proteins,
putative booster TIR proteins, and TNL SADR1 acting
in LAR (Figure 3a). The second class includes TIR
proteins with an NBS domain and a C-terminal
. Upon activation of pattern-triggered immunity, “Booster TIRs” may be
R1 would be activated in response to these same signals to regulate
immune responses to prevent pathogen spread. SADR1 could also be
lecule signals produced by SADR1 could move between cells through the
se.

www.sciencedirect.com

www.sciencedirect.com/science/journal/13695266


Plant TIRs within and beyond the EDS1 paradigm Ogden et al. 5
tetratricopeptide repeat (TPR) rather than an LRR
(Figure 3a, right). This class has been named TIR-NBS-
TPR (TNP) TIRs [55,56,62]. TNP-encoding genes are
present in plant genomes in relatively low numbers, but
they are the most widely distributed plant TIRs [56,62].
By contrast, the TNL-TIR class shows lineage-specific
expansions and contractions. TNLs often have a C-ter-
minal extension called C-JID (C-terminal jelly roll/

immunoglobulin-like domain), which binds effectors via
a variable loop surface [13,55,63]. These observations
support the notion that many TNLs recognize variable
effectors. However, predicting more specific functions
(e.g. as booster TIRs or LARs) based on the sequence
seems difficult. For instance, SADR1 also has a C-JID
domain and thus may bind an unknown ligand in addition
to, or as part of, its EDS1-independent and LAR func-
tions [53].
Figure 3

TIRs of flowering plants differ in conservation and function. (a) Two major
class TIRs’) and TNP TIRs. The first class is implicated in pathogen detectio
Functions of the phylogenetically shared conserved TIR-only (purple circle; TN
activity of TIR-containing pathogen receptors and cell death by the conserved
EDS1 is either unknown (shown as ‘?’, dashed line), limited (dashed line), or
plant phylogeny including early land plants, conserved TIR-only are limited to fl
significantly reduced their numbers (Caryophyllales, Lamiales). The expansio
signaling node; however, the EDS1/PAD4/ADR1 node is still present in mono
from the TNL class. Since TNLs and EDS1/SAG101/NRG1 are present in Nym
lost SAG101 and NRG1.

www.sciencedirect.com
The TNL-TIR class shows clade-specific expansions
and contractions. In contrast to dicots, monocots have
lost nearly all TNLTIRs except for a low- or single-copy
number TIR-only shared by most flowering plants
(Figure 3b) [56]. The EDS1 paralog SAG101 and
SAG101-interacting RNL helper NRG1 were also lost in
these genomes, indicating coevolution between TNLs,
SAG101, and the helper NRG1 (Figure 3b) [45,64].

Still, many known TIR signaling components are
retained in monocot genomes, including EDS1, PAD4,
and ADR1 (Figure 3b) [56], suggesting they function
with the remaining TIR-only proteins. The physiolog-
ical functions of this particular TIR-only group remain
unknown, but it seems more parsimonious to hypothe-
size that they broadly regulate immunity rather than
recognize a specific pathogen across such a wide
phylogenetic distance.
TIR classes are found in plants: TIR in full-length or truncated TNLs (‘TNL
n, cell-autonomous boosting of immunity, and local acquired immunity.
L class TIR) and TNPs are unknown. The EDS1 family is required for the
TIR-only proteins. The dependence of other groups of TIR proteins on

not detected (no arrow from TNP TIRs). (b) While TNPs are found across
owering plants. Some lineages of flowering plants lost TNLs (monocots) or
n of TNLs correlates with the presence of the EDS1/SAG101/NRG1
cots, retaining conserved TIR-only proteins as the only members of TIRs
phaeales, a sister clade of dicots and monocots [55], monocots have likely
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Figure 4

Possible strategies to improve crop resistance to pathogens and general stress resilience using leads from the fundamental plant TIR
research. (a) There are likely no limitations on the side of biology in the transfer of TNLs between species with large TNL repertoires (Brassicaceae,
Solanaceae). However, their transfer to species with no or reduced TNL sets (monocots, Caryophyllales, and Lamiales) would require a better under-
standing of TIR signaling in these species. (b) 2’,3’-cAMP/cGMP can activate defense and stress-related transcriptional reprogramming, and their levels
could be controlled by changing the expression of genes encoding for TIR-only and NUDT7 that regulate the 2’,3’-cAMP/cGMP production. (c) TIR
products activating EDS1 complexes are not stable in plant cells. Searching for their more stable synthetic analogs can provide ways to boost immunity
signaling. (d) The C-JID domain can function as a module recognizing effectors. Structural information enables the design of new C-JID’s; however,
finding an appropriate design might prove difficult.

6 Biotic interactions (2024)
In contrast to TNL TIRs, TNP TIRs are present in
plants without the EDS1 family and RNLs (Figure 3b)
suggesting TNP activities are independent of them.
Indeed, cell death by maize (Zea mays) TNP in Nicotiana
tabacum requiring the TIR catalytic glutamate was not
compromised in the eds1 silencing line. The tnpmutants
of N. benthamiana behaved like wild-type plants at the
level of growth, early PRR receptor-like kinase signaling,

and TNL cell death and resistance [56], which leaves an
open question about TNP physiological function(s).

Implications of TIR basic research for crop
improvement
In the final part of this opinion article, we display four
strategies for how basic knowledge about plant TIRs
could facilitate crop improvement (Figure 4). These
strategies include (A) transferring TNLs between plant
species, (B) engineering TIR-only and NUDT7 expres-
sion to increase basal 2’,3’-cAMP/cGMP levels and

thereby prime crops for stress tolerance [40,42], (C)
designing small molecules activating EDS1 complexes
Current Opinion in Plant Biology 2023, 76:102481
but more stable in planta than TIR enzymatic products
[38,39], and (D) engineering the C-JID domain in
TNLs to design receptors for specific effectors. Imple-
menting these strategies would require additional
fundamental and translational research. For
instance, TNL transfer between plant species is likely
possible between plants separated by large evolutionary
distances [45,65e67], but limitations might occur when

the recipient species such as monocots and some dicots,
have eliminated or significantly reduced their TNL
repertoires. Thus, the transfer of TNL receptors to
these genomes may require engineering of compatible
EDS1/RNL pathways [45]. Similarly, rational engineer-
ing of novel C-JID specificities will require advances in
in silico prediction of effector binding or high-throughput
functional assays. Additional discussion can be found in
the interview with an invited expert (Supplementary
Video 1).

Supplementary videos related to this article can be

found at https://doi.org/10.1016/j.pbi.2023.102481
www.sciencedirect.com
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Plant TIRs within and beyond the EDS1 paradigm Ogden et al. 7
Conclusion and perspectives
Research on plant TIRs has revealed diverse enzymatic

activities and products. Some of these products have
connected TIR proteins to the downstream EDS1/RNL
pathway, while others remain more obscure. One of the
burning questions is the identity of receptors and their
functions for these plant and phytopathogen TIR
products. Also, booster TIR/TNL and LAR open ques-
tions about the role of plant TIRs in spatially controlled
tissue-level immune responses. Finally, the major cur-
rent limitation is that most plant TIR research has been
conducted on a handful of proteins, mostly in non-crops,
but TIR signaling execution mechanisms differ even in

dicot plants. Thus, more appreciation is needed for
translational TIR research if we want current funda-
mental advances to have an impact on agriculture. For
more opinions on the present issues in plant TIR
biology, please refer to an interview with another invited
expert (Supplementary Video 2).

Supplementary videos related to this article can be
found at https://doi.org/10.1016/j.pbi.2023.102481
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