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multiplication-intensive applications. The complexity of Artificial Intelligence (AI) models has grown
enormously in recent years. From a computer system’s perspective, ensuring the training of these large-scale
Al models within an adequate time and energy consumption has become a big concern. Matrix multiplication
is a dominant subroutine in many prevailing AI models, with an addition/multiplication-intensive attribute.
However, the data type of matrix multiplication within machine learning training typically requires real
numbers, which indicates that RNS benefits for integer applications cannot be directly gained by Al training.
The state-of-the-art RNS real-number encodings, including floating-point and fixed-point, have defects
and can be further enhanced. To transform default RNS benefits to the efficiency of large-scale Al training,
we propose a low-cost and high-accuracy RNS fixed-point representation: Single RNS Logical Partition
(S-RNS-Logic-P) representation with Scaling-down Postprocessing Multiplication (SD-Post-Mul). Moreover, we
extend the implementation details of the other two RNS fixed-point methods: Double RNS Concatenation
and S-RNS-Logic-P representation with Scaling-down Preprocessing Multiplication. We also design the archi-
tectures of these three fixed-point multipliers. In empirical experiments, our S-RNS-Logic-P representation
with SD-Post-Mul method achieves less latency and energy overhead while maintaining good accuracy.
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1 INTRODUCTION

The Residue Number System (RNS) is a data encoding strategy particularly applied in domains
such as DSP [9, 19], cryptography [10, 37], bioinformatics [14, 52], machine learning [50, 60], and
so on. The underlying principle of RNS encoding is to utilize a group of smaller bit-width numbers
(a.k.a. residues) to stand for a larger bit-width value. For example, four 8-bit integers may uniquely
identify a 31-bit or 32-bit integer. Within a valid RNS data range, each RNS number (constructed by
a group of residues) is bijectively mapped to a regular binary/decimal integer. For some arithmeti-
cal operations (addition, subtraction, and multiplication), the associated residues of different RNS
operands are processed in parallel and carry-free with neighbors. So RNS acquires a certain degree
of bit-level parallelism compared to conventional binary integer computation. Moreover, from the
system architecture standpoint, using a set of smaller bit-width integer adders and multipliers to
replace the default larger bit-width logic units should reduce the processor’s execution latency,
dynamic power, and area overhead. Essentially, not only integer applications but some arithmetic-
intensive real-number applications may also benefit from switching to RNS. For example, matrix
multiplications in CNN inference/training require real numbers and are addition/multiplication-
intensive. One compelling benefit of RNS is its low-cost integer multiplier [56, 57], which guaran-
tees that RNS becomes a competitive candidate for multiplication-intensive integer workloads. To
retain the low power and latency rewards from RNS, how to represent real numbers in RNS while
ensuring the efficiency of majority arithmetic operations is a crucial problem we should consider.

The AI models have evolved dramatically in recent years. For example, the size growth of
NLP models reaches 240x every two years [30]. The statistic from OpenAl [22] revealed that the
training complexity of Al models doubles every 3.4 months, noticeably faster than the growth
ratio of Moore’s law (24 months). The worse situation is that Moore’s law is predicted to end
in 2033 and enter the post-Moore era [12]. Training large-scale Al models may take several
months, even on supercomputers. For example, the estimated training time of GPT4 [7, 61] is
around 4-7 months [48]. Besides the high-performance requirement, low power should be another
necessary metric when exploring next-generation supercomputers. The power cap guideline of an
exascale supercomputer from DOE and DARPA is 20MW [27]. The first exascale supercomputer
Frontier [17, 58] is 22.7 MW [5], close to the proposed limit. However, for the next-generation
zettascale supercomputer (1,000 exaflops/s), we may only have an extremely limited power budget
to grow due to the restrictions of the cooling system and power supply constraints. So, we have
to delve into low-power strategies while substantially raising system performance. RNS is a
competent candidate for low power and less latency in some specific applications. For example, we
can integrate some RNS-based hardware accelerators to serve addition/multiplication-intensive
applications, such as matrix multiplications within CNN inference/training. These RNS-based Al
accelerators could be installed in the next-generation extremely heterogeneous HPC to obtain
lower power and fewer latency rewards. Besides the supercomputer, RNS-based architectures
should also be extended to the edge/IoT domain, because these devices typically have a very
limited power budget. One potential application is Federated Learning [49] on edge/IoT.

The IEEE 754 Floating-point standard [1, 3] is extensively used in most binary systems to de-
scribe real numbers. Like the IEEE 754 standard, an RNS floating-point representation could be
derived in which two distinct RNS integers represent the exponent and mantissa, respectively.
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The arithmetic operations of RNS floating-point are typically recognized as inefficient. Chiang
et al. [39] proposed relatively low-cost RNS floating-point encoding and corresponding arithmetic
algorithms. This methodology requires specific requirements, including all RNS moduli must be
odd and coprime, and each RNS value needs to maintain a redundant residue to identify parity, and
so on. However, even with the above-specialized supports, the cost of arithmetical computations
with RNS floating-point encoding remains expensive and constrains the broader usage of of the
RNS strategy. For example, the normalization procedure in Reference [39], which may contain the
right-shifting (scale down) of RNS mantissa, is intricate. A special RNS algorithm is required to sup-
port the single-digit right shifting of mantissa. To add operands with this RNS floating-point encod-
ing, we may have to repeat the RNS right-shifting algorithm multiple times to align both mantissae.
After the mantissae addition, an extra right-shifting step may be needed to normalize the sum.
The fixed-point representation is another option for defining real numbers in a computer
system. The fixed-point methods typically sacrifice range and precision to trade better per-
formance than the floating-point formats. Saokar et al. [63] utilizes the Q-format fixed-point
representation with the multiplier optimization via the Urdhava Tiryakbhyam method. Essentially,
they ensure the computation is the same as integer arithmetic calculation to reduce time, space,
and power overhead. However, their approach only focuses on Q15 and Q31 formats, which can
only represent fractional numbers instead of real numbers. Lee et al. [44] allows us to define
fixed-point data types such as fixed_point<w,e>, where w is the width, and e is the exponent
part. This fixed-point representation may process like regular integer computation. However,
operand alignment may require addition or subtraction, which is considered as extra overhead
compared with traditional integer computation. Yang et al. [70] extend a fixed-point type on the
TVM compiler. This fixed-point type essentially is a 16-bit integer and is used to replace a 32-bit
floating point to reduce the energy overhead. However, their method requires converting floating
point operands to fixed-point before the convolution and finally converting the output back
to floating point, which further increases the computational overhead. Besides overcoming the
previously mentioned limitations from References [44, 63, 70], our Scaling-down Postprocessing
Multiplication (SD-Post-Mul) method with S-RNS-Logic-P (Single RNS Logical Partition,
an RNS fixed-point encoding) has more significant benefits in terms of lower latency and less
energy costs. We will discuss this SD-Post-Mul scheme in Section 3.3. We not only ensure the
integer computational benefits but also integrate the RNS strategy to further explore the delay,
power, and silicon area benefits. Olsen introduced a high-precision fixed-point RNS multiplication
method [53] and applied this fundamental algorithm to the neural network accelerator design.
Olsen’s analysis shows that his fixed-point RNS methodology obtains 7-9 times more efficient than
a conventional binary matrix multiplier. The data encoding from Olsen is similar to the Double
RNS Concatenation (D-RNS-Concat; Section 3.1), but multiplication algorithms are different.
Besides the regular RNS multiplications for both integer and fractional components, Olsen’s
algorithm also needs a division by the fractional range, Mixed-Radix Conversions [21, 29, 36] for
both integer and fractional parts, and a base-extension algorithm [33, 69] to convert the binary
format back to RNS format. Compared to our SD-Post-Mul approach, the computing complexity
is less and therefore gains better efficiency in terms of latency and energy consumption. This
benefit is imperative for addition/multiplication-intensive applications with a limited energy
budget, such as numerous machine learning and Edge/IoT (e.g., Federated Learning) applications.
Effective RNS fixed-point encodings can also be used as an orthogonal strategy to optimize and
better support Al model quantization. The purposes of Al model quantization are to lower latency,
memory storage, and energy consumption. However, significant challenges exist that limit the
adoption of aggressive quantization (e.g., INT8, INT4, or INT3 [46]). First, some models observed
significant accuracy loss after quantification, even after applying some optimized techniques, such
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as Quantization Aware Training (QAT) [65]. These quantization unfriendly models include but
are not limited to BERT, ResNeXt101, Mask RCNN, and GNMT [6]. Second, quantized weights in-
crease the difficulty of model coverage, making training performance even worse [6]. Last, there is
no generalized methodology for successful quantization on most popular models, which typically
requires significant human effort to fine-tune and a good understanding of the model architectures
and parameters. Compared to binary adders and multipliers, RNS architectures can obtain less
latency (coarse grain bit-level parallelism), power, and silicon area (fewer transistors). Therefore,
RNS with effective fixed-point encoding can orthogonally further extend quantization’s lower
power and higher performance benefits. Similarly, for the edge/IoT devices with the latency and
power budget, RNS architecture with effective fixed-point encoding can provide a better tradeoff
for quantization, i.e., better data precision compared to regular binary architecture with the same
resource budget. For example, the latency or power of a 4-bit (INT4) multiplier is possibly the
same as that of an 8-bit RNS multiplier. This improvement allows the quantization models to
achieve better precision while keeping the same resource overhead. RNS with effective fixed-
point encoding essentially can provide better support for quantization to adopt more models for
precision compression.
The contributions of this article are summarized as follows:

(1) Extend implementation details of multiplication algorithms for two RNS fixed-point rep-
resentations: D-RNS-Concat and S-RNS-Logic-P. The multiplication algorithm here for the
S-RNS-Logic-P is named as Scaling-down Preprocessing Multiplication (SD-Pre-Mul).

(2) Propose an efficient SD-Post-Mul algorithm for S-RNS-Logic-P fixed-point encoding, which
obtains less latency and low energy while ensuring good computing accuracy.

(3) Similar to the Floating-point Unit (FPU) in regular CPUs, we design the architectures of
Fixed-point Units for three multiplication algorithms: D-RNS-Concat-Mul, SD-Pre-Mul, and
SD-Post-Mul.

(4) Set up the simulation toolchain and perform metric evaluations, demonstrating that S-RNS-
Logic-P fixed-point encoding with SD-Post-Mul is a good candidate to represent real numbers
for particular addition/multiplication-intensive applications (e.g., matrix multiplications in
machine learning).

The remaining sections of this article are organized as below. Section 2 gives some fundamental
background of the RNS. Section 3 discusses three RNS fixed-point methods, including data en-
codings, arithmetic algorithms, estimated overhead, and computing unit architectures. Section 4
introduces supporting algorithms and architectures that would be used in Section 3. Then in
Section 5, we evaluate the efficiency of three RNS fixed-point methods. Section 6 discusses the
related work, and finally, we conclude this work in Section 7.

2 BACKGROUND OF RESIDUE NUMBER SYSTEMS (RNS)

The general idea of RNS encoding is to utilize a set of smaller bit-width values to represent a larger
bit-width number. When defining an RNS, we should first identify and unite n numbers m; (1<i<n)
as a moduli set. The range of this RNS modulus set M equals the product of all moduli, where M =
17, m;. For example, Watson [69] selected four numbers (199,233,194,239) as the RNS modulus set
where the range M = 199X 233X 194 x 239, and 2*! < M < 2%, Any value X within the range 0<X<M-
1 can be uniquely represented by the n nonnegative numbers (a.k.a. residues). All n residues are
nonnegative integers and smaller than the corresponding modulus. For example, a decimal num-
ber 511 could be represented as (511%my, 511%my, 511%ms, 511%my) = (511%199, 511%233, 511%194,
511%239) = (113,45,123,33). In this RNS example, we use four 8-bit residues to represent a larger
number bound by M (M>23!). Watson’s moduli selection consists of conditions such as all moduli
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Table 1. RNS Arithmetic Computing Examples with Toy
Modulus Set (3,5,2,7)

Op \ Decimal RNS: Residues
%3 [%5 [ %2 | %7
19 1(=19%3) 4 1 5
7 1(=7%3) 2 1 0
+ |26 2(=(1+1)%3) | 1 0 5
- |12 0(=(1-1)%3) | 2 0 5
X 133 1(=(1x1)%3) | 3 1 0
The range of this RNS M =3 x5 x 2 x 7 = 210.

must be co-prime, m;m,; — msmy = K— (K—1) = 1, and so on. The conditions of moduli selection de-
pend on the requirements of the target system. Some efficient RNS algorithms may need additional
restrictions for the modulus set, and these conditions are summarized in Reference [69].

Each residue computes in parallel for the RNS arithmetic operations, and no carrying bit should
be moved to neighbors or other residues. This isolate attribute indicates that RNS automatically
obtains a certain degree of bit-level parallelism. Table 1 lists the RNS addition, subtraction, and
multiplication examples with an RNS toy modulus set (3,5,2,7). This RNS toy modulus set is used
here for easy reading and manual computing. The RNS division requires a special algorithm, which
is typically considered relatively inefficient. (1,4,1,5) and (1,2,1,0) are RNS format operands, and
their corresponding decimal values are 19 and 7, respectively. For the addition, we can directly
add each RNS column (residue): (1,4,1,5) + (1,2,1,0) = ((1+1)%3, (4+2)%5, (1+1)%2, (5+0)%7) = (2,1,0,5).
The corresponding decimal value of RNS (2,1,0,5) is 26, because (26%3,26%5,26%2,26%7) = (2,1,0,5),
which equals the decimal addition. We can also easily verify the correctness of subtraction and
multiplication examples in Table 1.

Besides the inherent benefit of bit-level parallelism, RNS encoding could also simplify the ar-
chitecture of integer adder and multiplier. Return to a practical RNS modulus set (199,233,194,239)
with a range M slightly larger than 23!. For a 31-bit conventional array multiplier [59], we need
approximately 900 (30X 30) 1-bit full adder. However, if RNS encoding is used, we will require four
8-bit array multipliers, for which the total estimated amount of 1-bit full adder is 196 (7 x7x4). So
besides the latency optimization, the RNS encoding can also help lower the computational units’
complexity, which leads to power and area reduction. However, these RNS benefits are only di-
rectly gained from integer computations. An essential question we try to answer in this article is
how to encode real numbers in RNS while retaining the inherent latency and energy benefits.

3 RNS FIXED-POINT ENCODINGS

We will discuss two RNS fixed-pointed representations in this section: D-RNS-Concat and S-RNS-
Logic-P. For the S-RNS-Logic-P method, we can have a further classification via multiplication algo-
rithms: SD-Pre-Mul and SD-Post-Mul. The D-RNS-Concat and S-RNS-Logic-P with SD-Pre-Mul are
simply described in Reference [23]. This section will present more details about them and fur-
ther explore their attributes. Besides the algorithm details, this section also introduces each fixed-
point method’s overhead and multiplier architecture. To assist RNS fixed-point computation, we
also require some supporting algorithms, such as RNS Fractional Multiplication Algorithm and RNS
Scaling-down Algorithms, which will be covered in Section 4.

3.1 Double RNS Concatenation (D-RNS-Concat)

D-RNS-Concat combines two RNS integers as a fixed-point real number, where the first RNS value
represents the integer field while another RNS is for the fractional part. Figure 1 is the example of
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DEC [Int, Frac] m Represent Fixed-point Value (DEC)

[0,0] [(0,0,0,0), (0,0,0,0)]
[0,1] [(0,0,0,0), (1,1,1,1)] 0+ 1210~ 0.0047619047619048

[36, 107] [(0,1,0,1), (2,2,1,2)] 36+ 107+210 = 36.5095238095238095
[209,209] [(2,4,1,6), (2,4,1,6)] 209 + 209210 = 209.9952380952380952

Fig. 1. Double RNS concatenation (D-RNS-Concat) with toy RNS modulus set (3,5,2,7).

[ RNS: A_INT ] [ RNS: A_FRAC] [ bec:15 ] [ DEC:127 | ¢mmssmm) ~ DEC: 15.604761905
X [ RNS:B_INT ] [ RNS:B_FRAC] X [ DpEce  |,[ DEC 167 |<mmmmm) ~ DEC: 6795238095

127 x167
[ 217 100 lMUL

o x:i;’:’ e 15.604761905 X 6.795238095
~ 106.03807256

A_FRAC x B_FRAC|
M

(A_FRAC x B_FRAC)
%M

(Al INTX B _FRAC)

[

ex)
[7 -3
210

A_INT x B_INT| (A_INT x B_INT) l 15 6J -0 (15 % s; % 210
M %M + 210

1 i 1143+90+2
| | [ [

IA INT X B, FRACJ

(BINT x A _FRAC) (6 x 127) % 210

=132

IB INT X A FRACI

7
—106+m

~106.033333333

1100 195+132)%210
=427%210=7 |

NS: RNS:
i|OuTPUTLINT | I OUTPUT_FRAC

Overflow if larger
than 0

Fig. 2. Double RNS concatenation (D-RNS-Concat) multiplication. The example of this figure utilizes toy
RNS modulus set (3,5,2,7). This figure is extended from Reference [23].

D-RNS-Concat with toy RNS modulus set (3,5,2,7). Because the integer range of this modulus set M
=3X5X%X2X7=210, the maximum possible value of this D-RNS-Concat should be less than 210 (=
210—1+1). And its precision is 210 ~ 0.00476. Besides the range and precision, latency and energy
efficiency of arithmetic operations should also be indispensable metrics.

3.1.1 D-RNS-Concat Addition. To compute the sum, the integer and fractional RNS values of
two D-RNS-Concat numbers could first add up in parallel. Because we concatenate two RNS values
to represent a number, we must also consider the carry value from the fractional RNS sum to the
integer RNS sum. This carry value has to add to the integer RNS sum as the final output. The carry
value could only be either 0 or 1, because even if adding two maximum RNS with the range, the
carry value is still 1. So, the carry value computation could be transformed to overflow detection
of an integer RNS addition (fractional components). If the D-RNS-Concat representation is applied
to Redundant Residue Number System (RRNS), then the overflow of integer addition could
be detected via an RRNS consistency checking [33, 69]. However, for the RNS without holding
the redundant residues, we should utilize the Mixed-Radix Conversion methodology to compare
[33, 69] and identify the addition overflow.

3.1.2  D-RNS-Concat Multiplication. The D-RNS-Concat multiplication and a corresponding ex-
ample are presented in Figure 3. In a regular system, an arithmetic computation’s output precision
and range should be the same as the inputs. However, the default precision and range of the prod-
uct are inconsistent with operands, which indicates extra processing is required to truncate the
values. For example, the default product of two 4-bit fixed-point binary (2 bits for the integer and
the remaining 2 bits for the fractional part) can be an 8-bit fixed-point value (4 bits for the integer
and the remaining 4 bits for the fractional part). Therefore, we should establish a regulation to
automatically truncate the output to fit the same range and precision to ensure consistency. From
the algorithm part (left) of Figure 2, after all the computation substeps, we have an output with
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four RNS values where two stand for the integer part, and the remaining two are for the fractional
part. However, the input operand only employs one RNS for the integer and another RNS for the
fractional number. Thus, we could retain the two RNS values close to the ’point’ to construct the
output and crop the remaining two RNS from both edges. Withdrawing the lowest (rightmost) RNS
loses precision, but the new output precision is consistent with the input operands. Discarding the
highest (leftmost) RNS may lead to erroneous results. However, the frequency of small number
usage is typically much higher than large ones. For real applications, we may select an RNS mod-
ulus set with a range close to 2°2, which should satisfy the criteria of numerous applications. The
selection rules of the RNS modulus set are discussed and summarized in Reference [69]. Following
these rules, we can also identify RNS modulus sets with ranges larger than 2%. In this scenario,
even if the highest RNS of the product has been truncated, the range of the integer part, which is
close to 2%, remains sufficient for numerous applications.

The D-RNS-Concat Multiplication is divided into a few subtasks. No data dependency exists
among these subtasks, allowing parallel execution. In Figure 2, the green and red rectangles are the
mandatory subtasks, while the yellow one is optional. The green subtasks are the RNS Fractional
Multiplication Algorithm, which is to acquire the result of L%J and will be further introduced
in Section 4.1. The red subtasks are the regular RNS integer multiplications. The optional yellow
subtask also performs the RNS Fractional Multiplication Algorithm, but this subtask intends to
detect the overflow of this whole D-RNS-Concat Multiplication. In the next step, we must sum up
the subtask outputs in each column to construct the final product. We should also monitor the
overflows during RNS integer additions to ensure that we do not lose the carry values from the
fractional part to the integer part. If to further enable the overflow detection of D-RNS-Concat
Multiplication, RNS addition overflow detections are also required when adding up the integer
column.

The right side of Figure 2 is an example of D-RNS-Concat Multiplication with RNS toy modu-
lus set (3,5,2,7). The range of all individual RNS integer values is [0,209]. For example, the cor-
responding real number of the first D-RNS-Concat number “DEC:15.” “DEC:127” is 15.604761905
(DEC). The underline encoding of “DEC:15” and “DEC:127” in this figure essentially are two RNS
numbers (0,0,1,1) and (1,2,1,1). Considering the bijection attribute between binary/decimal integers
and RNS values, we utilize decimal values in this example for easier reading. The output of the D-
RNS-Concat Multiplication is “DEC:106.” “DEC:7” (RNS format: “RNS:(1,1,0,1).” “RNS:(1,2,1,0)”), and
this result stands for a fixed-point real number 106.03333333 (DEC). Compared to the ideal prod-
uct 106.03807256 (DEC), the difference is only 0.00473923 (DEC). Even though we use an RNS toy
modulus set with an integer range of only 210, D-RNS-Concat Multiplication can still attain good
accuracy, which will be verified in Section 5.2 (Figure 14) later. The absolute accuracy loss should
be lower if a practical RNS modulus set is applied with a range of approximately 232. In other
words, the D-RNS-Concat encoding attains a good value range and less accuracy loss. However,
the complexity of arithmetic computing is higher than that of the S-RNS-Logic-P encoding, which
will be introduced in Sections 3.2 and 3.3.

3.1.3  Complexity Estimation for D-RNS-Concat. From the previous analysis, adding 2 D-RNS-
Concat numbers requires 2-3 RNS integer additions and I overflow detection of RNS integer ad-
dition. The D-RNS-Concat Multiplication, suppose the target system does not select fixed-point
overflow detection, needs 3 RNS integer multiplications, 3 RNS fractional multiplications, 2 over-
flow detections of RNS integer addition, and 6 RNS integer additions.

3.1.4  Architecture of D-RNS-Concat Multiplier. The architecture of the D-RNS-Concat Multi-
plier is shown in Figure 3. Internal structure of “RNS Fractional Multiplication Unit” is illustrated
in Figure 11, which we will introduce in Section 4.1. “RNS Mul” is the conventional RNS integer
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RNS Fractional
| MuIti;Iication Unit H -]
Add
> RNS: OUTPUT INT |
| Add Add

A 4

RNS: A_INT

e »I[RNS
RNS: A_FRAC > mul

—

E“ RN§ !:razftional. | »> RNS Add
RNS: B_INT | Multiplication Unit »|| Overflow Detection
RNS: B_FRAC =ii RNS Fractional || | —®
RNS Add
Overflow Detection

Add
EE] =D
»||_Multiplication Unit —>([_Add
l—-t RNS RNS: OUTPUT FRAC!

Fig. 3. Architecture of D-RNS-concat multiplier. This architecture is designed based on the algorithm dis-
cussed in Reference [23].

8-bit BIN INT | 8-bit BIN Fixed-point | Represent Value (DEC)

\A 4

00000000 0000.0000
1 00000001 0000.0001 00625=L=1>4
36 00100100 ;o1o.o1oo ;.25 =0.0625 x 36
99 01100011 ;110.0011 ;.1875 =0.0625 x 99
255 11111111 ;111.1111 ;5.9375

Fig. 4. 8-bit binary logical partition (Bin-Logic-P) encoding; The logical “point” is placed between the 4th and
5th bit.

multiplier, containing a group of smaller bit-width multipliers. Unless stated otherwise, the
double-line components indicate composite elements supporting specific RNS functions.

3.2 Single RNS Logical Partition (S-RNS-Logic-P): Scaling-down Preprocessing
Multiplication (SD-Pre-Mul)

3.2.1 Single RNS Logical Partition (S-RNS-Logic-P). Unlike the RNS concatenation in Section 3.1,
we can merely store a fixed-point number as an RNS integer, and the system interprets this integer
as a fixed-point real number by logically placing the “point” in a predetermined position. All fixed-
point numbers and corresponding arithmetical outputs must follow this ordinance. For example,
an 8-bit binary 00100100 can be deciphered as 0010.0100 if the system places the logical “point”
between the 4th and 5th bit. We use this binary (DEC:36) to represent the real number 2.25. More
examples of 8-bit Binary Logical Partition (Bin-Logic-P) are listed in Figure 4. Within the valid RNS
range, RNS numbers and binary (or decimal) numbers are injective. So same as binary, each RNS
number can also uniquely stand for a fixed-point real number. For the RNS with toy moduli set
(3,5,2,7), RNS:(0,1,0,1), which equals DEC:36, could also represent the real number 2.25. We define
this data encoding as the Single RNS Logical Partition (S-RNS-Logic-P). In other words, S-RNS-Logic-
P uses only one RNS integer to describe a fixed-point real number, and this format is typically
unaltered during the program execution. However, even if we only discuss this encoding with a
single RNS integer, its range and precision can easily scale up by raising the number of moduli.
For example, we may reconstruct the RNS modulus set with eight 8-bit moduli to replace the one
with four 8-bit moduli.
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] ' X(BIN): 0011.1101 | = 3.8125 (DEC)
1 Th intis logically ! i

+ Y(BIN): 0010 0110 =38 (DEC) | 1 ' piieon e | T Y(BIN): 0010.0110 | = 2.375 (DEC)
N T AT F' 4t bit and the 5t bit E——— !

Int Sum (BIN): 0110 0011 =99 (DEC) () Fix-point  0110.0011 =6.1875 (DEC)
Sum (BIN):

{
I
I
1
1
1
\

Fig. 5. Binary addition of single RNS logical partition (S-RNS-Logic-P).

Table 2. Algorithm of Scaling-down Preprocessing Multiplication (SD-Pre-Mul)

’ Step ‘ Binary Version ‘ RNS Version ‘

1 A and B are n-bit inputs; both A RNS_A and RNS_B are two RNS inputs with 4 residues
and B are right shifting 7 bits each; RNS_A and RNS_B are scaling-down by m; and m;,
(scaling-down), after which we got | respectively, where m;m; = K or K — 1; This RNS range M
intermediate outputs A” and B'. =mymymsmy = K(K — 1). After scaling-down, we obtain

intermediate results RNS A’ and RNS B’.

2 Compute A’ X B’. The productis | Compute RNS_A’ x RNS_B’. The product is the output of
the output of this SD-Pre-Mul this SD-Pre-Mul algorithm.
algorithm

3.22  S-RNS-Logic-P Addition. The addition of S-RNS-Logic-P is less complicated than D-RNS-
Concat, because we do not require extra steps to compute the carry values from the fractional
part to the integer part. S-RNS-Logic-P addition is equivalent to a regular RNS integer addition.
Figure 5 demonstrates an example that a binary integer addition could replace a fixed-point real
addition if the system follows a consistent encode/decode regulation. The encoding regulation of
this example is that the logical “point” is placed between the 4th and 5th bit of each 8-bit binary.
The system interprets the integer sum 0110 0011 (BIN) as 0110.0011 (BIN) or 6.1875 (DEC), which is
equivalent to the sum of the directly fixed-point addition displayed on the right side of Figure 5.
This equality could also be simply verified via Figure 4. Considering the injective attribute between
RNS and binary, analogous to the binary integer addition, RNS integer addition could also directly
substitute this fixed-point addition. In simple words, adding two fixed-point values, which follow
a predetermined logical partition regulation, can easily process like regular binary/RNS integer
addition. However, the S-RNS-Logic-P Multiplication requires extra processing, such as scaling-
down or truncating, because the raw product’s range and precision are inconsistent with input
operands. This section will discuss two multiplication algorithms for S-RNS-Logic-P encoding: SD-
Pre-Mul and SD-Post-Mul.

3.2.3  Scaling-down Preprocessing Multiplication (SD-Pre-Mul). This section introduces the SD-
Pre-Mul algorithm and further explores its limitation. The steps of the SD-Pre-Mul algorithm are
summarized in Table 2, including a binary version for easier understanding and an RNS version.

For the binary version, the accurate product of two n-bit operands is at most 2n bits. To ensure
data range and precision are consistent within a system, we must crop and discard the accurate
product’s high 5 bits and low 7 bits. Assume the logical “point” is located in the middle of the
n-bit truncated product, so omitting the low 7 bits from the 2n-bit accurate product may cause
precision loss. For erasing the high 7 bits from the 2n-bit accuracy product, if the whole high
% bits is non-zero, then the n-bit truncated product should be categorized as invalid due to the
overflow. After the scaling-down step (Binary Version Step 1), the low % bits of the 2n-bit raw
product should have already been dropped, and no further processing is required for lower bits.

The RNS SD-Pre-Mul is derived from the binary version, but scaling-down factors of two
operands are two distinct RNS moduli, not always 2%. From our earlier discussion, an RNS in-
teger could bijectively represent a fixed-point real number, and we list several of these mapping
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m RNS with Toy Moduli (3,5,2,7) Represent Value (DEC) "_'3_’"_4;2_ X7 =14 m=p A= = 0.0714285714285714

(0,0,0,0) | (Example 1:
1 (1,1,1,3) 1+(2x7)=0.0714285714285714 | 136 X 63 # 2.571428571428571 X 4.5
=11.57142857142857
36 (0,1,0,1) 36+(2x7)~2.571428571428571 l RP Multiplication (RNS Format):

s 2] 20 [2]-[2]-s

43 (1,3,1,1) 43:(2x7)=3.071428571428571

\Stepz 18 X 9=162 Emm)p 11.57142857142857
59 (2,4,1,3) 59+(2x7)~4.214285714285714 IrExa_mIEE ''''''''''''''''''''''' = |
o 143 x 59 Em) 3.071428571428571 X 4.214285714285714 |
| (R 63:{2x7)=4.5 ' = 12.94387755102041
| RP Multiplication (RNS Format): l
162 (0,2,0,1) 162+(2x7)=11.57142857142857 | s I
Step 1 I—J =|2|=2 [ J 12| =8 |
168 (0,3,0,0 168+(2x7)=12.0

(0,3,0.0) (2x7) kStepz 21 x 8=168 =) 12.0 ]

Fig. 6. Examples of SD-Pre-Mul with RNS toy modulus set (3,5,2,7).

examples on the left side of Figure 6 according to RNS toy modulus set (3,5,2,7). On the right side
of Figure 6 are two examples of SD-Pre-Mul. By following the RNS version algorithm in Table 2
and without loss of generality, we choose ms and my as the scaling- down factors, where msmy =
(K —1). The precision interval for this S-RNS-Logic-P encoding A = = ~ 0.0714. Example 1 (red) is
to calculate the product of two fixed-point real numbers, and these two operands are represented
by integers DEC:36 (RNS:(0,1,01)) and DEC:63 (RNS:(0,3,1,0)). In this example, we use DEC numbers
to substitute RNS values for easier reading. Essentially, S-RNS-Logic-P process all data in RNS. By
following the algorithm summarized in Table 2, for Step 1, the first operand DEC:36 (RNS:(0,1,01))
is scaling-down by ms and the second operand DEC:63 (RNS:(0,3,1,0)) is scaling-down by my. The
outputs of Step 1are DEC:18 (RNS:(0,3,0,4)) and DEC:9 (RNS:(0,4,1,2)). Step 2 is a regular RNS integer
multiplication and obtains the final output DEC:162 (RNS:(0,2,0,1)), standing for a fixed-point real
number ~ 11.5714. Comparing this S-RNS-Logic-P output with the accurate product, we notice that
both results are equal and have no accuracy loss. However, in Example 2, the difference between
the SD-Pre-Mul output and the accurate product is significant compared with the precision interval.
This portion of accuracy loss is typically intolerable for some accuracy-sensitive applications. So
from Figure 6, we find that S-RNS-Logic-P with SD-Pre-Mul may lose relatively significant accuracy
for certain multiplications.

3.24  Complexity Estimation for RNS SD-Pre-Mul. On the basis of the analysis in Section 3.2.3,
the RNS SD-Pre-Mul algorithm only involves 2 RNS Single Modulus Scaling-down and 1 RNS inte-
ger multiplication.

3.2.5 Architecture of RNS SD-Pre-Mul Multiplier. The architecture of the SD-Pre-Mul Multiplier
is shown in Figure 7. The double-line rectangle “RNS Single Modulus (m;) Scaling-down Unit” is a
composite unit from Figure 13, which will be described in Section 4.2.1.

3.3 Single RNS Logical Partition (S-RNS-Logic-P): Scaling-down Postprocessing
Multiplication (SD-Post-Mul)

3.3.1 Scaling-down Postprocessing Multiplication (SD-Post-Mul). The primary defect of SD-Pre-
Mul from Section 3.2.3 is the severe accuracy loss in certain multiplications. This issue perhaps
confines the RNS to broader usage, particularly affecting applications that require better accuracy.
This section introduces SD-Post-Mul for S-RNS-Logic-P encoding, with the aim of overcoming the
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RNS SD-Pre-Mul

S-RNS-Logic-P sinel MR'(‘;SI ) 32b-Reg Multiplier
ingle Modulus (m3
| t1
neu Scaling Down Unit R wiiied)
. RNS
S-RNS-Logic-P ) 32b-Reg
®Coing bown Unit. -
| t2
ey Scaling Down Unit (S ifoiveLd

Fig. 7. Architecture of RNS SD-Pre-Mul multiplier.

A 4

Regular 4- S-RNS-Logic-P
moduli RNS —  product
Multiplier

A 4

Table 3. Scaling-down Postprocessing Multiplication (SD-Post-Mul)

‘ Step ‘ Binary Version ‘ RNS Version ‘

1 A and B are n-bit inputs; Compute | RNS_ A and RNS B are two RNS inputs with 4
L%J and (AB)%M in parallel; M equals | residues each; Compute LWJ and (RNS_A X
2", representing the value range of this | RNS_B)%M in parallel; M equals m;mym3my, represent-
system. The outputs of this step are | ing the value range of this RNS. The outputs of this
01" = |42 ] and 0,® = (AB)%M. step are O;' = LWJ and 0;2 = (RNS_A x

RNS_B)%M.

2 Assuming C = 27 ; Use the output from | From the conditions of RNS moduli selection, we have K
Step 1 to make the following computa- | = mym; and K — 1 = msmy; Use the output from Step 1
tions: 05! = 01! x C and 0,° = %12_ to make the following computations: O,' = 04! x K and

0 -2

3 Add the 0,7 and 0, to get the final | Add the O, and O, to get the final output

output

O,/ denotes the jth output of step i.

accuracy issue while preserving decent efficiency. We name this algorithm “postprocessing,” be-
cause the scaling-down step comes after the regular RNS integer multiplication and opposite to
the SD-Pre-Mul, which first scales down both operands and followed by a regular RNS integer mul-
tiplication. The main reason for SD-Pre-Mul’s accuracy loss is that scaling-down operands first may
lead to neglecting a subset of inputs, and the SD-Post-Mul scheme should resolve this problem.

Table 3 summarizes the SD-Post-Mul algorithm, which could also be categorized as binary and
RNS versions. Similar to SD-Pre-Mul, we provide the binary version to help explore the RNS ver-
sion’s insights more easily. However, we only utilize the RNS version for fixed-point computation.
O,/ indicates the j*" output of Step i, which is used as one of the inputs of the next step (Step i+1)
if it exists. Figure 8 consists of two RNS SD-Post-Mul examples, and their inputs are equivalent to
those in Figure 6 for comparison. For Example 1, the same as Figure 6, the SD-Post-Mul algorithm
output rounds to 11.571 and matches the ideal product. For Example 2, the output of D-Post-Mul
is around 12.929, and the ideal product is 12.944. However, when we review the Example 1 result
in Figure 6, the accuracy loss of RNS SD-Post-Mul drops significantly ([Asp-post—mul = (12.944 —
12.929) = 0.015] VS [Asp-pre—mur = (12.944 — 12.0) = 0.944]). At first glance, this granularity of
accuracy loss still seems insufficient for many applications. However, in these examples, we only
utilize the RNS toy modulus set (3,5,2,7), which could only represent 210 integers and less than
the range of an 8-bit binary. If we switch to a practical 4-RNS modulus set (e.g., four 8-bit moduli)
with a range between 2°! and 23, then the accuracy loss is much more applicable to real-world
workloads.

3.3.2  Complexity Estimation for SD-Post-Mul. According to discussion in Section 3.3.1, the SD-
Post-Mul for S-RNS-Logic-P encoding consists of 1 RNS fractional multiplication, 2 RNS integer
multiplications, 1 RNS Double Modulus Scaling-down, and 1 RNS integer addition.
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RNS with Toy Modauli (3,5,2,7) | Represent Value (DEC) mgm,=2 x 7 =14 mmp A== 0.0714285714285714

(0,0,0,0) /Example 1:
: 36 X 63 - 2.571428571428571 X 4.5

I
1 (11,11) 1:(2x7)=0.0714285714285714 | - '11.57142857142857 I
| RPost Multiplication (RNS Format): |
36 (01,01 36+(2x7)~2.571428571428571 -
( ) (2x7) [Step1: 0'= l%] =10 o1 = (36 x 63)%210 = 168 i
| Step2: 0, =10x 15=150 1812 .
43 (1,3,1,1) 43:(2x7)=3.071428571428571 | >*°P z l ] |
(Step3:_Result=150+12= .12.9_%_ 5
59 (2,4,1,3) 59:(2x7)=4.214285714285714  (Example 2: 3
© 43x 59 mmp 3.071428571428571 X 4.214285714285714 |
6 (031,0) 63:(2x7)<4.5 [ =12.94387755102041 |
| RPost Multiplication (RNS Format): I
162 (0,2,0,1) 162+(2x7)=11.57142857142857 | Stepl: 0,1 lﬁ] 12 a1 = (43 x 59)%210 = 17 I
| Step2: 0,'=12x 15=180 [ ] 1 |
181 (1,1,1,6) 181+(2x7)=12.92857142857143 |
| Step3: Result=180+1=181 - 12.92857142857143 |

RNS SD-Post-Mul
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2

moduli RNS > Multiplier
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moduli RNS = product
Adder

S-RNS-Logic-P
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Regular 4- 0,?
moduli RNS
Multiplier

S-RNS-Logic-P
Input 2

Fig. 9. Architecture of RNS SD-Post-Mul multiplier.

3.3.3  Architecture of RNS SD-Post-Mul Multiplier. Figure 9 shows the architecture of SD-Post-
Mul Multiplier. We will introduce “RNS Fractional Multiplication Unit” and “RNS Double Moduli
(msmy) Scaling-down Unit” in Sections 4.1 and 4.2.2, respectively.

4 SUPPORTING ALGORITHMS AND ARCHITECTURES FOR RNS FIXED-POINT
COMPUTATIONS

4.1 RNS Fractional Multiplication Algorithms

RNS Fractional Multiplication is a crucial subroutine of RNS fixed-point multiplication. Watson
and Hasting [33, 69] proposed three relevant algorithms, one employing Mixed-Radix Conver-
sion [21, 29, 36] and the remaining two utilizing Macrocoefficient Extraction [33, 69]. Here,
we only introduce the Macrocoefficient Extraction, because it requires fewer resources while
preserving tolerable accuracy loss. Although Watson and Hasting gave a flow chart of Step 1,
they did not explicitly discuss the remaining steps from an architectural perspective. Here, we
will give more specific details about how the Macrocoefficient Extraction would be executed in
an RNS fractional multiplier architecture.

4.1.1  Overview of RNS Fractional Multiplication Algorithms. RNS Fractional Multiplication Al-
gorithm utilizes two RNS numbers (|X|m,, [X|m,, [X|ms, [X1m,) and (|Ylm, 1Yy [Yms, [Y]m,) as
inputs to calculate result of L%J. Each RNS is interpreted as a pure fractional number ranging
between 0 and 1. Figure 10 demonstrates an example of binary edition for better reading, but es-
sentially we employ RNS numbers instead of binary values in the underline system by following
the bijective attribute. For Input X, the 8-bit binary 10001010 stands for a binary fractional value
0.10001010, and Input Y is similar. The accurate binary product is 0.0010101110101010. To ensure the
data range and precision consistency, we trim and preserve higher half bits after “point” 00101011
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‘ A

| BIN X: 10001010 BIN: 0.10001010 s | e
1| DECX: 138 DEC. 05300625 | 33 e | IXYJ e REE )
! : . 0. 1 1
: @ _ | BiN: 00I0107110101010 |1y ! 0
1 1 1
! DEC: 0.170562744140625 |1 ! |

BIN Y: 01010001 BIN: 0.01010001

: = = Lo BN 00101011
1| DECY:81 DEC: 0.31640625 b s

Fig. 10. Example of 8-bit binary fractional multiplication.

as the final product (red rectangle). This process is equivalent to calculating L%J. On the right
side of Figure 10, the output BIN: 00101011 matches the left method. RNS Fractional Multiplication
is analogous to the binary version, but the RNS value range M should be the product of all moduli.

4.1.2 RNS Fractional Multiplication via Macrocoefficient Extraction. This article selects the
Macrocoefficient Extraction approach from References [33, 69], which requires less latency and
hardware resources, as a subroutine of our fixed-point RNS multiplications. Requiring fewer hard-
ware resources also implies less power consumption, which is critical for edge architecture design.
As we discussed in Section 4.1.1, the inputs of RNS Fractional Multiplication Algorithms are two
RNS integers: (|X|m,, | X lmys [X|ms> | X |my) and (|Y [y, 1Y [y 1Y Iy > 1Y |m,)- The system interprets
RNS integers as pure fractional numbers with a range between 0 and 1. We define four macroco-
efficients, yx, dx, By, and €, as intermediate results to assist this fractional multiplication:

X Y
Yx = \;mlsz ’ 5x = |X|m1mz’ ﬁy = {m3m4J ’ Ey = |Y|m3m4' (1)

One prerequisite for RNS modulus set to sustain this Macrocoefficient Extraction is that
mim; — 1 = msmy, implying that at least one modulus m; must be an even number. This require-
ment must be incorporated when choosing the modulus set for RNS processor architecture. Ac-
cording to Hastings’ derivation process [33], the fractional multiplication product | X 7 Y | could be
estimated by the following formula:

\‘%J ~ Yx,By + ﬁ()’x‘fy) + Y(,Bycsx)' (2)

y(input), S(input), p(input), and e(input) are four general macrocoefficient calculations, where the
“input” can be a single value or a composite equation. Essentially the definitions of yx, dx, f, and
€y from Formula (1) are special cases of general macrocoefficient calculations with input = x or

input = y. According to Formula (1), if the input = yy€y, then the f(input) = f(yxe,) = | Y%

mamy ="

Similarly, y(Bydx) = Lﬂ | From Formula (2), the first step should calculate the value of yy, 8y,

mimy
By, and €. All the above-mentioned macrocoefficients should be in RNS format throughout the

RNS Fractional Multiplication. By following definitions in Formula (1) and || X[, ,m, |m =X,

we can easily acquire the following residue values of the macrocoefficients from the RNS inputs
X and Y:

16 lmy = 11X iy, = Xy eyl s = 1Y lngmy |, = 1Yl
16 m, = 11X iy, |, = 1X iy ey, = 1Y Ty |, = 1Y |, - ®3)
According to Formula (3), the values of |8x |, [8x |, |ey|m3, and |4sy|m4 could be directly ob-

tained from the input subset |X|,,, , [X|,,,, |Y|n,, and |Y],,,,, respectively. We need extra steps to
caculate the remaining residues of macrocoefficients for the inputs of Formula (2): |6x | ;> 10x | m,»

|€y|mls |ey|mz’ |yx'm1’ |yx|mz, |)’x|m3, |Yx|m4> |ﬁy|m1, |ﬁy|mz’ |ﬁy|m3’ and |ﬂy|m4- Some interme-
diate results are preprocessed and stored in tiny lookup tables (LUT) to facilitate these residue
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Table 5. my—LUT with RNS Toy

Table 4. my—LUT with RNS Modulus Modulus Set (3,5,2,7); mq = 7

Set (3,5,2,7); mg =5

4324(rx) | 13241(rx) | 2329(yx)

2142(8x) | 3143(8x) | 4124(5x) 0 0 0
0 0 0 1 2 3

1 0 6 2 2 2

2 0 5 3 1 0

3 1 3 4 1 4

4 1 2 5 0 2

6 0 1

computations. A terminology ba*bX) | which is used as inputs and outputs of LUTs, is defined as
below. a and b are the residue indexes:

ba*b™ = |X],,, — IX]

©

4.1.3  |8x|,, and|8x |, Calculation. To compute |8y |,,, and |Sx|,,,, we may first convert their
representations via the following deduction:

18ty = 18xlmy + [18xlmy = 1l ||

8xlmy = 118, + 18, = 18l | = 18], + 41249 (5)

Malmy,*

=16l m, + 3113<5x>|m3,

From Formula (1), |8x|,,, equals to the |X|n,,, which is a subset of algorithm inputs. To raise
algorithm efficiency, a LUT is utilized to provide the values of 31*3(5x) and 4144(%x). The LUT
input is 2142(5x) that maintains as an index column of the table. The row count of this LUT is equal
to my. If the underline system employs the RNS toy modulus set (3,5,2,7), then we have m, = 5,
indicating the row count of this LUT is 5. Table 4 shows the m;—LUT with RNS toy modulus set
(3,5,2,7). The input of m;—LUT, 2142(%%) we can calculate via Formula (3) and Formula (4):

21/12(6x> = ||(5x)|m2 - |(5X)|m1im2 = ||X|m2 - |X|m1|m2' (6)

So the input of m,—LUT, 214205%) could be computed via the Formula (6) and RNS Fractional
Multiplication inputs (|X|,,, and |X],,,,).

4.1.4 |¢sy|m1 and |ey|m2 Calculation. The computation of |ey|m1 and |ey|m2 is similar to [Sx|,,,,
and |8y |, :

miimy

leyl,p, = ||ey|m3 + \|ey|m2 - |ey|m3|m2’m2 = ||ey|m3 + 2312<ey>|m2. (7)

leyl,,, = ||Ey|m3 + ||€y|m1 - |€y|m3i = ||€y|m3 + 13/11(€y)|m1’

From Formula (3), |e, |m3 and |(:‘y|m4 are equal to |Y],,,, and |Y],,,, , respectively, which are a subset of
inputs for RNS Fractional Multiplication Algorithm. The results of 13*1(¢v) and 2342(¢v) in Formula
(7) could be obtained by accessing a similar my—LUT (e.g., Table 5 with RNS Modulus Set (3,5,2,7)).
The value range of y, and €, are both [0, m3m4—1]. Thus, we can make use of 431 4(€y) a5 the input
to access my-LUT for 13*1(¢v) and 23%42(€v). Similar to Formula (6), 43*4(€¥) is calculated via the
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following equation:
4314 = |l ~ el | = 1Yy = Y], ®)

4.1.5  |yx |y [¥x L, [¥x |, andlyx|,,, Calculation. According to the proof from Hastings [33],
[yx|,,, and |yx|,,, could transform to the following formats:

my

[V, = 31733 = 314309 [Vl o, = [417409 — 412409 )

Analogous to the [8x|,,, and |6x|,,, computation, the values of 31%3(5x) and 4144(5<) could be
fetched from the m,—LUT. The value of 31*3X) and 4144 could simply calculate by using
IX |, [ X1, and [X],,, via Formula (4). The computations of |yx|,, and |yx|,,, are to use the
result of |yx|,,,,

my

|

mitmy

iclim, = el + [ m, = el Ly | = [l + 237209 (10)

[Vl m “Yx m3 ||)’x|m1 - |Yx|m3| = “}/x|m3 + 13/11(”)’,”1

The 13*1=) and 23*2(x) in Formula (10) are collected from m,-LUT, which employs 43*4(x)
as this LUT index. For example, Table 5 shows a m4-LUT with RNS toy modulus set (3,5,3,7).
The index 43*4(~) could also be easily computed by using |yx|
Formula (4).

and |yx/,,, by following

ms

4.1.6 |ﬁy|m1’ |ﬂy|m2, |ﬁy|m3, and |ﬁy|m4 Calculation. The computation of |ﬁy|m1’ |ﬁy|m2,
|ﬁy|m3, and |/3y|m4 are similar to that of |yx|,,, . [Vx |, Vx|, and |yxl,,, in Section 4.1.5. |/3y|m1
and | ﬁylm are represented as follows:

1Byl,, = 13" =131 1Byl,, = [2372() = 23720 . (11)
To compute |ﬂy s and | By|,, ,» We use the |/3y| from Formula (11) as a subset of inputs:
A
1Byl = 18] m + 1By ms |ﬁy|m1|m i = “ﬁy|m1 +31 3(ﬁy)|m3’
— — A
Bylim, = 1By, + [1Bul,, = 1Byl m1|m4|m4 = [1Byl,,, +41%4P| . (12)

The remaining terms of Formula (12), 31*3(%) and 41*4(F4) could be read from the same my—LUT
via an index 21*2(»)_ The m,—LUT is possible to be shared, because the value range of 8, and By
is equivalent ([0, mym,—1]).

4.1.7 Remaining Steps Of RNS Fractional Multiplication via Macrocoefficient Extraction. From
Section 4.1.2 to Section 4.1.6, we introduced the residue computation of all the macrocoefficients.
According to Formula (2), in the following steps, we will require to calculate 54 and yg, where A
= yx€y and B = f,6,. Because A and B are also in RNS format, we can utilize the same method to
determine 4 and yp. Finally, we add up all the products as the final result of L%J

4.1.8 Architecture of RNS Fractional Multiplier. We introduce RNS Fractional Multiplication
Algorithm (Output: L%J) in Section 4.1. Many modern processors integrated one or more
FPUs [20, 42, 47, 55, 72] to boost the performance and efficiency of floating-point operations. Thus
the architecture of RNS Fractional Multiplication unit is crucial to realize high-performance and
low-cost RNS fixed-point computation. Hastings [33] provide flowcharts to compute yx, 8x, By,
and €. Based on Hasting’s flowchart, we provide the architecture design of RNS Fractional Multi-
plication Unit in Figure 11. Moreover, we explicitly identify which subcomponents of this architec-
ture could be applied to calculate this algorithm’s following step (Step 2) after the macrocoeffficent
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Fig. 11. Architecture of RNS fractional multiplier with four moduli. All moduli (m;) in this diagram are 8-bit;
8-A-8-M represents a logic of an 8-bit adder followed by an 8-bit modulo; 8-R stands for an 8-bit register. LUT
m; is a lookup table with m; entries.

computation (Step 1). The components within the blue rectangle are for macrocoeftficent compu-
tation (Step 1). The Step 1 outputs (macrocoeftficent values) are explicitly marked in Figure 11. Step
21is to compute f and y. Thus a subset of architectural components is reusable for different steps’
computation. After Step 2, according to Formula (2), we add up three products to get the final RNS
Fractional Multiplication result: [)%J.

4.2 RNS Scaling-down by a Single Modulus or by the Product of Two Moduli

The RNS scaling-down and division are generally categorized as heavy cost operations. However,
in some specific scenarios, the overhead of scaling-down particular constants may be tolerable.
These special constants include a single RNS modulus and the product of the RNS modulus subset.
The scaling-down by these constants should be less complicated than by 2". Watson and Hast-
ing [33, 69] proposed an RNS scaling-down algorithm by a factor of single or multiple moduli
(product). This section introduces Watson and Hasting’s RNS scaling-down algorithm, which is a
subtask of RNS SD-Pre-Mul or SD-Post-Mul for S-RNS-Logic-P encoding.

4.2.1  RNS Scaling-down by a Single Modulus. From Section 3.2, the SD-Pre-Mul requires a sub-
routine to scale down an RNS value by a single modulus. Without loss of generality, in an RNS
system with four moduli, we assume that the single modulus we scale down is my4. The input of this
scaling-down algorithm is (|X|m,, |X|m,, [X|mss |X|m,), and the output should be (|m%|m1, |m%|m2,
|m% lms 5 |% |in,). From the proof of Watson and Hasting [33, 69], if the m; does not share common

factors with my, then |m£4 |m; could be simply obtained via the following equation:

i

We can utilize a three-input base-extension algorithm [33, 69] for the remaining residue(s) that
fail to satisfy the above criteria. Table 6 summarizes the base-extension algorithm steps for RNS
with four moduli.

(13)

m
m;

 |IX o, = 1X |, |
m;
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Table 6. Three-input RNS Base-extension Algorithm From Watson and Hasting [33, 69]

Step Description
. X X X
0 The three inputs are | o Im | == o |m and | X o |m3
(& x
1| Computezriz A - “lox| -lox| 1 =01, -1EL
o i by 4 my 4 my
G x) ¥ x)
2 Use 2172 ™4 as an index to access my-LUT (e.g., Table 4 with RNS toy modulus set) to fetch the values of 3143 ™4 and
6 x )
4144 ™
€]
3 Compute |5 X | and |5 X | via equations ‘5L| !31)13 ""4 +‘6 X | and
M4 g Mg iy, mg Ly 4
(8 x
’5 |41)L4 ’"4 +)5 | , where |6 x = ‘mi|
g Ly 4 g Ly 4 lmy
4| Computey x =|l5ts| x| “lox| |
ompte 1 X2l ] | |
3 m3
5 Compute|i| =||m1mz><yx | |5X ‘
M4 Imy mg I "4y,

DEC X%3 X%5 X%2 X%7 1
|E| * ||X|m,—|X|.,.,| —| |\X|m,—|X|m,| E « [1Xlim, — |X|m| al, [l = 131,
s
- '-----' -
a1 1
E— l j 2 1% ]0-13]3=2 [3*]0-15|s=2 11+ ]1-1[;=0 (1)| | , No solution .
m,
o | M (z)| | —|0+|5x| | -2 |
wo, Imy sl | . -
TR AT T T TTT -
21 TT T ] s 13+ 12~ 4lsls =4 e 114l =1 W] Nosotuion !
n,

@l el 2
m.

Fig. 12. RNS scaling-down (by a single modulus) algorithm with RNS toy modulus set (3,5,2,7).

Figure 12 includes two examples of the single modulus scaling-down algorithm with RNS toy
modulus set (3,5,2,7). Assuming the single modulus to scale down is my, and the output is the RNS
format of I_%J

Example 1. For the regular decimal format, if the input X = 15, then we have [m%J = 2. The
equivalent RNS values of the previous two decimal numbers are (0,0,1,1) and (2,2,0,2), respectively.
The above RNS scaling-down algorithm helps us to obtain the output (2,2,0,2) from input (0,0,1,1).
We can directly employ Formula (13) to compute the first three residues. For i = 1,2, 3, Lm%Jm
equals 2, 2, and 0, respectively, which match the corrected residues. However, we cannot make use
of Formula (13) to calculate the fourth residue, because there is no solution for |mL4|m . To obtain the
fourth residue, we need to use the base-extension algorithm, where the three algorithm inputs are
the outputs of Formula (13). In this example, 2,2, and 0 are inputs, and the base-extension algorithm
output is 2, consistent with the corrected result.

Example 2. Similar to Example 1, we switch the decimal X = 67, and then Lm%J = 9. After the apply
the same methodology as Example 1, we can obtain the correct RNS scaling-down result (0,4,1,2).

4.2.2  RNS Scaling-down by the Product of Two Moduli. Step 2 of SD-Post-Mul (Section 3.3) re-
quires to scale down by K — 1 (= msmy). Scaling down by the product of two moduli, which equals
to K or K — 1, should be less complicated because it associates with the definition of macrocoeffi-
cients (Section 4.1.2): y, = I_m sz and f, = |_—J If the scaling-down factor is K - 1 (= m3my),
then we only need to compute the RNS version of ﬁx To obtain the residues of ., we can simply
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RNS Scaling Down Unit |
(A Single Modulus) |

|
.1
mal |
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Fig. 13. Architecture of RNS single modulus scaling-down unit.

employ a subset of the architecture in Figure 11, i.e., to include the datapath for | ﬂy|ml, 1Byl
|ﬂy|m3= and Iﬂy|m4-

4.2.3  Architecture of RNS Single Modulus Scaling-down Unit. The RNS SD-Pre-Mul algorithm
incorporates Single Modulus Scaling-down as subtasks, and the associated architecture of this logic
is shown in Figure 13. The RNS SD-Post-Mul algorithm needs to scale down the product of two
moduli. More specifically, it needs to scale down by K — 1 or K, which makes this scaling-down
operation associated with macrocoefficients. According to the previous discussion, the architecture
of this scaling-down unit (by K —1, a specific case of the product of two moduli) should incorporate
the logic and datapath in Figure 11 that calculate the results of | ﬁy|ml, | ﬂylmz, | ﬁy|m3, and | ﬁy|m4'
In other words, the architecture of the Scaling-down Unit (by K — 1) is only a subset of the RNS
Fractional Multiplier architecture.

my’

5 EVALUATION
5.1 Evaluation Methodology

This section measures RNS fixed-point approaches from the following four metrics: computational
accuracy, latency, energy, and Energy-delay Product (EDP). In Section 5.2, we evaluate the ac-
curacy of three multiplication algorithms with RNS toy and practical modulus sets. Because the
data range of the RNS toy modulus set is small, we can use brute force to evaluate all possible
two-number pairs. Each two-number pair includes the two operands of every arithmetic opera-
tion. However, the RNS practical modulus set has a much larger valid range, so we randomly pick
4096 two-number pairs for accuracy assessments. For the remaining metrics, i.e., latency, energy,
and EDP in Sections 5.3-5.5, we use gem5 [13] as a front-end of simulation toolchain to generate
the ARM assembly traces. The binary executable file of each workload is cross-complied and col-
lected as one of the gem5 inputs. Gem5’s debug mode output contains assembly instructions of
the specific workload. Then these assembly traces are filled into a traced-based in-order RNS CPU
simulator to measure the latency and energy of each workload. The basic events and parameter
values of the RNS CPU simulator are collected from gemb5. By integrating these events and pa-
rameters, our RNS CPU simulator provides better encapsulation and more flexibility to model the
RNS components and RNS processors. The accuracies of gem5 have been systemically verified in
related work [18, 32], which meet the simulation requirements of computer architecture design for
academia and industry. To ensure the measurement accuracies of the RNS CPU simulator, besides
utilizing the basic event and parameter values from gem5, we also integrate correction sugges-
tions from Reference [8] to further enhance the simulation accuracies. Therefore, the simulation
accuracies of the RNS CPU simulator should also meet the measurement requirements for both
academics and industry. The evaluation workloads of this work incorporate 5 benchmarks from
nanobench [4], and the remaining 6 test cases are convolutional computations of machine learning
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Fig. 14. Accuracy Norm_Diff For RNS (3,5,2,7).

models. These machine learning models include alexnet [43], FaceRecognition [2], mobilenet [35],
OCR [2], resnet [34], and yolo_tiny [68]. Considering the similarity of the matrix multiplication
patterns in layers and reducing the simulation timing, we pick the first convolutional layer of each
machine learning model to represent the associated model.

5.2 Accuracy Measurement

Computational accuracy is one of the critical evaluation metrics for data encoding. Unlike the ad-
ditions, the raw multiplication outputs of three fixed-point encodings are problematic, because the
raw products’ ranges and precisions are always inconsistent with operands. So, we must cautiously
discard a subset of data within the multiplication process while aiming to minimize the accuracy
loss. The accuracy loss is the absolute value of the difference between the correct result and the
algorithm output. If applying RNS fixed-point encoding to Al applications, then we must use the
strategy with limited accuracy loss. Al models typically include multiple layers, and each layer con-
tains a huge number of arithmetic multiplications. If the accuracy loss of a single multiplication is
non-negligible, then the error will accumulate layer by layer, making the final result unacceptable.
So, the algorithm with large accuracy loss in a single multiplication, such as SD_Pre_Mul, is un-
suitable for Al applications. The accumulated errors will make Al models challenging to converge
in training and significant accuracy degradation in inference.

Figure 14 compares the accuracy of three multiplications with the RNS toy modulus set (3,5,2,7).
Multiplication overflow indicates an incorrect product and is unnecessary to incorporate into sta-
tistics. Because the range of the RNS toy modulus set is small, Figure 14 includes all valid products
(no overflow) of two-number pairs. The definition of Norm_Diff in Figure 14 is as follows:

Definition 1 (Normalized Difference). Normalized difference (Norm-diff) is defined by the follow-
ing formula, in which the Min_Enc_Interval is the minimal precision interval that this data encod-
ing could represent:
|(Ideal_Product - Multiplication_Output)|

N Diff =
orm._Diff (Min_Enc_Interval)

According to the above definition, a smaller Norm_Diff implies better computational accuracy.
Figure 15 demonstrates the accuracy (Norm_Diff) of three multiplications with practical RNS
modulus set (199,233,194,239) [69]. The range of this practical modulus set is close to 23! and
can meet the range and precision requirements of many IoT or embedded system applications.
Unlike Figure 14, which tests all two-number pairs by brute force, Figure 15 randomly selects
4,096 pairs to represent the product accuracy due to the enormous exploration space of this prac-
tical RNS modulus set. Similarly, Figure 15 does not contain the invalid overflow products. Be-
cause a D_RNS_Concat number consists of an integer RNS and a fractional RNS, to simplify the
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Fig. 16. Latency evaluation of RNS fixed-point encoding. The y-axis values are normalized, where the latency
values of D-RNS-Concat are normalized as 1.

evaluation space in Figure 14, only the integer components utilize the brute force selection while
the fractional values are randomly chosen. The data patterns of the toy and practical modulus sets
are similar. The mean Norm_Diff values of both D_RNS_Concat_Mul and SD_Post_Mul are very
close to 0.5, which implies these two multiplication strategies are excellent for keeping the prod-
uct accuracy. However, for the practical RNS moduli set (199,233,194,239), the mean Norm_Diff of
SD_Pre_Mul is 992918.047, significantly higher than the other two methods. For the correctness of
the IEEE standard( IEEE 754), if the operand pairs are uniform distribution, the mean Norm_Diff
of IEEE 754 should be very close to 0.5 X Precision_Interval, the same as the mean Norm_Diff
of D_RNS_Concat_Mul and SD_Post_Mul. This result indicates that SD_Pre_Mul may lose more
product information and has much worse accuracy than D_RNS_Concat_Mul and SD_Post_Mul.

5.3 Latency Measurement

The latency to complete a practical workload is a metric to evaluate the performance of data
encodings. Figure 16 presents the normalized latencies of the three RNS fixed-point schemes. To
ensure the latency comparison is more straightforward, the latencies of both S-RNS-Logic-P meth-
ods (SD-Pre-Mul and SD-Post-Mul) are normalized to that of D-RNS-Concat. From the results, the
S-RNS-Logic-P approaches are substantially better than D-RNS-Concat, because the arithmetical
computation processes of S-RNS-Logic-P methods are less complicated. The S-RNS-Logic-P with
SD-Post-Mul is slightly worse than S-RNS-Logic-P with SD-Pre-Mul due to the more cycles required
for the SD-Post-Mul algorithms. Compared to D-RNS-Concat, on average, the S-RNS-Logic-P with
SD-Pre-Mul and S-RNS-Logic-P with SD-Post-Mul can achieve 30.3% and 29.1% execution time
reduction, respectively.
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Fig. 18. Energy-delay product (EDP) evaluation of RNS fixed-point encoding. The y-axis values are normal-
ized, where the EDP values of D-RNS-Concat are normalized as 1.

5.4 Energy Measurement

Energy is also crucial in measuring the computational efficiency from large-scale high-
performance computers to lightweight IoT/edge devices. Figure 17 summarized the normalized
energy consumptions of three RNS fixed-point methodologies. Similar to the latency results, D-
RNS-Concat is worse than the two S-RNS-Logic-P methods. For the two S-RNS-Logic-P schemes,
the one with SD-Post-Mul is slightly better. Compared to D-RNS-Concat, on average, the S-RNS-
Logic-P with SD-Pre-Mul and S-RNS-Logic-P with SD-Post-Mul can reduce 11.4% and 12.2% energy,
respectively.

5.5 Energy-delay Product (EDP) Measurement

EDP is a composite evaluation metric that integrates the consideration of latency and energy con-
sumption. The smaller EDP value is better. Figure 18 shows the normalized EDP values of three
RNS fixed-pointed methodologies. On average, the EDP values of S-RNS-Logic-P with SD-Pre-Mul
and S-RNS-Logic-P with SD-Post-Mul obtain 38.2% and 37.7% reduction from that of D-RNS-Concat,
which indicates that the comprehensive computing efficiencies of two S-RNS-Logic-P schemes are
very similar. However, if we combine the accuracy consideration from Section 5.2, then S-RNS-
Logic-P with SD-Post-Mul should be a better option.

5.6 EDP Comparisons Between Binary and RNS Fixed-point Encodings

Fixed-point strategies can be implemented in regular binary encoding. Q-format-FP [62],
Alignment-FP [45], and TVM-FP [71] are three binary fixed-point schemes that will be further
discussed in Section 6. For RNS encoding, according to our previous accuracy and EDP results in
this section, S-RNS-Logic-P with SD-Post-Mul is the better solution. To make results more straight-
forward, we compare S-RNS-Logic-P with SD-Post-Mul with the three binary fixed-point encodings,
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as demonstrated in Figure 19. The EDPs of TVM-FP are normalized as 1. Compared with the Q-
format-FP, which is observed best EDP from the three binary fixed-point encodings, S-RNS-Logic-P
with SD-Post-Mul has a 20.5% EDP reduction on average.

5.7 EDP Comparisons of System-on-chip (SoC) with Processing-in Memory (PIM)

The improvements highly depend on the system architectures and which components we will
apply the RNS fixed-point encoding. For example, if we only utilize the RNS strategy in a single
CPU ALU, then the overall improvement rate may be limited, because the data movement between
memory and computational units should contribute to the majority of the total energy [15]. One
potential application of RNS fixed-point encoding is a System-on-chip (SoC) with processing-
in memory (PIM), which can significantly reduce data movement. We model an RNS-PIM system
similar to RNSnet [60] but with our fixed-point encoding (S-RNS-Logic-P with SD-Post-Mul). The
results of PIM with regular binary computational units are normalized as 1. Because the silicon
area of the single RNS adder/multiplier is less than the regular binary adder/multiplier, we integrate
more RNS adder/multiplier into memory to ensure the RNS computational unit area is close but
no more than the area of the binary version. In other words, RNS architecture with fixed-point
encoding provides better computing powers and, therefore, lowers the response time. The full
system EDP comparison between the SoC with binary-PIM and the SoC with RNS-PIM is illustrated
in Figure 20. Compared with the binary-PIM, on average, our RNS fixed-point encoding can reduce
the full system EDP by 18.7%.
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6 RELATED WORK

The real-number encoding and associated arithmetical algorithms are critical factors that de-
termine the efficiency of the underline system, especially in serving addition/multiplication-
intensive applications, such as training/inference of various AI models [26, 51, 67]. RNS is
a powerful and low-cost technique [64] for integer applications with a high ratio of addi-
tion/subtraction/multiplication instructions. Appropriate RNS real-number encoding could be one
of the strategies to further raise the efficiency of Al accelerators (e.g., Google TPU [40, 41], Sam-
sung NPU [38, 54], Tesla FSD Chip [11, 66], Nvidia NVDLA [25, 28], Arm MLP [16]).

The IEEE 754 Floating-Point [1, 3] is a common standard for the current binary computers.
The RNS floating-point encoding is a relatively straightforward method to represent real numbers.
Chiang et al. [39] provided an RNS floating-point method that not only may require calling RNS
scaling-down function (scale down by 10) multiple times to normalize the mantissae but also need
many extra requirements for RNS moduli, such as need a I-bit redundant residue for each RNS
number to quickly verify its parity, and no modulus is an even number. The RNS floating-point
methods from Ghosh et al. [31] also consist of RNS unfriendly subroutines such as RNS min/max
comparisons and general radix right shiftings. The method proposed by Dhanabal et al. [24] may
need several RNS/Binary conversions in each multiplication. Even though optimizations exist in
the above floating-point schemes, they are still inefficient due to the expensive algorithms involved,
eliminating the default benefits of RNS encoding.

Fixed-point encoding is another option for the real-number representation, which typically loses
precision and range to trade other benefits, including less power and better performance. Saokar
et al. [62] utilize the Q-format fixed-point representation with the multiplier optimization via the
Urdhava Tiryakbhyam method. Essentially, they ensure the computation is the same as integer
arithmetic calculation to reduce time, area, and power overhead. However, this approach only fo-
cuses on Q15 and Q31 formats, which can only represent fractional numbers instead of real num-
bers. Lee et al. [45] allow users to define fixed-point data types such as fixed point<w,e>, where
w indicates the width, and e is for the exponent part. This fixed-point representation may pro-
cess like regular integer computation. However, operand alignment may require in addition or
subtraction operations, which is considered as extra overhead compared with traditional integer
computation. Yang et al. [71] extend a fixed-point type on the TVM compiler. This fixed-point
type essentially is a 16-bit integer and is used to replace a 32-bit floating point to reduce the en-
ergy overhead. However, their method requires converting floating point operands to fixed-point
before the convolution and finally converting the output back to floating point, which further
increases the computational overhead. Besides overcoming the previously mentioned limitations
from References [45, 62, 71], even for the advantage that is similar to binary integer computation,
our method is optimized one step further. We not only ensure the integer computational benefits
but also integrate the RNS strategy to explore the delay, power, and silicon area benefits further.

For some applications, relatively less precision and a smaller range could still can ensure correct-
ness. Olsen proposed a fixed-point RNS multiplication [53] and demonstrated 7-9 times more effi-
cient compared with a binary matrix multiplier. However, this algorithm still needs to include some
relatively high overhead subroutines, such as a division, base-extension [33, 69], and mixed-radix
conversions [21, 29, 36]. So in this article, we explore the RNS fixed-point encodings and associated
multiplication algorithms to better support the architecture design of future Al accelerators.

7 CONCLUSION

With the explosive growth of the Al community, training state-of-the-art AI models efficiently
becomes a pressing challenge. The colossal training overhead of large-scale models may impede
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the continuous evolution of Al techniques. This article presents a fixed-point data encoding to
assist efficient Al accelerator design, which smoothly obtains the low-cost benefits from RNS. Ac-
cording to experimental results, our S-RNS-Logic-P with SD-Post-Mul approach gets 37.7% EDP
reduction compared to the straightforward D-RNS-Concat scheme while holding good accuracy.
For D-RNS-Concat and S-RNS-Logic-P with SD-Pre-Mul methods, we extend implementation de-
tails in this article. To further facilitate the development of an RNS-based Al accelerator, we also
present architectures of fixed-pointed multipliers for these three RNS real data presentations. For
accuracy, we mainly focus on the evaluations of single arithmetic operations in this article. System-
atically evaluating the accuracies of neural networks based on three RNS fixed-point methods will
be one of our main future works. Although the primary objective of our S-RNS-Logic-P with SD-
Post-Mul method is to raise the efficiency of Al accelerators, this approach can also be extended to
error-tolerant domains (e.g., error correction of quantum computing) via attaching RNS redundant
residues.
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