

1 **Nontraditional models as research tools: The road not taken**

2

3 **Hippokratis Kiaris¹***

4

5 ¹ Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Peromyscus

6 Genetic Stock Center, University of South Carolina, Columbia, SC, USA

7

8 *Correspondence: hk@kiarislabs.com (H. Kiaris)

9

10

11 **Key words:** Outbred rodents, scientific tradition, heterosis, genetic diversity, preclinical failures,

12 drug discovery, drug attrition

13

14 **Abstract**

15

16 Historical reasons resulted in almost exclusive use of a few species, most prominently *Mus*
17 *musculus*, in becoming the mainstream models of biomedical research. This selection was not
18 based on *Mus*’ distinctive relevance to human disease but rather to the pre-existing availability of
19 resources and tools for the species that were used as models, that has enabled their adoption for
20 research in health sciences. Unless the utilization and range of nontraditional research models
21 expand considerably, progress in biomedical research will remain restricted within the trajectory
22 that has been set by the existing models, and of their ability to provide clinically relevant
23 information.

24

25

26

27 **Introduction**

28

29 Biomedical research is dominated by studies involving limited species only, that are
30 typically recognized as the traditional animal models (see Glossary). *Mus musculus* possesses the
31 lion's share in this utility for reasons that are primarily historical and coincidental. For example,
32 in 2018 according to the European commission, out of the 7,938,064 (48.9%) animals used totally
33 in research and testing, 3,879,691 (48.9%) were mice, followed by 1,914,039 (23.1%) fish and
34 665,155 (8.3%) rats¹. Early scientific advances have identified *Mus* as a suitable biological
35 research model and soon, its use expanded to all fields of biomedical research because tools and
36 resources were becoming increasingly available. Despite however its paramount contribution in
37 the study of human disease, *Mus* possesses characteristics that cast some doubts regarding its
38 ability to deliver clinically relevant information [1].

39 The aim of this article is to discuss some of these limitations and suggest that the inclusion
40 of additional animal models, that today are considered as nontraditional, can be highly beneficial.
41 With this suggestion, the contribution of *Mus* in biomedical sciences should not be understated
42 since its utility as a model has shaped the biomedical field. Nor that the nontraditional models do
43 not have limitations, such as their adaptation and usage in laboratory conditions, the lack of
44 technologies and recourses that operate as a burden during experimentation, and unknown
45 characteristics in their physiology and molecular profiles that can disqualify them as models.
46 Nonetheless, today's progress in biomedical technologies render their adoption feasible or at least,
47 worthy of exploring. This is also fully aligned with the recognition of personalized approaches as
48 the direction of choice in biomedical practice.

49

50 **Scientific Tradition and *Mus* as the model of choice in biomedicine**

51

52 Modeling is essential in natural sciences including biomedicine, a fact that was epitomized
53 by August Krough in his famous principle that stated that "For many problems there is an animal
54 on which it can be most conveniently studied" [2]. There is a difference however between the
55 biomedical sciences and the other natural sciences, on how their models were introduced and used:
56 In other natural sciences the models are created by the experimentalists and reflect their current

¹ https://webgate.ec.europa.eu/envdataportal/content/alures/section1_number-of-animals.html

57 technological capabilities. In biomedicine however, the models have (biologically) evolved
58 independently of the experimentalists and of their needs and have only been selected and recruited
59 by them [3]. This creates limitations that reflect to biomedical research and its ability to produce
60 clinically relevant information. Early advances in the fields of genetics, physiology and
61 biochemistry, that already utilized mice, established a scientific tradition by generating tools and
62 strategies that were readily applicable in health sciences research. From that point onwards, *Mus*
63 is being used as the gold standard for experimental studies in biomedicine, not because of their
64 unique relevance to human pathology, but rather because of historical and practical reasons. Tools
65 and comparative data were becoming increasingly available, sustaining this choice of model and
66 enabling the research enterprise in its entirety to proceed. Since about the 1980s, mice have
67 represented the mainstream choice for securing funding and for publishing, in alignment with the
68 overarching scientific standards and expectations. This path applies even to research in infectious
69 pathologies at which the species-specificity of the host presents an objective obstacle. During the
70 COVID-19 pandemic for example, an immediate response in developing an animal model was to
71 sensitize *Mus* to SARS-CoV-2 infection by introducing hACE2 expression, to overcome the
72 natural resistance of mice to the virus [4]. Analogous approaches are being employed for other
73 infectious diseases, such as for HIV-associated pathologies at which mice are modified at the
74 genetic and cellular level to be infectable by the human virus or the simian immunodeficiency
75 virus (SIV) that can cause similar pathologies [5,6]. A dimension that needs to be considered and
76 despite the limitations mandates the use of rodents, as compared to primates that get infected with
77 SIV or cats that get infected with the feline immunodeficiency animals, is related to the ethical
78 limitations in using them in research. In addition, practical limitations regarding animal size and
79 life cycles also pose restrictions.

80 Notwithstanding the necessity at various instances, of following it, this trajectory, today,
81 emerges as an oxymoron because the whole scientific, and indeed the cultural landscape of
82 contemporary research recognizes the need for the advancement of personalized medicines and
83 the focus on the individuality of patients [7]. Thus, at a time at which the aspired path of biomedical
84 progress involves appreciation and exploitation of the specific differences of individual people and
85 how these may impact their predisposition to disease and the efficiency of treatments, the
86 experimental research findings on which such strategies are based, rely on limited models of
87 genetic clones only. Unavoidably, from that perspective, opposing dynamics are sustained within

88 the ongoing research efforts, by which the preclinical results that are generated by using the
89 traditional research models, produce information and knowledge that is seeking validation and
90 application in genetically diverse human populations [8-10]. Furthermore, the quest for uniformity
91 and the adherence to optimal - and thus stable – conditions of the conventional experimental setups,
92 grows in expense of integration of the multitude of conditions that can impact human populations
93 and their responses. For example, these might include social interactions, seasonality, exposure to
94 a combination of diverse environmental stimuli, and everything pertinent to the widely perceived
95 diversity in contexts [11-15].

96

97 **Animal modeling and efficacy of the biomedical research enterprise**

98

99 These dynamics are very likely to cause failures, the extent of which is hard to appreciate.
100 Nonetheless, we can speculate on their extent, considering the effort and the resources that are
101 allocated towards preclinical studies, and the small fraction of which ultimately result in clinically
102 relevant applications or drugs. This is reflected in the high **attrition rate** during drug development
103 that exceeds 90% [16-24]. The inadequacy of the existing models for preclinical research is
104 recognized, in addition to the limited value of the oversimplified in vitro methodologies (25,26).
105 Furthermore, indirect evidence at the population level for the suboptimal efficiency of this path
106 can also be derived by the simple observation that life expectancy increased during the last
107 decades, but the major contributors for this success were not the translation of preclinical research
108 findings to human populations [27]. It was primarily due to changes in the **social determinants of**
109 **health** and the progress in the management of infectious diseases [28-31]. Ironically, none of these
110 were linked directly to, or had as a pre-requisite, systematic preclinical studies involving traditional
111 animal models. Advances in social health determinants are related to the sociopolitical and
112 economic progress that have improved hygiene and have rendered health care and preventive
113 medicine accessible to an increasingly high fraction of the population. A series of animal studies
114 exist that corroborate these advances but, in their majority, they are just confirmatory instead of
115 drivers of the change. In infectious diseases, due to the specificity of most pathogens for their
116 human hosts, progress does not depend on studies involving traditional animal models (32).
117 Animal studies again exist that finetune the ongoing practices and illuminate the underlying
118 mechanisms, but progress in this area is not dependent on animal studies per se.

119 Yet, progress in our understanding of the fundamental mechanisms of disease today is
120 unequivocal, and so are our capabilities towards this direction, which further underscores the
121 disparity in the translation of research findings into clinically relevant and directly applicable
122 information. The acknowledgement of this limitation bears inherently on the notion that the
123 mainstream efforts, that in principle rely on traditional animal models may be irrelevant or have
124 minimal value for human health, especially when considering cost-efficacy.

125

126 **A tradition in modeling and its intrinsic limitations**

127

128 Two main reasons that are intrinsically linked to the models used to acquire scientific
129 information likely account for this limitation in translational relevance. The first limitation relates
130 to the species identity of the models that generates positive dynamics in their usage. Based mainly
131 on reasons grounded in scientific tradition rather than *a priori* justification, studies typically use
132 animals to address questions that may not be highly relevant, scientifically or clinically. By being
133 traditional and to fulfil their function as the widely used gold standard, they mandate additional
134 investment towards them, but they remain limited in their capacities and their ability to model
135 human pathologies, and in addressing fundamental basic questions or needs (33). Various
136 examples can illustrate this notion. Pigs receive increased attention in cardiology research because
137 they demonstrate anatomical similarity in structure and size with the human heart. As such, porcine
138 models offer valuable information that mice cannot [34]. Eventually, pigs became used as a source
139 for heart valve transplants a process that is continuously being improved. A caveat to this utility is
140 that the lifespan of pigs is only 20 years, which is much shorter than the anticipated life expectancy
141 of the patients undergoing the procedure [35-37]. For similar reasons relevant to scientific
142 tradition, laboratory mice are being used for studies in aging and neurodegenerative diseases,
143 despite the fact that they have a lifespan of only up to 3 years or less and have intrinsic resistance
144 to age-dependent neuronal degeneration (38).

145 Mice are now being used for the study of nearly every pathology. This is a time when
146 human population studies and the National Institutes of Health (NIH) increasingly appreciate the
147 significance of emotional health and of social interactions in health outcomes (39). Because they
148 are polygamous, laboratory mice exhibit only limited relevance on the impact of social
149 connectedness in health outcomes. Mice do not develop pair bonds and do not exhibit paternal

150 care, and thus, the impact of loneliness is contextually very different from the chronic pathologies
151 in humans that are exacerbated after the loss of a partner and they are intended to model [40-42].
152 Noteworthy, small rodents exhibiting monogamous behavior do exist, such as voles (genus
153 *Microtus*) and deer mice (genus *Peromyscus*), that can be used to investigate the effects of social
154 interactions in the study of various pathologies [43-45]. Yet, such non-traditional models are being
155 used on a limited capacity (e.g. to study social interactions), and not being used to their full
156 potential to study social interactions as modifiers of the outcomes of different pathologies. The
157 limited utility of these models in the study of human disease is primarily related to the lack of
158 specialized reagents and tools, and the skepticism that surrounds the clinical relevance of disease-
159 related information that is produced by non-mainstream research models. Both reasons relate to
160 the historical factors mentioned earlier.

161 We can only speculate what the potential impact of such historical inertia would have
162 produced for biomedical sciences and specifically in the study of social interactions and their
163 impacts on disease, if additional species like one or more of the monogamous rodents had received
164 similar investment in tool development and attention as was dedicated to *Mus* (Clinician's corner).
165 In this case, technology and baseline information would have accumulated such that researchers
166 would have more diverse tools upon which they could rely, establishing a more direct ability to
167 make biologically relevant comparisons to human disease, disorders, and health and wellbeing. In
168 addition, the scientific community, investigators, and funding agencies, would have been more
169 receptive to their utility under such conditions and settings. It is hard to imagine the lost progress
170 for whole areas of research like preclinical drug testing and drug attrition.

171 Mice are also being used for the study of many cancers including breast cancer [46,47].
172 Yet, most human cancers of the breast are hormone-sensitive, and mice are required to receive
173 exogenous estrogens, resulting in estrogen levels comparable to those occurring before
174 menopause, albeit the disease is more common in postmenopausal women [48,49]. If animal
175 models that could sustain hormone-sensitive breast cancer growth had been identified and used, it
176 is likely that estrogen supplementation commonly used today would be seen as an irrational choice.
177 The limitations of *Mus* in breast cancer research also becomes apparent by the low penetrance and
178 the long latency of tumorigenesis in BRCA-mutant mice, despite these genes' central role in breast
179 cancer in women [50]. Again in the cancer field, p53 germline mutations in humans - the most

180 common genetic defect of human cancers -, in humans are associated with the multicancer Li-
181 Fraumeni syndrome while in mice they cause mainly lymphomas [51,52].

182 Cancer and behavioral sciences represent only two areas at which mice have limited ability
183 to model human pathology and physiology. Analogous examples can be identified in the field of
184 metabolism (53), immunology (54), neurobiology (55), and others.

185 Significant effort and resources are being continuously invested in adapting *Mus* towards
186 pathologies of interest. For example mice have undergone humanization to mimic our immune
187 system, or genetic modification, to generate loss- or gain-of-function mutants that develop human-
188 like pathologies that are commonly found in humans and in humans and are modified by
189 quantitative changes in gene expression [56-64]. Nonetheless, their similarity to human conditions
190 and processes remains frequently elusive, and therefore, their ability to provide clinically
191 meaningful results is tenuous. More importantly, by having an established tradition established
192 that is restricted to the use of *Mus*, systematic efforts to identify naturally existing models for
193 human pathologies are lagging, and the adherence to mainstream models remains the option of
194 choice remains the option of choice out of convenience or lack of vision.

195 It should be acknowledged that at various instances the physiological differences between
196 mice and humans, instead of a burden can be advantageous, and has fueled research that assisted
197 in our better understanding of human disease. For example, the resistance of the cystic fibrosis
198 gene-deficient mice to the disease as opposed to humans and pigs, prompted comparative biology
199 studies and led to the identification of the adenosine triphosphatase gene as a therapeutic target
200 (65). This example however, instead of being treated as a demonstration that mice may become
201 eventually informative for all human conditions it should rather be seen as an example that
202 illustrating the power of comparative biology and that the inclusion of diverse models is beneficial.
203

204 The second limitation is related to the genetic make-up of these models. In order to satisfy
205 the demand for adherence to a uniform baseline for studies performed in different environments,
206 traditional models require high genetic resemblance to each other, which can only be satisfied by
207 using **inbred strains**. Inbred strains are the artificial products of selective breeding, which are
208 considered identical living entities despite they continue to accumulate mutations, are not isogenic,
209 and even their vendor may account for potential differences among them [66-68]. They are also
210 described as wild type in the context of the experimental studies, albeit they do not exist in nature,

211 and their ability to survive in the wild is arguable. Yet, their phenotypes, again within the context
212 of experimental studies, are thought to reflect the perceived normal, towards which the results of
213 genetic, dietary, behavioral or other manipulations are compared. Their inbred nature, nonetheless,
214 despite its advantages in mechanistic studies, contrasts with the natural human condition, both at
215 the level of the individual patient that is highly heterozygous and at the level of the populations
216 that are extremely genetically diverse. This happens while the concept of **hybrid vigor** or heterosis
217 has been long known since Darwin [69]. And yet, the consequences of homogeneity in preclinical
218 drug testing remain elusive [70,71]. Thus, while accurate information can be derived by preclinical
219 studies, this information remains primarily applicable to the specific strain of mouse and the
220 conditions under which it has been performed. Indeed, the relevance to humans and to their
221 populations is unknown or speculative at best [72]. Partially this limitation was addressed by the
222 introduction of genetically diversified mouse populations, yet these efforts are still restricted by
223 limitations pertinent to *Mus*' physiology and the characteristics of the usually inbred specific
224 mouse strains that have been used [73,74].

225

226 **Seeking paradigm shifts by reappraisal of the research investment portfolio**

227

228 Sound reasons for the historic availability of resources and technologies have established
229 the specific trajectory for the process of scientific discovery. This has framed questions and
230 research efforts and been limited by the study species and, therefore, has been limited by their
231 specific characteristics. Thus, the information that can be obtained for biomedical science is only
232 as good as the experimental system used to retrieve it. Today, however, this can change. Progress
233 in genomics and high-throughput molecular technologies facilitate paradigm shifts in health
234 sciences because they enable recruitment and adoption of a large array of organisms that can be
235 used to model diseases and treatments (Box 1). Manipulating the genome of a mouse was once
236 time-consuming, expensive, and highly specialized, and the pioneering methods were limited by
237 stochastic problems in genome assembly and annotation. Furthermore, such work could only be
238 done in mice for which the specific technology had been developed. Today this process is very
239 rapid, cost efficient, precise, and can be applied readily to a wide range of organisms with high
240 efficiency. Likewise, the progress in sequencing capabilities for high resolution genomes
241 supported by advances in bioinformatic analyses, enables large scale, cost-effective and rapid

242 progress for several species of diverse and unknown genetic make-ups. The significance of using
243 more than a single model in research is recognized by the fact that in drug development, safety
244 studies frequently involve more than one model. Other approaches that alone or in combination
245 with the non-traditional models possess great promise for breakthroughs involve innovative
246 complex in vitro models (e.g., organoids, (multi)organ-on-chips, microphysiological systems) as
247 well as in silico technologies (AI, machine learning, deep learning, digital twin technologies, in
248 silico trials) that have been used successfully to support drug discovery, development and testing
249 [75-77].

250 Despite this progress and the availability of such technologies, traditional models remain
251 overwhelmingly preferred, notwithstanding their widely acknowledged limitations. From this
252 perspective, instead of seeking new models, the improvement of the existing models is preferred.
253 This can be attributed to the skepticism among investigators, reviewers and funding agencies
254 against the non-mainstream outbred models. This skepticism is partly due to the perceived inability
255 of such organisms to provide high resolution information of analytical and mechanistic value,
256 which ironically is attributed to their diverse nature and the comparatively limited baseline
257 information and tools that are currently available. Reviewers in scientific journals and panel
258 members in study sections for funding agencies frequently anticipate information that is analogous
259 in its detail to that of *Mus*, and question the informative value of studies that leverage novel systems
260 that *Mus* can provide. And yet, the biological relevance of *Mus* is dogmatically unquestioned. This
261 reflects the established scientific culture that remains highly analytical and **inductive**, despite the
262 appreciated significance of synthetic approaches. To that end, investment in research efforts that
263 are **deductive**, even if they are more “crude” in their nature, or involve “obscure” species, is rarely
264 preferred. Such species, for example may develop obesity, cardiovascular disease, or cancer more
265 similarly to humans, but with restricted ability dissecting the underlying process because tools
266 such as specific antibodies do not exist yet. Thus, the investment towards the acquisition of more
267 detailed information by using traditional models is prioritized and this choice remains more
268 appealing, both career- and funding-wise..

269

270 **Concluding remarks**

271

272 The advocacy for nontraditional models should not be perceived as an attempt to diminish
273 the paramount contribution of *Mus* in biosciences nor as an effort to ignore the fact that the whole
274 biomedical field has been shaped by this species at an extent that it is practically impossible to
275 appreciate the state of progress without referring to laboratory mice. Rather, it should be seen as
276 an endeavor to expand the basis of the models used in biosciences to perform research that
277 increases the chances to deliver breakthroughs, and sustain the associated risks and costs. The
278 promotion and integration of nontraditional animal models in biomedicine remains a responsibility
279 of the major funding agencies and investigators performing the science. Investment is needed to
280 support a culture of scientific diversification. A plausible avenue forward to achieve this, is to
281 promote large scale screening programs by which the relevance of different animal species to
282 various clinical conditions will be explored. The initial goal of such programs should not be to
283 deliver mechanistic information but rather to establish pools of models with relevance to disease.
284 This way, both the critical mass of the researchers utilizing nontraditional models will increase,
285 and the different conditions will be studied through the lens of different models, each of which
286 may have its own advantages and limitations. Such expansion will not proceed on the basis that
287 such models may eventually become traditional for certain conditions. This would have defeated
288 their purpose and would again generate dynamics that have caused potential failures related to the
289 use of a single species, such as *Mus musculus*, as a model. Rather, the adoption of any animal, *Mus*
290 or other non-traditional animal models, should be promoted because it may better satisfy the
291 demand of generating scientifically important and clinically useful information by a manner that
292 is non-incremental, possessing high risk and the prospect of high return (see Outstanding
293 Questions).

294 As Robert Frost (1874-1963) might have said, it is probably the time to consider taking the
295 road not taken [78]. He lyrically described this in his homonymous poem:

296
297 [...] I shall be telling this with a sigh
298 Somewhere ages and ages hence:
299 Two roads diverged in a wood, and I—
300 I took the one less traveled by,
301 And that has made all the difference...]

302

303 **Acknowledgements**

304

305 The author thanks the constructive criticism and the numerous suggestions of the 3 anonymous
306 reviewers that improved considerably the manuscript. The author is the Director of the USC
307 COBRE Center for Targeted Therapeutics (NIH-NIGMS-P20GM109091, NIH-NIGMS-
308 P30GM154632) and of the Peromyscus Genetic Stock Center (NSF-DBI-2312990).

309

310 **Declarations of interests**

311

312 The University of South Carolina owns a patent (US 11,766,033 B2) on the utility of Peromyscus
313 as cancer model. The author is inventor in this patent.

314 **References**

315

316 1. Robert L. Perlman, Mouse models of human disease: An evolutionary perspective,
317 Evolution, Medicine, and Public Health, Volume 2016, Issue 1, January 2016, Pages 170–
318 176, <https://doi.org/10.1093/emph/eow014>.

319

320 2. Krebs HA. The August Krogh Principle: "For many problems there is an animal on which
321 it can be most conveniently studied". *J Exp Zool.* 1975 Oct;194(1):221-6. doi:
322 10.1002/jez.1401940115.

323

324 3. Kiaris H. Biology as a construct: Universals, historicity, and the postmodern critique.
325 Perspectives in Biology and Medicine. In Press. Summer 2024

326

327 4. Chu, H., Chan, J.FW. & Yuen, KY. Animal models in SARS-CoV-2 research. *Nat Methods*
328 19, 392–394 (2022). <https://doi.org/10.1038/s41592-022-01447-w>

329

330 5. Hatzioannou, T., Evans, D. Animal models for HIV/AIDS research. *Nat Rev Microbiol*
331 10, 852–867 (2012). <https://doi.org/10.1038/nrmicro2911>

332

333 6. Gorantla S, Poluektova L, Gendelman HE. Rodent models for HIV-associated
334 neurocognitive disorders. *Trends Neurosci.* 2012 Mar;35(3):197-208. doi:
335 10.1016/j.tins.2011.12.006.

336

337 7. Lamb JR, Jennings LL, Gudmundsdottir V, Gudnason V, Emilsson V. It's in Our Blood: A
338 Glimpse of Personalized Medicine. *Trends Mol Med.* 2021 Jan;27(1):20-30. doi:
339 10.1016/j.molmed.2020.09.003.

340

341 8. Van Norman GA. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials:
342 Is it Time to Rethink Our Current Approach? *JACC Basic Transl Sci.* 2019 Nov
343 25;4(7):845-854. doi: 10.1016/j.jacbt.2019.10.008.

344

345 9. Mosedale M. Mouse Population-Based Approaches to Investigate Adverse Drug Reactions.
346 *Drug Metab Dispos.* 2018 Nov;46(11):1787-1795. doi: 10.1124/dmd.118.082834.

347
348 10. Li H, Auwerx J. Mouse Systems Genetics as a Prelude to Precision Medicine. *Trends*
349 *Genet.* 2020 Apr;36(4):259-272. doi: 10.1016/j.tig.2020.01.004.

350
351 11. Naito R, McKee M, Leong D, Bangdiwala S, Rangarajan S, Islam S, Yusuf S. Social
352 isolation as a risk factor for all-cause mortality: Systematic review and meta-analysis of
353 cohort studies. *PLoS One.* 2023 Jan 12;18(1):e0280308. doi:
354 10.1371/journal.pone.0280308.

355
356 12. Boland MR, Shahn Z, Madigan D, Hripcak G, Tatonetti NP. Birth month affects lifetime
357 disease risk: a phenome-wide method. *J Am Med Inform Assoc.* 2015 Sep;22(5):1042-53.
358 doi: 10.1093/jamia/ocv046.

359
360 13. Doblhammer G, Vaupel JW. Lifespan depends on month of birth. *Proc Natl Acad Sci U S*
361 *A.* 2001 Feb 27;98(5):2934-9. doi: 10.1073/pnas.041431898. Epub 2001 Feb 20. PMID:
362 11226344; PMCID: PMC30243.

363
364 14. Zhang Y, Devore EE, Strohmaier S, Grodstein F, Schernhammer ES. Birth month, birth
365 season, and overall and cardiovascular disease mortality in US women: prospective cohort
366 study. *BMJ.* 2019 Dec 18;367:l6058. doi: 10.1136/bmj.l6058.

367
368 15. Kiaris H. Optimal conditions, experimentation, and drug testing. *Lab Animal.* In Press.
369 2024

370
371 16. Seyhan, A.A. Lost in translation: the valley of death across preclinical and clinical divide
372 – identification of problems and overcoming obstacles. *Transl Med Commun* 4, 18 (2019).
373 <https://doi.org/10.1186/s41231-019-0050-7>

374
375 17. Haldar SM. Keeping translational research grounded in human biology. *J Clin Invest.* 2024
376 Jan 16;134(2):e178332. doi: 10.1172/JCI178332. PMID: 38226617; PMCID:
377 PMC10763720.

378

379 18. Golding, H., Khurana, S. & Zaitseva, M. What is the predictive value of animal models for
380 vaccine efficacy in humans? The importance of bridging studies and species-independent
381 correlates of protection. *Cold Spring Harb. Perspect. Biol.* 10, a028902 (2018).

382

383 19. Franco, R. & Cedazo-Minguez, A. Successful therapies for Alzheimer's disease: why so
384 many in animal models and none in humans? *Front. Pharmacol.* 5, 146 (2014).

385

386 20. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related
387 parameters. *Biostatistics.* 2019;20(2):273-286. doi:10.1093/biostatistics/kxx069

388

389 21. Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. *Nat Rev Drug*
390 *Discov.* 2019;18(7):495-496. doi:10.1038/d41573-019-00074-z

391

392 22. Mullard A. R&D re-balancing act. *Nat Rev Drug Discov.* 2023;22:258.

393

394 23. Jentzsch V, Osipenko L, Scannell JW, Hickman JA. Costs and Causes of Oncology Drug
395 Attrition With the Example of Insulin-Like Growth Factor-1 Receptor Inhibitors. *JAMA*
396 *Netw Open.* 2023;6(7):e2324977. doi:10.1001/jamanetworkopen.2023.24977

397

398 24. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to
399 improve it? *Acta Pharm Sin B.* 2022 Jul;12(7):3049-3062. doi:
400 10.1016/j.apsb.2022.02.002.

401

402 25. Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in
403 cancer treatment. *Am J Transl Res.* 2014 Jan 15;6(2):114-8.

404

405 26. Marshall LJ, Bailey J, Cassotta M, Herrmann K, Pistollato F. Poor Translatability of
406 Biomedical Research Using Animals - A Narrative Review. *Altern Lab Anim.* 2023
407 Mar;51(2):102-135. doi: 10.1177/02611929231157756.

408

409 27. Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise. *Gerontologist.* 2015
410 Dec;55(6):901-11. doi: 10.1093/geront/gnv130. Epub 2015 Nov 10. PMID: 26561272;
411 PMCID: PMC4861644.

412

413 28. Braveman P, Gottlieb L. The social determinants of health: it's time to consider the causes
414 of the causes. *Public Health Rep.* 2014 Jan-Feb;129 Suppl 2(Suppl 2):19-31. doi:
415 10.1177/00333549141291S206. PMID: 24385661; PMCID: PMC3863696.

416

417 29. Hahn RA. What is a social determinant of health? Back to basics. *J Public Health Res.* 2021
418 Jun 23;10(4):2324. doi: 10.4081/jphr.2021.2324. PMID: 34162174; PMCID:
419 PMC8672311.

420

421 30. Armstrong GL, Conn LA, Pinner RW. Trends in Infectious Disease Mortality in the United
422 States During the 20th Century. *JAMA.* 1999;281(1):61–66. doi:10.1001/jama.281.1.61

423

424 31. Crimmins, E.M. Recent trends and increasing differences in life expectancy present
425 opportunities for multidisciplinary research on aging. *Nat Aging* 1, 12–13 (2021).
426 <https://doi.org/10.1038/s43587-020-00016-0>

427

428 32. Conti F, Abnave P, Ghigo E. Unconventional animal models: a booster for new advances
429 in host-pathogen interactions. *Front Cell Infect Microbiol.* 2014 Oct 8;4:142. doi:
430 10.3389/fcimb.2014.00142.

431

432 33. Beck AP, Meyerholz DK. Evolving challenges to model human diseases for translational
433 research. *Cell Tissue Res.* 2020 May;380(2):305-311. doi: 10.1007/s00441-019-03134-3.

434

435 34. Stirm M, Klymiuk N, Nagashima H, Kupatt C, Wolf E. Pig models for translational
436 Duchenne muscular dystrophy research. *Trends Mol Med.* 2024 May 14:S1471-
437 4914(24)00101-1. doi: 10.1016/j.molmed.2024.04.013.

438

439 35. J.P. Binet, A. Carpentier, J. Langlois, C. Duran, P. Colvez. Implantation of heterogenic
440 valves in the treatment of aortic cardiopathies *C. R. Acad. Sci. Hebd. Seances Acad. Sci.*
441 D., 261 (1965), pp. 5733-5734

442

443 36. Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody
444 therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac
445 xenograft. *Nat Commun.* 2016;7:11138. doi: 10.1038/ncomms11138.

446

447 37. Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac
448 xenotransplantation. *Nature.* 2018;564:430–433. doi: 10.1038/s41586-018-0765-z.

449

450 38. Finesso G, Willis E, Tarrant JC, et al. Spontaneous early-onset neurodegeneration in the
451 brainstem and spinal cord of NSG, NOG, and NXG mice. *Veterinary Pathology.*
452 2023;60(3):374-383. doi:10.1177/03009858231151403

453

454 39. US Department of Health and Human Services. Office of Disease Prevention and Health
455 Promotion. <https://health.gov/healthypeople/priority-areas/social-determinants-health>

456

457 40. Elwert F, Christakis NA. The effect of widowhood on mortality by the causes of death of
458 both spouses. *Am J Public Health.* 2008;98(11):2092–2098.
459 doi:10.2105/AJPH.2007.114348

460

461 41. Seiler A, von Känel R, Slavich GM. The Psychobiology of Bereavement and Health: A
462 Conceptual Review From the Perspective of Social Signal Transduction Theory of
463 Depression. *Front Psychiatry.* 2020 Dec 3;11:565239. doi: 10.3389/fpsyg.2020.565239.

464

465 42. Ford CL, Young LJ. Harnessing the healing power of love. *Trends Mol Med.* 2021
466 Sep;27(9):833-834. doi: 10.1016/j.molmed.2021.07.010.

467

468 43. Naderi A, Soltanmaohammadi E, Kaza V, Barlow S, Chatzistamou I, Kiaris H. Persistent
469 effects of pair bonding in lung cancer cell growth in monogamous *Peromyscus californicus*.
470 *Elife.* 2021 May 7;10:e64711. doi: 10.7554/eLife.64711. PMID: 33960931

471

472 44. Gustison ML, Muñoz-Castañeda R, Osten P, Phelps SM. Sexual coordination in a whole-
473 brain map of prairie vole pair bonding. *Elife.* 2024 Feb 21;12:RP87029. doi:
474 10.7554/eLife.87029. PMID: 38381037; PMCID: PMC10942618.

475

476 45. Naderi A, Liles K, Burns T, Chavez B, Huynh-Dam K-T, KIARIS H. Pair bonding and
477 disruption impact lung transcriptome in monogamous *Peromyscus californicus*. *BMC*
478 *Genomics*. 2023. DOI 10.1186/s12864-023-09873-6.

479

480 46. Osborne CK, Boldt DH & Estrada P 1984 Human breast cancer cell cycle synchronization
481 by estrogens and antiestrogens in culture. *Cancer Research* 44 1433–1439.

482

483 47. Gerard C, Gallez A, Dubois C, Drion P, Delahaut P, Quertermont E, Noel A & Pequeux C
484 2017 Accurate control of 17beta-estradiol long-term release increases reliability and
485 reproducibility of preclinical animal studies. *Journal of Mammary Gland Biology and*
486 *Neoplasia* 22 1–11. (<https://doi.org/10.1007/s10911-016-9368-1>)

487

488 48. Özdemir BC, Sfomos G, Brisken C. The challenges of modeling hormone receptor-
489 positive breast cancer in mice. *Endocr Relat Cancer*. 2018 May;25(5):R319-R330. doi:
490 10.1530/ERC-18-0063.

491

492 49. Anderson WF, Chatterjee N, Ershler WB & Brawley OW 2002 Estrogen receptor breast
493 cancer phenotypes in the surveillance, epidemiology, and end results database. *Breast*
494 *Cancer Research and Treatment* 76 27–36. (<https://doi.org/10.1023/A:1020299707510>)

495

496 50. Evers, B., Jonkers, J. Mouse models of BRCA1 and BRCA2 deficiency: past lessons,
497 current understanding and future prospects. *Oncogene* 25, 5885–5897 (2006).
498 <https://doi.org/10.1038/sj.onc.1209871>

499

500 51. Guha T, Malkin D. Inherited TP53 Mutations and the Li-Fraumeni Syndrome. *Cold Spring*
501 *Harb Perspect Med*. 2017 Apr 3;7(4):a026187. doi: 10.1101/cshperspect.a026187.

502

503 52. Fischer M. Mice Are Not Humans: The Case of p53. *Trends Cancer*. 2021 Jan;7(1):12-14.
504 doi: 10.1016/j.trecan.2020.08.007.

505

506 53. Börgeson E, Boucher J, Hagberg CE. Of mice and men: Pinpointing species differences in
507 adipose tissue biology. *Front Cell Dev Biol*. 2022 Sep 15;10:1003118. doi:
508 10.3389/fcell.2022.1003118.

509

510 54. Kodamullil AT, Iyappan A, Karki R, Madan S, Younesi E, Hofmann-Apitius M. Of Mice
511 and Men: Comparative Analysis of Neuro-Inflammatory Mechanisms in Human and
512 Mouse Using Cause-and-Effect Models. *J Alzheimers Dis.* 2017;59(3):1045-1055. doi:
513 10.3233/JAD-170255

514 55. Eyal G, Verhoog MB, Testa-Silva G, Deitcher Y, Lodder JC, Benavides-Piccione R,
515 Morales J, DeFelipe J, de Kock CP, Mansvelder HD, Segev I. Unique membrane properties
516 and enhanced signal processing in human neocortical neurons. *Elife.* 2016 Oct 6;5:e16553.
517 doi: 10.7554/Elife.16553.

518 56. Kumari R, Feuer G, Bourré L. Humanized Mouse Models for Immuno-oncology Drug
519 Discovery. *Curr Protoc.* 2023 Aug;3(8):e852. doi: 10.1002/cpz1.852.

520 57. Brendel C, Rio P, Verhoeven E. Humanized mice are precious tools for evaluation of
521 hematopoietic gene therapies and preclinical modeling to move towards a clinical trial.
522 *Biochem Pharmacol.* 2020 Apr;174:113711. doi: 10.1016/j.bcp.2019.113711.

523 58. Steve D M Brown, Advances in mouse genetics for the study of human disease, *Human*
524 *Molecular Genetics*, Volume 30, Issue R2, 15 October 2021, Pages R274–R284,
525 <https://doi.org/10.1093/hmg/ddab153>

526 59. Breschi A, Gingeras TR, Guigó R. Comparative transcriptomics in human and mouse. *Nat*
527 *Rev Genet.* 2017 Jul;18(7):425-440. doi: 10.1038/nrg.2017.19.

528 60. Ha D, Kim D, Kim I, Oh Y, Kong J, Han SK, Kim S. Evolutionary rewiring of regulatory
529 networks contributes to phenotypic differences between human and mouse orthologous
530 genes. *Nucleic Acids Res.* 2022 Feb 28;50(4):1849-1863. doi: 10.1093/nar/gkac050.

531 61. Zhu, F., Nair, R.R., Fisher, E.M.C. et al. Humanising the mouse genome piece by piece.
532 *Nat Commun* 10, 1845 (2019). <https://doi.org/10.1038/s41467-019-09716-7>.

533 62. Porcu E, Sadler MC, Lepik K, Auwerx C, Wood AR, Weihs A, Sleiman MSB, Ribeiro DM,
534 Bandinelli S, Tanaka T, Nauck M, Völker U, Delaneau O, Metspalu A, Teumer A, Frayling
535 T, Santoni FA, Reymond A, Kutalik Z. Differentially expressed genes reflect disease-

536

537

538

539

540

541

542

543

544 induced rather than disease-causing changes in the transcriptome. *Nat Commun.* 2021 Sep
545 24;12(1):5647. doi: 10.1038/s41467-021-25805-y.

546

547 63. Taylor JG, Choi EH, Foster CB, Chanock SJ. Using genetic variation to study human
548 disease. *Trends Mol Med.* 2001 Nov;7(11):507-12. doi: 10.1016/s1471-4914(01)02183-9.

549

550 64. Lagasse E, Levin M. Future medicine: from molecular pathways to the collective
551 intelligence of the body. *Trends Mol Med.* 2023 Sep;29(9):687-710. doi:
552 10.1016/j.molmed.2023.06.007.

553

554 65. Heilmann KP, Leidinger MR, Allen PD, Zabner J, McCray PB Jr, Ostegard LS, Stoltz
555 DA, Randak CO, Welsh MJ. Airway acidification initiates host defense abnormalities in
556 cystic fibrosis mice. *Science.* 2016 Jan 29;351(6272):503-7. doi:
557 10.1126/science.aad5589.

558

559 66. Åhlgren, J., Voikar, V. Experiments done in Black-6 mice: what does it mean? *Lab Anim*
560 48, 171–180 (2019). <https://doi.org/10.1038/s41684-019-0288-8>

561

562 67. Chebib, J., Jackson, B.C., López-Cortegano, E. et al. Inbred lab mice are not isogenic:
563 genetic variation within inbred strains used to infer the mutation rate per nucleotide site.
564 *Heredity* 126, 107–116 (2021). <https://doi.org/10.1038/s41437-020-00361-1>

565

566 68. Tuttle AH, Philip VM, Chesler EJ, Mogil JS. Comparing phenotypic variation between
567 inbred and outbred mice. *Nat Methods.* 2018 Dec;15(12):994-996. doi: 10.1038/s41592-
568 018-0224-7.

569

570 69. Birchler JA, Yao H, Chudalayandi S. Unraveling the genetic basis of hybrid vigor. *Proc*
571 *Natl Acad Sci U S A.* 2006 Aug 29;103(35):12957-8. doi: 10.1073/pnas.0605627103. *Epub*
572 2006 Aug 22. PMID: 16938847; PMCID: PMC1559732.

573

574 70. Sloin HE, Bikovski L, Levi A, Amber-Vitos O, Katz T, Spivak L, Someck S, Gattegno R,
575 Sivroni S, Sjulson L, Stark E. Hybrid Offspring of C57BL/6J Mice Exhibit Improved

576 Properties for Neurobehavioral Research. *eNeuro*. 2022 Aug 17;9(4):ENEURO.0221-
577 22.2022. doi: 10.1523/ENEURO.0221-22.2022

578

579 71. Herbst, R.H., Bar-Zvi, D., Reikhav, S. et al. Heterosis as a consequence of regulatory
580 incompatibility. *BMC Biol* 15, 38 (2017). <https://doi.org/10.1186/s12915-017-0373-7>

581

582 72. Chatzistamou I, Farmaki E, Kiaris H. Outbred animal models may illuminate unforeseen
583 aspects of tumorigenesis. *Trends in Cancer*. 2018 Jul;4(7):468-471. doi:
584 10.1016/j.trecan.2018.05.004.

585

586 73. Hackett J, Gibson H, Frelinger J, Buntzman A. Using the Collaborative Cross and Diversity
587 Outbred Mice in Immunology. *Curr Protoc*. 2022 Sep;2(9):e547. doi: 10.1002/cpz1.547.

588

589 74. Saul MC, Philip VM, Reinholdt LG; Center for Systems Neurogenetics of Addiction;
590 Chesler EJ. High-Diversity Mouse Populations for Complex Traits. *Trends Genet*. 2019
591 Jul;35(7):501-514. doi: 10.1016/j.tig.2019.04.003.

592

593 75. Ingber DE. Human organs-on-chips for disease modelling, drug development and
594 personalized medicine. *Nat Rev Genet*. 2022 Aug;23(8):467-491. doi: 10.1038/s41576-
595 022-00466-9.

596

597 76. Ewart L, Apostolou A, Briggs SA, Carman CV, Chaff JT, Heng AR, Jadalannagari S,
598 Janardhanan J, Jang KJ, Joshipura SR, Kadam MM, Kanellias M, Kujala VJ, Kulkarni G,
599 Le CY, Lucchesi C, Manatakis DV, Maniar KK, Quinn ME, Ravan JS, Rizos AC, Sauld
600 JFK, Sliz JD, Tien-Street W, Trinidad DR, Velez J, Wendell M, Irrechukwu O,
601 Mahalingaiah PK, Ingber DE, Scannell JW, Levner D. Performance assessment and
602 economic analysis of a human Liver-Chip for predictive toxicology. *Commun Med (Lond)*.
603 2022 Dec 6;2(1):154. doi: 10.1038/s43856-022-00209-1. Erratum in: *Commun Med
604 (Lond)*. 2023 Jan 12;3(1):7. doi: 10.1038/s43856-023-00235-7. Erratum in: *Commun Med
605 (Lond)*. 2023 Feb 2;3(1):16. doi: 10.1038/s43856-023-00249-1.

606

607 77. Pound P, Ritskes-Hoitinga M. Is it possible to overcome issues of external validity in
608 preclinical animal research? Why most animal models are bound to fail. *J Transl Med*. 2018
609 Nov 7;16(1):304. doi: 10.1186/s12967-018-1678-1.

610 78. Frost, R. (2015) 'The road not taken', in Swank, L. (ed.) *An introduction to American*
611 *poetry*. New York: Viking Press, pp. 48-49.

612 79. Carleton, M.D., Musser, G.G., 2005. Order Rodentia. In: Wilson, D.E., Reeder, D.M.
613 (Eds.), *Mammal Species of the World*, A., Taxonomic, Geographic Reference, Johns
614 Hopkins University, Press, Baltimore, pp. 745–752

615 80. Delaney MA, Treuting PM, Rothenburger JL. Rodentia. *Pathology of Wildlife and Zoo*
616 *Animals*. 2018:499–515. doi: 10.1016/B978-0-12-805306-5.00020-1.

617 81. Guastella, A.J., Boulton, K.A., Whitehouse, A.J.O. et al. The effect of oxytocin nasal spray
618 on social interaction in young children with autism: a randomized clinical trial. *Mol*
619 *Psychiatry* 28, 834–842 (2023). <https://doi.org/10.1038/s41380-022-01845-8>

620 82. Sikich L, Kolevzon A, King BH, McDougle CJ, Sanders KB, Kim SJ, Spanos M,
621 Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Witters Cundiff A,
622 Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Shuffrey LC, Alderman C,
623 Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Siecinski SK, Giamberardino
624 SN, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, Gregory SG, Veenstra-
625 VanderWeele J. Intranasal Oxytocin in Children and Adolescents with Autism Spectrum
626 Disorder. *N Engl J Med*. 2021 Oct 14;385(16):1462-1473. doi: 10.1056/NEJMoa2103583.

627 628 629 630 631 632 633 634 635

636 **Glossary**

637

638 **Deductive reasoning:** it indicates the methodological approach in science by which general
639 observations are used to draw specific conclusions. It is the process of going from the general to
640 the specific.

641

642 **Drug attrition rate:** it reflects the portion of the drugs that enter clinical trial testing but fail. It is
643 estimated that is above 90% and for cancer drugs it is even higher.

644

645 **Hybrid vigor (or heterosis):** the enhanced performance and increased fitness that is recorded in
646 hybrid strains.

647

648 **Inbred strains:** strains that are derived by successive brother-sister mating that results in
649 homozygosity in all genetic characters. Variation in different traits is lower in inbred strains.

650

651 **Inductive reasoning:** it indicates the methodological approach in science by which specific
652 observations are used to support generalized conclusions. It is the process of going from the
653 specific to the general.

654

655 **Social determinants of health:** an umbrella term covering all environmental conditions at which
656 people are born, live, learn, work, play, worship, and age
657 (<https://health.gov/healthypeople/priority-areas/social-determinants-health>) (39)

658

659 **Traditional models:** animal species and strains that are commonly used in biomedical research.
660 *Mus musculus* (laboratory mouse) is the most widely used mammal in health sciences research.

661

662

663

664

665

666

667

668

669 **Box 1. A wide spectrum of species can be used as research models.**

670

671 To get some appreciation of the breadth of species that can be used as models and how limiting
672 the use of a single species can be, we should consider the following: *Mus musculus* is only one of
673 more than 2,000 species of the order *Rodentia* (rodents) which includes 29 families and 468 genera
674 [79,80]. Rodents vary in size and can range from a few grams (pygmy mice) to (capybaras). They
675 have been adapted for living in diverse conditions and therefore their physiology and molecular
676 profiles differ accordingly. Rats and hamsters also belong to this group of mammals. Other
677 mammals that occasionally have been used in research studies as models are cats (Order:
678 Carnivora, Family: Felidae), dogs (Order: Carnivora; Family: Canidae), pigs (Order: Artiodactyla,
679 Family: Suidae), and others. Each of these species have their own characteristics that make them
680 potentially suitable for the study of different conditions. Until recently, the use of these species in
681 research was limited by the current state of the art of the existing knowledge. Today's advances
682 can readily generate background information and methodologies to rapidly enable experimental
683 studies.

684

685 **Clinician's Corner.** Oxytocin is a neuropeptide with an important role in the regulation of social
686 interactions and connectedness. Studies in monogamous rodents (voles) were instrumental in our
687 understanding of this activity of oxytocin in the context of pair bonding and the regulation of
688 monogamous behavior. This information contributed to the initiation of clinical trials testing the
689 beneficial effects of oxytocin in autism with promising results shown in some instances [81,82].