A NOTE ON ENHANCED DISSIPATION OF TIME-DEPENDENT
SHEAR FLOWS*

DANIEL COBLE! AND SIMING HE?

Abstract. This paper explores the phenomena of enhanced dissipation in solutions to the passive
scalar equations subject to time-dependent shear flows. The hypocoercivity functionals with carefully
tuned time weights are applied in the analysis. We observe that as long as the critical points of the
shear flow vary slowly, one can derive the sharp enhanced dissipation estimates, mirroring the ones
obtained for the time-stationary case.
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1. Introduction In this paper, we consider the passive scalar equations

8tf+v(t7y)8acf:VAaf7 f(tzovxay):f()(x’y)' (1'1)

Here f denotes the density of the substances, and (V' (¢,y),0) is a time-dependent shear
flow. The Péclet number v > 0 captures the ratio between the transport and diffusion ef-
fects in the process. Here A, =00y, +0yy, 0 €{0,1}. We consider two types of domains:
T xR, T2. The torus T is normalized such that T = [—,7].

In recent years, much research has been devoted to studying enhanced dissipation
and Taylor dispersion phenomena associated with the equation (1.1) in the regime 0 <
v<1. To understand these phenomena, we first identify the relevant time scale of
the problem. The standard L?-energy estimate yields the following energy dissipation
equality:

d
T 112 =—2v0 0. fII72 =209, fIIZ-. (1.2)

Hence, at least formally, we expect that the energy (L?-norm) of the solution decays to
half of the original value on a long time scale O(v~1). This is called the “heat dissipation
time scale”. However, a natural question remains: since the fluid transportation can
create gradient growth of the density Vf, which makes the damping effect in (1.2)
stronger, can one derive a better decay estimate of the solution to (1.1)? This question
was answered by Lord Kelvin in 1887 for a special family of flow V(¢,y) =y (Couette
flow) [31]. He could explicitly solve the equation (1.1) and read the exact decay rate
through the Fourier transform. To present his observation, we first restrict ourselves
to the cylinder T xR or torus T? and define the concepts of horizontal average and
remainder:

N =5 [ Sew)te, 4= )~ D)

We observe that the z-average (f) of the solution to (1.1) is also a solution to the
heat equation. Hence it decays with rate v. On the other hand, the remainder f. still
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2 A Note on Enhanced Dissipation

solves the passive scalar equation (1.1) with fx(t=0,z,y)= fo,2(z,y) and something
nontrivial can be said. Lord Kelvin showed that there exists constants C, >0 such
that the following estimate holds

/3¢
y

1£2(O)l 22 <Cllforellrze™® ", ve>0. (1.3)

One can see that significant decay of the remainder happens on time scale O(V_l/ 3,
which is much shorter than the heat dissipation time scale. This phenomenon is called
the enhanced dissipation.

However, new challenges arise when one considers shear flows different from the
Couette flow. In these cases, no direct Fourier analytic proof is available at this point.
We focus on two families of shear flows, i.e., strictly monotone shear flows and non-
degenerate shear flows. In the paper [5], J. Bedrossian and M. Coti Zelati apply
hypocoercivity techniques to show that for stationary strictly monotone shear flows
{(V(y),0)]inf |V'(y)| > ¢>0,y € R}, the following estimate is available

_s.1/3 —2
1£2(®)llz2 < Cll feollze™® T80 v >0,

Later on, D. Wei applied resolvent estimate techniques to improve their estimate to
(1.3) [34].

When we consider non-constant smooth shear flows on the torus T?, an important
geometrical constraint has to be respected, namely, the shear profile V must have critical
points C :={y.|9,V (y.) =0}. Nondegenerate shear flows are a family of shear flows such
that the second derivative of the shear profile does not vanish at these critical points,
i.e., miny, cc |6§V(y*)| >c¢>0. In the papers [5,34], it is shown that if the underlying
shear flows are stationary and non-degenerate, there exist constants C'>1, § >0 such
that

_sul/2
1F (D) lz2 < Cllfozllzze ™, Wt [0,00). (1.4)

In the paper [18], it is shown that the enhanced dissipation estimates (1.3), (1.4) are
sharp for stationary shear flows. In the paper [13,14,22], the authors rigorously justify
the relation between the enhanced dissipation effect and the mixing effect. In the
paper [1], the authors apply Hormander hypoellipticity technique to derive the estimates
(1.3), (1.4) on various domains. Further enhanced dissipation in other flow settings,
we refer the interested readers to the papers [16, 21, 26], and the references therein.
The enhanced dissipation effects have also found applications in many different areas,
ranging from hydrodynamic stability to plasma physics, we refer to the following papers
[2-4,6-12,15,17,19,20, 23-25,27-30, 32, 33, 35].

Most of the results we present thus far are centered around stationary flows. In this
paper, we focus on time-dependent shear flows and hope to identify sufficient conditions
that guarantee enhanced dissipation and Taylor dispersion. Before stating the main
theorems, we provide some further definitions. After applying a Fourier transformation
in the z-variable (1.16), we end up with the following k-by-k equation

B fr(t,y) +V (ty)ik fi(t,y) = v, fu —ov|k[* fi(ty),  fe(t=0,9)= fox(y). (1.5)
We will drop the 6 notation later for simplicity. The main statements of our theorems
are as follows:
THEOREM 1.1. Consider the solution to the equation (1.5) initiated from the initial
data fo € C°(T xR). Assume that on the time interval [0,T], the CtC§ velocity profile
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U slow',:'"ﬁ“

Fic. 1.1. Relation between U,V . The reference U slowly varies, whereas the actual shear V can
change fast. However, the two shears share the same critical points.

V(t,y) satisfies the following constraint

ot OV )= e> 0, Ve o myag =) <C. (1.6)

Then there exists a threshold vo(V') such that for v<uy, the following estimate holds

| fr ()] 22 <el fo:x

|12 exp{f5yl/3\k|2/3t}, vte[0,T). (1.7)

Here § >0 are constants depending only on the parameter ¢ and ||V||Lt°°c,g (2.11).

The next theorem is stated as follows.
THEOREM 1.2. Consider the solution to the equation (1.5) initiated from the smooth
initial data fo € C>°(T?). Assume that the shear flow V (t,y) € ng satisfies the following
structure assumptions on the time interval [0,T]:

a) Phase assumption: There exists a nondegenerate reference shear UEC’,}C’Z? such
that the time-dependent flow V (t,y) and the reference flow U(t,y) share all their non-
degenerate critical points {y;(t)}X.;, where N is a fized finite number. Moreover,

0,V (Ly)d,U(ty) >0,  VyeT, Ve [0.T],

182y U | L= 0,750y < v/, IVl Lee (o, m9wz o) TV | Lge o, m1iwr2.00) < C. - (1.8)

b) Shape assumption: there exist N pairwise disjoint open neighborhoods

{B,(y;())}Y., with fized radius 0<r=0(1), and two constants €, € >1 such that
the following estimates hold for Z(t,y) € {V (¢,v),U(¢,y)},

G y—wi)* <10, 2> <€y —yi1))®. €>0, VyeB.(y(t):  (1.9)

0<e'<19,Z| <€, Vy¢UN, B, (yi(t)), (1.10)

Then there exists a threshold vo(U,V') such that if v <uvy, the following estimate holds
18122 <ell fu(O)lzexp{—dv' 2 k12t ), Wee[o,T) (111)

with & depending on the functions U,V . In particular, it depends only on the parameters
specified in the conditions above.

REMARK 1.1. We remark that if we consider the solution V (t,y)=e “'sin(y) to the
heat equation 0,V =v0,,V on the torus, the structure conditions are satisfied for time
te[0,0(v=1))].

REMARK 1.2. In our analysis of the time-dependent shear flows, the dynamics of the
critical points are crucial. The main theorem encodes the dynamics of the critical points
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in the reference shear U. The relation between U, V 1is highlighted in Figure 1.1. The
condition ||0y,U||s <v3/* enforces that the critical points of the target shear V cannot

move too fast. If this condition is violated, the fluid can trigger mizing and unmizing
effects within a short time. Hence, it is not clear whether the enhanced dissipation
phenomenon persists.

The hypocoercivity energy functional introduced in [5] is our main tool to prove
the main theorems. However, we choose to incorporate time-weights introduced in the
papers [35] into our setting. Let us define a parameter and two time weights

e:=vlk|™Y,  Y=min{v3k|*3,1}, =min{v'/?|k|'/?t,1}.
We observe that the derivatives of the time weights are compactly supported:
O (&) = PR 12 (1), ¢ (8) = PR P g a1y (F). (1112)
To prove Theorem 1.1, Theorem 1.2, we invoke the following hypocoercivity functionals

Theorem 1.1: F[fg]:=|| i3 +ape®/3 |0, fill3 + 8%/ Riisign(k) fi, 0y fi); (1.13)
Theorem 1.2: G[fi]:= | full3 +ade'/? (|, fi]|3 + B Risign(k)O,U fi,0, fr)
+y8%e 12 0,U f113. (1.14)

Here, the inner product (-,-) is defined in (1.17).

Through detailed analysis, one can derive the following statements.
a) Assume all conditions in Theorem 1.1. There exist parameters a=0(1),5=0(1)
such that the following estimate holds on the time interval [0,77:

FU(®) < CFlfoulexp{ =0 PRI/} = Ol fo|Fexp{ ~ov* 2 k22t ), wee [0,T].
(1.15a)

b) Assume all conditions in Theorem 1.2. Then there exist parameters a=0(1),8=
O(1),vy=0(1) such that the following estimate holds for ¢ € [0,77],

GU)(6) < CGlfoulexpl—ov*2|k|2} =1 fou|Fexp { —ov' /2 k"2t ], vee[o,T]
(1.15b)

We organize the remaining sections as follows: in section 2, we prove Theorem 1.1;
in section 3, we prove Theorem 1.2.
Notations: We define the Fourier transform in the x variable,

o~

fuls) =5 [ Faeda. (1.16)

For two complex-valued functions f,g, we define the inner product

(f.9) = /D fady. (1.17)

Here D is the domain of interest. Furthermore, we introduce the LP-norms (p € [1,00))

1/p
1l =1l = ( / prdy> . pell).
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We also recall the standard extension of this definition to the p=oo case. We further
recall the standard definition for Sobolev norms of functions f(y), g(t,y):

m 1/p
||f||w;lvp=<Z|I3;"f||’£p> , pe(l,cls  lgllawr e =lllgllwrellca,  p.g€[l,00].
k=0

We will also use classical notations H' = W12 and H{ (the H! functions with zero trace
on the boundary). We use the notation A~ B (A, B > 0) if there exists a constant C' >0
such that 5B < A<CB. Similarly, we use the notation A< B (A2 B) if there exists a
constant C such that A<CB (A> B/C). Throughout the paper, the constant C can
depend on the norm ||V||L°°W3 s, ||U||L°CW3 «, but it will never depend on v, |k|. The
meaning of the notation C'can change from line to line.

2. Enhanced Dissipation: Strictly Monotone Shear Flows In this section,
we prove the estimate (1.7) for the hypoelliptic passive scalar equation (1.5),_,. The
proof of the o =1 case is similar and simpler. Throughout the remaining part of the
paper, we adopt the following notation

f(t7y) = fk(tay)
Without loss of generality, we assume that
o,V >0, k>1. (2.1)

Let us start with a simple observation.
LEMMA 2.1. Assume the relation

a> B2 (2.2)

Then, the following relations hold

(||f||2+0462/3¢||a FIB) < Flf < (|\f||2+a€2/3¢||a flI2), vtefo.T).  (2.3)

Proof. To prove the estimate, we recall the definition of F (1.13), and estimate it
using Hélder inequality, Young’s inequality,

FUIEIFIZ+ae® 2], f15+ B¢ /21 f 12110, fll2 < (1+ s w3) I1£113 -+ ‘”%Ha fII3

Similarly, we have the following lower bound,

f[f]>f||§+a62/3w||3yf||§—Bel/3w2lfllzlayf||z>( ” wf‘) 113+ 2/31/f||8 flI3

Since o> 32, we obtain that

*Ilfllz a62/3¢||3 fIE<Flf] < *llfllz ae® %3, fl3, vt (0,T].



6 A Note on Enhanced Dissipation
This concludes the proof of the lemma. O By taking the time derivative of the hypoco-

ercivity functional, (1.13), we end up with the following decomposition:

d d d d
SF(f) = I3+ a2 (0110, 113) + Be S5 (VRS0 ) = Tia + T+ Tk2.4)

Through standard energy estimates, we observe that

Ty0=-2v [ 10,1 dy~2Ri [V £Fdy=-2v]0, 13 (2.5)

The estimates for the T,,, T3 terms are trickier, and we collect them in the following
technical lemmas whose proofs will be postponed to the end of this section.

LEMMA 2.2 (a-estimate). For any constant B >0, the following estimate holds on the
interval [0,T:

T o400, 113 20w+ e |y o
+ B0 10,V 1t 10,15, (26)
LEMMA 2.3 ([-estimate). The following estimate holds
Ty sfaul/ﬂkﬁ/?’ﬂ[o,y1/3|k|2/3]<t> (1713 + a0, 13)
2
+ 200, v o1 - e lavis] . e

We are ready to prove Theorem 1.1 with these estimates.

Proof. (Proof of Theorem 1.1) If T'<2v~/3|k|~2/3, then standard L?-energy
estimate yields (1.7). Hence, we assume T >2v~1/3|k|=2/3 without loss of generality.
We distinguish between two time intervals, i.e.,

Iy = (0,07 Bk 723), Ty=[ =3k, T).

We organize the proof in three steps.
Step # 1: Energy bounds. Combining the estimates (2.5), (2.6), (2.7), we obtain
that

d
%]:[f]
<ae® BV B3|k - 1m 29 (1) |0y £113

B y/ai o )
S P gy 0) (1 + a0, 115)

2 2
2c
2VI3yf||§2041/}62/3VI|3yyf|§+§w26”3lkIH 0,V f 5 V)10,V [lso 10y £1I5
2

2
2

ﬁZ
ravel 0,11+ Z oo, 13- v o,

8
<t PR g s 0) (115 + a0, 1)
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207 28 2
—v (2= Ly ssug-s(® = 10,V = =0° ) 10,13

1 2
Tl Newh |

Now we choose the «, 3 as follows:

1

a=f=— " 2.8
30510,V ]) %)
Then we check that the condition (2.2) and the following hold for all ¢ € [0,T],
202 2
2—aljg,-1s)(t) - 7“3 Voo = *7//3
21410y Vo)  1+[10yV oo 2(14[10yV o)
As a result, we have (2.3) and the following,
D U<V gy 8 (1 13+ a0, £13)
dt \/a [ 2V ‘ ‘ ] 2 Yy 2
661 /3 k 2
o122 | fioyvis (2.9)
2

Step # 2: Initial time layer estimate. Thanks to the estimate (2.9) and the
equivalence (2.3), we have that

B /3| 1o2/3 V2 1/3(1.12/3
2— k k t
GEUNO 2T R F (0= s R F)
FIAE=0) =l foxll5-
By solving this differential inequality, we have that
V2 5 131 -
< : 3)k|=%/3]. 2.1
f{ﬂ(t)_exp{(mava)w? ol Veeow k2. (2.10)

Step # 3: Long time estimate. Now, we focus on the long time interval Z,. On
this interval, we have that ¢y =1. The estimate (2.9), together with the lower bound on
|0, V| (1.6), the choice of 5 (2.8) yields that

d 5 1/3\k|2/3
—F < —

— V1/3|/€|2/3
T A0+ 9140,V lso)
1/1/3|k’|2/3
<—
6(1+¢)(1+10, Vo)

(Hf||§+0462/3\|5yf||§)

FIfI®)-
In the last line, we invoked the equivalence (2.3). Hence, for all t € [v=1/3|k|=2/3 T]

FIFUO) SFUE=v Pkl =2 exp { =012 k22 (- v 120 722 |,
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1

AT 10,V )

(2.11)
Thanks to the relation (2.10), we have that
FIRI® ) foulexp{ —ov' k), vee =k~ 1)

This concludes the proof of (1.15a) and Theorem 1.1. O

Finally, we collect the proofs of the technical lemmas.

Proof. (Proof of Lemma 2.2) We recall the definition of T,, (2.4). Invoking the
equation (1.5) and integration by parts yields that

T =/ /30, I3+ e 510, 13
—au' /0, 13-+ 200 R [ 0,051 ~ikV )3, Fdy
=)' ¢2/3)0, f||3+ 2ape? >R / (vO3 f —ikd,V f —ikV O, f) D, fdy
=ay'e/?||0, f 3
+2a1pe?/3 (mre / 03 0, fdy—R / ikd,V fo, fdy—R / ikVa, fayfdy)
—at' 30,1~ 200 (O3 % [ k0, 13,7 )
<o e/%)0, f |15 — 200€*v(|0] £113+ 200> |0, V1L 11/ 10, V | F1|2110y f |2
An application of Young’s inequality yields (2.6). O

Proof. (Proof of Lemma 2.3) The estimate of the T3 term in (2.4) is technical.
Hence, we further decompose it into three terms:

Ty =280/ /R (if,0, ) + B2 /R / 10,3, Fdy + B3R / i F O Fdy
=Tg.1+Tg;2+Tg;3. (2.12)

We estimate these terms one by one. To begin with, we have the following bound for
the Tg;li

B

T <2 P L2 (VB (Ve 10, 1)
p
< IR g s 8) (1715 + 00110, 13). (2.13)

Next we compute the term 7.5 using the equation (1.5)and the assumption 9,V >0
(2.1):

TB;Q:mﬂel/?’m/i(yayyf—ika)adey

=Bip2el/3 (yﬁ}k/iayyfayfdwké}t/vay ('J;|2> dy)
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=B2e'/3 (u@%/iayyfayfdy—];8%/|f|2ayvczy>. (2.14)

Finally, we focus on the T3 term in (2.12). Recalling that 0 <9,V €R, we have that

3:5¢261/3§R/if(u85f7ik8y1/ffikVé)yf)dy

=Bt/ (—um/zayfaZ)fdy kéR/fa V fdy— ka%/va <|f|2) y>

§¢261/3km/|f|2ayvczy. (2.15)

B1/12 Ugl/?ﬁ/i(%faﬁifdy—
Combining the estimates (2.13), (2.14), (2.15), we have that

p
Ty <t g oo (0) (115 + e 00, 13)

- wzp%l/%%/iayf@dy — Bip2e' 3|k H 10,V
6

<—v
«a

2
YIS sy (8) (1713 + @€ 0110, £ 13) + ==wv 19, 11

+0¢¢€2/3V”ayyf”§_/8 |8yV|

3. Enhanced Dissipation: Nondegenerate Shear Flows In this section, we
prove the estimate (1.11) for the hypoelliptic passive scalar equation (1.5),_,. Without
loss of generality, we assume that k> 1. Let us start with a lemma.

LEMMA 3.1. Consider the flow V(t,y) and the reference flow U(t,y) as in Theorem 1.2.
There exists a constant C,(€,€1) > 1 such that the following estimate holds

No,U ) <10,V (L) <Co,Uty)],  VyeT, Vte(0,T]. (3.1)

Proof. We distinguish between two cases: a) y€ B,.(y;(t)); b) y€ (UX,B.(v:(t)))°.
Ity € Br(yi(t)), by (1.9),

10,V (t,9)] < €5y =Dl < €l0,U(Ey)]. 10,0 (1) < €%y = ya(0)] < €0l V (1,
In case b), since |9,V ],|9,U| € [€; ", €], the relation (3.1) is direct. O
LEMMA 3.2. Assume the relation
B% <ary. (3.2)
Then, the following equivalence relation concerning the functional G (1.14) holds
17134+ (ae /210, FIB-+26% 20,0 £13)
<G <713+ (ade /210, FIB +26% 2 10,U fI3). (33)
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Proof. We recall the definition of G (1.14), and estimate G[f] using Holder inequality
and Young’s inequality,

GIA<IfI5+age' 28, fI3+B610,U fll210y fll2 +7d%e /2 18,U £113

2, 3 19 2 BN s —1/2 2
§||f||2+7¢6 19y f1|2 + 74‘% ¢ e 2|0, U f|3-

Similarly, we have the lower bound,

BQ

" 2a

U= 1113+ o 10,18+ (1 3 ) ° 210,015,

Since (3.2) implies that % <3, we obtain that
2 L 4y o L 3 1 2
1718+ gace 210,13+ 6% 0,0 713

3 3
<GUWI<IfIE+500e 210, f13+570% 2 10,U f3.

This concludes the proof of the lemma. O By taking the time derivative of the hypoco-
ercivity functional, (1.13), we end up with the following decomposition:

d

215

=L rE a2 L (810, 712) + 8L (B2R0,U £,0,5)) +ve 2L (8%10,U 1)
a2 at \PNoTli2) TP v 1% AT v/ T2

= T2+ Toa+Ts+T,. (3.4)

The estimates for the T,, Tg, and T, terms are tricky, and we collect them in the
following technical lemmas whose proofs will be postponed to the end of this section.
LEMMA 3.3 (a-estimate). The following estimate holds on the interval [0,T:

Be?

da pe”
ac,

B

Here, the constant C. is defined in (3.1).
LEMMA 3.4 (B-estimate). The following estimate holds

3 B k|
4 C,

2 3 )
(7 + el U1 ) e k2 1+ (1 ) 6% 210,00, 11ko)

To<av (1+ Cff) 10, 115 —2a¢¢" 20|85 fI13 + 7= KI10,U £ 13- (3.5)

1
Ty < (+40C. ) 0,118 + 2006 w1011~ S 22 jo,0 13

4o

Here the constant C, is defined in (3.1).

REMARK 3.1. The phase assumption 0,V (t,y)0,U(t,y) >0 and the shape assumption
(1.10) play magor role in Lemma 3.4. They guarantee the existence of a dissipation term
of the form ~—¢?|k|||0,U f||3. For details, we refer the readers to (3.10).

LEMMA 3.5 (v-estimate). The following estimate holds on the interval [0,T)]

37C. 1\ Blkl¢?0,Uf3
< —
T”‘( s +4> Cu
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40.7? ¢ -
+ (Gt + G AOWUIL ) B P2 I 168 210,U0, 1 (5.
Here the Cy is defined in (3.1). These estimates allow us to prove Theorem 1.2.
Proof. (Proof of Theorem 1.2) If T'<2v~/2|k|~1/2, then standard L?-energy
estimate yields (1.11). Hence, we assume T >2v~'/2|k|~1/2 without loss of generality.
We distinguish between two time intervals, i.e.,

Li=[0,0" k73, =[R2,

We organize the proof into three steps. In step # 1, we choose the «, 3,y parameters
and derive the energy dissipation relation. In step # 2, we estimate the functional G in
the time interval Z;. In step # 3, we estimate the functional G in the time interval Zo
and conclude the proof.

Step # 1: Energy bounds. Combining the estimates (2.5), (3.5), (3.6), (3.7), we
obtain that

d 7 402 1 37C. )\ Blkl¢?
_ < | == 3
Solrn<- (G -a-25ci-asc.)vlo, 13- ( : ) I0,U 712
Be? 5¢> L ACA"¢" ¢
3 _
(1—4ﬂ)¢3ue 20,09, /13
We choose a, v in terms of 3(<1) as follows
_ ﬁl/g o 3/2 3/2
Tuc TPTeT

The resulting differential inequality is

La1s)

k
<- Z 4ﬁ0>6|k| 013 (-1282¢2%) EEIE o,

+(6+2/31/2cf/2+64cfﬁ+16ﬁ1/203/2)max{LnayyUnio}w"’ e 2lk] I£13

=u1/2|k|1/2

<8381/2C%

Y3 -
*10531’5 1/2||ayUayf||§-

Now we invoke the spectral inequality (A.1) to obtain that

o< (3 -a60. ~ 8352 Chmax(1, 10, V1) ) o, 11

1
(40 —125"/2C2 835"/ C 1 poc max{1, 9y, U 13 }>5lkl¢2||8yUf||§-

Hence we can choose

B=B(Cs,Copec; [0y Ul o) < 1
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small enough, invoke the spectral inequality (A.1) and the equivalence relation (3.3) to
obtain that

d 1 9 153 9
L G110 <~ elblI0, 11— o k1620, U 11
<o B - e g, 11
= 16€pecCk 2
B /2| 1/2=1/2 43
PR R 0,
< BB K26 ). (3.8

Finally, we observe that the parameter ¢ depends only on three parameters C,, Cspec
and |0y, Ul| oo -
Step # 2: Initial time layer estimate. This step is similar to the argument in the
strictly monotone shear case. Thanks to the energy dissipation relation (3.8), we obtain
that

Glfel(t) < vt e [0,07 2 k|72
Step # 3: Long time estimate. Assume tZV_1/2|k|_1/2. Thanks to the energy
dissipation relation (3.8), we obtain

d
O <=0 2k 2 £).

Hence, we obtain that

’1/2|k|’1/2) U2 (k|2

GLF (&) <GLf (v /2 k| =120 /IR 2 (1

P SEVEITNE VA
=e|| f(0)|[5e=0 1M

<eg[f(0)]e

Now, the results from step 2 and 3 yields (1.15b). O

We conclude the section by providing the details of the proof of Lemma 3.3, 3.4,
and 3.5.

Proof. (Proof of Lemma 3.3) We recall the definition of T, (3.4). Invoking the
equation (1.5) and integration by parts yields that

d
To =a¢'e'/(|0, fII3 +ase'/*— [0, 3

¢'e'/?)a, f||2+2a¢61/2&e/8 (02 f —ikV [0y fdy
—adf 1210, 13 ~200e? (W21 + % [ 40, 3, 7ay ).

Now we apply Holder inequality, the expression (1.12), and the equivalence relation
(3.1) to obtain that

To <av|0, f1I3 — 200"/ ?v||02 f |13+ 2ape /2 (k| 0,V f||2|0y f |2
ﬁ¢2|k|

402
<av |0, f|I5 —2a¢ePv)| 02 fl13+ —-C2vl|0, fII5+ 10,Uf[3-

B
This is (3.5). O
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Proof. (Proof of Lemma 3.4) The estimate of the T term in (2.4) is technical.
We further decompose it into four terms and estimate them one by one:

Ty =2866'R(i0,U 1,0, )+ BH*R / 10, U f3, Fdy -+ BO*R / 0,00, 13, Fdy
+Bp*R / i0,U fO,: fdy

::Tg;l +T5;2 +T5;3+T5;4. (3.9)

To begin with, we apply the expression (1.12), the Holder and Young’s inequalities to
derive the following bound for the Tg,; term,

Rl

T <2802 [k|'/2)10,U fl1210, fll < = 5

10,U f113+48C.v |10y £13.
Next we estimate the term Tpg.o using the assumption (1.8),
1
Tao <B6%10U ool Fl1210, 112 < 826" 2| £13+ Jv110, 113
We estimate the Tg,s-term in (3.9) as follows
Tp.3 :5¢>2§R/iayU(uayyf—inf)Wdy
=B¢? (V@?/iayUayyf%fdy+k%/8yUVf<%]‘dy>
<B020]0,U0, 210,12+ 56k [ 0,0V 13, Fdy
62

<ase 200, 15+ () 10 oo, 1 + 6% [ 0,0V £,

Finally we estimate the term Tg.4 in (3.9)

Thu =BH*R / i0,U f (03] —ikD,V | —ikVd, [)dy
= <_Vm/i(ayyUf"‘ayUayf)ayyfdy_k%/(ayUayV)|f|2dy
kR / 0,V fayfdy> .

Here, we observe that the assumption (1.8) guarantees that the second term on the right
hand side is negative (k>1). Now, we invoke the assumption (1.8) and the equivalence
relation (3.1) to obtain that

2|k
Tais 660100V el 1all0 S -+ 610,00, 1121012~ P2 [ 10,021 24y
~5R [ 9,0V 13, Fdy
5 g

<ad ]9y, fI3+ ¢361/2V||3yyU||§o||f||§+<>7¢361/2V||3yU3yf||§

2a 2ary
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ﬁ¢2|k|

0,015~ 5% [ 0,UV 18,7dy. (3.10)
Combining the estimates, we have

3ﬂ¢2|k|

1
Ty < <+4BC*> 18, F12 - 18,0111

Be* 8, U |12 2,1/2(111/2| £112
3 _
+2a¢61/2V||3yny§+ (L@)wse V2o, 00, 1
This is the estimate (3.6). O

Proof. (Proof of Lemma 3.5) Combining the equation (1.5), the smallness
assumption (1.8), and integration by parts yields the following bound

T, <3v2 k10, U |1
L2yt ( [10u010,0115 s+ [ 0,0 0, iV k) fdy)
<M 19,U f12

+2y¢3e1/? <u3/4||f||2||8yUf||2—QVR/ayUﬁyf é)yydey—u||8yU8yf|g)

340, 2|k AC, 4
< (25 +1) 0,0+ (et + S0 ) e k2 1

- 7¢3€_1/2V|‘8yUayf||§~

This is (3.7). O
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Appendix A. Technical Lemmas.

The proof makes use of several spectral inequalities. We present them below.
LEMMA A.1. Consider the domain, i.e., y€T. Assume that U(t,y) has N nondegener-
ate critical points {y;(t)}}, for t€[0,T]. Moreover, there exist N open neighbourhoods
B, (yi(t)),i=1,---,N, such that

|8yU(t,y)|2Z(’:gl(y—yi(tng, VtE[OaT]’ VQEBr(yi(t))’ Vyz {y’aUty) }

0,U(ty)l €lerh @], Vye (UL B (vi(h)”.

Then for v small enough depending on the shear U, there exists a constant Cgpec>1
such that the following estimate hold (e=v/|k|)

21 f 2y S elldy ST () + Cspec 8, U 8,V f N 72y - (A.1)

Proof. The proof of the theorem is stated in the paper [5]. For the sake of
completeness, we provide a different proof here. We can apply a partition of unity
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{xi}X, to decompose the function f= f(xo+ Y s Xi), where {x;}ixo are supported
near the critical points y;(t) and x¢ is supported away from the critical points. More-
over, Y. [0y xilloo < C and the supports of {x;}iz0 are pairwise disjoint. Now we use
the integration by parts formula

1
61/2/ \f;|2dy = 561/2
R

o 2 1/2
il == W —vi) dy| =
/lel dyg(y Yi) y‘ €

/ay|fi|2(y_yi)dy
R

§2¢0€1/2

_ 1 .
» / fiayfzwavay\ < el fillz ) + CE) I0,U fill3agey 170,

Since the supports of the cutoff functions x;,7#0 are disjoint, we have that

61/Q/TIf(l —x0)|*dy <€l 9y (f (1 =x0)) 172 + C(€) 19, U f(1 = x0) | Z>-

We further observe that, since the |9,U|>c¢> 0 on the support of xo,

€% fxollZ= < ClIO, U1 fxollZe-

Combining the above estimates, we have that

21 f 172 <262 fxolfe +2¢ I (L=x0) 72 < €0y (F (1 —x0))IIF2 +C (o) 18,U1 117

<el9, f[172+C (@) [10,U1£1 72 +ell0yxoll <1/ 172

We can take the v small enough so that the left-hand side absorbs the last term. This
concludes the proof of the lemma.
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