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Abstract 14 

 15 

 Historical reasons resulted in almost exclusive use of a few species, most prominently Mus 16 

musculus, in becoming the mainstream models of biomedical research. This selection was not 17 

based on Mus’ distinctive relevance to human disease but rather to the pre-existing availability of 18 

resources and tools for the species that were used as models, that has enabled their adoption for 19 

research in health sciences. Unless the utilization and range of nontraditional research models 20 

expand considerably, progress in biomedical research will remain restricted within the trajectory 21 

that has been set by the existing models, and of their ability to provide clinically relevant 22 

information. 23 

 24 

 25 

  26 
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Introduction 27 

 28 

  Biomedical research is dominated by studies involving limited species only, that are 29 

typically recognized as the traditional animal models (see Glossary). Mus musculus possesses the 30 

lion’s share in this utility for reasons that are primarily historical and coincidental. For example, 31 

in 2018 according to the European commission, out of the 7,938,064 (48.9%) animals used totally 32 

in research and testing, 3,879,691 (48.9%) were mice, followed by 1,914,039 (23.1%) fish and 33 

665,155 (8.3%) rats1. Early scientific advances have identified Mus as a suitable biological 34 

research model and soon, its use expanded to all fields of biomedical research because tools and 35 

resources were becoming increasingly available. Despite however its paramount contribution in 36 

the study of human disease, Mus possesses characteristics that cast some doubts regarding its 37 

ability to deliver clinically relevant information [1].  38 

The aim of this article is to discuss some of these limitations and suggest that the inclusion 39 

of additional animal models, that today are considered as nontraditional, can be highly beneficial. 40 

With this suggestion, the contribution of Mus in biomedical sciences should not be understated 41 

since its utility as a model has shaped the biomedical field. Nor that the nontraditional models do 42 

not have limitations, such as their adaptation and usage in laboratory conditions, the lack of 43 

technologies and recourses that operate as a burden during experimentation, and unknown 44 

characteristics in their physiology and molecular profiles that can disqualify them as models. 45 

Nonetheless, today’s progress in biomedical technologies render their adoption feasible or at least, 46 

worthy of exploring. This is also fully aligned with the recognition of personalized approaches as 47 

the direction of choice in biomedical practice. 48 

 49 

Scientific Tradition and Mus as the model of choice in biomedicine 50 

 51 

Modeling is essential in natural sciences including biomedicine, a fact that was epitomized 52 

by August Krough in his famous principle that stated that “For many problems there is an animal 53 

on which it can be most conveniently studied” [2]. There is a difference however between the 54 

biomedical sciences and the other natural sciences, on how their models were introduced and used: 55 

In other natural sciences the models are created by the experimentalists and reflect their current 56 

 
1 https://webgate.ec.europa.eu/envdataportal/content/alures/section1_number-of-animals.html 
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technological capabilities. In biomedicine however, the models have (biologically) evolved 57 

independently of the experimentalists and of their needs and have only been selected and recruited 58 

by them [3]. This creates limitations that reflect to biomedical research and its ability to produce 59 

clinically relevant information. Early advances in the fields of genetics, physiology and 60 

biochemistry, that already utilized mice, established a scientific tradition by generating tools and 61 

strategies that were readily applicable in health sciences research. From that point onwards, Mus 62 

is being used as the gold standard for experimental studies in biomedicine, not because of their 63 

unique relevance to human pathology, but rather because of historical and practical reasons. Tools 64 

and comparative data were becoming increasingly available, sustaining this choice of model and 65 

enabling the research enterprise in its entirety to proceed. Since about the 1980s, mice have 66 

represented the mainstream choice for securing funding and for publishing, in alignment with the 67 

overarching scientific standards and expectations. This path applies even to research in infectious 68 

pathologies at which the species-specificity of the host presents an objective obstacle. During the 69 

COVID-19 pandemic for example, an immediate response in developing an animal model was to 70 

sensitize Mus to SARS-CoV-2 infection by introducing hACE2 expression, to overcome the 71 

natural resistance of mice to the virus [4]. Analogous approaches are being employed for other 72 

infectious diseases, such as for HIV-associated pathologies at which mice are modified at the 73 

genetic and cellular level to be infectable by the human virus or the simian immunodeficiency 74 

virus (SIV) that can cause similar pathologies [5,6]. A dimension that needs to be considered and 75 

despite the limitations mandates the use of rodents, as compared to primates that get infected with 76 

SIV or cats that get infected with the feline immunodeficiency animals, is related to the ethical 77 

limitations in using them in research. In addition, practical limitations regarding animal size and 78 

life cycles also pose restrictions. 79 

Notwithstanding the necessity at various instances, of following it, this trajectory, today, 80 

emerges as an oxymoron because the whole scientific, and indeed the cultural landscape of 81 

contemporary research recognizes the need for the advancement of personalized medicines and 82 

the focus on the individuality of patients [7]. Thus, at a time at which the aspired path of biomedical 83 

progress involves appreciation and exploitation of the specific differences of individual people and 84 

how these may impact their predisposition to disease and the efficiency of treatments, the 85 

experimental research findings on which such strategies are based, rely on limited models of 86 

genetic clones only. Unavoidably, from that perspective, opposing dynamics are sustained within 87 
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the ongoing research efforts, by which the preclinical results that are generated by using the 88 

traditional research models, produce information and knowledge that is seeking validation and 89 

application in genetically diverse human populations [8-10]. Furthermore, the quest for uniformity 90 

and the adherence to optimal - and thus stable – conditions of the conventional experimental setups, 91 

grows in expense of integration of the multitude of conditions that can impact human populations 92 

and their responses. For example, these might include social interactions, seasonality, exposure to 93 

a combination of diverse environmental stimuli, and everything pertinent to the widely perceived 94 

diversity in contexts [11-15].  95 

 96 

Animal modeling and efficacy of the biomedical research enterprise 97 

 98 

These dynamics are very likely to cause failures, the extent of which is hard to appreciate. 99 

Nonetheless, we can speculate on their extent, considering the effort and the resources that are 100 

allocated towards preclinical studies, and the small fraction of which ultimately result in clinically 101 

relevant applications or drugs. This is reflected in the high attrition rate during drug development 102 

that exceeds 90% [16-24]. The inadequacy of the existing models for preclinical research is 103 

recognized, in addition to the limited value of the oversimplified in vitro methodologies (25,26). 104 

Furthermore, indirect evidence at the population level for the suboptimal efficiency of this path 105 

can also be derived by the simple observation that life expectancy increased during the last 106 

decades, but the major contributors for this success were not the translation of preclinical research 107 

findings to human populations [27]. It was primarily due to changes in the social determinants of 108 

health and the progress in the management of infectious diseases [28-31]. Ironically, none of these 109 

were linked directly to, or had as a pre-requisite, systematic preclinical studies involving traditional 110 

animal models. Advances in social health determinants are related to the sociopolitical and 111 

economic progress that have improved hygiene and have rendered health care and preventive 112 

medicine accessible to an increasingly high fraction of the population. A series of animal studies 113 

exist that corroborate these advances but, in their majority, they are just confirmatory instead of 114 

drivers of the change. In infectious diseases, due to the specificity of most pathogens for their 115 

human hosts, progress does not depend on studies involving traditional animal models (32). 116 

Animal studies again exist that finetune the ongoing practices and illuminate the underlying 117 

mechanisms, but progress in this area is not dependent on animal studies per se.  118 
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Yet, progress in our understanding of the fundamental mechanisms of disease today is 119 

unequivocal, and so are our capabilities towards this direction, which further underscores the 120 

disparity in the translation of research findings into clinically relevant and directly applicable 121 

information. The acknowledgement of this limitation bears inherently on the notion that the 122 

mainstream efforts, that in principle rely on traditional animal models may be irrelevant or have 123 

minimal value for human health, especially when considering cost-efficacy. 124 

 125 

A tradition in modeling and its intrinsic limitations 126 

 127 

Two main reasons that are intrinsically linked to the models used to acquire scientific 128 

information likely account for this limitation in translational relevance. The first limitation relates 129 

to the species identity of the models that generates positive dynamics in their usage. Based mainly 130 

on reasons grounded in scientific tradition rather than a priori justification, studies typically use 131 

animals to address questions that may not be highly relevant, scientifically or clinically. By being 132 

traditional and to fulfil their function as the widely used gold standard, they mandate additional 133 

investment towards them, but they remain limited in their capacities and their ability to model 134 

human pathologies, and in addressing fundamental basic questions or needs (33). Various 135 

examples can illustrate this notion. Pigs receive increased attention in cariology research because 136 

they demonstrate anatomical similarity in structure and size with the human heart. As such, porcine 137 

models offer valuable information that mice cannot [34]. Eventually, pigs became used as a source 138 

for heart valve transplants a process that is continuously being improved. A caveat to this utility is 139 

that the lifespan of pigs is only 20 years, which is much shorter than the anticipated life expectancy 140 

of the patients undergoing the procedure [35-37]. For similar reasons relevant to scientific 141 

tradition, laboratory mice are being used for studies in aging and neurodegenerative diseases, 142 

despite the fact that they have a lifespan of only up to 3 years or less and have intrinsic resistance 143 

to age-dependent neuronal degeneration (38).  144 

Mice are now being used for the study of nearly every pathology. This is a time when 145 

human population studies and the National Institutes of Health (NIH) increasingly appreciate the 146 

significance of emotional health and of social interactions in health outcomes (39). Because they 147 

are polygamous, laboratory mice exhibit only limited relevance on the impact of social 148 

connectedness in health outcomes. Mice do not develop pair bonds and do not exhibit paternal 149 
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care, and thus, the impact of loneliness is contextually very different from the chronic pathologies 150 

in humans that are exacerbated after the loss of a partner and they are intended to model [40-42]. 151 

Noteworthy, small rodents exhibiting monogamous behavior do exist, such as voles (genus 152 

Microtus) and deer mice (genus Peromyscus), that can be used to investigate  the effects of social 153 

interactions in the study of various pathologies [43-45]. Yet, such non-traditional models are being 154 

used on a limited capacity (e.g. to study social interactions), and not being used to their full 155 

potential to study social interactions as modifiers of the outcomes of different pathologies. The 156 

limited utility of these models in the study of human disease is primarily related to the lack of 157 

specialized reagents and tools, and the skepticism that surrounds the clinical relevance of disease-158 

related information that is produced by non-mainstream research models. Both reasons relate to 159 

the historical factors mentioned earlier.  160 

We can only speculate what the potential impact of such historical inertia would have 161 

produced for biomedical sciences and specifically in the study of social interactions and their 162 

impacts on disease, if additional species like one or more of the monogamous rodents had received 163 

similar investment in tool development and attention as was dedicated to Mus (Clinician’s corner). 164 

In this case, technology and baseline information would have accumulated such that researchers 165 

would have more diverse tools upon which they could rely, establishing a more direct ability to 166 

make biologically relevant comparisons to human disease, disorders, and health and wellbeing. In 167 

addition, the scientific community, investigators, and funding agencies, would have been more 168 

receptive to their utility under such conditions and settings. It is hard to imagine the lost progress 169 

for whole areas of research like preclinical drug testing and drug attrition.  170 

Mice are also being used for the study of many cancers including breast cancer [46,47]. 171 

Yet, most human cancers of the breast are hormone-sensitive, and mice are required to receive 172 

exogenous estrogens, resulting in estrogen levels comparable to those occurring before 173 

menopause, albeit the disease is more common in postmenopausal women [48,49]. If animal 174 

models that could sustain hormone-sensitive breast cancer growth had been identified and used, it 175 

is likely that estrogen supplementation commonly used today would be seen as an irrational choice. 176 

The limitations of Mus in breast cancer research also becomes apparent by the low penetrance and 177 

the long latency of tumorigenesis in BRCA-mutant mice, despite these genes’ central role in breast 178 

cancer in women [50]. Again in the cancer field, p53 germline mutations in humans - the most 179 
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common genetic defect of human cancers -, in humans are associated with the multicancer Li-180 

Fraumeni syndrome while in mice they cause mainly lymphomas [51,52].  181 

Cancer and behavioral sciences represent only two areas at which mice have limited ability 182 

to model human pathology and physiology. Analogous examples can be identified in the field of 183 

metabolism (53), immunology (54), neurobiology (55), and others. 184 

Significant effort and resources are being continuously invested in adapting Mus  towards 185 

pathologies of interest. For example mice have undergone humanization to mimic our immune 186 

system, or genetic modification, to generate loss- or gain-of-function mutants that develop human-187 

like pathologies that are commonly found in humans and in humans and are modified by 188 

quantitative changes in gene expression [56-64]. Nonetheless, their similarity to human conditions 189 

and processes remains frequently elusive, and therefore, their ability to provide clinically 190 

meaningful results is tenuous. More importantly, by having an established tradition established 191 

that is restricted to the use of Mus, systematic efforts to identify naturally existing models for 192 

human pathologies are lagging, and the adherence to mainstream models remains the option of 193 

choice remains the option of choice out of convenience or lack of vision.  194 

It should be acknowledged that at various instances the physiological differences between 195 

mice and humans, instead of a burden can be advantageous, and has fueled research that assisted 196 

in our better understanding of human disease. For example, the resistance of the cystic fibrosis 197 

gene-deficient mice to the disease as opposed to humans and pigs, prompted comparative biology 198 

studies and led to the identification of the adenosine triphosphatase gene as a therapeutic target 199 

(65). This example however, instead of being treated as a demonstration that mice may become 200 

eventually informative for all human conditions it should rather be seen as an example that 201 

illustrating the power of comparative biology and that the inclusion of diverse models is beneficial.   202 

 203 

The second limitation is related to the genetic make-up of these models. In order to satisfy 204 

the demand for adherence to a uniform baseline for studies performed in different environments, 205 

traditional models require high genetic resemblance to each other, which can only be satisfied by 206 

using inbred strains. Inbred strains are the artificial products of selective breeding, which are 207 

considered identical living entities despite they continue to accumulate mutations, are not isogenic, 208 

and even their vendor may account for potential differences among them [66-68]. They are also 209 

described as wild type in the context of the experimental studies, albeit they do not exist in nature, 210 
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and their ability to survive in the wild is arguable. Yet, their phenotypes, again within the context 211 

of experimental studies, are thought to reflect the perceived normal, towards which the results of 212 

genetic, dietary, behavioral or other manipulations are compared. Their inbred nature, nonetheless, 213 

despite its advantages in mechanistic studies, contrasts with the natural human condition, both at 214 

the level of the individual patient that is highly heterozygous and at the level of the populations 215 

that are extremely genetically diverse. This happens while the concept of hybrid vigor or heterosis 216 

has been long known since Darwin [69]. And yet, the consequences of homogeneity in preclinical 217 

drug testing remain elusive [70,71]. Thus, while accurate information can be derived by preclinical 218 

studies, this information remains primarily applicable to the specific strain of mouse and the 219 

conditions under which it has been performed. Indeed, the relevance to humans and to their 220 

populations is unknown or speculative at best [72]. Partially this limitation was addressed by the 221 

introduction of genetically diversified mouse populations, yet these efforts are still restricted by 222 

limitations pertinent to Mus’ physiology and the characteristics of the usually inbred specific 223 

mouse strains that have been used [73,74].  224 

 225 

Seeking paradigm shifts by reappraisal of the research investment portfolio 226 

 227 

Sound reasons for the historic availability of resources and technologies have established 228 

the specific trajectory for the process of scientific discovery. This has framed questions and 229 

research efforts and been limited by the study species and, therefore, has been limited by their 230 

specific characteristics. Thus, the information that can be obtained for biomedical science is only 231 

as good as the experimental system used to retrieve it. Today, however, this can change. Progress 232 

in genomics and high-throughput molecular technologies facilitate paradigm shifts in health 233 

sciences because they enable recruitment and adoption of a large array of organisms that can be 234 

used to model diseases and treatments (Box 1). Manipulating the genome of a mouse was once 235 

time-consuming, expensive, and highly specialized, and the pioneering methods were limited by 236 

stochastic problems in genome assembly and annotation. Furthermore, such work could only be 237 

done in mice for which the specific technology had been developed. Today this process is very 238 

rapid, cost efficient, precise, and can be applied readily to a wide range of organisms with high 239 

efficiency. Likewise, the progress in sequencing capabilities for high resolution genomes 240 

supported by advances in bioinformatic analyses, enables large scale, cost-effective and rapid 241 
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progress for several species of diverse and unknown genetic make-ups. The significance of using 242 

more than a single model in research is recognized by the fact that in drug development, safety 243 

studies frequently involve more than one model. Other approaches that alone or in combination 244 

with the non-traditional models possess great promise for breakthroughs involve innovative 245 

complex in vitro models (e.g., organoids, (multi)organ-on-chips, microphysiological systems) as 246 

well as in silico technologies (AI, machine learning, deep learning, digital twin technologies, in 247 

silico trials) that have been used successfully to support drug discovery, development and testing 248 

[75-77]. 249 

Despite this progress and the availability of such technologies, traditional models remain 250 

overwhelmingly preferred, notwithstanding their widely acknowledged limitations. From this 251 

perspective, instead of seeking new models, the improvement of the existing models is preferred. 252 

This can be attributed to the skepticism among investigators, reviewers and funding agencies 253 

against the non-mainstream outbred models. This skepticism is partly due to the perceived inability 254 

of such organisms to provide high resolution information of analytical and mechanistic value, 255 

which ironically is attributed to their diverse nature and the comparatively limited baseline 256 

information and tools that are currently available. Reviewers in scientific journals and panel 257 

members in study sections for funding agencies frequently anticipate information that is analogous 258 

in its detail to that of Mus, and question the informative value of studies that leverage novel systems 259 

that Mus can provide. And yet, the biological relevance of Mus is dogmatically unquestioned. This 260 

reflects the established scientific culture that remains highly analytical and inductive, despite the 261 

appreciated significance of synthetic approaches. To that end, investment in research efforts that 262 

are deductive, even if they are more “crude” in their nature, or involve “obscure” species, is rarely 263 

preferred. Such species, for example may develop obesity, cardiovascular disease, or cancer more 264 

similarly to humans, but with restricted ability dissecting the underlying process because tools 265 

such as specific antibodies do not exist yet. Thus, the investment towards the acquisition of more 266 

detailed information by using traditional models is prioritized and this choice remains more 267 

appealing, both career- and funding-wise..  268 

 269 

Concluding remarks 270 

 271 
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The advocacy for nontraditional models should not be perceived as an attempt to diminish 272 

the paramount contribution of Mus in biosciences nor as an effort to ignore the fact that the whole 273 

biomedical field has been shaped by this species at an extent that it is practically impossible to 274 

appreciate the state of progress without referring to laboratory mice. Rather, it should be seen as 275 

an endeavor to expand the basis of the models used in biosciences to perform research that 276 

increases the chances to deliver breakthroughs, and sustain the associated risks and costs. The 277 

promotion and integration of nontraditional animal models in biomedicine remains a responsibility 278 

of the major funding agencies and investigators performing the science. Investment is needed to 279 

support a culture of scientific diversification. A plausible avenue forward to achieve this, is to 280 

promote large scale screening programs by which the relevance of different animal species to 281 

various clinical conditions will be explored. The initial goal of such programs should not be to 282 

deliver mechanistic information but rather to establish pools of models with relevance to disease. 283 

This way, both the critical mass of the researchers utilizing nontraditional models will increase, 284 

and the different conditions will be studied through the lens of different models, each of which 285 

may have its own advantages and limitations. Such expansion will not proceed on the basis that 286 

such models may eventually become traditional for certain conditions. This would have defeated 287 

their purpose and would again generate dynamics that have caused potential failures related to the 288 

use of a single species, such as Mus musculus, as a model. Rather, the adoption of any animal, Mus 289 

or other non-traditional animal models, should be promoted because it may better satisfy the 290 

demand of generating scientifically important and clinically useful information by a manner that 291 

is non-incremental, possessing high risk and the prospect of high return (see Outstanding 292 

Questions).  293 

As Robert Frost (1874-1963) might have said, it is probably the time to consider taking the 294 

road not taken [78]. He lyrically described this in his homonymous poem:  295 

 296 

[…I shall be telling this with a sigh 297 

Somewhere ages and ages hence: 298 

Two roads diverged in a wood, and I— 299 

I took the one less traveled by, 300 

And that has made all the difference...] 301 

 302 
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Glossary 636 

 637 

Deductive reasoning: it indicates the methodological approach in science by which general 638 

observations are used to draw specific conclusions. It is the process of going from the general to 639 

the specific.  640 

 641 

Drug attrition rate: tt reflects the portion of the drugs that enter clinical trial testing but fail. It is 642 

estimated that is above 90% and for cancer drugs it is even higher. 643 

 644 

Hybrid vigor (or heterosis): the enhanced performance and increased fitness that is recorded in 645 

hybrid strains. 646 

 647 

Inbred strains: strains that are derived by successive brother-sister mating that results in 648 

homozygosity in all genetic characters. Variation in different traits is lower in inbred strains. 649 

 650 

Inductive reasoning: it indicates the methodological approach in science by which specific 651 

observations are used to support generalized conclusions. It is the process of going from the 652 

specific to the general.  653 

 654 

Social determinants of health: an umbrella term covering all environmental conditions at which 655 

people are born, live, learn, work, play, worship, and age  656 

(https://health.gov/healthypeople/priority-areas/social-determinants-health) (39) 657 

 658 

Traditional models: animal species and strains that are commonly used in biomedical research. 659 

Mus musculus (laboratory mouse) is the most widely used mammal in health sciences research. 660 

 661 

 662 

 663 

 664 

 665 
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 667 

 668 

Box 1. A wide spectrum of species can be used as research models. 669 

 670 

To get some appreciation of the breadth of species that can be used as models and how limiting 671 

the use of a single species can be, we should consider the following: Mus musculus is only one of 672 

more than 2,000 species of the order Rodentia (rodents) which includes 29 families and 468 genera 673 

[79,80]. Rodents vary in size and can range from a few grams (pygmy mice) to (capybaras). They 674 

have been adapted for living in diverse conditions and therefore their physiology and molecular 675 

profiles differ accordingly. Rats and hamsters also belong to this group of mammals. Other 676 

mammals that occasionally have been used in research studies as models are cats (Order: 677 

Carnivora, Family: Felidae), dogs (Order: Carnivora; Family: Canidae), pigs (Order: Artiodactyla, 678 

Family: Suidae), and others. Each of these species have their own characteristics that make them 679 

potentially suitable for the study of different conditions. Until recently, the use of these species in 680 

research was limited by the current state of the art of the existing knowledge. Today’s advances 681 

can readily generate background information and methodologies to rapidly enable experimental 682 

studies. 683 

 684 

Clinician’s Corner. Oxytocin is a neuropeptide with an important role in the regulation of social 685 

interactions and connectedness. Studies in monogamous rodents (voles) were instrumental in our 686 

understanding of this activity of oxytocin in the context of pair bonding and the regulation of 687 

monogamous behavior. This information contributed to the initiation of clinical trials testing the 688 

beneficial effects of oxytocin in autism with promising results shown in some instances [81,82].  689 


