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Abstract
The cone of nonnegative flows for a directed acyclic graph (DAG) is known to admit
regular unimodular triangulations induced by framings of the DAG. These triangu-
lations restrict to triangulations of the flow polytope for strength one flows, which
are called DKK triangulations. For a special class of framings called ample framings,
these triangulations of the flow cone project to a complete fan. We characterize the
DAGs that admit ample framings, and we enumerate the number of ample framings
for a fixed DAG. We establish a connection between maximal simplices in DKK tri-
angulations and τ -tilting posets for certain gentle algebras, which allows us to impose
a poset structure on the dual graph of any DKK triangulation for an amply framed
DAG. Using this connection, we are able to prove that for full DAGs, i.e., those DAGs
with inner vertices having in-degree and out-degree equal to two, the flow polytopes
are Gorenstein and have unimodal Ehrhart h∗-polynomials.

Mathematics Subject Classification 52B20 · 05C21 · 52B05 · 05E45 · 16G20 ·
05E10 · 16G10

1 Introduction

Many problems in graph theory naturally translate to the setting of polytopes. A
prominent example of this is the study of flows on graphs and flowpolytopes associated
to transportation networks,which have been the subject of intense study in recent years.
Given a directed acyclic graph (DAG)G with capacity one on every edge, the polytope
of flows of strength one is a lattice polytope with vertices corresponding to maximal
routes in G. In this paper, we call this the flow polytope for G. Flow polytopes are
a central object of study in combinatorial optimization, and they also have important
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connectionswith various areas including representation theory [5], diagonal harmonics
[23], Grothendieck polynomials [22, 25], and toric geometry [18].

The cone of nonnegative flows for a DAG is known to admit regular unimodular
triangulations induced by combinatorial structures called framings of the DAG. These
triangulations restrict to triangulations of the flow polytope, which are called DKK
triangulations, as they were initially studied by Danilov, Karzanov, and Koshevoy
[14]. For a special class of framings called ample framings, these triangulations of the
flow cone project along a special simplex to a complete fan. For each ample framing
of G, we obtain a regular unimodular triangulation of this type.

Recently, the class of flow polytopes of ν-caracol graphs car(ν) were studied. By
applying the Lidskii volume formula [5], it was shown in [24] that the normalized
volume of the flow polytope for car(ν) is the generalized Catalan number which
enumerates the number of lattice paths lying above a fixed path ν. This motivated the
study of unimodular triangulations of these polytopes. It was shown in [9] that the
flow polytope for car(ν) possesses DKK triangulations whose dual graphs are two
ubiquitous lattice structures: the ν-Tamari lattice and the lattice of order filters of a
certain subset of the type A root poset. There are other families of flowpolytopeswhose
normalized volumes are combinatorially interesting. This leads to the question, do
these flow polytopes also have unimodular triangulations that admit lattice structures?
To address this question, we establish a relationship between certain gentle algebras
and triangulations of flow polytopes. In particular, we show that the dual graph of
certain DKK triangulations is the Hasse diagram of the τ -tilting poset for an associated
gentle algebra. Since finite τ -tilting posets are lattices [16, Corollary 3.12], we obtain
the lattice structure on the dual graph of the DKK triangulation.

Gentle algebras are an important class of finite dimensional algebras introduced in
[2], and their module categories are well understood in combinatorial terms by the
work of [12]. However, in recent years the interest in gentle algebras significantly
increased, and there has been a lot of new developments in this area. In particular,
their derived categories appear in the context of homological mirror symmetry [20,
21], and they can be modeled combinatorially via surfaces with marked points [26].
Moreover, the τ -tilting posets of gentle algebras are related to the study of non-kissing
complexes and non-crossing partitions, see [27] and references therein.

Our focus is on flow polytopes for DAGs that admit ample framings. This work
should be of interest to combinatorialists and discrete geometers interested in flow
polytopes, and to researchers in cluster algebras and representation theory. We offer
three main contributions:

(1) A classification of DAGs that admit ample framings (Lemma 3.1, Theorem 3.9,
Corollary 3.14), and the enumeration of ample framings for such a DAG (Theo-
rem 4.1, Corollary 4.4).

(2) A proof that the flow polytopes for a large class of DAGs, which we call full, are
Gorenstein (Theorem 6.17) and have unimodal h∗-polynomials (Corollary 6.20).

(3) A new connection between the dual graphs of DKK triangulations and τ -tilting
posets for gentle algebras (Theorem 5.8, Theorem 5.15); it is this connection that
we use to prove the Gorenstein and unimodality results.
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To these ends, in Sect. 3, we classify the DAGs that admit ample framings, and
determine the size of the set of exceptional routes that form the special simplex for
projection. This classification identifies a particular class of DAGs called full DAGs
that play a key role in the study of ample framings. In Sect. 4, we enumerate the ample
framings in DAGs and compute the number of ample framings for a particular family
of examples.

In Sect. 5, for a full DAG G with a DKK triangulation coming from an ample
framing, we establish a connection to τ -tilting posets for gentle algebras. We prove
that there is a bijection between the dual graph of the DKK triangulation of the flow
polytope for G and the τ -tilting poset for a particular gentle algebra associated to G;
this allows us to impose that poset structure on the dual graph of theDKK triangulation.
In Sect. 6, we use known properties of these τ -tilting posets to show that the Ehrhart
h∗-polynomial of the flow polytope for G has symmetric coefficients. Using this, we
conclude that the flow polytope for a full DAGG is always Gorenstein. This combined
with the regular unimodular triangulation allows us to conclude that its h∗-vector is
unimodal, generalizing results of [4]. Finally, we identify the routes in G that yield
special simplices arising from DKK triangulations.

2 Background on flow polytopes

2.1 Flows and flow polytopes

In this section, we review fundamental background regarding flow polytopes; we
generally follow the exposition by Danilov, Karzanov and Koshevoy in [14]. Let
G = (V , E) be a finite directed acyclic graph (DAG) with vertex set V and edge set
E . For each v ∈ V , let in(v) and out(v) denote the incoming and outgoing edges of
v respectively. A vertex v is called a source if in(v) = ∅ and it is called a sink if
out(v) = ∅. Any other vertices are called inner vertices. A route in G is a maximal
path in G, i.e., a path beginning at a source and ending at a sink. The set of all routes is
denotedP = P(G). If v is a vertex on the route R then it splits R into two subpaths. Let
Rv denote the subpath of R from the source of R to v, and let vR denote the subpath
from v to the sink. If the edges in G are assigned some linear order e1, e2, . . ., e|E |,
then for a route R ∈ P(G) we define its characteristic vector to be vR = ∑

ei∈R ei . If
the edges in G are not assigned a linear order, then we will index the space R|E | by
the edges e ∈ E .

We will use the following graph in our running example.

Example 2.1 The graph G = car(8) in Fig. 1 is known as the caracol graph on
eight vertices. The source and sink are vertices 1 and 8 respectively. The vertices
in {2, 3, . . . , 7} are inner vertices. The edges (1, 3), (3, 4), and (4, 8) form a route
R. In this case R4 is the path consisting of edges (1, 3) and (3, 4) while 4R is the
single edge (4, 8). If the edges of R appear as the second, eighth, and fourteenth
edges in a linear ordering of the edges of G, then the characteristic vector vR is
(0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0).
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Fig. 1 The graph car(8)

Definition 2.2 A flow f on a DAG G is a function f : E → R which preserves flow
at each inner vertex, i.e., for every inner vertex v we have

∑

e∈ in(v)

f (e) =
∑

e∈ out(v)

f (e) .

Let F = F(G) denote the space of flows on G, and letF+ = F+(G) denote the cone
of flows satisfying f (e) ≥ 0 for all edges e ∈ E . The flow polytope F1 = F1(G) is
the set of all nonnegative flows on G of size one, i.e., flows satisfying

∑

v is a source
e∈ out(v)

f (e) = 1 .

The following proposition is a straightforward consequence of the total unimodu-
larity of the signed incidence matrix for G [13, Theorem 4.9] and row reduction.

Proposition 2.3 Given a DAG G, the set of flows F(G) forms a vector subspace of
R|E | spanned by the characteristic vectors of the routes and has dimension

dim(F(G)) = |E | − #{v ∈ V (G) : v is an inner vertex } .

The vertices of F1 are the characteristic vectors {vR : R ∈ P(G)} and

dim(F1) = |E | − #{v ∈ V (G) : v is an inner vertex } − 1 .

In some cases, we can simplifyG by contracting some of its edgeswithout changing
the lattice-polyhedral structure of F+(G) or F1. Note that all of the facets of F+(G)

are given by xe = 0 for an edge e ∈ E . An edge is said to be idle if it is the only incom-
ing or outgoing edge from an inner vertex. Contracting an idle edge e corresponds
geometrically to a projection along the coordinate xe. We can find non-redundant
facet descriptions of the cone of flows via sequences of idle edge contractions in the
following manner.

Definition 2.4 Given a DAG G, produce a new DAG G1 by contracting an idle edge
in G. Inductively construct Gi by contracting an idle edge in Gi−1, and continue this
process until there are no idle edges, resulting in the DAG H . We call H a complete
contraction of G.

An example is given in Fig. 2.
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Fig. 2 Example of a complete contraction of the graph car(8) where the first and last idle edges have been
contracted. The left graph shows a framing at the inner vertices labeled in orange. This framing induces a
labeling on each edge (u, v) representing its ordering in both in(v) and out(u). The induced edge-labeling
is shown in blue on the right

Proposition 2.5 If G is aDAG, then the set of facets of the coneF+(G) canbe identified
with the set of edges in a complete contraction of G.

2.2 Framings, coherent routes, and the DKK triangulation

In this subsection we review basic definitions and properties regarding framed graphs,
routes, and coherence, including a main result of Danilov, Karzanov, and Koshevoy
[14] constructing triangulations of flow cones for framed graphs.

Definition 2.6 Let G be a DAG. For each inner vertex v of G, assign a linear order to
the edges in in(v) and also assign a linear order to the edges in out(v). This assignment
is called a framing of G, which we denote by F . We call a DAG G with a framing F a
framed graph, which we often denote by [G, F]. If e is less than f in the linear order
for F on in(v), we write e ≺F,in(v) f (and similarly for out(v)). When F and/or in(v)
or out(v) is clear, we sometimes drop one or both subscripts from ≺F,in(v).

Example 2.7 Consider the DAG in Fig. 2. Define a framing by assigning the linear
order in(v) = {( j, v) < (i, v)} when j < i , assigning the linear order out(v) =
{(v, j) < (v, i)} when i < j , and by ordering the multiedges from 1 to 2 and from
5 to 6 by setting the shorter length edge in the picture to be second in the pair. This
is called the length framing because the longer length edges in the picture are first in
their orders and the shorter edges are second.

For a DAG G and an inner vertex v, let In(v) denote the set of maximal paths in
G from a source to v and let Out(v) denote the set of maximal paths in G from v to
a sink. Given a framing F on G, the linear orders from F induce an ordering on the
sets In(v) and Out(v) as follows.

Definition 2.8 Let [G, F] be a framed graph. Let P and Q be paths in Out(v) that
coincide on the subpaths P ′ ⊂ P and Q′ ⊂ Q that begin at v and end at w. Suppose
that the vertices following w on P and Q are distinct; call them wP and wQ . Set
P ≺F,Out(v) Q if (w,wP ) ≺F,out(w) (w,wQ), and similarly for P ≺F,In(v) Q. When
F and/or In(v) or Out(v) is clear from context, we will sometimes drop one or both
subscripts from ≺F,In(v).
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Example 2.9 Consider the paths P = 346 and Q = 3456 in the graph H from
Fig. 2, using the length framing given in Example 2.7. In the set Out(3), we have
that P ≺F,Out(3) Q. For the paths A = 14 and B = 1234 in In(4), we have that
A ≺F,In(4) B.

Definition 2.10 Suppose that P andQ are routes in a framedgraph [G, F] that intersect
at a common inner vertex v. P and Q are in conflict, also called conflicting, if Pv ≺In(v)
Qv and vQ ≺Out(v) vP . If P and Q are not conflicting at v, then they are coherent
at v. P and Q are called coherent if they are coherent at every inner vertex v that is
contained in both P and Q.

Example 2.11 Consider the routes P = 1346 and Q = 1236 in the graph H from
Fig. 2, using the length framing given in Example 2.7. Then 3 is an inner vertex
common to both P and Q, and P and Q are in conflict at 3. Hence, P and Q are not
coherent. As a second example, consider the routes P ′ = 13456 and Q′ = 12346.
These intersect at both 3 and 4 and share the edge (3, 4). The routes P ′ and Q′ are
also in conflict at both 3 and 4. On the other hand, the pair of routes 136 and 123,456
is coherent.

Definition 2.12 Given a framed graph [G, F], a clique is a set of pairwise-coherent
routes in G. If a route R in G is coherent with every other route in G, we say that R
is exceptional. In this case, R is an element of every maximal clique of routes.

Example 2.13 In the graph from Fig. 2, using the length framing given in Example 2.7,
there are five exceptional routes: 123,456, 126, 136, 146, and 156, where the choice
of which of the two edges labeled 12 is made to ensure coherence with all other routes
(and similarly for 56). An example of a maximal clique is given by these five routes
together with 123,456, 13,456, 1456, and 156, where again we select the appropriate
multiedge from 12 and 56 to avoid conflicts. The routes of this clique are illustrated
in Fig. 3.

The following theorem [14, Theorems 1 and 2] shows that the cliques in [G, F]
have particularly nice geometric properties.

Theorem 2.14 (Danilov, Karzanov, Koshevoy [14]) Let G be a DAG with framing F.
The set of cliques for G with respect to F forms a regular unimodular triangulation
of F+(G) that restricts to a regular unimodular triangulation of F1(G).

Definition 2.15 The triangulation from Theorem 2.14 is called theDKK triangulation
corresponding to F and denote it DKK(G, F).

Given a framed graph [G, F], let E denote the set of exceptional routes in G. Since
E is contained in every facet of DKK(G, F), this implies that DKK(G, F) is obtained
as the join of E with the link of E in DKK(G, F). Hence, it is of interest to ask what
happens to F+(G) when we quotient out by the linear span of E .

Definition 2.16 Given a framed graph [G, F] with exceptional set E , let F(G)red =
Fred := F(G)/spanR(E) be the reduced space of F , and let p : F → Fred denote
the projection map. Let F+,red := p(F+), which we call the reduced cone. Let
DKK(G, F)red denote the reduced fan formed by the set of simplicial cones {p(C) :
C ∈ DKK(G, F)}.
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Fig. 3 Given the length framing of the complete contraction of the graph car(8) described in Example 2.7,
the above routes form a maximal clique. The routes in the left column are the exceptional routes for this
framing

A question of interest to Danilov, Karzanov, and Koshevoy, motivated by a
conjecture of Petersen, Pylyavskyy, and Speyer [28], is to determine when the
fan DKK(G, F)red is complete, meaning that the union of simplicial cones in
DKK(G, F)red is equal to Fred . A combinatorial characterization of framings that
yield complete reduced fans is the following.

Definition 2.17 Let [G, F] be a framed graph with exceptional set E . If E is not
contained in any facet of F+, then we say both E and F are ample.

The following theorem [14, Proposition 5] gives both a geometric and a combina-
torial characterization of ample framings.

Theorem 2.18 (Danilov, Karzanov, Koshevoy [14])Given a framed graph [G, F], the
following conditions are equivalent:

(1) F is ample,
(2) F(G)+,red = Fred , i.e., F(G)+,red is a complete fan,
(3) each non-idle edge belongs to an exceptional route for F.

3 Ample framings

In this section we investigate the class of DAGs that admit ample framings. We begin
by considering DAGs that do not have idle edges.
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3.1 Full framed graphs

DAGs with an ample framing and no idle edges have a restricted combinatorial struc-
ture, as the following lemma demonstrates.

Lemma 3.1 For a DAG G with ample framing F and no idle edges, every inner vertex
v has indeg(v) = 2 = outdeg(v).

Proof Because there are no idle edges in G, the only condition that is excluded here
is, without loss of generality, when an inner vertex v has in-degree at least two and
out-degree at least three. In this case, let in(v) = {e1 ≺ e2 ≺ · · · ≺ eℓ} and let
out(v) = { f1 ≺ f2 ≺ · · · ≺ fk}. By assumption, f2 is not idle, and thus f2 must
lie on an exceptional route R by Theorem 2.18. Suppose edge ei also lies on R; note
that one or both of ei−1 or ei+1 exist. If ei+1 exists, then create a route R′ that passes
through ei+1 and f1 by extending R′ back from ei+1 to a source and forward from
f1 to a sink. In this case, R is in conflict with R′ at v. If ei−1 exists, then a similar
argument using f3 will produce a route R′ that is in conflict with R at v. Note that f3
exists since k ≥ 3 by assumption. In either case, we arrive at a contradiction to the
fact that R is exceptional, and hence to the assumption regarding the in-degree and
out-degree of v. ⊓⊔

Lemma 3.1 motivates the following definition.

Definition 3.2 Let G be a DAG. For an inner vertex v, we say v is full if indeg(v) =
2 = outdeg(v). If every inner vertex of G is full, then we say G is full.

Thus, Lemma 3.1 shows that every DAG with no idle edges that admits an ample
framing must be full. An example of a full DAG is given in Fig. 2.

Lemma 3.3 Let R be an exceptional route in a full DAG G with ample framing F, and
let I (R) be the set of inner vertices of G on R. Then either R passes through every
vertex in I (R) on the largest edges in the linear orders for F or else R passes through
every vertex in I (R) on the smallest edges in the linear orders for F.

Proof Let R be an exceptional route in G. Let v be the first inner vertex reached
by R after leaving a source, and let in(v) = {e1 ≺ e2} and out(v) = { f1 ≺ f2}.
It is immediate that R cannot contain e1 and f2, as in this case a conflicting route
to R can be constructed using e2 and f1, and vice versa. Without loss of generality,
suppose that R contains e1 and f1. Suppose that w is an inner vertex on R such that
in(w) = {e′

1 ≺ e′
2} and out(w) = { f ′

1 ≺ f ′
2} where R contains e′

2 and f ′
2; suppose

further that w is the first such vertex on R reached after R leaves v. Construct a new
route R′ that starts with e2 then follows R to w at which point it leaves on f ′

1 and
proceeds until terminating at a sink. Then R and R′ are in conflict at both v and w,
contradicting the assumption that R is exceptional. Hence, no such w exists. ⊓⊔

Theorem 3.4 If G is a full DAG with ample framing F, then every edge in G lies on
a unique exceptional route.
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Proof Let e be an edge in G. By Theorem 2.18, since F is an ample framing, e lies on
some exceptional route R. By Lemma 3.3, either e is first in the linear order for both
of its vertices, or it is second in the linear order for both of its vertices. Without loss
of generality, assume e is first in the order. Any exceptional route that contains e must
pass through every inner vertex using the first edges in the linear orders associated to
that vertex. But, this constraint uniquely determines R. ⊓⊔

Lemma 3.5 If G is a DAG satisfying indeg(v) = outdeg(v) for every inner vertex v,
then

∑

v a source of G

outdeg(v) =
∑

w a sink of G

indeg(w) .

Proof The result follows from the following observation, which arises by canceling
1’s and −1’s at inner vertices:

0 =
∑

(v,w)∈ E

(−1+ 1) =
∑

(v,w): v a source

(−1)+
∑

(v,w):w a sink

1 .

⊓⊔

Corollary 3.6 If G is a full DAGwith ample framing F, then the number of exceptional
routes in G is equal to

∑

v a source of G

outdeg(v) =
∑

w a sink of G

indeg(w) . (1)

Thus, the number of exceptional routes in an amply framed full DAG is independent
of the framing.

Proof The equality in (1) follows from Lemma 3.5. By Theorem 3.4, each edge adja-
cent to a source in G is contained in a unique exceptional route in G, and this
correspondence is bijective. Thus, the number of exceptional routes in G is given
by (1). ⊓⊔

Lemma 3.1 shows that DAGs admitting ample framings must be full, Theorem 3.4
demonstrates that the exceptional routes are highly constrained in amply framed full
DAGs, and Corollary 3.6 establishes that the number of exceptional routes for an
ample framing is a function of the full DAG G rather than the framing itself. This
naturally leads to the question of which collections of routes can form an exceptional
set of routes in an ample framing of a full DAG. The following definition and theorem
answer this question.

Definition 3.7 Let X be a set of routes in a DAG G with framing F . Define the
adjacency graph of X , Adj(G, X), to be the graph with vertex set X where two routes
R, S ∈ X form an edge in Adj(G, X) if there exists a full vertex v that lies on both R
and S.
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Fig. 4 The adjacency graph
from Example 3.8 with vertices
consisting of the four
non-exceptional routes listed in
the right-hand column of Fig. 3

Example 3.8 Consider the graph H from Fig. 2, using the length framing given in
Example 2.7. If X = {123456, 136, 146, 1236}, then Adj(H , X) is given by the graph
shown in Fig. 4.

Theorem 3.9 Let G be a full DAG and let X be a set of routes in G. Then there exists
an ample framing F with exceptional set X if and only if every edge in G is contained
in a unique route in X and Adj(G, X) is bipartite.

Proof Assume that F is ample and let E denote the set of exceptional routes. Since G
is full, by Theorem 3.4 every edge belongs to a unique exceptional route. For every
exceptional route R in G with respect to F , Lemma 3.3 implies that R can be labeled
as either “first” or “second”, depending on how R passes through the linear orders of
inner vertices. Two routes with the same label cannot intersect at a full vertex v, as the
two unique exceptional routes passing through v must use both of the labels “first”
and “second". Thus, in Adj(G, E), the labels “first” and “second” induce a bipartition
of the routes.

For the converse, assume that X is a set of routes such that every edge in G is
contained in a unique route and Adj(G, X) is bipartite with bipartition A ⊎ B. Label
the routes in A as “first” and the routes in B as “second”. We construct a framing F
as follows. Let v be an inner vertex in G, with incoming edges e1 and e2 and outgoing
edges h1 and h2. Without loss of generality, suppose that ei and hi lie on a common
route Ri in X for i = 1, 2. Since v is a full inner vertex common to both R1 and R2, it
follows that R1 and R2 are not both in A and are not both in B; hence each route has a
distinct label. Define the linear orders for F on {e1, e2} and {h1, h2} by placing them
first and second according to the labels on R1 and R2. Since every edge in G is in a
unique route in X , linear orders for F exist at every inner vertex and are well-defined.
Having constructed F , we finish by showing that X is the set of exceptional routes for
F , from which ampleness of F follows from Theorem 2.18. Note that any exceptional
route in F is uniquely defined by passing through a specific edge with a given label,
and every route in X arises by passing through a specific edge with a given label. Thus,
X is the set of exceptional routes for F , completing the proof. ⊓⊔

Example 3.10 Continuing Example 3.8, note that the set X cannot be an exceptional
set because both the adjacency graph is not bipartite and the edge 15 is not contained in
any route in X . However, the set {123456, 126, 136, 146, 156} contains every edge and
has a bipartite adjacency graph; hence, it is the exceptional set for an ample framing.
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Corollary 3.11 Suppose that G is a full DAG and the edges of G are labeled by the set
{1, 2} such that if e1 and e2 are edges that are adjacent at an inner vertex, then the
labels of e1 and e2 are distinct. Then G has an ample framing F where the exceptional
routes in G consist of edges with constant labels. Conversely, any ample framing of
G induces such a labeling ω : E → {1, 2} on the edges of G, given explicitly by

ω(e) =
{
1, i f e = (v1, v2) is minimal in Out(v1) and In(v2),
2, i f e = (v1, v2)is maximal in Out(v1) and In(v2).

(2)

Proof Every edge e leaving a source inG determines a route inG obtainedby following
the edges with the same label as e, yielding a set of routes X . Every edge is contained
in a unique route of this type, and the labeling implies that Adj(G, X) is bipartite. The
result then follows from Theorem 3.9. Given an ample framing of G, the two sets in
the bipartition of Adj(G, X) can be labeled 1 and 2, inducing a labeling of the edges
as described in the corollary. ⊓⊔

We know that if G is a DAG without idle edges that admits an ample framing, then
G must be full. Our next goal is to prove that every full DAG admits at least one ample
framing.

Theorem 3.12 If G is a full DAG, then G admits an ample framing.

Proof We claim that G can be written as an edge-disjoint union of DAGs of the fol-
lowing types: even cycles where the direction of the edges in the cycle are alternating,
paths that start at a source or sink and end at a source or sink where the direction of
the edges in the path are alternating, and edges from a source to a sink. Given such a
decomposition of G, any labeling of the paths and cycles that alternates 1’s and 2’s
induces a labeling satisfying Corollary 3.11, and the result follows.

LetO be a linear extension for G, i.e., a linear orderingO = {v1 < v2 < · · · < vn}
on the vertices of G such that for any vi < v j in O we have that (v j , vi ) is not a
directed edge in G. We also assume that the sources of G form the initial segment of
O and the sinks inG form the terminal segment inO. Every finite DAG admits a linear
extension, as can be shown via induction by iteratively removing sinks from G and
adding it to the linear order. Each vi in O = {v1 < · · · < vn} that is an inner vertex
in G is associated to a unique length-two path in G, Pi := v j1, vi , v j2 , where (v j1, vi )

and (v j2 , vi ) are both edges in G. Note that the edges in Pi alternate in direction. Let
Gi−1 denote the union of Pj for all j < i , and assume by induction that Gi−1 has
a decomposition of our desired type into paths and cycles that consist of sequences
of Pj ’s connected at their degree-one inner-vertex endpoints. It is immediate that
G1 = P1 satisfies this, and thus we have a base case. For the i-th step, consider the
edges (v j1 , vi ) and (v j2 , vi ) that make up Pi . One of the following must hold:

(1) Each endpoint of Pi is an inner vertex, and these endpoints are the two endpoints
of a single path in the decomposition of Gi−1 with ending edges from out(v j1)

and out(v j2). Attaching Pi to this path forms a cycle in Gi .
(2) One of the two endpoints of Pi is adjacent to a degree-one inner vertex in a path

in the decomposition of Gi−1 that includes an edge in either out(v j1) or out(v j2).
In this case, Pi extends the path by two more edges.
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Fig. 5 The graph G from Example 3.13

(3) Both of the two endpoints of Pi are adjacent to degree-one inner vertices in two
distinct paths in the decomposition of Gi−1, each of which include one edge from
out(v j1) or out(v j2). In this case, the concatenation of the two existing paths via
Pi forms a single path.

(4) Neither of the other edges in out(v j1) and out(v j2) are contained in Gi−1. In this
case, Pi is added to the decomposition of Gi−1, yielding a decomposition of Gi .

In any of these cases, the result is that the length of the paths and cycles in the disjoint
decomposition is even, sincewe are always appending a path of length two at each step.
Once Gn is obtained, then G is formed by adding the sinks of G and then extending
any path in Gn that terminates at an inner vertex v by the edge from v to a sink of G,
and also by creating length-two paths for any pairs of multiedges that connect a sink
in G to the same inner vertex. ⊓⊔

Example 3.13 LetG be theDAG in Fig. 5, with the inner vertices in the linear extension
used in the proof of Theorem3.12 read from left to right in the figure. The disjoint cycle
and path decomposition of G arising from the algorithm in the proof of Theorem 3.12
is:

s1s, s2s, s3s, s7142536s, t58794t, sX6t, t8t, t9t, t Xt .

Combining Lemma 3.1 and Theorem 3.9, we obtain the following corollary.

Corollary 3.14 A DAG G with no idle edges admits an ample framing if and only if G
is full.

3.2 Valid framed graphs

Having handled the case where G has no idle edges, we now consider the case where
G contains idle edges.

Definition 3.15 Given a DAG G, suppose that G admits a complete contraction H
such that H is full. In this case we call H a full contraction of G. If G admits a full
contraction, then we say G is valid.
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Observe that the graph in Fig. 2 is a full contraction of car(8), and thus car(8) is
valid. Starting with a full graph, we can construct valid graphs by reversing the effects
of idle-edge contractions, leading to the following definition.

Definition 3.16 If G and G ′ are DAGs such that G is obtained from G ′ by con-
tracting an idle edge, then we say that G ′ is an idle-edge expansion of G. If
G = G1,G2,G3, . . . ,Gm is a sequence of graphs such that Gi is an idle-edge expan-
sion of Gi−1 for every i , where ei is the new edge introduced to Gi−1, we call Gm an
idle expansion ofG. If e j is one of these idle edges such that there exists a directed path
ei1ei2 · · · eik e j in Gm where ei1 leaves a source, then we say e j is source-reachable
with respect to the idle edge expansion producing Gm ; we define sink-reachable idle
edges similarly. If no such directed path to e j from a source or sink exists in Gm , then
we say that e j is an inner idle edge with respect to the idle expansion producing Gm .

By definition, every valid graph is obtained as an idle expansion of a full graph.
This leads to the idle edges in a valid graph having restricted structure.

Proposition 3.17 Given a valid graph G, the set of idle edges forms a forest in G.
Further, the components of the forest containing source-reachable idle edges are rooted
at the sources of G, and similarly for sink-reachable idle edges.

Proof We go by induction on the number of idle edges. Starting from a full graph H ,
a single idle-edge expansion creates a valid graph with a single idle edge, which is a
forest. Now assume that G is a valid graph whose idle edges form a forest in G. An
idle-edge expansion ofG is obtained by selecting a single vertex v inG and expanding
that vertex to become an edge e = (w1, w2), where the set of outgoing edges from v

are split into outgoing edges fromw1 and w2, and similarly for the incoming edges to
v. If v is not an endpoint of an idle edge in G, then the new edge e is a new component
of the forest in the resulting idle-edge expansion of G by e. If v is a vertex in the forest
of idle edges in G, then expanding v to e results in a larger forest of idle edges in the
expansion of G by e. ⊓⊔

Proposition 3.18 Suppose [G, F] is a valid DAG and F is ample. If H is an idle-edge
expansion of G by e, then H admits an ample framing with the property that there is a
bijection between the exceptional routes in G and the exceptional routes in H. Further,
every ample framing of H collapses to an ample framing of G with this property.

Proof Since the source-reachable idle edges inG form a forestwith components rooted
at sources, there is a unique path from any source to a leaf of such a component. Thus,
there is only one edge entering a vertex in such a component, and the linear order
on the outgoing edges of any such vertex is irrelevant to whether or not a route is
exceptional. The situation is similar for sink-reachable idle edges. If e = (w1, w2) is
expanded from the vertex v in G, we know that the set of outgoing edges from v are
split into outgoing edges from w1 and w2, and similarly for the incoming edges to v.
If that vertex is in a source- or sink-reachable idle edge, then any linear order on the
outgoing/incoming edges of w1 and w2 will extend F to a framing of H where the
exceptional routes in H are the same as in G except that any routes passing through
v now include e. If the vertex is in an inner idle edge, then we use the same linear
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orders for the incoming and outgoing edges of w1 and w2 that are used for in(v) and
out(v), and similarly any exceptional route in G passing through v extends uniquely
to an exceptional route in H containing e. When e is contracted from H to G, we can
merge the framing orders to preserve exceptional routes. ⊓⊔

By iteratively applying Proposition 3.18 starting from a full DAG, we obtain the
following corollary.

Corollary 3.19 Every valid DAG G admits an ample framing. Further, if H is a full
contraction of G, then there is a bijection between the set of DKK triangulations of
F+(G) and the set of DKK triangulations of F+(H).

4 Enumerating ample framings

In this section, we consider the problem of counting the ample framings for valid
DAGs. We also determine the number of ample framings for several special classes
of DAGs.

Theorem 4.1 In the decomposition of a full DAG G into edge-disjoint even cycles and
paths satisfying the conditions in the proof of Theorem 3.12, suppose that there are
M paths and cycles that contain at least one inner vertex, i.e., M paths and cycles
excluding edges from a source to a sink. Then there are 2M ample framings of G.

Proof Every ample framing induces a {1, 2}-labeling of the paths and cycles in the
decomposition from Theorem 3.12 that is alternating. Since there are exactly 2M such
labelings, and each of those labelings induces an ample framing, the result follows. ⊓⊔

Example 4.2 In the full DAG from Example 3.13, there are nine disjoint paths and
cycles in G. Thus, there are 29 ample framings.

The following corollary enumerates the distinct DKK triangulations of F1(G).

Corollary 4.3 Suppose that G is a full DAG and there are M paths and cycles contain-
ing at least one inner vertex in the decomposition of G into edge-disjoint even cycles
and paths satisfying the conditions in the proof of Theorem 3.12. Then there are 2M−1

distinct DKK triangulations of F1(G).

Proof Given an ample framing F of G, exchanging all 1’s for 2’s and vice versa
yields another ample framing with the same triangulation. For any other pair of ample
framings F1 and F2, the sets of exceptional routes corresponding to F1 and F2 are
distinct and hence the DKK triangulations for F1 and F2 are distinct. ⊓⊔

Corollary 4.4 Suppose that G is a valid DAG and H is a full contraction of G. Suppose
that there are M paths and cycles containing at least one inner vertex in the decom-
position of H into edge-disjoint even cycles and paths satisfying the conditions in the
proof of Theorem 3.12. Write V1 for the set of non-source vertices that are endpoints
of source-reachable idle edges in G, and write V2 for the set of non-sink vertices that



Triangulations of flow polytopes, ample framings, and gentle... Page 15 of 34    55 

Fig. 6 G(3, 10)

Fig. 7 The graph H obtained as a full contraction of G(3, 10)

are endpoints of sink-reachable idle edges in G. The number of ample framings of G
is equal to

2M
∏

v∈V1
|out(v)|!

∏

v∈V2
|in(v)|! .

Proof By Proposition 3.18, any ample framing of G descends to an ample framing of
H . Given an ample framing F of H , any linear order of the outgoing edges from V1
in G and any linear order of the incoming edges to V2 in G will extend F to an ample
framing of G. Thus, we have that each ample framing of H extends to

∏

v∈V1
|out(v)|!

∏

v∈V2
|in(v)|!

ample framings of G. ⊓⊔

As an application of Corollary 4.4, we consider the following class of DAGs. Note
that these DAGs have been previously studied with regard to their flow polytopes; see
Remark 6.18 for details.

Definition 4.5 Let 1 ≤ k ≤ n be integers. Define G(k, n + 1) to be the DAG with
vertex set [n+1] and directed edges {(i, i+1) : i ∈ [n]}∪{(i, i+k) : i ∈ [n−k+1]}.

Example 4.6 Figure6 depicts G(3, 10). A full contraction H is shown in Fig. 7. H
admits the following decomposition into four paths and cycles:

141, 15476(10), 165(10), (10)7(10) .

Further, in G(3, 10) the vertices 2 and 3 are source-reachable while 8 and 9 are sink-
reachable, and the out- and in-degree of each of these, respectively, is equal to 2. Thus,
by Corollary 4.4, G(3, 10) has 242222 = 28 ample framings.

Theorem 4.7 The number of ample framings of G(k, n + 1) is:
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Fig. 8 The graph H obtained as a full contraction of G(4, 11)

• 4n−k for n = k + 1, . . . , 2k − 1,
• 2n for n = 2k + 1, . . . , 3k − 1, and
• 23k−1 for n ≥ 3k.

Proof Suppose that n ≤ 2k − 1. Then every edge of the form (i, i + 1) in G(k, n+ 1)
is an idle edge, except for the case where n = 2k − 1, in which case G(k, 2k) has a
single non-idle edge from k to k+ 1. For any of these DAGs, the full contraction of G
has a single source, a single sink, and multiedges between these. In this case, M = 0
and Corollary 4.4 yields 2n−k2n−k ample framings of G(k, n + 1).

Suppose next that n = 2k, . . . , 3k − 1. In this case, there are 2k − 2 idle edges
having the form (i, i + 1) for i = 1, . . . , k − 1 and i = n − k + 2, . . . , n. Suppose
H is the full contraction of G(k, n + 1) obtained by contracting these edges. See for
example Fig. 8 illustrating G(4, 11)where k = 4 and n = 10. In this case, the disjoint
path and cycle decomposition of H consists of the cycles

1(k + 1)1

(n + 1)(k + 1)(k + 2)1

(n + 1)(k + 2)(k + 3)1

(n + 1)(k + 3)(k + 4)1
...

(n + 1)(n − k)(n − k + 1)1

(n + 1)(n − k + 1)(n + 1) ,

and thus M = n−2k+2. Hence, by Corollary 4.4, the total number of ample framings
is 2n−2k+22k−12k−1 = 2n .

Finally, suppose that n ≥ 3k. In this case, there are again 2k − 2 idle edges, and
we assume H is the result of fully contracting these. See for example Fig. 7, which
shows a full contraction of G(3, 10). In this case, it is straightforward to verify that
the disjoint path and cycle decomposition contains k + 1 paths and cycles. Thus, the
total number of ample framings is 2k+12k−12k−1 = 23k−1. ⊓⊔
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5 Bijection between KQ/I-modules and non-exceptional routes

5.1 Background on path algebras and gentle algebras

A quiver Q = (Q0, Q1) is a finite directed graph where Q0 denotes the set of vertices
and Q1 denotes the set of arrows in Q. Given an arrow α ∈ Q1, its starting and
ending vertices are denoted by s(α), t(α) respectively, where s(α)

α−→ t(α). A path
of length n in Q is a composition of arrows α1α2 · · ·αn such that t(αi ) = s(αi+1) for
all i = 2, . . . , n − 1. In addition, for each vertex i ∈ Q0, we define a constant path,
denoted εi , with s(εi ) = t(εi ) = i . Constant paths are said to be of length zero.

Let K be an algebraically closed field. The path algebra over a quiver Q, denoted
by K Q, is the K -algebra with basis given by the set of all paths in Q. Moreover,
multiplication is defined as concatenation of paths in Q.

Example 5.1 Let Q = 1
α−→ 2

β−→ 3 be a quiver. Then the path algebra K Q is a K -
vector space with bases {ε1, ε2, ε3,α,β,αβ}. Every constant path εi is an idempotent
of K Q, hence ε2i = εi . Moreover, the product α · β = αβ while β · α = 0 since this
does not correspond to a path in Q. Similarly, we have ε1 · α = α while ε2 · ε1 = 0.

Given an ideal I of K Q, consisting of paths of length at least 2, we can also consider
a quotient of the path algebra K Q/I . Next, we define a special class of such algebras
called gentle, which were originally introduced and studied in [2].

Definition 5.2 Let I be amonomial ideal, then we say that a finite dimensional algebra
( = K Q/I is a gentle algebra if it satisfies the following properties:

(a) for any vertex i ∈ Q0, there are at most two incoming and at most two outgoing
arrows,

(b) for any arrow α ∈ Q1, there is at most one arrow β and at most one arrow γ such
that αβ /∈ I and γα /∈ I ,

(c) for each arrow α ∈ Q1, there is at most one arrow β and at most one arrow γ such
that 0 ̸= αβ ∈ I and 0 ̸= γα ∈ I ,

(d) there exists a generating set for the ideal I consisting of a finite set of paths of
length two.

Gentle algebras are especially nice, because their module categories are well-
understood in terms of walks in the quiver [12], which we describe below. Note that
we are only considering finite dimensional modules here.

Let( = K Q/I be a gentle algebra.We formally define Q−1
1 to be the set of inverse

arrows of Q. Elements of Q−1
1 are denoted by α−1, for α ∈ Q1, and s(α−1):=t(α)

and t(α−1):=s(α). A string, or equivalently a walk, in ( of length n is a word w =
α
t1
1 · · ·αtn

n in the alphabet Q1 ∪ Q−1
1 with ti ∈ {±1}, for all i ∈ {1, 2, . . . , n}, which

satisfies the following conditions:

(a) t(αti
i ) = s(αti+1

i+1 ) and α
ti+1
i+1 ̸= α

−ti
i , for all i ∈ {1, . . . , n − 1},

(b) w and also w−1:=α
−tn
n · · ·α−t1

1 do not contain a subpath in I .
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We refer to the symbols αi and α−1
j appearing in some string w as arrows and inverse

arrows of w. In the case that α
ti
i has ti = 1, we will simply write αi . The constant

path εi of length zero is also considered to be a string. Moreover, we consider strings
up to the equivalence relation where a string w is identified with w−1.

We say that v is a substring of w if v = α
ti
i · · ·αt j

j for some 1 ≤ i ≤ j ≤ n
or if v = εi for some vertex i ∈ Q0 through which w passes. We say w starts at
s(w) = s(αt1

1 ) and ends at t(w) = t(αtn
n ). Moreover, a string is called directed if

ti = 1 for all i ∈ {1, . . . , n} or ti = −1 for all i ∈ {1, . . . , n}.
For a gentle algebra (, there is an indecomposable (-module M(w) associated to

every string w. Moreover, ( is of finite representation type, meaning that there are
only finitely many indecomposable(-modules up to isomorphism whenever there are
only finitely many strings for (. In this case, there is a bijection between strings w
and indecomposable (-modules M(w) up to isomorphism.

5.2 The bijection

In this section we describe a bijection between non-exceptional routes in a full DAG
G and indecomposable modules over certain gentle algebras. As a consequence, we
show that the dual graph of the DKK triangulation has a poset structure coming from
the τ -tilting poset of the associated gentle algebra.

Let G be a full DAG with a fixed ample framing. By Corollary 3.11, the framing
induces a labeling of the edges of G by either 1 or 2 as stated in Eq. (2). We refer to
this labeling as the weight function for the framing.

Definition 5.3 Let R be a route in G so that R = (e1, e2, . . . , ek) is an ordered set of
edges. Define the weight of R by ω(R) = (ω(e1),ω(e2), . . . ,ω(ek)) ∈ {1, 2}k .

Note this means that R is exceptional if and only if ω(R) is a vector of all ones or
all twos. Next, we define a path algebra over a quiver with relations coming from G.
In the context of our work, every full DAG has an associated quiver with an associated
algebra.

Definition 5.4 Let G be a full DAG with a fixed ample framing. Define a quiver Q
whose vertices are the inner vertices ofG and whose arrows come from directed edges
e = (v1, v2) in G such that

{
v1

e
v2 in Q, ifω(e) = 1,

v1 v2
e in Q, ifω(e) = 2.ω(e) = 2.

Furthermore, define a set of relations on the path algebra K Q as follows. Let I be

the ideal of K Q generated by all paths e1e2 : v1
e1

v2
e2

v3 in Q such that
ω(e1) ̸= ω(e2). This defines a path algebra with relations ((G) := K Q/I .
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Fig. 9 The full DAG G is the complete contraction of G(2, 7) with an ample framing given by the labeling
on the edges. Q is the associated quiver

Example 5.5 A framed full DAG G and its associated quiver Q are shown in Fig. 9.
The ideal I of K Q is generated by the relations α2α3, α3α1. So the path algebra with
relations for G is

((G) = spanK {ε1, ε2, ε3,α1,α2,α3,α1α2} ,

where εi denotes the constant path at vertex i .

Proposition 5.6 Let G be a full DAG with a fixed ample framing, then the algebra
((G) is gentle.

Proof It suffices to check that the algebra ((G) = K Q/I satisfies the conditions
(a)–(d) of Definition 5.2. By construction, the ideal I is generated by paths of length
two, so I is a monomial ideal and satisfies condition (d). Since G is full, there are at
most two arrows starting and ending at every vertex of Q, which implies condition
(a). Lastly, conditions (b) and (c) are satisfied due to the properties of weights around
every inner vertex of G. ⊓⊔
Definition 5.7 For G a full DAG, let the set of shifted projective((G)-modules be
{Pi [1] : i is a vertex in Q} and let ind( denote the set of indecomposable ((G)-
modules up to isomorphisms. We further define

T (((G)) := ind( ∪ {Pi [1] : i ∈ Q0} .

The set T (((G)) can be identified with a set of complexes in the derived category
of the module category of ((G). Here shifted projectives can be thought of as com-
plexes of projective modules concentrated in degree 1, while ind( can be viewed as
complexes of ((G)-modules concentrated in degree 0.

Theorem 5.8 Let G be a full DAG with a fixed ample framing, and let R(G) denote
the set of non-exceptional routes in G. There is a bijection

φ : R(G) −→ T (((G)) .

Proof First define a map φ : R(G) → T (((G)). Let R = (e1, . . . , ek) be a non-
exceptional route in G. If

ω(R) = (1, . . . , 1 = ω(er )︸ ︷︷ ︸
a

,ω(er+1) = 2, . . . , 2︸ ︷︷ ︸
b

)
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Fig. 10 Two non-exceptional routes in the DAG G from Fig. 9, with R1 corresponding to the shifted
projective module P2[1], and R2 corresponding to the indecomposable ((G)-module M(α1)

with a, b ≥ 1, then define φ(R) to be the shifted projective Pi [1] where i is the head
of er and tail of er+1. If

ω(R) = (1, . . . , 1︸ ︷︷ ︸
a

, 2 = ω(ei ),ω(ei+1), . . . ,ω(e j−1),ω(e j ) = 1, 2, . . . , 2︸ ︷︷ ︸
b

)

with a, b ≥ 0, then associate to R the string w = eti+1
i+1 . . . e

t j−1
j−1 in Q, where tr = 1 if

ω(er ) = 1 and tr = −1 if ω(er ) = 2 for r ∈ {i +1, . . . , j −1}. Note that if j = i +1
then in Q the arrows ei , ei+1 start at the same vertex s(ei ), and we setw = εs(ei ) to be
the constant path at this vertex. Let M(w) denote the corresponding indecomposable
((G)-module. Note that the module M(w) is well-defined because a route in G does
not contain incident edges er and er+1 such that the path er er+1 in Q belongs to the
ideal I .

Now consider a mapψ : T (((G)) → R(G) such thatψ(Pi [1]) is the unique route
in G that passes through vertex i whose edges preceeding i have weight 1 and edges
following i have weight 2. If M(w) is an indecomposable string ((G)-module with
w = eti+1

i+1 . . . e
t j−1
j−1 and j−1 ≥ i+1, then the string does not pass through any relations

of Q; hence ei+1, . . . , e j−1 is a path in G. Define ψ(M(w)) to be the unique route
in G with weight (1, . . . , 1, 2 = ω(ei ),ω(ei+1), . . . ,ω(e j−1),ω(e j ) = 1, 2 . . . , 2).
Lastly, if M(w) = M(εr ) then define ψ(M(w)) to be the unique route in G with
weight (1, . . . , 1, 2 = ω(ei ),ω(ei+1) = 1, 2 . . . , 2) such that the tail of ei in G is the
vertex r .

The maps φ and ψ are inverses, and this proves the theorem. ⊓⊔

Figure 10 provides examples of the correspondence between routes and modules
as given in Theorem 5.8. This correspondence gives rise to the following corollary
which determines the representation type of the path algebra for full DAGs.

Corollary 5.9 Every indecomposable((G)-module has dimensionatmost one at every
vertex. In particular, the algebra ((G) is of finite representation type.

Proof This follows directly from the bijection in Theorem 5.8. Since G is acyclic then
no route passes through the same vertex twice, so every indecomposable((G)-module
has dimension at most one at every vertex. ⊓⊔

Remark 5.10 The converse of the above corollary does not hold; in particular, not
every gentle algebra of finite representation type comes from a full DAG. For example,
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Fig. 11 The quiver Q̂ obtained
from the quiver Q in Fig. 9 by
adding sources and sinks

consider an algebra given by the following quiver

•e3

• e1
•
e2

with relations e1e2 = e2e3 = e3e1 = 0. If such an algebra were to come from a
full DAG, then ω(e1) ̸= ω(e2), ω(e2) ̸= ω(e3), and ω(e3) ̸= ω(e1), which is not
possible.

We will be interested in a special property of objects in T (((G)) called τ -rigidity.
It was defined in purely homological terms and studied for general finite dimensional
algebras in [1]. In the case of gentle algebras, τ -rigid modules were studied in [11,
27], which allows us to translate the definition of τ -rigidity into purely combinatorial
terms. Next, we recall the relevant construction.

Let( = K Q/I be a gentle algebra.We construct an extended algebra (̂ = K Q̂/ Î ,
called a blossoming algebra, as follows. The quiver Q̂ is obtained from Q by adding
sources and sinks such that each new vertex is incident to a single arrow and every
vertex i of Q has two arrows in Q̂ leaving i and two arrows in Q̂ starting at i .Moreover,
we impose additional relations on Q̂ given by paths of length two to get an ideal Î ⊃ I
such that the resulting algebra (̂ becomes gentle. Note that (̂ is unique up to permuting
the set of sinks and permuting the set of sources. See Fig. 11 for an example.

Next, we show how to extend objects in T (() to certain modules over the corre-
sponding blossoming algebra.

Definition 5.11 We define a map

ξ : T (() → ind (̂,M(w) 1→ M(ŵ)

as follows. Let w be a string in (. Since ( is gentle, the string ŵ that we construct
next will be well-defined and unique. If the length of w is at least one, then define ŵ
to be the string in (̂ obtained by extending w at the start of w by an inverse arrow,
followed by adding as many direct arrows as possible until a source vertex is reached,
and then similarly extending w at the end by an arrow, followed by adding as many
inverse arrows as possible until a sink vertex is reached. Otherwise, if the length of w
is zero, i.e.,w is a constant path εi at vertex i , then there are two arrows pointing away
from i in the blossoming quiver. In this case, define ŵ to be the string in (̂ obtained
by extending w by these two arrows followed by adding as many directed arrows at
the start as possible until a source vertex is reached and as many inverse arrows at
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Fig. 12 The quiver Q̂ from Fig. 11 with edge labels is pictured above. The string w1 = α2 and its corre-
sponding extension ŵ1 are depicted on the left. The stringw2 = ε2 and its corresponding extension ŵ2 are
shown on the right

the end as possible until a sink vertex is reached. Finally, consider a shifted projective
Pi [1] = M(i[1]), where we think of i[1] as a “shifted string" at vertex i . Then we
define the corresponding string î[1] in the blossoming algebra to be the maximal string
supported at vertex i such that the path preceding i consists of arrows while the path
following i consists of inverse arrows. The map on the strings induces an inclusion on
the modules, which sends a module M(w) to M(ŵ).

Example 5.12 Consider G = G(2, 7) defined in Definition 4.5, and let Q be its asso-
ciated quiver. Building on Example 5.5 and Fig. 11, we demonstrate the extension
of strings in the blossoming algebra as described above. Figure12 depicts Q̂ along
with strings w1 = α2, w2 = ε2, and their extensions. In regard to uniqueness of the
extension procedure, note that if we instead chose to extend w1 by α3 instead of α5,
the resulting “extended string” would contain α2α3 which is a zero relation in (̂.

It is easy to see that the image of the map in Definition 5.11 consists of all string
modules M(ŵ) such that ŵ is a maximal undirected string in (̂, i.e., it is an undirected
string that starts in a source and ends in a sink. Moreover, it then restricts to a bijection
between T (() and its image.

This enables us to reformulate the original definition of τ -rigidity given in [1] in
the following combinatorial terms.

Definition 5.13 [11, Theorem 4.3] [27, Theorem 2.46] Let ( be a gentle algebra, and
let M(w),M(w′) be two objects in T (().

(a) The pair M(w),M(w′) is said to be τ -rigid if ŵ, ŵ′ do not contain a common
substring σ such that the arrows of ŵ incident to σ are both outgoing while the
arrows of ŵ′ incident to σ are both incoming.

(b) The object M(w) is said to be τ -rigid if the pair M(w),M(w) is τ -rigid.
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(c) A collection of objects in T (() is said to be support τ -tilting if it is a maximal
collection of pairwise τ -rigid objects.

Note that for an arbitrary gentle algebra (, condition (b) above does not always
hold.However, in our setting an algebra obtained from aDAG is of finite representation
type such that every string passes through a vertex of Q at most once, and hence (b)
holds for all strings w.

By using the bijections between routes in G, objects in T (G) = T (((G)), and
maximal undirected string modules in (̂ discussed above, we can translate the notion
of τ -rigidity in the module category of ((G) in terms of routes in G by passing
through the blossoming algebra. Let((G) = K Q/I be a gentle algebra coming from
a full DAG G, and let (̂(G) be the corresponding blossoming algebra. Applying the
reverse construction of Definition 5.4, starting from (̂(G) we can obtain a full DAG
Ĝ with a framing such that Ĝ has the same vertices as Q̂ and whose arrows come from
relations in the ideal Î . Note that G and Ĝ agree on the interior vertices, and moreover
G together with the framing can be obtained from Ĝ by gluing certain sources together
and/or certain sinks together. In particular,((G) = ((Ĝ) and we also obtain equality
for the corresponding flow polytopes, that is F1(G) = F1(Ĝ).

With this notation consider the following statement, where φ is the bijection from
Theorem 5.8.

Lemma 5.14 Let G be a full DAG with a fixed ample framing, then the following
properties hold.

(a) Every indecomposable object in T (G) is τ -rigid.
(b) Two routes R, R′ in G are coherent if and only if the corresponding objects

φ(R),φ(R′) of T (G) are τ -rigid.

Proof Part (a) follows directly from the definition of τ -rigidity and Corollary 5.9.
To show part (b), let R, R′ be two routes in G and let φ(R) = M(w),φ(R′) =

M(w′) denote the corresponding objects in T (G), as described in the proof of Theo-
rem 5.8. Now let M(ŵ),M(ŵ′) denote the associated modules over the blossoming
algebra (̂. Each ŵ, ŵ′ is an undirected walk in Q̂ from a source to a sink, which gives
routes R̂, R̂′ in Ĝ. We see that R̂, R̂′ are coherent in Ĝ if and only if the routes R, R′

are coherent in G. Therefore, it suffices to show that M(w),M(w′) are τ -rigid if and
only if the routes R̂, R̂′ are coherent.

By definition M(w),M(w′) are τ -rigid whenever there does not exist a common
substring σ of ŵ, ŵ′ such that the arrows of ŵ incident to σ are both outgoing while
the arrows of ŵ′ incident to σ are both incoming. This means that there does not exist
a common subpath Rσ of R̂, R̂′ such that the arrows in R̂ ending and starting at Rσ

have weights 2 and 1 respectively while the arrows in R̂′ ending and starting at Rσ

have weights 1 and 2 respectively. This means that the routes R̂, R̂′ are coherent, see
Definition 2.10. This shows that if M(w),M(w′) are τ -rigid then the routes R̂, R̂′ are
coherent. The converse follows in the same way. ⊓⊔
Theorem 5.15 Let G be a full DAG with a fixed ample framing. The bijection φ from
Theorem 5.8 induces a bijection

. : {R1, . . . , Rn} 1→ {φ(R1), . . . ,φ(Rn)}
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between the set of maximal cliques of G and the set of support τ -tilting((G)-modules.

Proof Amaximal clique of G is a maximal collection of pairwise coherent routes, and
similarly a support τ -tilting module is a collection of pairwise τ -rigid modules. Thus,
the result follows from Theorem 5.8 and Lemma 5.14. ⊓⊔

Let st(() denote the set of support τ -tilting modules over an algebra (. It follows
from [1] that st(() for any finite dimensional algebra over an algebraically closed field
has a poset structure. This poset structure is called the τ -tilting poset for (. In the case
of gentle algebras this poset was described combinatorially in [27], and we will recall
some relevant properties in the next section. For now, we note that the Hasse diagram
of the τ -tilting poset is the dual graph of a simplicial complex called the τ -tilting
complex. The following corollary now follows from the bijection . in Theorem 5.15.

Corollary 5.16 Let G be a full DAG with an ample framing F. The dual graph of the
triangulation DKK(G, F) is the Hasse diagram of the τ -tilting poset on st(((G)).
Furthermore, the τ -tilting complex is isomorphic to DKK(G, F).

Proof Suppose that two maximal cliques /,/′ of G correspond to an edge in the
dual graph of the triangulation DKK(G, F). Then they differ by a single route, that is
/ = /′\{R′}∪{R} for distinct routes R, R′ ofG. Bydefinition of., the corresponding
support τ -tilting modules .(/),.(/′) of ((G) differ by a single indecomposable
module. This means that they are connected by an edge in the poset st(((G)). The
converse follows in the same way, since . is a bijection. This shows the first part of
the statement. The second part can be deduced analogously by naturally extending
. to a bijection between cliques of G and collections of pairwise τ -rigid objects of
((G). ⊓⊔

A summary of equivalent terminology between DKK triangulations and represen-
tations of gentle algebras is given in Fig. 13. The following theorem will be critical in
our work.

Theorem 5.17 [15, Theorem 5.4] Let ( be an algebra with a finite τ -tilting poset.
Then the τ -tilting complex is shellable. Moreover, every linear extension of the τ -
tilting poset yields a shelling order.

In particular, combining Theorems 5.17 and 5.15, we obtain the following result.

Corollary 5.18 For the poset structure of maximal cliques of a full DAG given by the
correspondence in Theorem 5.15, every linear extension yields a shelling of the DKK
triangulation.

6 Gorenstein flow polytopes

In the case of gentle algebras, the partial order in the τ -tilting poset can be reformu-
lated in combinatorial terms as proved in [11, Theorem 6.2] for τ -tilting finite algebras
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Fig. 13 A summary of equivalent terminology betweenDKK triangulations of amply framed flowpolytopes
and representations of gentle algebras

Fig. 14 Two pairs of routes in the graph G from Fig. 9. The connected componentw in R1 ∩ R2 is the edge
(1, 2), while in R′

1 ∩ R′
2 the connected component is the vertex 3

or [27, Theorem 2.46] in full generality. The precise formulation of the partial order
between two adjacent support τ -tilting modules can be found, for example, in [27,
Proposition 2.33], which we present below using the terminology of routes. In Defi-
nition 6.1, we describe the partial order using the bijection between non-exceptional
routes of G and maximal undirected strings in the corresponding blossoming algebra
described in the previous section, see Definition 5.11.

Definition 6.1 LetG be a full DAGwith ample framing F and associated triangulation
DKK(G, F). Let /1 = / ∪ {R1} and /2 = / ∪ {R2} be adjacent maximal cliques
in DKK(G, F). Then the collection of vertices and edges in R1 ∩ R2 has a unique
connected component w such that the edge entering w in R1 is labeled 2 and the edge
exiting w in R1 is labeled 1, and vice versa for R2. We define an ordering ≺′ on pairs
of adjacent facets of DKK(G, F) where /2 ≺′ /1 in the case above, and we extend
≺′ to a partial order ≺ by taking the transitive closure of ≺′.

Example 6.2 Let G be the full contraction of G(2, 7) as shown in Fig. 9. Let /1, /2,
/′

1, and/′
2 be facets in DKK(G, F), where F is the length framing. If/1 = /∪{R1}

and /2 = / ∪ {R2}, with R1 and R2 as in Fig. 14, then w = (1, 2), and we have that
/2 ≺ /1. If /′

1 = /′ ∪ {R′
1} and /′

2 = /′ ∪ {R′
2}, with R′

1 and R′
2 as in Fig. 14, then

although R′
1 ∩ R′

2 = {1, 3}, only vertex 3 has incoming edge labeled 2 and outgoing
edge labeled 1 for R′

1 and vice versa for R
′
2. Thus w = {3}, and we see that /′

2 ≺ /′
1.

Figure15 shows the τ -tiling poset with partial order ≺ for the framed DAG G. A
smaller and more detailed example is given in Fig. 16 for a full contraction of G(2, 6)
with the length framing.
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Remark 6.3 The uniqueness in Definition 6.1 is a consequence of a more general
result on gentle algebras, which give a constructive way to calculate adjacent support
τ -tilting modules. In particular, this definition is an application of [27, Proposition
2.33] together with the bijection in Theorem 5.15, which allows us to restate it in
terms of routes. Thus, Definition 6.1 may be formulated as follows. Given a maximal
clique /1 containing a non-exceptional route R1, we can write R1 = uwv where w
is uniquely determined by /1 and the last edge in u has the opposite label of the first
edge in v. Moreover, /1 contains two other routes p = u′wv and q = uwv′. Then
Proposition 2.33 says that the clique /2 obtained by exchanging R1 by a new route
R2, where R2 = u′wv′, is the unique other maximal clique that contains / and such
that R1, R2 are not coherent at w. Note that if there is another connected component
w′ ∈ R1 ∩ R2 satisfying the conditions of Definition 6.1, then R1 and R2 would be
incoherent at w′, and in particular w′ would be contained in u or v. Hence, w′ would
be contained in q or p respectively. Then R2 would be incoherent with either q or p,
which contradicts that R2, p, and q belong to a common clique /2.

Alternatively, the uniqueness was also shown in [11, Theorem 9.4] in the special
case of gentle algebras with the property that every indecomposable τ -rigid module is
a brick. This condition is automatically satisfied for algebras coming from full DAGs
by Corollary 5.9.

Remark 6.4 We say that the framed DAG [G, F] is symmetric if reversing its vertex
labeling (i 1→ n − i) in [G, F] is a framing-preserving isomorphism of [G, F]. In a
symmetric full DAGG with framing F , if/1 ≺ /2 in DKK(G, F), then reversing the
vertex labels in the routes of /1 and /2 yield two cliques /′

1 and /′
2 in DKK(G, F)

satisfying /′
2 ≺ /′

1. Thus we observe that the poset in Definition 6.1 is self-dual if
[G, F] is symmetric. We see this in Fig. 15 as G(2, 7) is symmetric with the ample
framing of Fig. 9.

Following Definition 6.1 we can label every edge of the dual graph of DKK(G, F)
connecting two adjacent cliques /1 and /2 by the unique path w. The corresponding
module M(w) in the blossoming algebra is a brick, meaning that the only morphisms
from M(w) to itself are isomorphisms and the zero map. Indeed, this follows because
M(w) is at most one-dimensional at every vertex of the quiver Q̂. On the level of the
representation theory, this corresponds to the so-called brick labeling of the edges of
the τ -tilting poset st(((G)), which was studied for general finite dimensional algebras
in [6, 16]. In particular, the following statement is a special case of [7, Proposition
3.2.5] about torsion classes whenever the torsion class is generated by a support τ -
tilting module.

Proposition 6.5 [7, Proposition 3.2.5] Let ( be a finite dimensional algebra. Then a
support τ -tilting module T ∈ st(() is completely determined by the bricks labeling
the down edges coming out of T in the support τ -tilting poset.

Similarly, T is completely determined by the bricks labeling the up edges coming
into T . This leads to the definition of the kappa map on the τ -tilting poset introduced
and studied in [7].
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Fig. 15 The τ -tilting poset of the full DAG with framing given in Fig. 9. Note that only the non-exceptional
routes are depicted, as every maximal clique contains the exceptional routes. The exceptional routes for
this example are given in Fig. 18

Definition 6.6 [7, Proposition B] Let ( be a finite dimensional algebra. The kappa
map κ : st(() → st(() on the support τ -tilting poset is defined as follows. Given
T ∈ st((), let M1, . . . ,Mt be the set of bricks labeling the down edges coming out of
T . Then κ(T ) is defined as the support τ -tilting module with up edges having labels
M1, . . . ,Mt .

The following statement follows directly from the definition of themap given above
and the fact that every module in st(() is uniquely determined by the bricks labeling
its up edges or its down edges.

Theorem 6.7 Let ( be an algebra such that its τ -titling poset is finite. Then the kappa
map is a bijection on st(().

Given an element p of a poset P , we define the following statistics. Let dcov(p)
denote the number of down neighbors of p in P , and similarly let ucov(p) denote
the number of up neighbors of p in P . If P be a finite poset, then we can define the
following polynomial dcov(P) = ∑

p∈P xdcov(p) which records the down statistics
of P .

Theorem 6.8 Let ( be an algebra such that its τ -titling poset is finite, then the poly-
nomial dcov(st(()) is symmetric.
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Fig. 16 A graph G obtained as a full contraction of G(2, 6) with the length framing and its induced quiver
Q (left). The associated τ -tilting poset with vertices given by maximal cliques (right). The exceptional
routes are omitted from each clique and the poset edges are labeled with the associated brick and connected
component w

Proof Let T be a support τ -tilting (-module. Then, dcov(T ) = ucov(κ(T )) by the
definition of the κ-map. Moreover, by Thoerem 6.7 this map is a bijection on st((),
so we obtain a bijection on the following subsets of support τ -tilting modules for all
r :

{T ∈ st(() : dcov(T ) = r} ←→ {T ∈ st(() : ucov(T ) = r}.

By [1, Theorem 2.18], the Hasse diagram of the τ -titling poset is n-regular, where n
is the number of vertices of the quiver of (. This means that every vertex of st(() has
exactly n neighbors. This implies that the following sets are equal:

{T ∈ st(() : ucov(T ) = r} = {T ∈ st(() : dcov(T ) = n − r}.

Therefore, there is a bijection between themodules in st(() that have r downneighbors
and the modules that have n − r down neighbors. This shows that the polynomial
dcov(st(()) is symmetric. ⊓⊔

Remark 6.9 Although the kappa map is a bijection on st((), in general it is not a
poset morphism. Consider the τ -tilting poset of G = G(2, 7) in Fig. 15, and the four
elements of the poset depicted in Fig. 17. The maximal clique /1 covers /2 in the
τ -tilting poset, but /3 = κ(/1) does not cover /4 = κ(/2).
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Fig. 17 An example showing that κ is not an order-preserving map on the τ -tilting poset

Given a lattice polytope P of dimension d in Rn , the Ehrhart series of P is the
rational generating function

EhrP (x) =
∑

t≥0

|t P ∩ Zn|xt =
∑d

i=0 h
∗
i x

i

(1 − x)d+1 .

The rationality of EhrP (x) is due to Ehrhart [17], and it is known by work of Stanley
[30] that the vector of coefficients h∗

P := (h∗
0, . . . , h

∗
d), called the h∗-vector of P ,

consists of nonnegative integers with h∗
0 = 1. By defining the cone over P to be

cone(P) := spanR≥0
{(1,p) : p ∈ P} ,

one can show that the Ehrhart series for P is the Hilbert series for the semigroup
algebra of cone(P) with grading given by the first coordinate.

When P admits a unimodular triangulation T , the h∗-vector of P and the h-vector of
T coincide [8,Theorem10.3]. The h-vector of a shellable triangulationhas nonnegative
entries which can be computed combinatorially from the shelling order as follows. For
a fixed shelling order F1, ..., Fs on the facets of the triangulation, the restriction R j
of the facet Fj is defined to be the set

R j := {v ∈ Fj : v is a vertex in Fj and Fj \ v ⊆ Fi for some 1 ≤ i < j} .

The i-th entry of the h-vector is then given by hi = |{ j : |R j | = i, 1 ≤ j ≤ s}|.
Thus, if the dual graph of the triangulation admits the structure of a Hasse diagram of
a poset with at least one linear extension giving a shelling order of the triangulation,
then hi is the number of elements in the poset covering exactly i elements. Since the
τ -tilting complex is shellable by Theorem 5.18, we obtain the following lemma.

Lemma 6.10 Let Q be the τ -tilting poset associated with DKK(G, F). Then the i-th
coefficient of the h∗-vector of F1(G) is given by the number elements in Q covering
exactly i elements.
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Corollary 6.11 If G is a full DAG, then F1(G) has a symmetric h∗-vector.

Proof This follows from Lemma 6.10 and Theorem 6.8. ⊓⊔

Example 6.12 Consider the full contraction of G(2, 7) with the framing specified in
Fig. 9, having τ -tilting poset as given in Fig. 15. By inspection, for this poset we have

dcov(P) =
∑

p ∈ P

xdcov(p) = 1+ 7x + 7x2 + x3 ,

since for example there are seven elements of the poset covering a single element, one
element covering three elements, etc. Thus, the h∗-polynomial for the corresponding
flow polytope is symmetric and unimodal.

The symmetry of the h∗-polynomial of a lattice polytope has known geometric
consequences, which we discuss next.

Definition 6.13 A lattice polytope P is reflexive if there exists an integer vector v and
an integer matrix A such that P+v = {x ∈ Rn : Ax ≤ 1}, where 1 denotes the vector
with all entries equal to 1. A lattice polytope P ⊂ Rn is Gorenstein of index k if kP
is a reflexive polytope.

In greater generality, a pointed rational cone C is Gorenstein if there exists an
integer point c satisfying

c +
(
Z1+n ∩ C

)
= Z1+n ∩ C◦,

whereC◦ denotes the interior of the coneC . It is known that P is Gorenstein if and only
if cone(P) is Gorenstein. An alternative characterization of the Gorenstein condition
is the following.

Lemma 6.14 (Bruns, Römer [10]) Let C be a pointed rational cone with supporting
hyperplanes of the form σ · x ≥ 0 where σ is a vector of integers such that the greatest
common divisor of the entries in σ is 1. For such a cone, C is Gorenstein if and only if
there exists an integer point c in the interior of C such that σ · c = 1 for all supporting
hyperplanes σ of C.

This lemma leads to a characterization of Gorenstein flow polytopes.

Proposition 6.15 The flow polytope F1(G) is Gorenstein if and only if G is a DAG
such that for each inner vertex v of G the in-degree and out-degree of v are equal.

Proof Note that the cone over F1(G) is equivalent to F(G), hence we work in this
setting. Since the supporting hyperplanes of F(G) are all of the form xe ≥ 0 for the
edges e ofG, by Lemma 6.14 the only candidate for a Gorenstein point c is the all-ones
vector. The all-ones vector is in F(G) if and only if the equality of in- and out-degree
holds for each inner vertex v of G. ⊓⊔
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Yet another classification of Gorenstein polytopes is provided by symmetry of
coefficients of h∗-polynomials, as follows.

Theorem 6.16 (Stanley [29]) A d-dimensional lattice polytope P with

h∗
P = (h∗

1, . . . , h
∗
s , 0, . . . , 0) ∈ Zd ,

where h∗
s ̸= 0, is Gorenstein if and only if h∗

i = h∗
s−i for all i .

We therefore have two proofs of the following theorem.

Theorem 6.17 If G is a full DAG, then F1(G) is Gorenstein.

Proof For the first proof, apply Corollary 6.11 and Theorem 6.16 regarding the sym-
metry of the h∗-vector. For the second proof, since the in- and out-degrees of every
interior vertex are equal to 2, Proposition 6.15 is satisifed. ⊓⊔
Remark 6.18 In [31, Exercise 4.56(c)], Stanley introduces a class of polytopes com-
monly referred to as consecutive coordinate polytopes. Theorem 6.17 generalizes a
result of Ayyer, Josuat-Vergès, and Ramassamy [4, Theorem 2.10] which states the
consecutive coordinate polytope, denoted B̂k,n , has a palindromic h∗-vector. They
give a formula for computing the h∗-polynomial of B̂k,n as the generating function of
total cyclic orders with resepct to the number of descents. It was shown in [19] that
B̂k,n is integrally equivalent to the flow polytope for the DAG G(k, n + k) studied
in Sect. 4, and furthermore, a consequence of [19, Theorem 4.8] and Theorem 5.15
gives a bijection between total cyclic orders Ak,n+k considered by Ayyer et al., and
support τ -tiltingmodules st(((G(k, n+k))). Interestingly, this bijection is notweight-
preserving between descents of total cyclic orders and dcov of elements in the τ -tilting
poset. Ayyer et al. ask if the palindromicity result of the h∗-vector of B̂k,n can be under-
stood on a combinatorial level via an involution on total cyclic orders. The kappa map
on st(() provides such an answer in terms of support τ -tilting modules.

The Gorenstein condition on F1(G) combined with the fact that the DKK triangu-
lation is regular and unimodular allows us to apply the following theorem from [10,
Theorem 1].

Theorem 6.19 (Bruns, Römer [10]) Let P be a lattice polytope such that P admits a
regular unimodular triangulation and P is Gorenstein. Then the h∗-vector for P is
unimodal.

Corollary 6.20 If G is a full DAG, then F1(G) is h∗-unimodal.

Proof Recall thatF1(G) admits a regular unimodular triangulation via Theorem 2.14.
Thus, the result follows from Theorem 6.16 and Theorem 6.19. ⊓⊔

It would be of interest to investigate other properties such as log-concavity, real-
rootedness, and γ -non-negativity for these polytopes.

Fromour enumeration of ample framings,we can show that theGorenstein polytope
F1(G) for a full DAG G has many special simplices, defined as follows. The concept
of a special simplex was originated by Athanasiadis [3].
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Fig. 18 R1, R2, R3 are the exceptional routes of the framed full DAG given in Fig. 9

Definition 6.21 Given a Gorenstein polytope P and a simplex S with vertices lattice
points in P , we say S is special if the intersection of any facet of P with S is a facet
of S.

It is known that given a Gorenstein polytope P having the integer decomposition
property and a special simplex S, projecting P along the affine span of S yields a
reflexive polytope with the same h∗-vector as P; this is the key ingredient of the proof
of Theorem 6.19 by Bruns and Römer [10, Corollary 4]. It is known that every lattice
polytope with a unimodular triangulation has the integer decomposition property.
Thus, understanding the special simplices in polytopes with regular triangulations is
of interest.

Theorem 6.22 Given a full DAG G with an ample framing F, the set of exceptional
routes forms a special simplex for F1(G).

Proof Let P = F1(G). By Proposition 2.5, every facet of P is of the form xe = 0.
Since F is an ample framing, every edge is contained in a unique exceptional route
R. Thus, for each facet H of P with xe = 0, the vertices of P contained in H are
exactly those routes that do not contain e. Since there is exactly one exceptional route
containing e, say Re, all exceptional routes except Re are contained in H . ⊓⊔

Example 6.23 In Fig. 18, we see the three exceptional routes for the framed DAG from
Fig. 9. Note that the facets for the flow polytope of G(2, 7) correspond to xe = 0 for
each edge e. For each fixed edge e inG(2, 7), two of the routes in Fig. 18 do not contain
that edge, and hence the line segment between those two routes in the flow polytope
are contained in the corresponding facet. Thus, every facet of the flow polytope for
G(2, 7) intersects the triangle formed by R1, R2, and R3 in an edge, making this
triangle a special simplex.

Corollary 6.24 Given a full DAG G, with M as defined in Theorem 4.1, F1(G) has at
least 2M−1 special simplices.

Proof For each ample framing of G, we get a unique special simplex. Since there
are 2M−1 ample framings, we have at least that many special simplices in the flow
polytope. ⊓⊔
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